
Misalignment Tolerant Inductive Power Transfer
(IPT) Systems

System analysis and controller design

Authors:
D. Ha
M.J.F. Pieters
Delft University of Technology

as part of the BSc graduation project

Dr. Jianning Dong, Supervisor
Soumya Bandyopadhyay (PhD Candidate), Supervisor

Delft, TU Delft, 2017

Additional files are available from mikepieters.com/IPT.zip

Acknowledgements
This report has been written in the context of the Bachelor Graduation Project from the

bachelor Electrical Engineering. It describes the outcome of the past quarter in detail. This

report would not have been possible without the guidance, support and help of our supervisors

Dr. Jianning Dong and Soumya Bandyopadhyay. We would like to express our sincere gratitude

towards them for giving us the opportunity to take part in a very interesting and cutting-edge

research project, their open attitude towards the team, the constructive feedback on our work,

and the generosity in sharing their time.

Last but not least, we would like to thank dr.ir. Nick van der Meijs and Ir. J.M.A. Kooijman, for

giving us the opportunity and the trust to start working on this project. Without them, this

report would not even have been possible in the first place.

Damy and Mike June 2017

i

Executive Summary
This report contains the design and implementation of two control systems related to an

inductive power transfer system. This IPT system charges a battery at maximum efficiency

and constant power using a buck converter. A linear controller has been designed around the

buck converter and implemented on a FPGA to match impedance for maximum efficiency. A

second controller has been designed at the inverter to implement charging at constant power.

The control signals for the inverter at the primary side and the PWM generator for the buck

converter are also implemented on a FPGA and tested. The control systems have only been

simulated.

iii

Contents
Acknowledgements i

Executive Summary iii

1 Problem Definition 1

1.1 Problem Scope . 1

1.2 Technical review . 2

1.3 Design Requirements . 2

2 Design Description 5

2.1 Overview . 5

2.2 Problem analysis . 6

2.3 Verification of the maximum efficiency point . 7

2.4 Comparison of converters . 8

2.5 The control topology . 9

2.6 Analysis of the Buck converter . 13

2.6.1 Simplified buck model . 13

2.6.2 Average state space model . 14

2.6.3 Model Validation . 15

2.7 Control Design . 16

2.7.1 Tasks for the control system . 16

2.7.2 Choosing the secondary controller . 17

2.7.3 Anti-windup method . 17

2.8 Tuning constants for the controller . 17

2.8.1 Evolutionary Strategies . 18

2.8.2 Implementation Evolutionary Strategies 20

2.9 Creating control signals for the full bridge inverter 21

2.10 FPGA Implementation . 22

2.10.1 PWM Generator . 23

2.10.2 Control signal generator for inverter . 24

2.10.3 PI Controller . 25

2.11 Use . 28

v

Contents

3 Evaluation 29

3.1 Overview . 29

3.2 Simulations . 29

3.2.1 Simulation of U2,dc controller . 29

3.2.2 Simulation of α controller . 32

3.2.3 Simulation of total system . 33

3.3 Prototype . 33

3.4 Testing the PWM-Generator . 34

3.4.1 Testing the inverter control signal generator 35

3.5 Assessment . 35

3.6 Next steps . 36

Nomenclature 37

A Calculation maximum efficiency 41

A.1 Calculation efficiency . 41

A.2 Calculation state space system . 41

B Maximum Efficiency Point Simulation 43

C Matlab code genetic algorithm 45

C.1 Main script . 45

C.2 Start population . 46

C.3 Fitness function . 47

C.4 Offspring . 48

D VHDL Codes 51

D.1 VHDL code for the PWM Generator . 51

D.1.1 VHDL Entity . 51

D.1.2 VHDL Testbench . 52

D.2 VHDL code for the inverter control signals . 54

D.2.1 VHDL Entity . 54

D.2.2 VHDL Testbench . 56

D.3 VHDL code for the PI Controller . 59

E Simulink Simulations 63

E.1 Control topology at primary side . 64

E.2 Control topology at secondary side . 65

vi

1 Problem Definition

1.1 Problem Scope

Electric vehicles are currently charged at EV charging stations through cable connections.

New charging applications for these vehicles are required to make charging easier. Inductive

Power Transfer (IPT) is gaining popularity among the public. IPT has been used to charge

various electronic devices - i.e. phones, watches and toothbrushes. IPT can also be used to

charge electric vehicles batteries. In figure 1.1 a simplified inductive power transfer system is

shown for an electric vehicle. A coil is installed underneath the car (red square). By applying

an alternating voltage on the primary coil (blue coil) and by bringing the secondary coil close

to the primary coil, a current is induced in the secondary coil. This current charges the battery

inside the electric vehicle. Charging electric vehicles comes with its own kind of problems.

One of these difficulties occurs when the coil underneath the car is misaligned with respect

to the primary coil. Figure 1.1(b) shows misalignment into one direction, but misalignment

can occur in both x and y plane. Misalignment causes more losses in the system and thus

affects efficiency. To compensate for the effects due to misalignment, a system should be

implemented that takes care of the effects. Designing this compensation part of the inductive

power transfer system will be the main goal of this report.

(a) The car when perfect aligned (b) The car when misaligned

Figure 1.1: Misalignment of a car in an IPT system. [1]

1

Chapter 1. Problem Definition

1.2 Technical review

Current car charging technology requires the user to plug a charging cable in the car. Implementations

of charging the car without cable are currently being investigated. If these wireless charging

system were to replace the conventional charging systems, it would require that the wireless

system to be as capable as conventional systems. High-end car chargers are currently able to

charge batteries at 22kWh with 100A [2].

In conventional battery charing literature there are two main types of charging a battery which

are slow charge and fast charge [3]. Slow charge is used when devices are left idle for a long

time. The devices charges slowly at the benefit that the battery is not damaged when the

battery has reached maximum charge. Fast charge is applied when a device must charge

within a certain time limit. The drawback of fast charging is that the battery is potentially

damaged if its fast charging for a long time. On average an efficiency is achieved around 80%

to 90% [3].

In this report neither fast nor slow charge will stand central but efficiency. In IPT systems,

high efficiencies can only be achieved if hardware is present that deals with efficiency. The

efficiency can greatly depend on the misalignment of the coils.

1.3 Design Requirements

The source of the design requirements are set by our supervisor S. Bandyopadhyay. The

following design requirements must be met:

1. A control system must be designed that achieves maximum efficiency: η= Pbat ter y /Psour ce .

2. The control system should achieve maximum efficiency for misalignments in the range

of k = 0.08 ≤ k ≤ 0.20, where k is the coupling coefficient between the coils.

3. The battery must be charged with 8.0kW during steady state regardless of the misalignment.

4. An additional task would be to implement the controller on a FPGA.

5. An additional task would be to implement a second controller that can set the power at

which the battery is charging.

Parameters of the conventional IPT system that has already been built is given in table 1.1.

2

1.3. Design Requirements

Variable Value Description

Vbat ter y 200V The nominal battery voltage

L1 200µH Inductance at the primary side of the transformer

L2 200µH Inductance at the secondary side of the transformer

Cp
1

ω2L1
F Capacitance at the primary side of the transformer

Cs
1

ω2L2
F Capacitance at the secondary side of the transformer

ω 2π85k rad/s Angular frequency of the primary voltage source

Rs = Rp - The parallel resistances in the primary and secondary coil are the same

k 0.08 ≤ k ≤ 0.20 The range of the coupling coefficient

Pout 8kW The power output of the IPT system

Table 1.1: The parameters of the IPT system

3

2 Design Description

2.1 Overview

Figure 2.1 shows the overview of the IPT system. The IPT system consists of a source that

transmits energy from a primary coil to a secondary coil (transformer). Reactive compensation

is implemented to bring voltage and current in phase. The current received at the secondary

coil is rectified and a capacitor creates a DC voltage. In order to improve efficiency η= Pbat
Psour ce

at different misalignments a DC/DC converter is introduced.

The DC/DC converter has the possibility to change the ratio between voltage U2,DC and current

I2,DC via the duty cycle and thus match impedance. How this exactly works is explained in

section 2.2 and is verified in section 2.3. In order to get the right duty cycle, a control system

must be implemented. The design control system is given in section 2.5 to section 2.10. Work

group 1 will focus on the design of the DC/DC converter. Work group 2 will focus on supplying

the measured signals to the control work group. Work group 3 will design the control system

that matches impedance. An additional controller can also be designed that controls the

voltage source at the primary side of the coil. Controlling the voltage source results in the

ability to set the power at which the battery is charging.

5

Chapter 2. Design Description

Figure 2.1: Overview of connection between sub groups. This document focuses on the tasks

of the red square. The yellow square is an additional controller which could be designed.

2.2 Problem analysis

A general IPT system can be modeled as figure 2.2. Vp is the primary AC voltage source.

Capacitors Cp and Cs improve the power factor. Capacitors Cp and Cs are chosen such that

the voltage and current at the rectifier are in phase. The transformer is coupled with factor k

which changes depending on the misalignment. M is the mutual inductance, which is given

by M = kL, where k is the coupling coefficient and L the inductance of the coils. The coils

have the same inductance. The rectifier creates a DC voltage from its input, such that battery

can charge at a constant voltage. The coils and capacitors have a parasitic resistance which

are summed up as Rp for the primary side and Rs on the secondary side. These parasitic

resistances affect the efficiency η= Pbat
Psour ce

.

Figure 2.2: The equivalent circuit of an IPT system with DC output.

The proposed method to get maximum efficiency is to use a DC to DC converter to match

impedances. The DC to DC converter, which will be placed between the rectifier and battery

in figure 2.2, causes the impedance Rl oad to change. This results in a circuit with an equivalent

6

2.3. Verification of the maximum efficiency point

resistance Rload as can be seen in figure 2.3.

Figure 2.3: IPT system with equivalent resistance Rload .

Calculations (Appendix A) show that the efficiency η is given by equation 2.1, given that

L1 = L2 = L and Cp =Cs = 1
ω2L (table 1.1). Setting the derivative of equation 2.1 with respect to

Rload to zero yields the load with optimal efficiency which is given by equation 2.2. Since the

primary coil has the same properties as the secondary coil; Rs = Rp . The calculations can be

found in appendix A. Maximum efficiency is thus achieved when Rload is equal to ωM for any

misalignment.

