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Abstract 

Pulsating wave forces need to be calculated for the design of 

hydraulic structures. The common formulae are derived for regular 

or unimodal narrow sea states and use one characteristic wave 

height and period. However, broad-banded spectra like bimodal sea 

states are present at many locations. Moreover, new hydraulic 

structures like post-Panamax locks have a large vertical surface 

exposed to wave loads. Swell components are disproportionally 

contributing to the total wave force compared to short waves. This 

depth effect for broad-banded or bimodal wave spectra is not 

considered by the traditional wave formulae. This could result in 

significant underestimations of wave forces on hydraulic structures. 

This paper aims to provide a method to define the wave loads 

of irregular non-breaking wave fields under any wave spectrum. 

Spectral linear wave theory (LWT) is used to transform a wave 

spectrum to a wave force or wave pressure spectrum. The spectral 

LWT allows direct evaluation of the wave force or pressure for the 

wave spectra considered within this research. Spectral LWT is 

compared to the outcome of wave flume experiments with bimodal 

seas and the other common wave force formulae. 

This paper also evaluates the application of the spectral LWT to 

bimodal wave spectra and evaluates the accuracy and validity of 

other commonly used wave force formulae. For the typical 

conditions that occur at hydraulic structures (horizontal bed, 

intermediate to deep water, non-breaking, and unimodal and 

bimodal seas) the widely used Goda formula is less applicable. The 

spectral LWT model more accurately describes the wave pressures 

and forces found in the flume. Goda is well applicable for the 

evaluation of the global force for (breaking) waves, structures 

located on a local berm, narrow wave spectra, values of kph <0.5. 
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1 Introduction 

1.1 Background 

In the Netherlands, bimodal sea states have been observed in the harbour basin of IJmuiden located near Amsterdam. 

The forced due to bimodal seas have been evaluated for the design of lock gates of the new sea lock (Tuin, 2018). The 

observed bimodal sea states are a combination of waves entering the basin from sea and locally generated wind waves. 

In recent projects, the author also observed bimodal sea states in the harbors of Terneuzen (Vlaams Nederlandse 

Scheldecommissie, 2017) and Oostende (Arcadis the Netherlands BV, 2020). For each project the bimodal sea state has 

been evaluated to a wave force for the design of lock gates and drive mechanism. Bimodal seas have also been observed 

near the Eastern Scheldt barrier (Mulder, 1980). Petrova (2011) analyzed the occurrence of bimodal sea states for various 

locations. She concluded that 16% of the sea states corresponded to a mixed sea for the open North Sea, 22% for the 

North Atlantic, and between 23 to 26% for the Portuguese coast. Moreover, she concluded that bimodal wave fields are 

often present for low and moderate sea states. Guedes Soares (2012) analyzed 1468 time series of wave records near the 

Spanish coast. 21% of the analyzed time series were identified as bimodal. The probability distribution of wave heights 

in bimodal seas were analyzed. He concluded that the Rayleigh and Weibull distributions yield a good fit in almost all 

ranges of bimodal seas. More bimodal seas have been observed in the Gulf of Oman (Akbari, 2019, 2020). He represented 

the swell and wind sea peaks of these bimodal seas by a JONSWAP or Gaussian model.  

For engineering purposes, three wave formulae are generally used (USACE, 2011): Quasi-regular linear wave theory 

(Airy, 1845), second order theory of Sainflou (Sainflou, 1928), and the semi-empirical theory of Goda-Takahashi (Goda, 

2010). The formula of Goda-Takahashi consists of many factors to account for the geometry at the hydraulic structure 

and the occurrence of impulsive wave forces. Goda-Takahashi has been derived for the global stability (sliding and 

overturning) of breakwaters. Each formula uses a single characteristic wave height and a single wave period and is 

applicable to regular waves and unimodal seas of narrow banded wave spectra. The use and the limitations of Goda-

Takahashi has been described in more detail in section 1.2. As stated earlier, sea states are often not classified as narrow 

banded sea states. To account for the spectral shape, the Spectral LWT (Mulder, 1980) (Tuin, 2018), NewWave theory 

(Tromans, 1991), and quadratic summation LWT (Van Vledder, 2019) (van Maris 2018) have been developed. These 

formulae are also described in more detail in section 1.2.  

• The main design steps for the evaluation of the force given a design storm are given in Figure 1. The formulae 

have been subdivided in ‘traditional’ wave force formula, the New Wave, and the Spectral LWT.  

• ‘Traditional’ formulae require a single wave height and wave period derived from a wave field or spectrum. 

A probability distribution is used to scaled to wave height to a design wave. This design wave height and 

wave period is input to a wave force formula like the formula of Goda-Takahashi, LWT, or Sainflou. 

• The ‘quadratic summation LWT’ (Van Vledder, 2019) (van Maris 2018) decomposes the wave spectrum and 

evaluates the wave force of a ‘swell’ component and a ‘sea’ component. Two wave heights and two wave 

periods are evaluated for a bimodal sea. 

• The New Wave approach (Tromans, 1991) defines a ‘most probable extreme crest shape’ based on a wave 

spectrum. The most probable crest shape is used for the evaluation of the wave force. 

• The Spectral LWT (Mulder, 1980) (Tuin, 2018) uses a response function that is based on the local geometry 

of the hydraulic structure and transfers the wave spectrum to a wave or pressure spectrum. A significant wave 

force or pressure is derived and scaled to a design force using a probability distribution. This approach is 

described in more detail in chapter 2. 

