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Abstract: In this paper, we extend our closed-loop optimal control framework for wind farms to
minimize wake-induced power losses. We develop an adjoint-based model predictive controller which
employs a medium-fidelity 2D dynamic wind farm model. The wind turbine axial induction factors are
considered here as the control inputs to influence the overall performance by taking wake interactions of
the wind turbines into account. A constrained optimization problem is formulated to maximize the total
power production of a given wind farm. An adjoint approach as an efficient tool is utilized to compute the
gradient for such a large-scale system. The computed gradient is then modified to deal with the defined
final set and practical constraints on the wind turbine control inputs. The performance of the wind farm
controller is examined for a more realistic test case, a layout of a 2x 3 wind farm with dynamical changes
in wind direction. The effectiveness of the proposed approach is studied through simulations.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Control of turbines within a wind farm is challenging because
of their aerodynamic interactions via wakes. The characteristics
of a wake are reduced wind speed and increased turbulence.
The former reduces the total power production of the farm and
the latter leads to a higher dynamic loading on the downstream
turbines. The wake interactions depend strongly on the effects
of different wind directions, local terrain, and turbine layout in
a wind farm (Gebraad, 2014). Wind farm control has recently
received much attention to lower the levelized cost of energy
of wind farms, e.g., by minimizing the wake-induced power
losses and structural fatigue loads through wind turbine control
settings (Knudsen et al., 2015; Boersma et al., 2017).

Several studies have utilized optimization techniques to find the
optimal set-points for the total wind farm performance (Ge-
braad et al., 2014; Marden et al., 2013; Gebraad and van
Wingerden, 2015). Campagnolo et al. (2016a,b) have inves-
tigated the potential of different wind farm control strategies
through wind tunnel testing. Vollmer et al. (2016) study the
deflection of the wake by employing the yaw misalignment of
upwind turbines in order to decrease wake losses of downwind
turbines. Nonetheless, the approaches followed so far have been
either open-loop or model-free ones. The inherent modeling
uncertainties and time-varying inflow conditions, e.g. wind di-
rection changes and wake meandering demand for a model-
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project (FKZ 0324005).

based closed-loop approach to react fast enough against sources
of the wake interactions within a wind farm.

Soleimanzadeh et al. (2013) have developed a linear state-space
model and a distributed controller for the wind farm, which
is only valid for small deviations from the equilibrium. Goit
and Meyers (2015) have proposed an optimal control of energy
extraction, utilizing a Large Eddy Simulation (LES) model to
increase the turbulent kinetic energy of inflow within a wind
farm. The proposed controller relies on a full high-fidelity LES
model to compute the optimal control commands, which is
time-consuming for real-time control.

We developed a closed-loop optimal control framework for
wind farms, the so-called adjoint-based model predictive con-
trol (AMPC), to optimize the performance with time-varying
changes of the atmospheric conditions (Vali et al., 2016).
It is designed based on WFSim, a control-oriented dynamic
medium-fidelity wind farm model, which captures the dominant
inflow dynamics in a computationally inexpensive manner. In
this paper, we study our predictive control framework from a
control engineering perspective. The computed adjoint-based
gradient is modified to apply a specified final set and practical
constraints on the wind turbine control inputs. Furthermore, we
evaluate our approach for a layout example of a 2x3 wind farm
with changes in wind direction, that changes wake interactions
dynamically among wind turbines within the wind farm.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present briefly the fundamentals of WFSim. The
main focus of Section 3 is on the structure of the proposed
AMPC for wind farms. The explained methodology is dis-
cussed in Section 4 through simulation studies. Finally, the con-
clusions and outlook of this paper are presented in Section 5.