η= Pload

Psour ce
= ω2M 2RL

(Rs +Rl oad)2Rp +ω2M 2(Rs +Rl oad)
(2.1)

Rl oad ,opt =ωM

√
Rs

Rp
=ωM (2.2)

2.3 Verification of the maximum efficiency point

Figure 2.3 is simulated in Simulink using values from table 1.1. A sweep is performed on Rl oad

with steps of 1Ω at different values for k. The Matlab code is available in appendix B. The

result of this simulation is depicted in figure 2.4. The dots is where the maximum efficiency is

expected. The graph shows the expected outcome.

7

Chapter 2. Design Description

Figure 2.4: The efficiency versus resistance plot produces by the code in appendix B

2.4 Comparison of converters

Assume we want to charge a load with a certain power Pout = Ibat ter yVbat ter y . To change the

ratio between the current and the voltage a DC/DC converter can be used. Using a DC/DC

converter will allow changing the input voltage U2,DC as in figure 2.5. Assuming the converters

will all be in continuous conduction mode, the following characteristics of the converters can

be derived [4].

Buck converter in CCM

A buck converter takes a relatively high input voltage and reduces it at the output:

Vout = DVi n , Iout = 1

D
Ii n (2.3)

Since 0 ≤ D ≤ 1, the following constraint can be derived:

Vi n ≥Vout (2.4)

8

2.5. The control topology

Boost converter in CCM

A boost converter takes a relatively low input voltage and amplifies it:

Vout = Vi n

1−D
, Iout = (1−D)Ii n (2.5)

Where 0 ≤ D ≤ 1 Now the in and output resistances can be written as: Since 0 ≤ D ≤ 1, the

following constraint can be derived:

Vi n ≤Vout (2.6)

Note that both equations are valid for buck and/or boost converters with zero losses. Practically,

these converters don’t exists. This is why the boundaries for the voltages are too loose, but

they can be used as a guideline. In the following sections, equations for the input voltage of

the buck - U2,dc - will be derived, see eq. 2.12. From this formula and table 1.1. The following

boundaries for the input voltage can be obtained (assuming ηr ect = 1 and M = Lp k = Lsk):

U2,dc,max =
√
π2

8
ωLp max(k)P∗

out ≈ 459.18V (2.7)

U2,dc,mi n =
√
π2

8
ωLp min(k)P∗

out ≈ 290.41V (2.8)

This shows U∗
2,dc will be higher than the nominal battery voltage Ubat t . However, the internal

resistance over the battery raises the voltage while charging. Since the internal resistance of

the battery will be relatively low, the buck converter topology is chosen because of its voltage

reducing characteristics, U2,dc ≥Vbat t .

2.5 The control topology

The purpose of this section is to explain the control topology that has been chosen.

As has been stated before, the system contains two controllers. One controller implements

maximum efficiency by controlling the buck converter. The other controller is used to charge

the battery at a constant power. The derivation of the control topology for both controllers is

explained in this section. This section starts with the derivation for the efficiency controller

and then derives the topology of the power controller.

9

Chapter 2. Design Description

Reactive Power

Compensation k

L1 L2

Rectifier

DC/DC

Converter
Reactive Power

Compensation

U2,dc

+

-

U1,dc

+

-

DC/AC

Inverter

Up,rms

+

-

Figure 2.5: Systematic overview of the IPT system. From inverter to battery.

Take Rl oad at the same position as in figure 2.3, but now in figure 2.5. Impedance matching

occurs when Rload = ωM . Rl oad can be related to U2,dc (the voltage after the rectifier), the

rectifier efficiency η and the power out Pout . This is done by modeling the resistance before

and after the rectifier as Rac = Rload and Rbucki n respectively [5, 6]. This is made visible in

figure 2.6. For now the DC/DC converter is modeled with no losses. The relation between Rac

and Rbucki n is given by equation 2.9 [5, 6].

Figure 2.6: Rectifier with input and output resistances

Rac = 8

π2ηr ect
Rbucki n (2.9)

Rbucki n can be written as equation 2.10.

Rbucki n = U2,dc

I2,dc
=

U 2
2,dc

Pout
(2.10)

Combining equations 2.9 and 2.10 yields equation 2.11.

Rac = 8

π2ηr ect

U 2
2,dc

Pout
(2.11)

10

2.5. The control topology

The design specifications state that the battery should charge with a fixed power. This means

that there will be a power set-point P∗
out . This is the power at which the battery has to be

charged. The battery charges at maximum efficiency (Rac =ωM) which leaves U2,dc as the

only variable left. Solving U∗
2,dc yields the voltage set-point which is given by equation 2.12.

With this set-point it can be concluded that the voltage over the input capacitor must be

controlled for maximum efficiency. Design requirement 1 and 2 can now be fullfiled.

Theoretically it could also be possible to control the current I2,DC . Literature shows that in

this voltage-mode control has better properties due to the power at which the battery must

charge [7].

U∗
2,dc =

√
π2ηr ect

8
ωMP∗

out (2.12)

Controlling U∗
2,dc causes the system to charge at maximum efficiency assuming that the voltage

delivered by the inverter is correct. In order to charge both charge the battery at the desired

power and to reach the maximum efficiency point, the voltage at the output of the DC/AC

inverter - Up,r ms as shown in figure 2.5 - should also be controlled.

To control Up,r ms the modulation scheme proposed in [8] is used. [8] describes a full bridge

inverter and modifies the width of the positive and negative pulses of the signal, such that the

RMS voltage at the output of the inverter is lower than the input. This modulation scheme

is depicted in figure 2.7, where α/ω is the width of the positive and negative signal after the

inverter.

Figure 2.7: Modulation to control Up,r ms [8].

Power transfer of the complete IPT system can be written as equation 2.13 [8]:

Pout = 8

π2

U1,dcU2,dc

ωM
sin

α

2
(2.13)

11

Chapter 2. Design Description

Rewriting equation 2.13 to α yields the set-point α∗ at maximum efficiency and at the desired

power (when U2,dc is also U∗
dc). This α∗ is given by by 2.14 [8]. Controlling α to α∗ thus yields

the desired power. Design requirement 3 and 5 can now be be fullfilled.

α∗ = 2sin−1

(
π2

8

ωMP∗
2

U1,dcU∗
2,dc

)
(2.14)

U∗
1,dc =

√
Lp

Ls
U∗

2,dc (2.15)

Since the range of k is known (table 1.1) U1,dc can also be calculated. Using equation 2.15

from [9], U1,dc should be the maximum value of what U2,dc can be. This is because the output

of the inverter can only be made lower by changing α, but not any higher. Given that Lp = Ls

yields equation 2.16.

U1,dc = max(U2,dc) =
√
π2ηr ect

8
ωmax(M)P∗

out =
√
π2ηr ect

8
ωLtransformer max(k)P∗

out ≈ 460

(2.16)

460V holds for an inverter with no losses and ηr ect = 1. This is the minimum value for U1,dc in

order to work. The actual voltage value should be chosen bit higher to account for the losses

in the circuit.

The only issue that remains is that k has been taken in the range of 0.08 and 0.20 (table 1.1. The

assumption is made that this value of k is supplied. The real system needs an extra subsystem

that calculates this coupling coefficient real time. The real-time calculation of k is outside of

the scope of this work group.

The equations and concepts can now be used to create the overview for the complete system,

together with the controller and set point calculations. This yields figure 2.8.

12

2.6. Analysis of the Buck converter

Reactive Power

Compensation k

L1 L2

Rectifier

DC/DC

Converter
Reactive Power

Compensation

U2,dc

+

-

U1,dc

+

-

DC/AC

Inverter

dcU ,2

Calculate

Alpha

outP*

M 2

8

1

Product

Root

dcU ,2*

Controller

PWM

Inverter Control

Signal
Controller

*

*

Calculate Current

Alpha

Up,rms

+

-

rmspU , dcU ,1

Figure 2.8: Systematic overview of the IPT system. From inverter to battery with both control

systems.

2.6 Analysis of the Buck converter

2.6.1 Simplified buck model

The input source of the buck converter can be modeled as a current source due to the

transformer. The transformer acts like a current source. The value of this current source

at input of the buck converter ’Is ’, will be left open for now. For simplification purposes the

battery is modeled as a DC source in series with a resistor [10]. This yields the circuit in figure

2.9.

Figure 2.9: Simplification of the buck converter. RL , RC 1 and RC 2 are parasitic resistances.

Consider the switch and diode ideal.

The circuit also contains parasitic resistances of the capacitors and inductor. The parasitic

resistances add an additional zero to the circuit which interferes with the rise-time. The switch

and diode are considered ideal to simplify the problem, as has been done in [11]. The current

13

Chapter 2. Design Description

through the diode when the switch is closed is negligible.

2.6.2 Average state space model

Literature suggests the use of an average state space model [11, 12]. This state space model

allows the steady state analysis of the buck converter. The average state space model can be

found by taking the average of the state space equations when the switch is open or closed.

This is displayed in equation 2.17. Figure 2.10 shows the circuit when the switch is open or

closed.

Figure 2.10: Buck converter when switch is open or closed.

The calculations of the state space models when the switch is open and closed can be found

in appendix A.2. The resulting average state space equation is given in equation 2.18 making

use of [13].

Xavg
′ = Xond +Xo f f (1−d) = Aav g X +B av g (2.17)

VC 1

IL

VC 2

′

=

0 −d
c1

0
d
L

−1
L (RL +RC 1d +RC 2 ∥ Rb) −Rb

L(RC 2+Rb)

0 Rb
C2(RC 2+Rb)

−1
C2(RC 2+Rb)

VC 1

IL

VC 2

+

Is
C1

1
L (IsRC 1d − RC 2Vb

RC 2+Rb
)

Vb
C2(RC 2+Rb)

 (2.18)

Notice that entry matrix Aav g contains entries related to d . This will cause the poles of any

transfer function to be related to d . Also notice that entry (2,1) of Bav g is the only entry that

contains d , and that this entry is not fully wrapped by d . These dependencies on d causes the

system to be a nonlinear time invariant system. Nonlinearity is to be expected, since a small

duty cycle will cause more charge to build up in the capacitor compared to a large duty cycle,

which will cause less charge to build up in the capacitor.

Controllability is checked via C = [B AB A2B]. Matlab determined that the rank of matrix C is

three independent of the value of d , so the system is controllable.

Section 2.5 explained that the voltage over the rectifying capacitor will be controlled. The

14

2.6. Analysis of the Buck converter

average capacitor voltage, which derivation can be found in appendix A.2, can be written as

equation 2.19.

Simulations show that the input current Is is given by Is(t) = ∣∣Imax sin(2π fs t)
∣∣, where fs is the

frequency of the source at the primary side of the transformer. The average state space model

assumes an average current as input. Is will be taken as the time average of Is(t). This means

that model only represents the average current. The actual varying current will not cause large

deviation in the result, since the goal of the control system is to do an average impedance

matching.