Several higher-order wave theories for pulsating wave loads on vertical walls have been formulated based on Stokes-

like expansion theories, for third order (Tadjbakhsh and Keller, 1960), fourth order (Goda 1967) and fifth order (Penney 

and Price, 1952; Sobey, 2009). These formulae are not regularly used in practical applications. One reason for this is the 

lengthy algebraic expressions that have been proven to lead to errors (Sobey, 2009). Moreover, these theories have been 

derived for regular waves, such that their increased accuracy is clouded by the inaccuracy due to their use for an irregular 

wave field using a quasi-regular wave assumption.  
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Figure 1: Wave force formula – flow chart 

Goda (1966) compared the forces calculated with his fourth-order formula to the peak forces of single extreme waves 

in an irregular wave field, where he used the zero-downcrossing wave period, and incoming averaged wave height as 

input for the (regular) wave-theory. Ten wave trains of 15 to 20 irregular waves per train were analyzed. The deviation 

of the predicted wave force using the fourth-order analytical formula compared to the measured wave force was +/- 25%. 

Hence, the increased accuracy of the higher order theories does not seem to help to make an accurate prediction of 

pulsating wave forces in irregular wave fields. 

Waves with high steepness (ratio of wave height to wavelength) and/or relative depth (ratio of depth to wavelength) 

become non-linear and show a ‘double hump’ in the time series of wave heights, pressures, and wave forces. Higher order 

effects are more prominent when ‘double humps’ are observed at the water level or in the wave force for an increasing 

wave steepness (Goda, 1966). Recent studies show the ‘double humps’ for wave pressures (Romanczyk, 2007) and water 

level elevations (Chen Yang-Yih, 2009)  

1.2 Goda, Spectral LWT, NewWave and Quadratic LWT 

A frequently applied formula for engineering purposes is the formula of Goda (1974, 2010). The Goda formula is 

derived for the design of caisson breakwaters and considers failure modes like sliding, overturning, and failure of the 

foundation (Goda, 2010). Before the development of the formula of Goda-Takahashi, caisson breakwaters were designed 

using the Sainflou formula (Sainflou, 1928) and the Hiroi formula (p = 1.5ρgHd) (Hiroi, 1919). The formula of Sainflou 

was used for water depths larger than two times the wave height and the Hiroi formula was applied for water depths 

smaller than two times the wave height. The formulas of Hiroi and Sainflou are not applicable for depth induced breaking 

waves due to a berm on which a breakwater is situated. Goda (1972) performed many laboratory tests to derive an 

improved wave formula which is known as the ‘formula of Goda’ (Goda, 1974, 2010). The laboratory tests were based 

on: 

• Regular waves. The wave period was kept constant during a test. The wave height was increased step by step. 

Roughly 10 single waves were applied per wave height.  

• Relative depths of h/L = 0.1 and 0.3. 

• A constant bed slope of 1/100. 

The final Goda-Takahashi (1974, 2010) formula uses the pressure at still water level (SWL) as input parameter for 

the full pressure profile (from top crest to bottom). It is a rather complicated set of formulae with semi-empirical 

coefficients for many influences like impulsive wave impacts, oblique waves, sloping bed, and presence of a berm. For 
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pulsating normally incident waves at structures on a horizontal bed without berm (for structures like sea locks, discharge 

sluices, or quay walls) the formula for the pressure at SWL reduces to equation 1, as given by Paprota (2021). The alpha 

factors representing the effect of a berm and impulsive loading are equal to 0.6 for α1 and 0.0 for α2 (factor for presence 

of rubble mound foundation) and α3 (factor for pressure distribution) (Goda, 1992), These factors are not relevant for the 

evaluation of the wave force for incident waves and structures on a horizontal bed without berm. Within the research 

presented in this paper the full set of formulae as presented by Goda (2010) have been applied. 

 
𝑝1 = (0.6 +

2𝑘𝑑ℎ

𝑐𝑜𝑠2(2𝑘𝑑ℎ)
) 𝜌𝑔𝐻𝑑 (1) 

where kd is the (local) wave number based on T1/3. The pressure profile is assumed to be bilinear. Above the water line 

the pressure varies between p = p1 for SWL (z = h), and p = 0 for z = h+0.75Hd. For low structures, the pressure profile is 

simply truncated at the top of the structure. Below the water line the pressure is assumed to vary between the p1/coshkh 

at the bed to p1 at SWL. 

Even though the formula was derived for (composite) caisson breakwaters for the global failure modes like sliding 

and overturning in nearly breaking and breaking waves in intermediate to shallow water conditions (and is very successful 

for this application) it is also often recommended in manuals for the assessment of hydraulic structures in intermediate to 

deep non-breaking waves with non-standard spectra for a variety of structures including lock gates (e.g. Rijkswaterstaat, 

2018). However, the design of hydraulic structures like locks, sluices, and barriers deviates from the design of caisson 

breakwaters. For the design of caisson breakwaters, the global stability of key importance. For the design of ship locks, 

lock gates and drive mechanism of lock gates the shape of the pressure profile is of major importance. The shape of the 

pressure profile due to wave loading on gates is normative for plate thickness, the distribution of forces during gate 

motion, required strength, stiffness of girders, and power of the drive mechanism. For structures located in deep water, 

the pressure profile is even more important because the pressure profile decreases to zero before reaching the bed level. 

Using the formula of Goda-Takahashi for these hydraulic structures is therefore not always the best choice.  

The Spectral LWT for wave forces on vertical face structures was applied for the design of the Eastern Scheldt Barrier 

in the Netherlands. This mathematical model forms the basis of this paper and is described in further detail in chapter 2. 

Wave flume experiments were performed showing the validity of the mathematical model up to a (prototype) frequency 

of 0.2 Hz (Mulder, 1980). The model was applied to evaluate the forces for extreme conditions for bimodal seas. The 

peak frequencies of the second peak were lower than 0.3 Hz (Mulder, 1980; Vrijling, 1983). The Spectral LWT was also 

numerically verified and seemed to give reasonable estimates of the forces for low steepness waves (H/L < 0.092) for a 

greater range of wave frequencies (Van Vledder, 2019).  