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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2. WIND FARM MODEL

This section presents the fundamentals of the model used,
which is a control-oriented dynamic medium-fidelity wind farm
model: WFSim. The wind flow is modeled using the 2D Navier
Stokes equations constrained by the continuity equation:

du _dp
pg—&—pV(uu)_—g—i—V(uVu)—i-Sx—&-Tx, (1)

av _dp
p§+pV(vu)——3fy+V(qu), 2)
pV (u) =0, 3)

where p is the air density, u is the viscosity, p is the pressure
field and u = [u,v] is the velocity vector field at hub-height.
S, represents the external source terms in the x-direction, em-
ployed for incorporating the wind turbine models. The term
T, represents the turbulence model in WFSim, which uses
Reynold’s stress tensor according to the mixing length hypothe-
sis (Boersma et al., 2016a). The set of equations (1)-(3) are spa-
tially discretized, using the Hybrid differencing scheme, over
a staggered grid of (N, x N,) cells. Furthermore, the implicit
differencing scheme is employed to discretize the flow model
temporally for the unsteady solution.

A wind turbine is modeled using actuator disc theory to exert a
thrust force into the incoming flow and extract a certain amount
of power from the wind. The thrust force and the produced
power for a single turbine are expressed as follows (Gasch and
Twele, 2011):

1
Fr = EpAdUO%CT(a), Cr(a) =4a(1—a), 4)

Pr=3pAUCH @), Crla)=da(l—a),  (5)
where U., is the effective wind speed at a far distance upwind
from the rotor disc, A; the swept area of the rotor plane,
Cr and C, are the thrust and power coefficients of the turbine
respectively, which are functions of the axial induction factor a.
The latter is a measure of the decrease in the stream-wise flow
velocity at the rotor plane, which is combined with a first-order
lag to model the wind turbine dynamic inflow as follows

d:%(acfa), 6)

where a, is the wind turbine control command and 7 represents
the aerodynamic time constant.

Considering the induction effect of a rotor disc as
Ud:(]_a>Uoo (7)

enables us to estimate the exerted thrust force using the measur-

able wind velocity Uy at the rotor plane and the axial induction

factor. Therefore, the i turbine model is incorporated inside
the flow model (1) as follows

a
Su=Fr=2pAdUgh,  Bi=—

®)

where the virtual control variable f; is defined to obtain a linear
expression of the thrust force with respect to the wind turbine
control setting. Finally, the wind farm model over a specified
staggered grid can be represented in a nonlinear descriptor
state-space form as follows

E (X)) X1 = AXy + B(Xi) B + b(Xy), &)

l—ai’

where
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Nyx1
X = GR’X,

ity

Vk ] ’ ﬁk = :
Pk Bw,
and @, € ]R(NX—3)(N>’_2)X1, Vi € R(N‘_2>(N>’_3)X1 and p; €
RM=2(M=2)%1 gre the vectors that stack all the velocities
and pressures in every point of the staggered grid at the time
instant k. The matrix E(X}) represents the spatial discretiza-
tion terms of the X and y-momentum and the continuity equa-
tions (1)-(3). The constant matrix A is referred to as the tempo-
ral discretization of the flow depending on the chosen sampling
time and the matrix B(Xy) represents the linear expression of
the thrust force with respect to the virtual control input f; for
the N; number of wind turbines. Finally the matrix b(Xj ) repre-
sents the effect of the zero stress boundary conditions. An im-
portant feature of WFSim is the sparsity in the system matrices,
improving the computational efficiency of such a large-scale
dynamic system.

The power production of the i turbine within a wind farm can
also be represented as a function of the wind speed at the rotor
disc Uy, and its own induction factor as follows

Pr, =2pA,U; B;. (10)
See (Boersma et al., 2016a,b) for more details on the dynamic
wind farm model and (Vali et al., 2016) on the implementation
of the wind turbines as actuator discs.

3. ADJOINT-BASED MODEL PREDICTIVE CONTROL

We extend here our predictive control framework for wind
farms (Vali et al., 2016) from a control engineering perspective,
e.g., the practical constraints on the wind turbine control inputs.
We modify the optimization problem and the way it is being
solved in order to achieve more realistic wind farm peformance.