Section 2.5 also explained that another controller is present in the system that handles the

constant power. This controller is able to control the current going into the rectifier and thus

Is can be any value to a certain extent. Simulations show that if impedance is to be matched at

8.0kW an input current is needed of between 20A and 35A for a k of 0.20 and 0.08 respectively.

For now Is is kept as an variable.

Y = Cav g X+Dav g =
[

1 −RC 1d 0
]

X+ IsRC 1 (2.19)

Equation 2.20 shows the Laplace transform of the output signal. As can be seen it has a non

linear dependency on d . The system is stable, since all the poles are in the right half plane.

The system can be linearized which yields equation 2.21. The system has been linearized on

d = 0.7, since that’s the middle of the working region of the switch : [0.5−0.9].

Y = 1e −3s3 + (2.87e3d +3.93e3Is)s2 + (3.83e8d +1.95e6Is)s +2.25e10Is +8.74e12d

s3 + (3.69e3)s2 + (1.76e7d 2 +6.31e7)s +2.19e10d 2 (2.20)

Y = −1.42e −2I 2
s s3 −1.975e5s2 + (2.705e7I s +6.793e9)s +8.741e12

s3 +4.00e3s2 +7.22e7s +1.07e10d 2 d (2.21)

The system remains stable. Since the linearized system is a T1-system a PI controller can be

used as a first guess to get the steady state error to zero. Note that d now must be between

[−1,0] in order to work. This means that the constants of the controller must be negative if d

is in [0,1].

2.6.3 Model Validation

Figure 2.11 shows the output voltage of the average state space model versus the simulation of

the buck converter with an rectified sinusoidal current source. The values of table 2.1 have

15

Chapter 2. Design Description

Variable Value Description

Rc1 10mΩ The parasitic resistance of C1

Rc2 20mΩ The parasitic resistance of C2

Rl 30mΩ The parasitic resistance of Rl

C1 2.8055mF Capacitance C1

C2 789.47µF Capacitance C2

L 20.256µH Capacitance C2

fsw 500kHz Inductance L

Table 2.1: Buck constants supplied by WP-1

been used as constants for the buck converter. Is has been chosen as 25A.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

time(s)

0

100

200

300

400

500

600

V
o
u
t

Comparison of Model

Original

Model

d = 0.5

d = 0.7

Figure 2.11: Comparison of models with switching duty cycle.

Figure 2.11 shows that the rise time of the model is not representative of the actual rise time.

The overshoot of the model however is comparable to the actual system. Since dynamic

performance is not the most important task of the controller, the model is can still be used for

analysis of steady state performance.

2.7 Control Design

2.7.1 Tasks for the control system

The control system has to implement the following tasks:

16

2.8. Tuning constants for the controller

• Rl oad must on average be equal to ωM when the coupling factor is between 0.08 and

0.20. This requirement is for a fixed power of 8.0kW.

• Using equation 2.12 the range of which the voltage over the capacitor can be acquired.

This range is 260V - 460V for a fixed power (8.0kW).

• The rise time of the system is preferred to be smaller than 500µs for 0.08 ≤ k ≤ 0.20.

• The settle time of the system is preferred to be smaller than 1s for 0.08 ≤ k ≤ 0.20.

In order to meet the requirements, two controllers have to be implemented in order to both

(1) reach the power set-point and (2) reach the maximum efficiency point.

2.7.2 Choosing the secondary controller

Since the linearized buck system is a T1-system, a PI controller is needed at minimum to

get the steady state error to zero. The PI-controller must be saturated to prevent duty cycles

greater than 1 or smaller than zero.

2.7.3 Anti-windup method

The integrator should stop integrating when the output of the controller is out of the 0 ≤ D ≤ 1

range. This is done in order to prevent the integration block from outputting a large integrated

error, which will cause a large overshoot in the end. Anti-windup is implemented using a

comparator which continuously checks whether the output of the controller is outside of these

bounds (0 ≤ D ≤ 1) and stops integration accordingly. This method of stopping the integrator

when the output of the controller is larger than a certain bound is referred to in literature as

"clamping". [14]

2.8 Tuning constants for the controller

The objective of the following sections is to determine the constants of the controller such that

the controller satisfies the design constraints (section 2.7.1). The method used to determine

the constants will be explained.

Finding the constants for any PID based controller is a non convex problem. Suppose that

the performance of the controller with arbitrary constants is rated with a function called the

fitness function and a high rating means a desirable controller. Unlike convex problems, the

solution plane will not be a smooth plane going to a single peak, but can be a plane with

discontinuities and multiple peaks or valleys. Figure 2.12 illustrates the difference between a

convex and non convex problem.

17

Chapter 2. Design Description

0 1 2 3 4 5 6 7 8 9 10

K

0

1

2

3

4

5

6

7

8

F
it
n
e
s
s
(K

)

Non convex problem

Convex

Non convex

X

Local

optimum

Global

Optimum

Global

Optimum

Figure 2.12: Convex vs non convex problem

In a traditional convex problem, gradient descent would be used to move the parameter. The

solution will eventually reach the maximum of the fitness function regardless of where the

the initial solution starts. In a non convex problem, gradient descent can also be applied.

The initial position of the solution however, determines whether the solution will end up in a

local optimum or not. Figure 2.12 illustrates this. If the initial solution starts at x, it will climb

towards a local optimum. If x would have started at the other side of the valley, it would have

reached the global optimum.

Traditional tuning strategies such as Ziegler-Nichols tune PID controllers such that a stable

solution is found [15], but not necessarily the solution that is most fit. In order to find this

peak in the solution plane, a computational optimization technique has been used. These

computational techniques often use randomness (a random value). This randomness is used

to move the solution in the solution plane. If the randomness is large, the solution is able

to jump over valleys in the function and thus exploring the other side of the valley. This is

called exploration. If randomness is small, the solution will be fine tuned. This is called

exploitation. The optimization technique that has been used is called: Evolutionary Strategies

taken from [16].

2.8.1 Evolutionary Strategies

Evolutionary strategies is a computational optimization technique that is based on evolution.

The basic algorithm of this strategy is illustrated in figure 2.13.

In evolutionary strategies the solutions are coded in a vector. For a PI controller, couples of Kp

and Ti are chosen according to a strategy. The result would look like
[

K pi T ii

]
and could

look something like
[

0.03 12.7×10−4
]

. The set of solutions is called the start population,

18

2.8. Tuning constants for the controller

Figure 2.13: Algorithm of evolutionary strategies

19

Chapter 2. Design Description

i.e.
[

K pi T ii

]
∈ StartPopulation. The start population is then rated by putting K pi and T ii

into the controller and assessing the response of the entire system for all i. In Evolutionary

strategies the solutions that perform the best are chosen for reproduction. These solutions

are then modified, by adding a value from a normal distribution with µ= 0 and σ=C to the

current solution. These so called offspring are then also rated. Parents and offspring are once

more selected for reproduction and then rated. This continues until a certain amount of

iterations has passed or until solutions are satisfactory.

A few reasons for choosing evolutionary strategies over other computational strategies are:

• Easy implementation: Evolutionary strategies is relatively easy to implement compared

to other strategies. Offspring is generated independent of the other solutions. ‘Offspring

’in swarm intelligence requires data of neighboring solutions, which require structures

to keep track of that data.

• Small solution space: unlike other computation strategies, evolutionary strategies

limits solutions to a certain range, i.e. K pi ∈ [Kp,mi nKp,max],Ti ,i ∈ [Ti ,mi nTi ,max]. In

subsection 2.8.2 it’s argued that it’s already known in which range the solution should

be.

• Fine tuning randomness: Most other computational optimization techniques only have

a constant order of randomness. σKp and σTi can also be fine tuned. Solutions will now

train themselves to exploit or explore the solution space.

2.8.2 Implementation Evolutionary Strategies

Normally the range of the constants Kp and Ti would be from − inf to inf. The decision has

been made to reduce the search space. If any of the PID constant is too large it will cause the

controller to react too fast. This will cause instability if noise is present in the measurement

signal. Large constants are thus discarded. It’s hard to answer in what range the solution

should be.

The output of the controller controls the duty cycle of the PWM generator, which is a value

between 0 and 1. If the p term is examined, it’s evident that the maximum error that the system

could generate is at the start. The maximum error would thus be the highest possible reference

voltage. At this point the output of the PI controller should be a value between 0 and 1. As a

first guess Kp has been limited to a range of
[

−1
Vr e f ,max

,0
]

. This range is slowly increased if Kp

turns out to be near the border of range. The same strategy is applied to the I term. The initial

range has been chosen as
[−1×104,0

]
. The minimum value has been chosen as such since

other papers have similar constants in the −1×104 range [17, 18].

The fitness function that has been chosen is given in equation 2.22.

f (Kp ,Ti) = min

(
0.5,

1

2×overshoot%

)
+min

(
0.5,

1

2×ess%

)
(2.22)

20

2.9. Creating control signals for the full bridge inverter

The fitness function is trying to get the average steady state error to 1% and at the same time

the overshoot to 1%. It’s important to get the error as close to zero in order to get maximum

efficiency. The overshoot is important because excess charge is sent into the battery. This

could destroy the battery. The matlab code that implements the genetic algorithm can be

found in appendix C.

2.9 Creating control signals for the full bridge inverter

A subsystem has to be created to supply the full bridge inverter with the correct signal to let

it create the signal depicted in figure 2.6. α is defined as in figure 2.6. This system should

take α and signal frequency f as an input and create two separate control signals for the two

transistor pairs in the full bridge inverter. This generator is depicted in figure 2.14.