The Spectral LWT has also been applied for the evaluation of bimodal sea states for the design of the design of the 

sea lock of IJmuiden (Voortman et al. 2017; Tuin, 2018). The spectral LWT was applied to evaluate the wave forces 

during normal service conditions relevant for the design of the drive mechanism and gate supports (for opening or closing 

a lock gate) for more moderate wind seas and higher peak frequencies than the ones used for the design of the Eastern 

Scheldt Barrier. In the Ijmuiden case, the harbor basin is deep to accommodate large vessels. The lock gates are completely 

vertical up to the horizontal bed. Hence, purely pulsating, non-breaking waves will occur. Long waves of a bimodal 

spectrum have a major contribution to the wave force on structures for an increasing water depth. Tuin (2018) showed 

that a minor contribution of low frequency waves in the surface elevation spectrum (2% of the total wave energy) caused 

a significant contribution to the total wave force (approximately 20% of the total wave force variance).  

Tromans (1991) derived the New Wave LWT theory. The “New Wave” group produces a description of the extreme 

wave, originally defined as an extreme crest elevation, for a particular sea frequency spectrum. The New Wave group 

effectively describes the average shape surrounding the extreme crest as obtained from an infinite number of random seas, 

and in mathematical terms is equal to the autocorrelation function. It is based on linear superposition of the different 

modes. It does not use random phases of the spectrum, but assigns a predefined, most-likely, phase. The shape is scaled 

for a particular crest elevation to give the most probable surface elevation surrounding the crest. Based on this theory and 

LWT, the force resulting from the pressure below water level can be calculated with the first term of the formulation 

below. The second term can be added for the part above the water line, assuming hydrostatic pressure. 

 
𝐹NW = 𝜌𝑔ℎ𝐻d ∫

𝑆(𝑓) 

𝑚0

 
𝑡𝑎𝑛ℎ 𝑘ℎ 

𝑘ℎ 
𝑑𝑓 +

1

2
𝜌𝑔𝐻d

2 
(2) 
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where ρ is the density of water, g is the gravitational constant, Hd is the design wave, k is the wavenumber, S is the 

variance spectral density of the modelled irregular wave field, h is the depth, m0 is the zeroth order moment of the wave 

spectrum, and f the frequency. 

 
𝐹𝐿𝑊𝑇,𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 =  √𝐹𝐿𝑊𝑇,𝑠𝑤𝑒𝑙𝑙

2 + 𝐹𝐿𝑊𝑇,𝑠𝑒𝑎
2 

(3) 

where FLWT,swell is the force due to the swell component of the spectrum and FLWT,sea is the wind sea component of the 

spectrum. 

1.3 Problem, aim, approach, scope, outline  

At many locations around the world, bimodal wide banded sea spectra are observed. A bimodal spectrum can be 

described by two peak frequencies and two wave heights. The general design formulae (Goda, Quasi-regular LWT, 

Sainflou) are using only one peak period and one wave height. This makes them less applicable for bimodal seas. From 

the discussed literature above, it seems that there does not exist a well described method to consider arbitrary spectral 

shapes in the determination of wave loads for (moderate) seas with high peak frequencies for non-breaking waves. The 

spectral LWT or NewWave theory can be applied for arbitrary shapes of wave spectra; the Spectral LWT has already 

been applied to the design of the Eastern Scheldt for the lower frequencies in the force signal under extreme conditions. 

However, the accuracy of a spectral LWT is not known for a large range of conditions. 

Unimodal wave spectra can be evaluated by the general design formulae, Spectral LWT, and NewWave theory. 

However, the accuracy of these formulae depends on the wave height, wave period and water depth. However, formulas, 

like the formula of Goda-Takahashi, are often applied beyond their validity or required use. This results in an 

overestimation or underestimation of the wave force or use of a non-representative pressure profile. The pressure profile 

as calculated by the formula of Goda-Takahashi and Sainflou does not represent the expected pressure profile. 

Nevertheless, in most cases this works well for the analysis of global stability like sliding and overturning of caisson 

breakwaters or comparable structures. However, for the design of hydraulic structures like lock gates, discharge gates, 

and drive mechanism a representative pressure profile is of great importance. The pressure profile is key for the evaluation 

of the distribution of wave forces to gate supports, design of steel components, and required strength of the gate. 

Moreover, for deep sea harbors deep water conditions are often valid. The use of Goda-Takahashi and Sainflou (triangular 

shape of the pressure profile) could result in an overestimation of the wave forces. 

This paper aims to formulate and validate an approach to derive pulsating wave loads on vertical walls valid for 

unimodal, narrow banded, and wide banded wave spectra. Wave pressure distributions below SWL are analyzed in detail 

to validate design formulae. The pressure distribution above SWL has been schematized as a triangular profile 

corresponding to the general wave formulae and not been validated in detail. In the conducted wave flume tests only one 

pressure sensor was available above SWL which is too little to perform a validation of the pressure profile above SWL.  

Wave flume tests have been conducted covering unimodal and bimodal wave fields to validate the Spectral LWT. 

Theoretical response functions useful for the transformation of wave spectra to wave force spectra have been compared 

with wave force spectra obtained from the wave flume experiments. Results of multiple general wave load formulae are 

compared to experimental results to assess their applicability for bimodal seas. Moreover, the different approaches are 

compared to each other for various ranges of relative depth kph, and different contributions of low frequency energy. 