Photo by Christian Steiness

Flow field

Wind turbines

Predictive control
in wind farm level

Forward flow
prediction
-—
Backward adjoint
prediction

—
Applying optimal
control a;

Fig. 1. Schematic illustration of the adjoint-based model predictive control
(AMPC) of wind farms. Arrows show the control performance over time.

Figure 1 demonstrates schematically our proposed adjoint-
based model predictive control (AMPC) framework for wind
farms. It contains three main generic steps: prediction, solving
an optimization problem over a finite time prediction horizon
N, and implementing the optimal control solutions over the
receding time horizon N, < N,. The control inputs and plant
responses are predicted in advance (see blue arrow in Fig. 1)
and optimized for a finite time horizon N,. The optimization
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method benefits from an adjoint method as a cost-effective tool
to compute the gradient of the specified performance index.
Then, the adjoint field corresponding to the predicted flow (see
red arrow in Fig. 1) is computed for estimating the proper
search directions and solving the formulated optimization prob-
lem. Finally, the first part of the optimal solution is applied to
the plant (see black arrow in Fig. 1). This procedure is repeated
in the next controller sample time which provides the feedback
into the optimization.

Here it is assumed that all required state variables for opti-
mal control of a given wind farm are measurable. In order
to avoid measuring the entire state variable, observation tech-
niques could be employed. Doekemeijer et al. (2016) developed
a computationally efficient Ensemble Kalman Filtering (EnKF)
method for WFSim, which utilizes a limited amount of mea-
surement points to reconstruct the mismatches between the 2D
control-oriented wind farm model and a realistic wind plant
simulation model, e.g., Simulator fOr Wind Farm Applications
(SOWFA).

Furthermore, we only focus on the centralised structure of a
high-level wind farm controller to find the optimal control set-
points of the wind turbines, taking their wake interactions into
account. It is assumed that the low-level wind turbine control
system, which is also an active field of research, provides the
demanded active power control services to realize the overall
goal (Fleming et al., 2016).

3.1 Optimization problem formulation

A constrained optimization problem is formulated here to min-
imize the wake-induced power losses within a wind farm. The
manipulating variables are the wind turbine induction factors
at time instant k defined as B = [B1 4, Baks - - -, By, )T € RM*L,
Note that we formulate the problem With respect to the virtual
variable f3; =

thrust force w1th respect to the control input.

The optimal control problem is formulated as finding the max-
imal power production of the wind farm over a finite time
horizon N,. Hence, we first define the following performance
index, referring to the total power production, at each time

instant k as
Z Pk

Now, we can formulate the following constrained optimization
problem over the prediction horizon N,

(X, By) = (11)

Np
%XJB Zﬁ&m (12)
st. C(X,B)=0 (13)
:Bl',k:ﬁi,k—l ) k:N]l_va"'va (14)
0<Bix<0.5, (15)

The equality constraint (13) represents the spatial and temporal
discretized inflow model, evolving over the prediction horizon
N, with the following expanded form

C1(Xo,X1,Bo) X Bi
~ C2(X1,X2,B1) . X> - B>

Cn,(Xn,~1,XN,: BN,-1) Xn, Bw,

Mehdi Vali et al. / IFAC PapersOnLine 50-1 (2017) 45104515

where according to (9)
Ce(Xi—1, X, Br—1) = E(Xj—1) Xk — AXi—1
—B(Xi—1)Br—1 —b(X4—1) =0.

The terminal set constraints (14) is introduced to reduce the
effects due to finite-time optimizations. The inequality con-
straint (15) also refers to practical constraints on the wind
turbine control inputs.

(16)

3.2 Adjoint-based gradient of the cost function

Adjoint methods give an efficient way to obtain the gradient of a
performance index when having many decision variables (Roth
and Ulbrich, 2013). First, we define the Lagrangian to turn
the constrained optimization problem (12)-(13) into the uncon-
strained one as follows

ZX.B.A) =7 X B)+ACEKB),

where in this context A is the vector of Lagrange multipliers.
Since the equality constraint (13) holds everywhere for k =
1,2,---,N,, we may choose A freely. Therefore, the gradient
of the cost function can be expressed in the following matrix

form
VS = (Jx +ACo)X, g+ 75+ ATCﬁ;

where (.)¢ and (.) p represent the partial derivatives with respect

a7

(18)

to X and f3, respectively. Appendix A presents the sparse struc-
ture of Cg in (A.1) and CB in (A.2) for a prediction window,
constructed with the linearized model of WFSim around an
equilibrium point at time instant k.