Sine Wave

Generator

2

Divide

Sine function

sin
Comparator

Comparator

Product

1

Control Signal 1

Control Signal 2

Inverter Signal Generator

Figure 2.14: Systematic overview of the control signal generator for the full bridge inverter

The working principle behind this generator will now be illustrated by an example. Assume

α= 1
4π. This means the nonzero values of the output signal should have a width of π

4ω (figure

2.6). Since our reference signal is a sine-wave, the corresponding reference for both the

comparators (x and y) is given by eq. 2.23. Division by 2 is done because the time from 0 to

the first high in the control signal, should be half of the total zero time between 0 and π. See

figure 2.15.

x(α) = sin

(
(π−α)

2

)
=−y(α) (2.23)

21

Chapter 2. Design Description

0 3/8π 5/8π π

Time

0

0.5

sin(3/8π)

1
S

in
e

 v
a

lu
e

Calculation of reference signal for comparator

1

4
π

Figure 2.15: Calculation of the reference value for the comparator, when α= 1
4π

2.10 FPGA Implementation

A PI controller and PWM generator have been implemented on a FPGA in order to meet design

requirement 4. The FPGA has to be fast - have a high clock frequency - in order to generate

an PWM signal with a large enough resolution such that the quantization error is low. The

number of quantization levels n is given by equation 2.24.

n = fcl k

fPW M
(2.24)

The Papilio One with on board Xilinx Spartan3E (XC3S500E) has been used due to the following

[19, 20]: The FPGA is large enough to accommodate the implementation and also has an USB

chip for JTAG programming. The FPGA also has an on-board flash memory, which allows the

system to work even after a restart. The FPGA is quite affordable. The FPGA also allows the

usage of the Xilinx ISE Design suite, which is a all-in-one package for creating and simulation

of hardware implementations. [21] has been used as a guide during the design of the PWM

generator, the inverter signal generator and the PI-controller.

22

2.10. FPGA Implementation

2.10.1 PWM Generator

The Papilio One development board has an internal clock of 50MHz [20]. The Buck-design

group needs an switching frequency of fPW M = 500kHz. Applying equation 2.24 yields a

resolution of 64 discrete steps for the duty cycle (D). This means that the PWM generator

needs a bit signal of size 2 log(64) = 6 in order to represent all 64 steps. The maximum duty

cycle is defined by us as "111111" and the minimum "000000". The conversion of duty cycle to

binary signal is given by equation 2.25. Figure 2.16 illustrates an example PWM signal.

Dbi n = to_binary(D% ×64) (2.25)

In VHDL the following code has been writen:

1 time_high <= conv_integer(dutycycle_IN);

Time_high is the number of clockcycles the PWM-signal has to stay a logic high. A counter

counts the clock cycles that have passed. After Time_high amount of clock cycles have passed,

the PWM-signal is changed to a logic low. Once the counter reaches the number of the total

clock cycles per PWM, which is 64, the counter is reset and the PWM-signal is set to a logic

high.

Figure 2.16: PWM signal for a dutycycle of 50%

23

Chapter 2. Design Description

Synthesizing the code from appendix D.1 creates the model in figure 2.17. The PWM generator

is self-explanatory except for one thing. This PWM generator duty cycle can only be changed if

and only if the latch is a logic 1. The dutycycle_IN input is read and a new duty cycle is loaded

in. This is to keep the duty cycle stable in case the controller is suddenly changing the duty

cycle. Testing and verification of the model is done in section 3.4.

Figure 2.17: Model for PWM generator entity

2.10.2 Control signal generator for inverter

The design for this signal generator is for a large part based on the PWM generator in subsection

2.10.1 with three differences. First, the frequency of the generated signals is f = 85kHz (table

1.1) instead of fsw = 500kHz (table 2.1). Secondly, the maximum equivalent duty-cycle allowed

is 50%. Lastly, there should be two output signals that are 180◦ out of phase.

bits_res

Inverter

Control

Signal

Generator

INVCONTROL.vhd

CLK

LATCH

alpha_in

RESET

CONT1_OUT

CONT2_OUT

Figure 2.18: Model for inverter controller entity

24

2.10. FPGA Implementation

alpha_IN is calculated in equation 2.26:

alpha_IN= to_binary
(α
π
∗clocks_per_pulse

)
(2.26)

Where clocks_per_pulse is the number of clock-cycles for maximum alpha. This occurs

when α=π. Which is calculated by 2.27 (pseudocode).

clocks_per_pulse= to_integer
(

clk_freq
2∗control_freq

)
(2.27)

The VHDL entity file and corresponding test-bench is available from appendix D.2. In

subsection 3.4.1, the design is tested and the result from the testbenches is evaluated.

2.10.3 PI Controller

In order to control U2,DC the voltage has to be measured and fed into the controller. The

VHDL-code for this controller has been given in appendix D.3. Workgroup "Measurement and

Wireless communication" provides the controller with a measurement of the voltage. Since

the bit size of the incoming (digital) is still unknown, the width is specified as a generic. The

bit size of the output of the controller - the duty-cycle - has a size described by subsection

2.10.1.

The PI-Controller has been programmed as a Moore machine. The FSM-diagram of the circuit

is given in figure 2.19. Below the FSM-diagram, the functions of every state are explained.

25

Chapter 2. Design Description

Figure 2.19: Finite state machine for the PI controller

State description for the PI-controller

• start

1 adcin <= to_integer(unsigned(data_in));
2 sp <= to_integer(unsigned(setpoint));
3 Error_Old := Error;
4 next_state <= calcerror;

26

2.10. FPGA Implementation

This state reads the incoming sensor data and reads the setpoint. It also saves the

previous error in Error_Old.

• calcerror

1 next_state <= calcpi;
2 Error <= to_integer(to_unsigned ((sp-adcin)));

This states calculates the difference between the incoming signal - the sensor signal -

and the set-point. Furthermore, it saves this integer in the variable Error.

• calcpi

1 next_state <=calcd;
2 p<=Kp*Error;
3 i<=Ki*(Error+Error_old);

calcpi calculates the signals in the proportional and integral branches of the controller.

Since p is just the proportional part, the error is multiplied. And because i is the integral

part, the old error is added to the new error.

• calcd

1 Output <=(p+i+d)/scale_factor;
2

3 if Output > max_output then
4 Output <= max_output ;
5 end if;
6 if Output < 1 then
7 Output <= 1;
8 end if;
9

10

11 next_state <=setd;

This state will calculate the output of the PID controller and saturate it when it is higher

than the maximum of the duty cycle.

• setd

1 data_out <= std_logic_vector(to_unsigned(
2 Output ,length_data_out));
3 next_state <= start;

This final state will put the data on the data_out, the output port of the entity. Furthermore

it will return to the start-state.

27

Chapter 2. Design Description

2.11 Use

Implementation of the system specified in the preceding sections, will allow the next generation

of wireless charging systems to operate at a fixed power set-point and and maximum efficiency.

These wireless charging systems can be used for a wide range of applications.

Currently, the system is designed to work for a battery with a nominal voltage of 200V charging

at 8.0kW. Misalignments must be within the range of 0.08 ≤ k ≤ 0.20. The minimum voltage

at the primary side must be at least 460V otherwise impedance is matched poorly. However,

tuning various constants in the system will allow the system to fulfill other requirements.

28

3 Evaluation

3.1 Overview

Due to the fact that this work group is dependent on the progress of other groups, it was not

possible to test the controllers. Instead, simulation results are presented in this chapter. This

chapter starts off with the simulation results of the U2,dc controller followed by theα controller.

After that the entire system is simulated and evaluated. The implementation of the PWM

generator is then presented, followed by a assessment of the system and recommendations.

3.2 Simulations

3.2.1 Simulation of U2,dc controller

The topology in figure 3.1 has been simulated with different controllers. The simulation file

is available in appendix E. These controllers have been trained using the genetic algorithm

at 35A input voltage. This is the current at which the battery charges at 8.0kW at the worst

misalignment. The values of table 2.1 are used for the buck converter. The sample and hold

block has also been put into the simulation to simulate noise created by the FPGA. The FPGA

can only change the duty cycle once ever 2µs due to the switching frequency. Quantization

noise has not been implemented since it can be diminished by having a PWM generator with

a higher resolution.

29

Chapter 3. Evaluation

Figure 3.1: Topology of simulation.

Figure 3.2, 3.3 and 3.4 show the simulation results of the buck converter with an PI controller.

The equation of the PI controller is PI (s) =
(
−11.79+ −1.104×103

s

)
. The reference voltage

changes from 460V (voltage at worst misalignment) to 400V. The current remains 35A, but in

reality it should go down due to improvement of alignment. The initial overshoot is about

0.13% (figure 3.3) and the second overshoot is about 2.0% due to the constant current. If the

error of the system (figure 3.4) is examined two things stand out. The first is that U2,dc is not a

smooth line but a repetitive wave form during steady state. This effect is caused by the FPGA

that samples and holds the duty cycle every 2µs. Similar effect is seen in [17]. The second is

that the error of the system does not go to zero, but on average remains stable. This is probably

due to the limitations of a linear controller on a non linear system.

Figure 3.2: Simulations results PI controller. Is is 35A, k = 0.2

30

3.2. Simulations

Figure 3.3: Simulations results overshoot PI controller.

Figure 3.4: Simulations results error PI controller.

Figure 3.5 shows the the simulation results of the same PI controller, but then at the worst

31

Chapter 3. Evaluation

alignment. The overshoot is 0.23% and the average steady state error is 0.8%.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time(s) ×10
-3

250

252

254

256

258

260

262
V

o
lt
a

g
e

(V
)

U
2,DC

 PI control

U
2,DC

U
2,DC

*

Figure 3.5: Simulations results PI controller. Is is 35A, k = 0.08

A PID controller has also been tuned and tested. Figure 3.6 shows the simulation results.

The D part also did not show any mayor improvements in the response. It could be that the

constants were taken from the wrong range. The PID controller that was used is given by:

PI D(s) =
(
−0.51+ −5.8×102

s +1.2×10−3s
)

1.05 1.1 1.15 1.2

Time(s) ×10-3

457.5

458

458.5

459

459.5

460

460.5

V
o
lt
a
g
e
(V

)

U
2,DC

 PID control Overshoot

U
2,DC

U
2,DC

*

4.81 4.815 4.82 4.825

Time(s) ×10-3

458.9

459

459.1

459.2

459.3

459.4

459.5

459.6

V
o
lt
a
g
e
(V

)

U
2,DC

 PID control error

U
2,DC

U
2,DC

*

Figure 3.6: Simulations results PID controller. Is is 35A, k = 0.2

3.2.2 Simulation of α controller

Appendix E.1 shows the topology used to simulate the controller for the inverter. Figure 3.7

shows the simulation results of the topology with a trained PI controller. The simulations

shows an overshoot of 10% and an average error of 1.5% at steady state. Since there are no

requirements for this controller, the results are left as they are.