The paper is structured as follows: chapter 2 formulates the Spectral LWT. Chapter 3 presents the conducted 

experiments used to validate the spectral LWT. Chapter 4 presents the validation of the Spectral LWT and a comparison 

of the general wave formulae to the experimental results. Chapter 5 presents the results and discussion. Chapter 6 presents 

the conclusions. 
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2 Spectral LWT for wave forces on a vertical wall  

This chapter presented the derivation and theoretical description of the Spectral LWT which are also described in a 

likewise manner in (Mulder, 1980). The formulae are not widely known. For convenience and readability of this paper, 

the applied formulae are presented and explained in more detail in this chapter.  

In section 2.1, the wave model of the Spectral LWT is explained for the evaluation of wave pressures. In section 2.2 

the theory is described for wave forces. The introduction of the significant wave force and significant wave pressures and 

probability distribution is given in section 2.3. 

2.1 Wave pressure 

For the spectral LWT, the contribution to the total wave force of every wave component needs to be calculated within 

the frequency domain. It requires a relationship between two variables which can be treated as a linear system 

(Holthuijsen, 2007; Mulder, 1980). A response function is derived using a general expression from the linear wave theory. 

The pressure at an elevation z below water level is calculated using equation 4 (Holthuijsen, 2007). The pressure-response 

function given in equation 5 for a variable height ‘z’ is derived by dividing equation 4 by the wave amplitude. 

 
psub(f, z) = a(1 + r) ρg

cosh kz

cosh kh
 

(4) 

 
Rηp,sub(f, z) = (1 + r)ρg

coshkz

coshkh
 

(5) 

where a is the wave amplitude, r is the reflection coefficient, 𝜌 is the density of water, g is the gravitational constant, k is 

the wave number (function of the wave (mode) frequency), z is elevation relative to the bottom, and h is the water depth 

The response function above water level is found by linear interpolation between SWL and the linearized reference 

amplitude including reflection. The pressure-response function above SWL is shown in equation 6: 

 
Rηp,top(f, z) = (1 + r) ρw g (1 −

z − h

zup −  h
) 

(6) 

where: zup is equal to min(ℎ + (1 + 𝑟)𝑎𝑟𝑒𝑓, 𝑧𝑡𝑜𝑝), ztop is the top-level of the structure that is subjected to waves, z is the 

vertical level where the pressure is calculated, h is the water depth. 

The wave pressure spectrum at a given height z is derived by multiplying the square of the response function as given 

in equation 5 and equation 6 with the wave spectrum as shown in equation 7: 

 Spp(f, z) = Rηp(f, z)2Sηη(f) (7) 

where: Spp(f,z) is the wave pressure spectrum (N2/(m4Hz)), Sηη(f) is the wave (water elevation) spectrum (m2/Hz), and 

Rηp(f,z) is the pressure response function (N/m3). The pressure response function is equal to 𝑅𝜂p,𝑠𝑢𝑏(𝑓, 𝑧) for h > z ≥ 0 

and equal to 𝑅𝜂p,𝑡𝑜𝑝(𝑓, 𝑧) for ztop > z ≥ h. 

Pressure response functions below SWL are illustrated in Figure 2 for 8 levels below SWL. The pressure response at 

SWL is equal for every value of kh because the pressure-reduction in depth is not present at SWL. Every unit of wave 

variance gives the same proportion of force for every wave frequency. The pressure response at and near the bottom 

decreases to zero for an increasing value of kh due to the reduction of wave pressure at larger depths for an increasing 

wave frequency or kh value. In short: 

• Low values of kh (low frequencies & long waves) generate at every depth the same value of pressure 

response. 

• For an increasing value of kh (high frequencies & short waves) the waves are not able to penetrate over the 

full water column. The pressure response at and near the bottom decreases to zero. As indicated in Figure 2 

for multiple relative water depths. 
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Figure 2: Pressure responses. 

2.2 Wave force & response functions 

The wave spectrum is transformed to a force spectrum by using the square of the response function as shown in 

equation 8. The total response function is found by the sum of the response below SWL and above SWL as given in 

equation 9: 

 SFF(f) = RηF
2 (f)Sηη(f) (8) 

where SFF(f) is the wave force spectrum (N2/(m2Hz)), Sηη(f) the wave (water surface elevation) spectrum (m2/Hz), and 

RηF(f) the force response function (N/m2). 

 RηF(f) =  RηF_top
+  RηF_sub(f)  (9) 

The Response function below SWL is a function of wave amplitude, wave frequency, and the water depth over which 

the wave induces pressure. The response function (equation 10) is derived by dividing the expression of the force from 

linear wave theory (Airy, 1845) by the wave amplitude: 

 
RηF_sub(f) = (1 + r) ρg ∫

coshkz

coshkh
dz

hw

z=0

= (1 + r) ρgh 
tanhkh

kh
 

(10) 

where a is the unreflected wave amplitude, f the frequency, r the reflection coefficient, ρ the water density, g the 

gravitational constant, k the wave number (as a function of frequency), h the water depth, and z the vertical elevation 

relative to the bottom. 

The response below SWL is illustrated in Figure 3 for multiple water depths for the frequency and kh. The magnitude 

of the response scales width the water depth. For very low frequencies the hydrostatic force is equal in magnitude over 

the full depth and the wave forces scales linear over height. For an increasing wave frequency, the depth, and the 

magnitude of the pressure over which the wave profile penetrates over depth decreases.  
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Figure 3: Illustration of force response functions below SWL. Left panel as function of frequency; right panel as 

function of kh (reflection coefficient = 1). 