In order to avoid tedious computation of X > One may choose

the adjoint field as a solution of the adjoint equation (Roth and
Ulbrich, 2013):

The structure of the adjoint equation (19) indicates that the
adjoint field strongly depends on the definition of the perfor-
mance index ¢ and the wind farm model C over the prediction
horizon. By substituting the adjoint field A into (18), there is
no need for tedious calculation of the derivatives of the flow
solution with respect to the control variables (X 3) and the gradi-

ent of the performance index can be expressed in the following
compact form

V5.7 = F5(X.B)+ATCH(R.B).

(19)

(20)

Exploiting the sparse structure of the matrices C % in (A.1) and
C; in (A.2), one can derive the time-propagation of the adjoint
field (19) and the gradient (20) as follows

(Ce1)k et = — Fn_ (X, B) = (COX,_, Aes 21
Vo, S = I (KB HA (Cp, . (D)

with initializing ANPH =0.
3.3 Control input constraints

Recalling the formulated optimization problem (12)-(15), we
modify the computed adjoint-based gradient to apply the speci-
fied constraints (14) and (15) on the wind turbine control inputs.
At the end of the horizon, the constraint (14) tries to reduce
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the terminal undesired moves due to the generic effects of the
finite-time optimization problem. We introduce the following
mapping of the computed gradient of the i’ turbine to mitigate
this effect:

= In,—n, O
Vg S =V IT, T:[ pO 4 1]

} . (23)
N f x1

We also employ an active set method combined with a line-
search to restrict the control inputs at each sample time to the
specified limits (15). The line-search method is employed here
to guarantee the new estimation in the computed search direc-
tion lies within the high-dimensional feasible region. When a
constraint is activated, e.g., Bix = 0.5 or B;x =0, the search
direction moves along the activated constraint.

3.4 Optimization method

Given an estimated control variable ) € RMNox1 at the nth
optimization iteration, a new estimation is obtained using the
modified search direction (23) as follows

gint1) _ po 4T 4 g0
B =TV 5 I +BY, 24)
where the transformation matrix T applies the final set con-
straints (14) to the new estimation. A backtracking line search
based on the Armijo rule (Bertsekas, 2004) is employed to find
iteratively a step size that determines how far control variables
should move along the search direction, leading to improve-
ment in the total power production of the wind farm.

4. SIMULATION STUDIES

The performance of the adjoint-based model predictive con-
troller is shown here through simulation studies with time-
varying atmospheric conditions. A layout of a 2x 3 wind farm is
considered (see Fig. 2) and simulated with WFSim. The wind
turbines with rotor diameter D =126 m are spaced 5D in the
stream-wise direction. The rotor centers of the middle turbines
are misaligned half a rotor diameter from the centers of the up-
wind and downwind turbines. We have a field of 3000 x 2000 m?
with a staggered grid of 100x75 cells (Ny x N,). Here, the flow
is simulated for laminar flow conditions, where viscous forces
are dominant. The simulation is started with an uniform wind
field with # =10m/s and v =0 m/s.

l—)x
y 5D 5D

4D

111

Fig. 2. The layout of the simulated 2 x 3 wind farm.

We consider the performance of the controller in the below-
rated region, where the wind speed is lower than its rated value.
The main control objective here is to operate at the optimal
point on a wind farm level, i.e., capturing the kinetic energy
of wind as much as possible. Although this optimal point is
unique with respect to the different wind speeds at this region,
it varies with changes in the wind direction due to different

4513

induced wake interactions among the wind turbines. Hence,
the wind farm controller must be able to adjust the control
inputs in such a way that the wind farm always operates at the
corresponding optimum point. The AMPC is examined here to
find the optimal wind turbines’ induction factors while the wind
direction changes over time, yielding up to 8° misalignment
with the rotors of the turbines.