32

3.3. Prototype

0.5 1 1.5 2 2.5 3 3.5 4

Time(s) ×10-3

1.3

1.4

1.5

1.6

1.7

1.8

1.9

α

Alpha PI control

α

α *

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Time(s) ×10-3

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

1.41

α

Alpha PI control error

α

α *

Figure 3.7: Simulations results PI controller

3.2.3 Simulation of total system

The total system has been simulated using the α and U2,DC controller. Both controllers were

PI controllers. Figure 3.8 shows this simulation. The simulation starts off with an input current

of 25A with an alignment of k = 0.20 (best alignment) and switches to an input current of 35A

with an alignment of k = 0.08 (worst alignment). In both cases, the steady state power Pbat is

approximately 8.0kW. The difference is due to losses in the system which are not compensated

by U1,DC . One thing to note is that power peaks once k is changed dramatically. This peak

occurs due to the rectifying capacitor. It suddenly must lower the voltage and does this by

releasing excess charge into the battery. The sudden peak in power is dangerous for the battery.

Solutions to diminish this power surge, could be to lower U2,DC slowly, which has been done

in figure 3.2.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

time(s)

280

300

320

340

360

380

400

420

440

460

V
o
lt
a
g
e
(V

)

U
2,DC

U
2,DC

U
2,DC

*

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

time(s)

-1

0

1

2

3

4

5

6

P
o
w

e
r(

W
)

×104 P
battery

P
bat

P
bat

*

Overshoot

Charging

Capacitors

Charging at

worst alignment

Charging at

best alignment

Figure 3.8: Simulations results Pbat

It’s now possible to conclude that design requirement 1, 2,3 and 5 have been met.

3.3 Prototype

Since the buck converter has not been built there is no prototype. The controller has been

implemented on an FPGA but cannot be tested since measurement data must be supplied.

33

Chapter 3. Evaluation

The only prototype that could be tested was the PWM generator and the signal generator for

the inverter.

3.4 Testing the PWM-Generator

A VHDL test-bench was written in order to test and simulate the output of the PWM-entity.

The result of the test-bench were as expected. After that, the simulation was programmed into

the Spartan3E and the output was measured on an analogue oscilloscope. The simulation

starts with a duty cycle of 50%. Then, shortly after 10µs, a new duty cycle of 12.5% = 8
64 gets

written on the input ports. Shortly after, the new duty cycle is latched in. The results can be

found on http://mikepieters.com/IPT.zip.

For synthesis on the Spartan3E chip, the VHDL code was modified such that the duty cycle is

50% when the device is rebooted. A duty cycle of 25% after the first latch pulse was hard-coded.

This was done to simulate different duty cycles. The duty cycle has been verified using an

oscilloscope. A few results of the testing are presented in figure 3.9 and 3.10.

Figure 3.9: Testing PWM generator after boot with a 50% dutycycle

34

3.5. Assessment

Figure 3.10: Testing PWM generator setting duty cycle of 25%

3.4.1 Testing the inverter control signal generator

The inverter signal generator was tested by using the test-bench in appendix section D.2.2.

The results are difficult to show here, since the high resolution that is needed to show the

detail properly, but the results can be found on http://mikepieters.com/IPT.zip.

3.5 Assessment

Concerning the buck model the expectation were higher than the final outcome. The buck

model only seemed to have a representative rise time and settle time when the input current

is much higher than 35A. The buck model could have saved a lot of computation time which

could have improved the genetic algorithm.

The genetic algorithm worked really well. The main drawback of this method was the

simulation time needed to get good results. The result of the algorithm may be a lot better

when executed on a faster computer. However, the current results gave us a system that met

all the requirements.

Regarding the simulation results. The verification of the maximum efficiency point yielded the

expected results. The α-generator also worked really well in simulation. The controller that

was chosen in the end did not bring the average error to zero due to the non linear behavior.

It was, however, very close to zero and the overshoot of U2,dc was within the limits. The

steady state error might have gone to zero when a non linear controller had been used, since

literature advises the usage of it. The steady-state power output in simulation came reasonably

close to the set-point. The overshoot in U2,dc became a lot smaller when we implemented an

anti-windup method. However, when changing the coupling-coefficient k resulted in huge

short peak in power output. We expect that this is due to capacitor discharging when U2,dc

changes suddenly.

35

Chapter 3. Evaluation

It’s also a shame that the controller hasn’t been physically tested. We expected a lot of

quantization noise to occur, but this could not be verified. However, we managed to get

the PWM-generator and the inverter signal generator working.

3.6 Next steps

The next steps in this project is the combine the work of workgroup 1,2 and 3 and connect

the hardware to create this system inductive power transfer system physically. We advise to

implement the both control systems, since it tackles the problem of both constant power and

efficiency for wireless charging. The buck should be built and then controlled with the control

system. This control system should be assessed if it is sufficient and otherwise replaced with

a non linear controller. The genetic algorithm should be executed on a faster computer to

produce more accurate results. The set-point for α should be transmitted using the work of

the wireless-communication group.

36

Nomenclature

General Symbols

η Efficiency

ω Angular frequency of the primary source

Cp Capacitance at primary side of the transformer

D Duty-cycle for the PWM signal controlling the buck converter

k Coefficient of coupling from the transformer

L1 Inductance at primary side of the transformer

L2 Inductance at secondary side of the transformer

M Mutual inductance of the transformer

Pout Power output of the complete IPT system

Rp Parasitic resistance of both Cp and L1 combined. See figure 2.2.

Rs Parasitic resistance of both Cs and L1 combined

Rload Resistance after transformer and reactive power compensation, see figure 2.3

Vp AC voltage at primary side of the transformer

Vbat ter y Nominal battery voltage

PWM Pulse Width Modulation

Buck Symbols

C1 Input capacitance of the buck converter

C2 The output capacitance

D1 Diode in the buck converter

fsw Switching frequency of the buck converter

37

Nomenclature

Is Current at the input of the buck converter

L The inductor in the converter

Rb Internal resistance of the battery

Rl Parasitic resistance of the inductor

Rc1 Parasitic resistance of C1

Rc2 Parasitic resistance of C2

Vb Battery voltage

Control Algorithm Symbols

α Phase shift between the two inverter legs

ηr ect Efficiency of the rectifier

Lp Inductance at primary side of the transformer

Ls Inductance at secondary side of the transformer

Rac Resistance in front of the rectifier, see figure 2.6

Rbucki n Resistance after the rectifier, in front of the buck converter

Rload Resistance in front of the rectifier, see figure 2.5.

U1,dc Voltage in front of the inverter, see figure 2.5

U2,dc Voltage in front of the rectifier, see figure 2.5

Controller Symbols

ess Steady state error

Kp Proportional term of the PI controller

Ti Integral term of the PI controller

D Derivative

I Integral

P Proportional

FPGA Implementation Symbols

fclk Clock frequency of the Papilio One development board

fPW M Frequency of the generated PWM Signal

38

Nomenclature

k Number of inputs needed to define the duty-cycle

n Number of quantization levels

39

A Calculation maximum efficiency

A.1 Calculation efficiency

Ztot al = (Rs +RL + Zs) ∥ Zm + Zp +Rp = Zm (Rs+RL+Zs)
Zm+Rs+RL+Zs

+ ZP +RP = RP + jω(Lp −M)− jωLp +
jωM(Rs+RL− jωM)

Rs+RL

Take Ls = LP .

= Rp + ω2m2

Rs+RL

Ip = Vp

Ztot al
= Vp

Rp+ ω2 M2

Rs+RL

= VP (Rs+RL)
(Rs+RL)RP+ω2M 2

IL = IP ZM
ZM+Zs+Rs+RL

= VP (Rs+RL)
(Rs+RL)RP+ω2M 2

jωM
jωM+Zs+Rs+RL

= VP (Rs+RL)
(Rs+RL)RP+ω2M 2

jωM
Rs+RL

= jVPωM
(Rs+RL)Rp+ω2M 2

Pout = V 2
pω

2M 2RL

[(Rs+RL)Rp+ω2M 2]2

Pi n = V 2
p

Rp+ ω2 M2

Rs+RL

= (Rs+RL)V 2
p

(Rs+RL)Rp+ω2M 2

η= Pout
Pi n

= V 2
pω

2M 2RL

[(Rs+RL)RP+ω2M 2]
(Rs+RL)Rp+ω2M 2

(Rs+RL)V 2
p

= ω2M 2RL
(Rs+RL)2Rp+ω2M 2(Rs+RL) = ω2M 2RL

Rp (R2
s +R2

L+2Rs RL)+ω2M 2Rs+ω2M 2RL

dη
dRL

= [(Rs+RL)2Rp+ω2M 2Rs+ω2M 2RL]ω2M 2−ω2M 2RL (2Rs Rp+2RL Rp+ω2M 2)
[(Rs+RL)2Rp+ω2M 2(Rs+RL)]2 = 0

Matlab yields:

RL = 1
Rp

√
RpRs(M 2ω2 +Rp Rs) = 1

Rp

√
RpRs M 2ω2 +R2

p R2
s ≈

√
M 2ω2 Rs

Rp
=ωM

√
Rs
Rp

A.2 Calculation state space system

Switch open:

VC1 : dVc1
d t = 1

C1
Is

41

Appendix A. Calculation maximum efficiency

Figure A.1: Buck converter when switch is open or closed.

V : IL = Ib + IC 2 = V −VC 2
RC 2

+ V −Vb
Rb

=V (1
RC 2

+ 1
Rb

)− Vb
Rb

− VC 2
RC 2

IL + Vb
Rb

+ VC 2
RC 2

= V
RC 2∥Rb

→V = RC 2 ∥ Rb(IL + Vb
Rb

+ VC 2
RC 2

)

IL : d IL
d t = 1

L (−RL IL −V) = 1
L (−RL IL −RC 2 ∥ Rb(IL + Vb

Rb
+ VC 2

RC 2
))

VC2 : dVC 2
d t = 1

C2
(IL − Ib) = 1

C2
(IL − V −Vb

Rb
) = 1

C2
(IL − RC 2∥Rb

Rb
(IL + Vb

Rb
+ VC 2

RC 2
)+ Vb

Rb
)

X′ =

0 0 0

0 −1
L (RL + RC 2Rb

RC 2+Rb
) −Rb

L(RC 2+Rb)

0 Rb
C2(RC 2+Rb)

−1
C2(RC 2+Rb)

X+

Is
C1−RC 2Vb

L(RC 2+Rb)
Vb

C2(RC 2+Rb)

Y : Y = RC 1(Is − IL)+VC 1

Switch closed:

VC1 : dVc1
d t = 1

C1
(Is − IL)

IL : d IL
d t = 1

L (VC 1 +RC 1(Is − IL)− ILRL −V) = 1
L (VC 1 − (RC 1 +RC 2 ∥ Rb +RL))IL − RC 2∥Rb

RC 2
VC 2 +

RC 1Is − RC 2∥Rb
Rb

Vb

VC2 : dVC 2
d t = 1

C2
(IL − Ib) = 1

C2
(IL − V −Vb

Rb
) = 1

C2
(IL − RC 2∥Rb

Rb
(IL + Vb

Rb
+ VC 2

RC 2
)+ Vb

Rb
)

X′ =

0 −1
C1

0
1
L

−1
L (RC 1 +RL +RC 2 ∥ Rb) −Rb

L(RC 2+Rb)

0 Rb
C2(RC 2+Rb)

−1
C2(RC 2+Rb)

X+

Is
C1

1
L (IsRC 1 − −RC 2Vb

RC 2+Rb
)

Vb
C2(RC 2+Rb)

Y : Y = RC 1Is +VC 1

Average state space

Xavg
′ =

0 −d
C1

0
d
L

−1
L (RL +RC 1d +RC 2 ∥ Rb) − Rb

L(RC 2+Rb)

0 Rb
C2(RC 2+Rb)

−1
C2(RC 2+Rb)

Xavg +

Is
C1

1
L (IsRC 1d − −RC 2Vb

RC 2+Rb
)

Vb
C2(RC 2+Rb)

Y : Y =

[
1 RC 1d 0

]
+ IsRC 1

42

B Maximum Efficiency Point Simulation

The following simulation has been executed to verify whether Rl oad is indeed equal to ωM =
ωkLtr ans f or mer ,

Figure B.1: The simulation done to verify the maximum efficiency point.