The pressure profile above water corresponds to a triangle according to the assumption of a hydrostatic pressure 

distribution for the wave crests above the SWL. Hence a quadratic relation between wave force and wave amplitude is 

expected for the wave force above SWL, as both the magnitude and height of the pressure profile depends on the wave 

amplitude. The spectral LWT requires a linear relationship (Holthuijsen, 2007). This is obtained by introducing a 

reference amplitude as shown in equation 11. The subsequent response function for the force above SWL is given in 

equation 12. A factor of γlin = 1.0 is applied for linearization. This factor is validated in chapter 4. The linearized wave 

response above SWL is illustrated for four significant wave heights in Figure 4. The linear response is a constant value 

for every frequency and depends on the magnitude of the reference amplitude and reflection.  

 
Ftop ≈ (1 + r)2

1

2
 ρg aref a 

(11) 

where aref is the reference amplitude = 
1

2
𝛾lin𝐻m0, and γlin a factor. 

 
RηF_top =  

Ftop

a
 = (1 + r)2

1

2
 ρgaref 

(12) 

 

Figure 4: Illustration of force response functions above SWL. Left panel as function of frequency; right panel as 

function of kh (reflection coefficient = 1). 
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2.3 Significant wave height, wave force and wave pressure  

For the description of wave fields, the wave height Hm0 is used. The combination of the significant wave height and 

peak period gives a rather good description of narrow unimodal wave fields (Holthuijsen, 2007). Significant wave forces 

and pressures can be used to describe the wave loads on structures. The definition of the significant wave force and 

pressure deviates from the definition of the significant wave height. The wave height is a ‘peak to trough’ value, where 

for the wave loads it seems more natural to consider only the peak to zero crossing. Hence the significant force or pressure 

F1/3 and p1/3 is half the value of that for a trough-peak value. The formula of the significant wave force Fm0 and pressure 

pm0(z) based on the zeroth order moment of the spectrum is hence chosen to resemble this significant force and is shown 

in equation 13 and equation 14 below, respectively. It is not correct to derive Fm0 by integration of pm0 over the depth. 

This yield in a different order of multiplications of the responses and wave spectra which results in a different result. 

 Fm0 =  2 √m0,F (13) 

 pm0(z) = 2 √m0,p(z) (14) 

The probability distribution of wave heights in bimodal seas can be described by the Weibull distributions of which 

the Rayleigh distribution is a special case (Guedes Soares, 2012). The formulation of the Rayleigh distribution is applied 

for the single zero-crossing wave forces, and pressures, respectively. The Rayleigh distribution is theoretically valid for 

narrow-banded spectra (Longuet-Higgins, 1952). It therefore needs be validated if this distribution is also valid for 

bimodal spectra. 

 
Pwave(Χ > Χ) =  e

−2(Χ
Χs

⁄ )
2

 
(15) 

where X is an arbitrary value representing the wave height, wave force or wave pressure, and Xs is the wave force or wave 

pressure at a given depth z. 

3 Wave flume experiments 

3.1 Test setup 

Tests have been performed in the wave flume of the Hydraulic Engineering Laboratory of Delft University of 

Technology. De Almeida (2020) used the flume for the measurements of wave pressures on vertical walls with and 

without an overhang. Special tests were conducted for bimodal sea states and pressures and forces on vertical walls 

without an overhang. De Almeida (2020) used a sampling frequency of 20 kHz for his research for the evaluation of 

impulsive wave loads. The variation of the pressure over time for pulsating loads as discussed in this paper is less 

compared to wave impact loads. A down sampled dataset with a frequency of 1 kHz is applied in this paper. This down 

sampled signal was obtained simultaneously to the higher frequency measurement during the tests, by keeping only 1 

sample out of 20. No aliasing problems are expected due to the application of low-pass filter with cut-off at 500 Hz. 

Negligible wave energy is present above 500 Hz.  

The test set-up is shown in Figure 5 and Figure 6. The wave height is measured by using three wave gauges located 

at a distance between 1.515 meter and 2.195 meters from the wall. The method of Zelt and Skjelbreia (1992) is applied 

to decompose the incident and reflected wave. The weight of the wall was sufficiently large to limit the movements of 

the wall due to wave loading to increase the accuracy of the measurements. The wave flume time series are used for the 

validation of the response functions, wave pressures, and probability distributions.  

Wave loads have been measured using the pressure sensors which are indicated in Figure 5. Wave pressures were 

measured at 8 levels. These pressures could directly be related to theoretical pressure profiles. Results of load sensors 

give an average pressure over the height of the load sensor and cannot be directly related to the theoretical pressure 

profiles. The pressure sensors are well distributed over the height with a with a closer spacing at the locations where larger 

pressure gradients are expected, as indicated in Figure 5. A cubic spline is applied using the measurements of PS2, PS3, 

PS4, PS5, PS6, PS7, and PS9. The wave force is calculated by integration over height. Only one sensor is located just 
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above SWL which yield to a less accurate estimate of the wave force above SWL. PS10 is located too high and is only 

loaded by extreme waves within the wave field. 

 

Figure 5: Left: instrumented wall in flume. Right: general layout of wall (based on de Almeida, 2020). Dimensions in 

cm. 

 

Figure 6: General layout wave flume. Figure based on (de Almeida, 2020). 

3.2 Test program 

A total of 6 experiments have been analyzed for this paper. Each experiment represents a wave spectrum ranging from 

a unimodal spectrum to bimodal spectra. The first five experiments were conducted for 20 minutes; experiment 6 lasted 

for 90 minutes. Table 1 gives an overview of the characteristics of the experiments and applied wave spectra. A water 

depth of 0.60 m has been applied for every experiment. 

Van Maris (2019) implemented two new parameters to describe a bimodal wave spectrum. The parameters are shown 

in equation 16 and equation 17. The relative swell variance MSw is defined as the ratio of wave variances of the wind sea 
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and swell. The relative swell peak frequency ΦSw is based on the ratio of the wind sea peak frequency and swell peak 

frequency. 