4.1 Optimal references

To evaluate the performance of the AMPC, we first search
for the optimal control settings for two different wind farm
operating conditions, full and partial wake interactions. First,
we assume that the inflow is aligned to the rotor discs and
wind turbines interact fully through their wakes. Second, the
incoming wind is misaligned 8° with the rotor discs due to a
wind direction change, that mitigates aerodynamic interactions
of the wind turbines. We employed a Game Theoretic (GT)
approach, an open-loop control strategy, proposed for max-
imizing the power production of wind farms in an iterative
procedure (Marden et al., 2013).

2500

2000

1500

1000

500

500 1000 1500 500 1000 1500
ym] yim]

Fig. 3. Six-turbine example operating with the optimal axial induction factors,
achieved using GT approach, at U, =10m/s. The incoming flow is
aligned to the rotor discs (left) and misaligned 8° with the rotor discs
(right), resulting in full and partial wake interactions, respectively.

Figure 3 depicts our six-turbine example operating with the op-
timal axial induction factor at ambient wind speed U = 10 m/s
for two different wind farm operating conditions, i.e., the full
wake (left) and the partial wake (right) interactions. The corre-
sponding optimal control settings, achieved by the GT approach
after almost 400 iterations, are listed in Table 1. It should be
noted that the asymmetric coordination of the induction factors
for the partial wake relates to the amount of wake deflections
from downstream turbines, caused by the 8° wind direction
change (see the right plot of Fig. 3). The simulation results with
WESim show that there exists the potential of an 8 % power
increase for the full wake conditions and a 2 % increase for the
partial wake conditions, with respect to the greedy control, via
the optimal coordination of the wind turbine control settings.

4.2 Power maximization with dynamical changes in wind
direction

In order to evaluate the performance of the AMPC, the fol-
lowing simulation scenario is defined. The wind farm starts
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Table 1. Steady-state optimal set-points of wind turbines,
achieved using GT approach, for two different wind directions.

Full-wake (0°) Partial-wake (8°)

a; =0.16 a»=0.16 a; =031 a=0.27
a3 =0.25 a4 =025 a3=025 a4=027
as =0.31 ag =0.31 as =0.29 ae =0.31

operating with the optimal axial induction factors, at the am-
bient wind speed 10 m/s while the wind direction is aligned
to the rotor discs (see the left plot of Fig. 3). After 600s we
change the wind direction at the boundary conditions yielding
8° misalignment with rotor discs after propagation (see the right
plot of Fig. 3). After 600 additional seconds, the wind turns
again into the initial direction. The simulation sample time and
the aerodynamic time constant of each turbine are selected as
At =2s and T =13.5s (Vali et al., 2016).

The key parameters of the AMPC are chosen here as the
prediction horizon N, =600s, the receding horizon N, =60s,
and the final time period Ny =60s. There exist two significant
criteria for choosing the prediction horizon N,. It should be
long enough to predict the inflow propagation within a wind
farm and also to avoid penetrating the transition behaviour of
the adjoint variable (21) at the end of the horizon. The final
time period Ny is introduced and chosen to reduce the latter
effect. The controller sample time N, depends on how fast the
wind farm dynamics change.

1.6

- - = Greedy
—— AMPC

1
(
+
1

~

Normalized total power [-]
n

0.8 i i i i i i
500 700 900 1100 1300 1500 1700

. time [sec]
Fig. 4. Normalized total power production with AMPC, while wind direction
changes. The power is normalized with respect to the total power of the
greedy control at the full-wake operating condition.