1 clear all;

2

3 %Set some constants

4 f=85000;

5 w=f*2*pi;

6 Ltransformer=200e−6;
7 Ctransformer=1/(w^2*Ltransformer);

8

9 %Create the sweeping variables

10 resistance=[8:0.5:25];

11 k_values=[0.11:0.02:0.19]

12 results=zeros(length(resistance),length(k_values))

43

Appendix B. Maximum Efficiency Point Simulation

13 h = waitbar(0/length(resistance),'Simulating results')

14

15 %Sweep over numerous resistances for different values of k

16 for j=1:length(k_values)

17 k=k_values(j);

18 for n=1:length(resistance)

19 waitbar(n / length(resistance),h,strcat('Number of k:', '[',num2str(j),

20 '/',num2str(length(k_values)),']'));

21 R= resistance(n);

22 disp(R);

23 sim('effienciency');

24 results(n,j)=efficiency_out.Data(2);

25

26 end

27

28 end

29

30 %Get for every k the maximum efficiency point

31 a=1:length(k_values);

32 b=1:length(k_values);

33

34 for m=1:length(k_values)

35 [a(m),b(m)]=max(results(:,m));

36 end

37

38

39 %Plot the results

40 for n=1:length(k_values)

41 plot(resistance,results(:,n),'DisplayName',strcat(

42 'k=',num2str(k_values(n))));

43 hold on;

44 end

45 hold off

46 title('Resistance vs Efficiency')

47 xlabel('Resistance')

48 ylabel('Efficiency')

49 legend('show')

44

C Matlab code genetic algorithm

C.1 Main script

1 clear all

2 close

3

4 %Range

5 Kp_min = 0; Kp_max = 1e1;

6 Ti_min = 0; Ti_max = 1e3;

7 Kd_min = 0; Kd_max = 1e−2;
8 sigKp_max = 1e−1;
9 sigTi_max = 1e−2;

10 sigKd_max = 1e−3;
11 popsize = 1000; iterations = 60;

12

13 %Evoluntionary Strategy

14 %Start population

15 [sp_kp, sp_ti, sp_kd, sp_skp, sp_sti, sp_skd] = StartPopulation(popsize

16 , Kp_min, Kp_max, Ti_min, Ti_max, Kd_min, Kd_max, sigKp_max, sigTi_max

17 , sigKd_max);

18

19 %Fitness of start population

20 disp('Assessing Fitness');

21 fit = FitnessFunction(sp_kp, sp_ti, sp_kd);

22 disp('Done');

23 startpop = [sp_kp, sp_ti, sp_kd, sp_skp, sp_sti, sp_skd, fit];

24 clear fit sp_kp sp_ti sp_skp sp_sti; %Remove variables

25

26 currentpop = startpop;

27

45

Appendix C. Matlab code genetic algorithm

28

29 disp('Starting');

30 %Iteration

31 bestsolution = zeros(1,4);

32 for i = 1:iterations

33 %Generate offspring

34 [offKp, offTi, offKd, offsKp, offSTi, offsKd] = NewSolution(

35 Kp_min, Kp_max, Ti_min, Ti_max, Kd_min, Kd_max, sigKp_max,

36 sigTi_max, sigKd_max, currentpop);

37 %Rate fitness

38 offFit = FitnessFunction(offKp, offTi, offKd);

39

40 %Reorder offspring

41 offspring = [offKp, offTi, offKd, offsKp, offSTi, offsKd, offFit];

42 %Recreate population

43

44 %Statistical purposes

45 nextpop = [currentpop; offspring]; %Append offspring to current population

46 nextpop = sortrows(nextpop, 7); %Sort t.b. examined population by fitness

47

48

49 %Keep track of best solution

50 if(nextpop(end, 7) > bestsolution(1,4))

51 bestsolution = [nextpop(end,1), nextpop(end,2), nextpop(end,3), nextpop(end,7)];

52 end

53

54 currentpop = nextpop(popsize+1:end,:);

55 disp(i);

56 end

57

58

59 K = bestsolution(1); T = bestsolution(2);

C.2 Start population

1 function [Kp, Ti, sigKp, sigTi] =

2 StartPopulation(popsize, Kp_min, Kp_max, Ti_min, Ti_max, sigKp_max, sigTi_max)

3 %This function generates a start population

4

5 %Constants

6 Kp = transpose(linspace(Kp_min, Kp_max, popsize^0.5)); %Constant Kp

7 Kp = kron(Kp, ones(popsize^0.5,1));

46

C.3. Fitness function

8 Ti = transpose(linspace(Ti_min, Ti_max, popsize^0.5)); %Constant Ti

9 Ti = repmat(Ti,popsize^0.5,1);

10 sigKp = sigKp_max*rand(popsize,1); %Sigma Kp

11 sigTi = sigTi_max*rand(popsize,1); %Sigma Ti

12

13 end

C.3 Fitness function

1 function [fitness] = FitnessFunction(Kp, Ti, Kd)

2 %Fitness : vector of fitness function

3 %Kp : Vector of Kp constants

4 %Ti : Vector of Ti constants

5 %Kp must be of same length as Ti

6

7 close_system('System', 0);

8 run('Buck_design_constants');

9

10 Is = 35;

11 V_ref = ((pi^2 / 8)*2*pi*85000 * 200e−6*0.2 * 8000)^0.5;

12

13 spmd

14 load_system('System');

15 evalin('base','Buck_design_constants');

16 assignin('base','k_p',Kp);

17 assignin('base','t_i',Ti);

18 assignin('base','k_d',Kd);

19 set_param('System','MaskedZcDiagnostic','none');

20 set_param('System','IgnoredZcDiagnostic','none');

21 end

22 simout(1:length(Kp)) = Simulink.SimulationOutput;

23

24 %Fitness function

25 disp('Starting fitness');

26 parfor i = 1:length(Kp)

27 %Set parameters

28 assignin('base','i',i);

29 evalin('base','K = k_p(i);');

30 evalin('base','T = t_i(i);');

31 evalin('base','D = k_d(i);')

32

33

47

Appendix C. Matlab code genetic algorithm

34 try

35 simout(i) = sim('System', 'SaveState','on','StateSaveName','xout',...

36 'SaveOutput','on','OutputSaveName','yout','SaveFormat','Dataset');

37 catch

38 end

39 end

40

41 fitness = zeros(length(Kp),1);

42

43 for i = 1:length(Kp)

44 try

45 VC1_out = simout(i).get('yout').get('VC1').Values.Data;

46 overshoot = (max(VC1_out(0:round(end/4))) − V_ref)/V_ref;

47 err = (mean(VC1_out(2*end/5 : end)) − V_ref)/V_ref;

48

49 if(abs(VC1_out(end) − V_ref)/V_ref < 0.05)

50 fit_err = min([0.5 1/(200*err)]);

51 fit_overshoot = min([0.5 1/(200*overshoot)]);

52 fitness(i) = fit_err + fit_overshoot;

53 else

54 fitness(i) = 0;

55 end

56 catch

57 fitness(i) = 0;

58 end

59 end

60

61 close_system('System', 0);

62 return;

63

64 end

C.4 Offspring

1 function [newKp, newTi, newKd, newsKp, newSTi, newsKd] =

2 NewSolution(Kp_min, Kp_max, Ti_min, Ti_max, Kd_min, ...

3 Kd_max, sigKp_max, sigTi_max, sigKd_max, currentpop)

4

5 %Splitting for parallelization

6 oldKp = currentpop(:,1);

7 oldTi = currentpop(:,2);

8 oldKd = currentpop(:,3);

48

C.4. Offspring

9 oldsKp = currentpop(:,4);

10 oldsTi = currentpop(:,5);

11 oldsKd = currentpop(:,6);

12

13 %Initialize variables

14 popsize = size(currentpop, 1);

15 newKp = zeros(popsize, 1);

16 newTi = zeros(popsize, 1);

17 newKd = zeros(popsize, 1);

18 newsKp = zeros(popsize, 1);

19 newSTi = zeros(popsize, 1);

20 newsKd = zeros(popsize, 1);

21

22 parfor i = 1:length(currentpop)

23 %Determine variables

24 Kp = oldKp(i) + normrnd(0, oldsKp(i));

25 Ti = oldTi(i) + normrnd(0, oldsTi(i));

26 Kd = oldKd(i) + normrnd(0, oldsKd(i));

27

28 newsKp(i) = abs(oldsKp(i) + normrnd(0, sigKp_max));

29 newSTi(i) = abs(oldsTi(i) + normrnd(0, sigTi_max));

30 newsKd(i) = abs(oldsKd(i) + normrnd(0, sigKd_max));

31

32 %Setting Limit Kp

33 if(Kp > Kp_max)

34 newKp(i) = Kp_max;

35 elseif(Kp < Kp_min)

36 newKp(i) = Kp_min;

37 else

38 newKp(i) = Kp;

39 end

40

41 %Setting limit Ti

42 if(Ti > Ti_max)

43 newTi(i) = Ti_max;

44 elseif(Ti < Ti_min)

45 newTi(i) = Ti_min;

46 else

47 newTi(i) = Ti;