 Msw =  
m0,swell

m0,swell +  m0,sea

 (16) 

 
Φsw =  

fp,sea − fp,swell

fp,sea

 
(17) 

where Msw is the relative swell variance, m0,swell is the swell variance (total variance below the minimum between the 

swell and wind component), m0,sea is the wind sea variance (total variance above the minimum between both components), 

Φsw is the relative swell peak frequency, fp,swell is the peak frequency of the swell spectrum, and fp,sea is the peak frequency 

of the wind sea spectrum. 

The relative swell peak frequency for every experiment has been set at a fixed value of 0.59 The peak frequency has 

been increased to investigate the effect of the frequency on the transformation of the wave spectrum to the wave force 

spectrum. The relative swell variance ranges from zero (unimodal wave spectrum) up to a relative swell of 0.55 (bimodal 

55% swell variance). The bimodal spectra were generated by adding JONSWAP spectra for the swell spectrum and the 

wind sea corresponding to the parameters given in Table 1. The wave spectrum and wave force spectrum are derived 

using a Fast Fourier Transformation. The results are given in chapter 4. 

Table 1: Measured wave characteristics in model tests. 

Experiment 

Dur-

ation 

 

(min) 

Hm0,inc 𝐻m0,inc

ℎ
 

ℎ

𝐿p,swell

 
ℎ

𝐿p,sea

 
𝐻m0,i

𝐿p,sea

 
Msw m0,swell m0,sea Φsw fp,swell fp,sea 

(m) (-) (-) (-) (%) (-) (10-6 

m2) 

(10-6 

m2) 

(-) (Hz) (Hz) 

1 – unimodal 20 0.089 0.148 - 0.194 2.9 - - 497 - - 0.65 

2 – mildly 

bimodal 
20 0.087 0.145 0.071 0.207 3.0 0.10 49 429 0.59 0.28 0.68 

3 – moderate 

bimodal 
20 0.089 0.148 0.074 0.222 3.3 0.20 99 391 0.59 0.29 0.72 

4 – moderate 

bimodal 
20 0.081 0.135 0.097 0.316 4.3 0.26 106 306 0.59 0.37 0.90 

5 – extreme 

bimodal 
20 0.075 0.125 0.109 0.375 4.7 0.55 199 157 0.59 0.41 0.99 

6 - moderate 

bimodal, 

long 

experiment 

90 0.093 0.155 0.05 0.26 4.1 0.21 114 424 0.75 0.20 0.8 

4 Application and validation of wave pressure and wave force  

This section presents the validation of the spectral LWT using the conducted experiments. Empirical response 

functions are evaluated by using the wave force spectrum, wave pressure spectrum, and the wave spectrum. The wave 

spectrum and wave force spectrum are given in section 4.1. The empirical pressure-response is given in section 4.2 and 

compared to the theoretical response functions. The calculated wave pressure profiles and the measured wave pressure 

profiles are evaluated in section 4.3.The same approach is applied for the wave force. The validation of the force response 

is given in section 4.4, the validation of the wave force in section 4.5. The validation of the probability distribution of the 

wave force is given in section 4.6. 

4.1 Wave spectra and wave force spectra  

From the experiments described in section 3, the wave spectra and wave force spectra are derived. The wave spectra 

are shown by the continuous lines in Figure 7; the left axis presents the wave variance density. In the same figure, the 

wave force spectra are indicated by the dashed lines. The right axis presents the wave force variance density. For 
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experiment 1 (unimodal) the peak of the force variance density is located lightly to the left compared to the peak of the 

wave variance density. Left form the peak frequency, the dashed line representing the force variance density exceeds the 

wave variance density. Right form the peak frequency, the force variance density falls below the wave variance density. 

Hence, an equal amount of wave variance density at low frequencies gives a higher amount of force variance density. 

This effect is more prominent for bimodal wave spectra. The wave variance density of the first peak amplifies more 

compared to the wave variance density of the second peak. This effect can be explained by the shape of the response 

function as described in section 2.2. This effect is amplified by the quadratic relationship between the wave spectrum and 

wave force spectrum (equation 8). The shape of the response function and the amplification by the quadratic relation 

gives a higher contribution of low frequency wave variance density to the wave force variance density compared to a 

same amount of wave variance density at higher frequencies. This can be demonstrated by experiment 4 and 5 of which 

the results are shown in Table 2. Experiment 4 and 5 are moderate and extreme bimodal and are identified by two peak 

frequencies. A unit value of wave variance density at the swell peak frequency generates more force variance density 

compared to a unit value of wave variance density at the sea peak frequency. 

 

Figure 7: Wave spectra and wave force spectra. 
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Table 2: Comparison between wave variance density and force variance density 

 Peak 

frequency 

Wave variance 

density  

(10-3 m2/Hz) 

Force variance density  

 

(103 N2/Hz) 

Ratio Wave variance density : 

Force variance density 

(1 m2/Hz : 106 N2/Hz)- 

Experiment 4 Swell 0.56 73 1:130 

Sea 1.28 58 1:45 

Experiment 5 Swell 0.54 64 1:118 

Sea 0.97 33 1:34 

4.2 Validation of pressure response 

Pressure-response functions are derived for the five experiments given in Table 1. The empirical pressure response is 

derived by using equation 18: 

 
Rηp,empirical

2 (f, z) =  
Sηη,flume(f)

Spp,flume(f, z)
 

(18) 

where Sηη,flume is the wave spectrum obtained by a FFT analysis of the gauge measurements, and Spp,flume is the wave force 

spectrum obtained by a FFT analysis of the force on the wall. 