Figure 4 shows the optimal control of the energy extraction of
our simulated example with wind direction changes, compared
with the greedy control (a; =0.33). It can be seen that the
AMPC is able to maximize the power production, while its opti-
mal operating point is altered due to changes in the atmospheric
conditions. The controller relatively reacts fast, because the
control inputs and wind farm responses are predicted in advance
and optimized with respect to the total power production. Af-
ter applying the optimal control commands during the control
horizon N, =60, the wind farm responses to the control inputs
and disturbances, e.g., changes in the wind direction, are fed
back to the controller and then the optimal control inputs are
adjusted at the next prediction and optimization window.

Figure 5 illustrates the time-varying behaviour of the axial
induction factors of the first (upper plot) and the second (lower

Mehdi Vali et al. / IFAC PapersOnLine 50-1 (2017) 45104515
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Fig. 5. The induction factor of the individual wind turbines operating with
AMPC, compared with the greedy control a; = 0.33: (upper) 1st and
3rd turbines; (lower) 2nd and 4th turbines. Green lines represent the
steady-state optimal set-points of the wind turbines, computed by GT
approach (Table 1).

plot) row. Only the two first machines of each row are shown
here. The control inputs converge fast to the optimal references
(green lines), obtained by the GT approach (see Table 1). The
last machines, i.e., Sth and 6th turbines, are operating almost at
the greedy control setting to capture the most possible kinetic
energy from the incoming wind.
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I & i B
5 03F 1
z | v sthwr
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Fig . 6. The normalized power of the individual wind turbines operating with
AMPC, compared with the greedy control: (upper) Ist row; (lower) 2nd
row of the wind turbines. The power is normalized with respect to the
total power of the greedy control at the full-wake operating condition.

Figure 6 illustrates the normalized power production of each
wind turbine. The optimal power production when the inflow
has 8° misalignment with the rotor area is almost in the same
level of the greedy control due to less power losses caused by
partial wake interactions. This misalignment might redirect a
turbine’s wake downstream and consequently affect the perfor-
mance of the downwind turbine. For instance, the noticeable
power increases of the 3rd and 6th machines are due to the wake
deflections of their upwind turbines (see the right plot of Fig. 3).

While the wind turbines are fully interacting through wakes
(last 10 min), AMPC reduces the energy extraction of the
upwind turbines to increase the kinetic energy of the inflow
downstream and consequently to maximize the total power
production of the downwind turbines. It can be seen that the
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most of the power gains of the wind farm (last 10 min) are
achieved by the 5th and 6th wind turbines due to the optimal
coordination of the induction factors.

5. CONCLUSION

The fundamentals of our adjoint-based model predictive control
framework for optimal energy extraction of wind farms are
presented and extended from some practical perspectives. A
constrained optimization problem is formulated and an adjoint
method is employed to compute the gradient of the determined
performance index in a computationally effective manner. Since
the performance index is considered here for the optimal energy
extraction for wind farms, it can be adapted and applied for any
size and type of wind turbines. The effectiveness of the closed-
loop wind farm controller is examined using a layout example
of a 2x3 wind farm, with dynamical changes in wind direction.
Simulation results show that the AMPC is able to converge
to the optimal control set-points through feedback, while the
atmospheric conditions change. In the future, we implement
the AMPC over a Large Eddy Simulation (LES) model with
more detailed wind farm inflow dynamics in order to assess
its performance with more realistic time-varying atmospheric
conditions, e.g., turbulent wind and wake meandering.
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Appendix A. PARTIAL DERIVATIVES OF THE WIND
FARM MODEL AT ONE PREDICTION HORIZON

The derivatives of the discretized wind farm model C(X,) =0

with respect to the state X and control input B, over the whole
prediction horizon N):

(Cl)xl 0 0 0
(@)x, (C)x, 0 0
Cy = ' (A.D)
0 O '.' (Cprl)XNp—l O
0 0 (Cn,)xy,—1 (Cp)x,
0 0 0 0 07
(C)p, 0 0 0 0
) 0 (G3)p, 0 0 0
Cp= : :
0 0 (CN,-1)By, 0 0
i 0 0 0 CNﬁ)ﬁprl 0_