48 end

49

50 %Setting limit Kd

49

Appendix C. Matlab code genetic algorithm

51 if(Kd > Kd_max)

52 newKd(i) = Kd_max;

53 elseif(Kp < Kp_min)

54 newKd(i) = Kd_min;

55 else

56 newKd(i) = Kd;

57 end

58

59 end

50

D VHDL Codes

D.1 VHDL code for the PWM Generator

D.1.1 VHDL Entity

1

2 library IEEE;
3 use IEEE.STD_LOGIC_1164.ALL;
4 use IEEE.STD_LOGIC_UNSIGNED.ALL;
5

6

7 entity PWM is
8

9 generic(
10 clk_freq : integer :=32 _000_000;
11 pwm_freq : integer :=500 _000;
12 bits_res : integer :=6 -- 2^6=64
13);
14

15 port(
16 CLK : in STD_LOGIC;
17 RESET : in STD_LOGIC;
18 LATCH : in STD_LOGIC;
19 dutycycle_IN : in STD_LOGIC_VECTOR(bits_res - 1 downto 0);
20 PWM_OUT : out STD_LOGIC
21);
22

23 end PWM;
24

25 architecture Behavioral of PWM is

51

Appendix D. VHDL Codes

26

27 CONSTANT clocks_per_PWM : integer := clk_freq/pwm_freq;
28 SIGNAL count : integer range 0 to clocks_per_PWM +1;
29 SIGNAL time_high : integer range 0 to clocks_per_PWM :=32;
30

31 begin
32

33 process(CLK ,RESET)
34 begin
35 if(RESET=’1’) then
36 count <=0;
37 pwm_out <=’0’;
38 elsif(rising_edge(CLK)) THEN
39 if(LATCH=’1’) then
40 time_high <= conv_integer(dutycycle_IN);
41 count <=0;
42 PWM_OUT <=’0’;
43 end if;
44

45 if(count=clocks_per_PWM) then
46 count <=0;
47 else
48 count <= count + 1;
49 end if;
50

51 if(count =1) then
52 PWM_OUT <=’1’;
53 elsif(count=time_high) then
54 PWM_OUT <=’0’;
55 end if;
56 end if;
57

58 end process;
59

60 end Behavioral;

D.1.2 VHDL Testbench

1

2 LIBRARY ieee;
3 USE ieee.std_logic_1164.ALL;
4

5 -- Uncomment the following library declaration if using

52

D.1. VHDL code for the PWM Generator

6 -- arithmetic functions with Signed or Unsigned values
7 --USE ieee.numeric_std.ALL;
8

9 ENTITY tb_pwm IS
10 END tb_pwm;
11

12 ARCHITECTURE behavior OF tb_pwm IS
13

14 -- Component Declaration for the Unit Under Test (UUT)
15

16 COMPONENT PWM
17 PORT(
18 CLK : IN std_logic;
19 RESET : IN std_logic;
20 LATCH : IN std_logic;
21 dutycycle_IN : IN std_logic_vector (5 downto 0);
22 PWM_OUT : OUT std_logic
23);
24 END COMPONENT;
25

26

27 --Inputs
28 signal CLK : std_logic := ’0’;
29 signal RESET : std_logic := ’0’;
30 signal LATCH : std_logic := ’0’;
31 signal dutycycle_IN : std_logic_vector (5 downto 0)
32 := (others => ’0’);
33

34 --Outputs
35 signal PWM_OUT : std_logic;
36

37 -- Clock period definitions
38 constant CLK_period : time := 31.25 ns;
39

40 BEGIN
41

42 -- Instantiate the Unit Under Test (UUT)
43 uut: PWM PORT MAP (
44 CLK => CLK ,
45 RESET => RESET ,
46 LATCH => LATCH ,
47 dutycycle_IN => dutycycle_IN ,

53

Appendix D. VHDL Codes

48 PWM_OUT => PWM_OUT
49);
50

51 -- Clock process definitions
52 CLK_process :process
53 begin
54 CLK <= ’0’;
55 wait for CLK_period /2;
56 CLK <= ’1’;
57 wait for CLK_period /2;
58 end process;
59

60

61 -- Stimulus process
62 stim_proc: process
63 begin
64 -- hold reset state for 100 ns.
65 wait for 100 ns;
66

67 wait for CLK_period *10;
68

69 wait for 10000 ns;
70 dutycycle_IN <="001000";
71 wait for 100 ns;
72 LATCH <=’1’;
73 wait for 100 ns;
74 LATCH <=’0’;
75

76

77 wait;
78 end process;
79

80 END;

D.2 VHDL code for the inverter control signals

D.2.1 VHDL Entity

1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.STD_LOGIC_UNSIGNED.ALL;
4

5

54

D.2. VHDL code for the inverter control signals

6 entity INVCONTROL is
7

8 generic(
9 clk_freq : integer :=32 _000_000;

10 control_freq : integer :=85 _000; -- Frequency of the full cycle
11 bits_res : integer := 8 -- 2^8=512;
12);
13

14 port(
15 CLK : in STD_LOGIC;
16 RESET : in STD_LOGIC;
17 LATCH : in STD_LOGIC;
18 alpha_IN : in STD_LOGIC_VECTOR(bits_res - 1 downto 0);
19 CONT1_OUT : out STD_LOGIC;
20 CONT2_OUT : out STD_LOGIC
21);
22

23 end INVCONTROL;
24

25 architecture Behavioral of INVCONTROL is
26

27 CONSTANT clocks_per_cycle : integer := 376;
28 --clk_freq/pwm_freq;
29 CONSTANT clocks_per_pulse : integer := 188; -- maximum number of
30 clockcycles per inverter leg (alpha maximum)
31 SIGNAL count : integer range 0 to clocks_per_cycle; -- init counter
32 SIGNAL time_high : integer range 0 to clocks_per_pulse :=188;
33

34

35 begin
36

37 process(CLK ,RESET)
38 begin
39 if(RESET=’1’) then
40 count <=0;
41 CONT1_OUT <=’0’;
42 CONT2_OUT <=’0’;
43 elsif(rising_edge(CLK)) THEN
44 if(LATCH=’1’) then -- Latches in new alpha
45 time_high <= conv_integer(alpha_IN);
46 end if;
47

55

Appendix D. VHDL Codes

48 if(count=clocks_per_cycle) then
49 count <=0;
50 else
51 count <= count + 1;
52 end if;
53

54 if(count =0) then
55 CONT1_OUT <=’1’;
56 CONT2_OUT <=’0’;
57 end if;
58

59 if(count=time_high) then
60 CONT1_OUT <=’0’;
61 CONT2_OUT <=’0’;
62 end if;
63

64 if(count=clocks_per_pulse) then
65 CONT1_OUT <=’0’;
66 CONT2_OUT <=’1’;
67 end if;
68 if(count=time_high + clocks_per_pulse) then
69 CONT1_OUT <=’0’;
70 CONT2_OUT <=’0’;
71 end if;
72 end if;
73

74 end process;
75

76 end Behavioral;

D.2.2 VHDL Testbench

1

2 LIBRARY ieee;
3 USE ieee.std_logic_1164.ALL;
4

5 ENTITY tb IS
6 END tb;
7

8 ARCHITECTURE behavior OF tb IS
9

10 -- Component Declaration for the Unit Under Test (UUT)
11

56

D.2. VHDL code for the inverter control signals

12 COMPONENT INVCONTROL
13 PORT(
14 CLK : IN std_logic;
15 RESET : IN std_logic;
16 LATCH : IN std_logic;
17 alpha_IN : IN std_logic_vector (7 downto 0);
18 CONT1_OUT : OUT std_logic;
19 CONT2_OUT : OUT std_logic
20);
21 END COMPONENT;
22

23

24 --Inputs
25 signal CLK : std_logic := ’0’;
26 signal RESET : std_logic := ’0’;
27 signal LATCH : std_logic := ’0’;
28 signal alpha_IN : std_logic_vector (7 downto 0) := (others => ’0’);
29

30 --Outputs
31 signal CONT1_OUT : std_logic;
32 signal CONT2_OUT : std_logic;
33

34 -- Clock period definitions
35 constant CLK_period : time := 31.25 ns;
36

37 BEGIN
38

39 -- Instantiate the Unit Under Test (UUT)
40 uut: INVCONTROL PORT MAP (
41 CLK => CLK ,
42 RESET => RESET ,
43 LATCH => LATCH ,
44 alpha_IN => alpha_IN ,
45 CONT1_OUT => CONT1_OUT ,
46 CONT2_OUT => CONT2_OUT
47);
48

49 -- Clock process definitions
50 CLK_process :process
51 begin
52 CLK <= ’0’;
53 wait for CLK_period /2;

57

Appendix D. VHDL Codes

54 CLK <= ’1’;
55 wait for CLK_period /2;
56 end process;
57

58

59 -- Stimulus process
60 stim_proc: process
61 begin
62 -- hold reset state for 100 ns.
63 wait for 100 ns;
64

65 wait for CLK_period *10;
66

67 --Testing various Alpha ’s and latching them in
68 wait for 10000 ns;
69 alpha_IN <="00100000";
70 wait for 10000 ns;
71 LATCH <= ’1’;
72 wait for 100 ns;
73 LATCH <= ’0’;
74

75 wait for 10000 ns;
76 alpha_IN <="00010000";
77 wait for 10000 ns;
78 LATCH <= ’1’;
79 wait for 100 ns;
80 LATCH <= ’0’;
81

82 wait for 10000 ns;
83 alpha_IN <="00001000";
84 wait for 10000 ns;
85 LATCH <= ’1’;
86 wait for 100 ns;
87 LATCH <= ’0’;
88

89 wait for 10000 ns;
90 alpha_IN <="00000010";
91 wait for 10000 ns;
92 LATCH <= ’1’;
93 wait for 100 ns;
94 LATCH <= ’0’;
95

58

D.3. VHDL code for the PI Controller

96 wait for 10000 ns;
97 alpha_IN <="00100000";
98 wait for 10000 ns;
99 LATCH <= ’1’;

100 wait for 100 ns;
101 LATCH <= ’0’;
102

103 wait;
104 end process;
105

106 END;

D.3 VHDL code for the PI Controller

1

2 library IEEE;
3 use IEEE.STD_LOGIC_1164.ALL;
4 use IEEE.NUMERIC_STD.ALL;
5

6

7 entity PIController is
8 generic(
9 length_data_in : integer := 16;

10 length_data_out : integer := 6;
11 length_setpoint_in : integer := 16;
12 max_output : integer :=64; --2^6
13 scale_factor: integer :=1024
14);
15