The theoretical pressure response as defined by equation 5 representing four pressure sensor that remain under water 

throughout the test (PS2, PS3, PS4, and PS5) are given by black lines in Figure 8. Each black line is representing a level 

below SWL. Sensors located above the troughs of the waves runs dry resulting in a lack of data during a wave through 

which makes the sensors PS7, PS10, and PS11 not applicable for this analysis. The empirical pressure response is shown 

by the colored areas in Figure 8. The colored areas correspond to the 95% confidence interval derived using the student’s 

t distribution ("Student" (W.S. Gosset), 1908) of the pressure response at each depth representing one unimodal wave 

spectrum and four bimodal wave spectra. The pressure-response function and the empirical pressure-response are made 

dimensionless. The theoretical nondimensional response runs from 2 (due to nearly 100% reflection) and decreases for 

an increasing frequency as described in chapter 2. 

 

Figure 8: Pressure responses. The empirical response is derived from the experiments listed in Table 1.  
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The pressure response is the largest near SWL as expected, which can be seen by the dimensionless response of 

pressure sensor PS5. This sensor is located just below the troughs of the waves. The pressure response is less at greater 

depths which can be seen in the decrease of pressure responses for an increasing depth. PS2 is located just above the 

bottom of the wave flume. This sensor shows the lowest pressure-response. 

The theoretical pressure response and the empirical pressure shows a good agreement for every frequency and depth. 

The accuracy decreases for frequencies lower than 0.4 Hz. This can be explained by the lack of wave variance density in 

the experiments for lower frequencies. A good match is found between 0.4 Hz and 1.1 Hz which corresponds to peak 

frequency of the second peak of the bimodal spectrum. A less accurate match is obtained for frequencies above 1.1 Hz 

due to the lack of variance density for experiment 1, experiment 2, and experiment 3. 

4.3 Validation of wave pressure 

In this section, the pressure profiles are be compared to the various equations for pulsating wave loads. From the 

experiments, wave pressure profiles are derived for the waves corresponding to F1/3 and the F5%. The significant wave 

height Hs is a commonly used variable, therefore the F1/3 from the timeseries has been assessed as reference. Due to the 

duration of the experiments data for the ‘extreme’ values of wave forces is scarce. Therefore, F5% is used as a 

representative ‘high’ force. For bimodal spectra, the peak frequency has been chosen for the peak with the highest amount 

of wave variance density. In engineering practice this would be the peak frequency of the wave spectrum representing the 

sea state to be used in the ‘traditional’ formulae. Under this assumption, kh ranges between 1.2 and 2.4. 

The measured pressure profile, indicated by the red dots in Figure 9, corresponds to a 5% exceeded wave force (F5%) 

which is evaluated by using a PoT analysis. The red dots represent the measured wave pressures at sensor PS2, PS3, PS4, 

PS5, PS7 and PS9 (shown in Figure 5). When P5% would have been used instead, a pressure profile would be composed 

of multiple waves. For example, a combination of a P5% at the bottom and P5% near SWL will not represent a pressure 

profile of one single wave. An error bar shows the nearest wave pressure (one higher and one lower with respect to the 

pressure profile of F5%) to indicate some scatter around the measured pressure profile. Figure 9 presents the wave pressure 

profiles corresponding to the characteristics shown in Table 1.  

The most unfavorable matches are obtained by the formula of Sainflou and Goda-Takahashi. In these formulae, the 

pressure below SWL is schematized as a linear line ranging from SWL down to a pressure defined at the bottom. This 

linear approach of the pressure below SWL (0.6 m) does not match the measured wave pressures. Van Vledder (2019) 

and van Maris (2018) predicted this underestimation of Goda-Takahashi for unimodal wave spectra for the relative depth 

and relative wave steepness valid for the performed experiments. The formula of Sainflou gives a major overestimation 

for a unimodal wave spectrum over the full water column. For bimodal wave spectra, Sainflou gives an overestimation at 

SWL down to two third of the water depth. From the bottom up to one third of the depth of the flume, Sainflou 

underestimates the wave pressure. 

The other formulae represent the pressure profile quite well for experiments 1 (unimodal) and 2 (10% relative swell). 

The quasi regular LWT performs less well for experiment 3 and gives a wrong wave pressure profile for experiment 4 

and 5. This shows that this theory is not valid for bimodal sea states, as it does not account for the low frequency waves 

that penetrate further to the bed. The spectral LWT, New Wave LWT, and the squared sum of two Quasi-Regular LWT 

give a good approximation of the shape of the profile. Although the New Wave LWT underestimates the pressures 

somewhat near the bed for an increasing swell component with respect to the spectral approach. 
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Figure 9: Wave pressure profiles – 5% probability of exceedance of the wave force. 

Figure 10 provides a comparison between the measured pressure and computed wave pressure for every formula and 

for every experiment for a pressure profile corresponding the F1/3 and F5%. The coefficient of determination (R squared) 

is given in the graphs and Table 3. The error between the calculated pressure and measured pressure is dependent of the 

actual measured wave pressure for Goda-Takahashi and experiment 4 and 5 for the basic linear wave theory.  
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Figure 10: Accuracy of wave pressure models, measured pressures, and computed pressures 

Table 3: Coefficient of determination per wave model for measured and calculated wave pressures. 

Wave model R2 

Quasi-regular LWT 0.740 

Quasi-regular LWT – squared sum 0.843 

New Wave LWT 0.852 

Goda-Takahashi 0.613 

Spectral LWT 0.874 

Sainflou 0.636 
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The performance of the Quasi-Regular LWT is good for a unimodal and mild bimodal sea state (experiment 1 and 2). 