16 port(
17 data_in : in STD_LOGIC_VECTOR(length_data_in - 1 to 0);
18 setpoint : in STD_LOGIC_VECTOR(length_setpoint_in - 1 to 0);
19 data_out : out STD_LOGIC_VECTOR(length_data_out - 1 to 0);
20 clk_in : in STD_LOGIC
21);
22

23 end PIController;
24

25

26

27 architecture Behavioral of PIController is
28 type states is (start ,calcerror ,calcpi ,calcd ,setd);

59

Appendix D. VHDL Codes

29

30 signal state , nextstate : statetypes := reset;
31 signal Kp : integer :=10;
32 signal Ki : integer :=10;
33 signal Output , Error : integer;
34 signal sp : integer :=10;
35 signal p,i,d : integer;
36 signal adcin : integer;
37

38 begin
39

40

41 process(clk_in ,state)
42

43 variable Error_Old : integer := 0;
44

45 begin
46

47 IF clk_in ’EVENT AND clk_in=’1’ THEN
48 state <= next_state;
49 END IF;
50

51 case state is
52

53 -- Get data , get SP, save old error
54 when start =>
55 adcin <= to_integer(unsigned(data_in));
56 sp <= to_integer(unsigned(setpoint));
57 Error_Old := Error;
58 next_state <= calcerror;
59

60 -- Calcualte new error
61 when calcerror =>
62 next_state <= calcpi;
63 Error <= to_integer(to_unsigned ((sp-adcin)));
64

65 -- Calculate p and i output values
66 when calcpi =>
67 next_state <=calcd;
68 p<=Kp*Error;
69 i<=Ki*(Error+Error_old);
70

60

D.3. VHDL code for the PI Controller

71 -- calculate controller output , and saturate it
72 when calcd =>
73 Output <=(p+i+d)/scale_factor;
74

75 if Output > max_output then
76 Output <= max_output ;
77 end if;
78 if Output < 1 then
79 Output <= 1;
80 end if;
81

82

83 next_state <=setd;
84

85 -- put the output of the controller on the output of the entity
86 when setd=>
87

88 data_out <= std_logic_vector(to_unsigned(
89 Output ,length_data_out));
90 next_state <= start;
91

92 end case;
93

94 end process;
95

96 end Behavioral;

61

63

Appendix E. Simulink Simulations

E Simulink Simulations

E.1 Control topology at primary side

In
ve

rt
e

r

C
a

lc
u

la
te

 A
lp

h
a

P
I

C
on

tr
o

lle
r

C
o

nt
ro

l
In

ve
rt

e
r

U
1

D
C

M
ea

su
re

 S
ys

te
m

C
o

ns
ta

n
ts

C

o
nt

ro
lle

r
S

e
t-

po
in

t
A

lp
h

a

P
I(

s)
P I

C
on

tr
ol

le
r

T
ra

ns
p

or
t

D
el

a
y

R
M

S

R
M

S

S
P

S

P
S

-S
im

ul
in

k
C

on
ve

rt
e

r

U
rm

s

U
1

dc

A
lp

ha

C
al

cu
la

te
 A

lp
ha

P
ea

k
V

ol
ta

ge

C
o

nt
ro

l s
ig

na
l 1

C
o

ns
tr

ol
 s

ig
na

l 2

V
o

ut
+

V
ou

t-

In
ve

rt
e

r

a
lp

ha
_i

n

D
riv

er
 1

D
riv

er
 2

C
on

tr
ol

 S
ig

na
l

In
ve

rt
e

+
V

--
+

V

V
ol

ta
ge

 S
en

so
r

f(
x)

 =
 0

S
o

lv
er

C
on

fig
ur

at
io

n

46
0

U
1d

c

A
lp

ha
_s

e
t

A
lp

ha
 S

et
po

in
t

K

K
 E

va
l

T

T
 E

va
l

1

O
ut

1

A
lp

ha
_o

ut

A
lp

ha
_o

ut

Figure E.1: Control topology at primary side
64

E.2. Control topology at secondary side

E.2 Control topology at secondary side

U
*2

d
c

U
2

d
cP
W

M
 O

u
t

C
o

n
tr

o
lle

r

V
in

+

V
in

-

V
o

u
t+

V
o

u
t-

R
e

c
ti

fi
e

r

M
O

S
F

E
T

-
+

In
d

u
c

to
r

-
+

V

U
2

d
c

-
+ D

io
d

e

- +

D
io

d
e

1

-+

C
_

re
c

t

-2+
2

-1+
1 M

u
tu

a
l I

n
d

u
c

to
r

-
+

C
2

-
+

C
1 G

N
D

-+

C
_

b
u

c
k

G
N

D
2

C
o

n
tr

o
lle

d
 V

o
lt

ag
e

S
o

u
rc

e

1

In
v

e
rt

o
r

1

U
*d

c

-+

B
a

tt
e

ry

Figure E.2: Control topology at secondary side

65

Bibliography

[1] T. Ogretmen and N. Aboulhorma, “Misalignment Tolerant IPT Systems, Buck Design,”

tech. rep., Delft University of Technology, 01 2017.

[2] “Tesla home charging installation.” https://www.tesla.com/en_GB/support/

home-charging-installation. (Accessed on 06/12/2017).

[3] C. Simpson, LM2576,LM3420,LP2951,LP2952 Battery Charging. Texas Instruments, 2011.

[4] B. Ferreira, The principles of electronic and electromechanic power conversion : a systems

approach. Hoboken, New Jersey: Wiley/IEEE, 2014.

[5] R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE

Transactions on Power Electronics, vol. 3, pp. 174–182, Apr 1988.

[6] R. Bosshard, J. W. Kolar, J. Mühlethaler, I. Stevanović, B. Wunsch, and F. Canales,

“Modeling and et a - al pha -pareto optimization of inductive power transfer coils for

electric vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3,

pp. 50–64, March 2015.

[7] R. Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode ,” tech.

rep., Unitrode IC Corporation, 1999.

[8] T. Diekhans and R. W. D. Doncker, “A dual-side controlled inductive power transfer system

optimized for large coupling factor variations and partial load,” IEEE Transactions on

Power Electronics, vol. 30, pp. 6320–6328, Nov 2015.

[9] R. Bosshard, J. W. Kolar, and B. Wunsch, “Control method for inductive power transfer

with high partial-load efficiency and resonance tracking,” in 2014 International Power

Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), pp. 2167–2174, May 2014.

[10] F. González-Longatt, “Circuit based battery models: A review.” http://cs.marlboro.

edu/courses/spring2009/tutorials/alec/April_15.attachments/A2006-14-1.pdf, 2006.

(Accessed on 06/08/2017).

[11] S. Seshagiri, E. Block, I. Larrea, and L. Soares, “Optimal pid design for voltage mode

control of dc-dc buck converters,” in 2016 Indian Control Conference (ICC), pp. 99–104,

Jan 2016.

67

https://www.tesla.com/en_GB/support/home-charging-installation
https://www.tesla.com/en_GB/support/home-charging-installation
http://cs.marlboro.edu/courses/spring2009/tutorials/alec/April_15.attachments/A2006-14-1.pdf
http://cs.marlboro.edu/courses/spring2009/tutorials/alec/April_15.attachments/A2006-14-1.pdf

Bibliography

[12] E. Block, “Linear voltage and current mode control for the dc-dc buck converter,” 2015.

[13] C. Alexander, Fundamentals of electric circuits. New York, NY: McGraw-Hill, 2013.

[14] K. P. . R. H. A. Packard, “Me 132, dynamic systems and feedback class notes.” https:

//jagger.berkeley.edu/~pack/me132/AllNotes.pdf. (Accessed on 06/13/2017).

[15] G. Franklin, Feedback control of dynamic systems. Harlow: Pearson Education Limited,

2014.

[16] M. Negnevitsky, Artificial intelligence : a guide to intelligent systems. Harlow, England

New York: Addison Wesley/Pearson, 2011.

[17] M. Truntič and M. Milanovič, “Voltage and current-mode control for a buck-converter

based on measured integral values of voltage and current implemented in fpga,” IEEE

Transactions on Power Electronics, vol. 29, pp. 6686–6699, Dec 2014.

[18] P. Omer, J. Kumar, and B. S. Surjan, “Design of robust pid controller for buck converter

using bat algorithm,” in 2016 IEEE 1st International Conference on Power Electronics,

Intelligent Control and Energy Systems (ICPEICES), pp. 1–5, July 2016.

[19] “Papilio one hardware.” http://papilio.cc/index.php?n=Papilio.PapilioOne. (Accessed on

06/08/2017).

[20] “Papilio learning.” http://papilio.cc/index.php?n=Papilio.Learning. (Accessed on

06/08/2017).

[21] P. J. Ashenden, The Student’s Guide to VHDL. Elsevier/Morgan Kaufmann, 2 ed., 2008.

68

https://jagger.berkeley.edu/~pack/me132/AllNotes.pdf
https://jagger.berkeley.edu/~pack/me132/AllNotes.pdf
http://papilio.cc/index.php?n=Papilio.PapilioOne
http://papilio.cc/index.php?n=Papilio.Learning

	Acknowledgements
	Executive Summary
	Problem Definition
	Problem Scope
	Technical review
	Design Requirements

	Design Description
	Overview
	Problem analysis
	Verification of the maximum efficiency point
	Comparison of converters
	The control topology
	Analysis of the Buck converter
	Simplified buck model
	Average state space model
	Model Validation

	Control Design
	Tasks for the control system
	Choosing the secondary controller
	Anti-windup method

	Tuning constants for the controller
	Evolutionary Strategies
	Implementation Evolutionary Strategies

	Creating control signals for the full bridge inverter
	FPGA Implementation
	PWM Generator
	Control signal generator for inverter
	PI Controller

	Use

	Evaluation
	Overview
	Simulations
	Simulation of U2,dc controller
	Simulation of controller
	Simulation of total system

	Prototype
	Testing the PWM-Generator
	Testing the inverter control signal generator

	Assessment
	Next steps

	Nomenclature
	Calculation maximum efficiency
	Calculation efficiency
	Calculation state space system

	Maximum Efficiency Point Simulation
	Matlab code genetic algorithm
	Main script
	Start population
	Fitness function
	Offspring

	VHDL Codes
	VHDL code for the PWM Generator
	VHDL Entity
	VHDL Testbench

	VHDL code for the inverter control signals
	VHDL Entity
	VHDL Testbench

	VHDL code for the PI Controller

	Simulink Simulations
	Control topology at primary side
	Control topology at secondary side