For moderate bimodal spectra (experiment 3 and 4) and high bimodal spectra (experiment 5) the performance of the 

Quasi-Regular LWT is poor. This can be seen by the pressure profiles and results given in Figure 10. The Quasi-Regular 

LWT gives an underestimation of pressures for bimodal wave spectra.  

Goda-Takahashi gives an underestimation of nearly each pressure and is not suitable for the relative depth applied in 

the experiments. The formula does not seem to be applicable for a representative evaluation of pulsating wave forces for 

bimodal seas of limited steepness.  

The overestimation of Sainflou is clearly visible in Figure 10. For the unimodal and mild bimodal sea state, the 

pressures are overestimated. For more bimodal seas the pressure at the bottom is underestimated. The triangular shape of 

the Sainflou pressure profile does not represent the actual pressure profile. This results in an overly conservative 

estimation of pressures. Therefore, the formula does not appear to be sufficiently accurate for design.  

The error of the quasi-regular squared sum LWT, New Wave LWT, spectral LWT is quite constant for the range of 

measured pressures. The best match is found for the spectral LWT. The error is also constant for an increasing swell 

component. The New Wave LWT gives a slight underestimation for bimodal seas and has a slightly greater error 

compared to the spectral LWT. For the New Wave LWT the scatter for bimodal seas is larger compared to the spectral 

LWT. The quasi-regular squared sum LWT gives a good indication of the wave force for bimodal seas when using two 

peak periods and wave heights. Hence, these formulae are applicable for an approximation of the wave pressure profile 

for bimodal seas as concluded previously.  

4.4 Validation of force response 

In this section the empirical force response is validated using the same methodology as used for the empirical pressure 

response. The total theoretical response is calculated using equation 10. The results are shown by the black lines in Figure 

11. The empirical results for the five wave spectra given in Table 1 and Figure 7 are shown by the colored areas given in 

Figure 11. The colored areas correspond to the 95% confidence interval derived using the student’s t distribution 

("Student" (W.S. Gosset), 1908) representing one unimodal spectrum and four bimodal spectra. For the total response 

(blue area) the empirical responses of the unimodal and bimodal spectra are indicated by the grey lines. The response is 

made dimensionless by dividing the response by 𝜌𝑔ℎ. The dimensional response per running meter below SWL starts at 

a value of 2 and decreases to 0 for an increasing wave frequency. The nondimensional response above SWL is modelled 

by a constant value. This value is independent from the wave frequency and depends only on the reflection and water 

depth as described in section 2.  

The match between the empirical total response indicated by the blue area and the theoretical total response indicated 

by the continuous line is fair, with a consistent overestimation of the theoretical value of about 10%. The confidence is 

less good for frequencies below 0.4 Hz due to the limited amount of variance density in the applied wave spectra in the 

experiments. A similar match is obtained for the response below SWL, as it constitutes a major part of the force variance. 

The empirical response above SWL gives a stable result over the whole frequency domain and corresponds to the 

linearized response as given in equation 12 for γlin = 1.0.  
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Figure 11: Response below water level, Response above water level, and total response (t-distribution; 95% confidence 

interval of 5 experiments (Table 1)) 

4.5 Validation of wave force 

Figure 12 presents the relative difference between the total wave force as predicted by the wave formulae compared 

to the measured FS and F5% of the presented five experiments. For the traditional formulae the peak frequency of the 

highest component of the wave spectrum has been applied. The relative force differences on the vertical axis are given as 

a function of the relative swell presented on the horizontal axis.  

The spectral LWT coincides best with the measured forces. It slightly underestimates the force for the bimodal seas, 

increasing with Msw up to an underestimation of nearly 6% for experiment 5. The New Wave LWT shows a similar 

resemblance, but slightly less accurate with 14% underestimation for experiment 5. The quasi-regular squared sum LWT 

gives a significant overestimation for a low relative swell but a reasonably good estimate for an increasing amount of 

swell. The quasi-regular LWT gives a reasonable approach up to a relative swell of Msw = 0.2, with deviations up to 12%. 

Goda-Takahashi gives a significant underestimation as discussed in previous chapters. Sainflou overestimates the force 

with 39% for MSW = 0 and overestimates the force for the tested range of bimodal seas.  
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Figure 12: Difference between theoretical wave force and measured wave force for an increasing relative swell.  

4.6 Validation of probability distribution of wave forces  

For the design of hydraulic structures, a design wave must be defined which is representative for the observed sea 

state. As stated in the introduction, Guedes Soares (2012) concluded that the Rayleigh and Weibull distributions yield a 

good fit in almost all ranges of bimodal seas. These distributions can also be applied to the wave force generated by 

bimodal seas. Within this section, the probability of exceedance of the measured wave forces is compared to the Rayleigh 

distribution. 

As stated in section 2.3, the design wave can be evaluated using the significant wave force derived from the wave 

force spectrum. The wave force spectrum can be derived from two sources: 

• The theoretical wave force spectrum derived from the wave spectrum (continuous line in Figure 7) and the 

response function (equation 10).  

• The measured wave force spectrum obtained by a FFT analysis (dashed line in Figure 7). 

The wave force probability distribution is found by using the significant wave force as a scale parameter in the 

Rayleigh distribution (equation 15). The exceedance distributions of the five experiments are shown in Figure 13. 

Measured wave forces are indicated by the red crosses, the probability distributions using the wave spectra are shown 

based on the theoretical wave force spectrum (green dash-dotted lines) and measured significant force (blue dashed lines). 

Both methods give a good representation of the probability distribution both for unimodal sea states (experiment 1) and 

bimodal sea states. The use of the wave spectrum gives a conservative approach due to the upper limit approach of the 

response function as shown in Figure 11. 
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Figure 13: Probability of exceedance of wave forces, force below SWL 

The duration of the time series of experiments shown in Figure 13 is limited, hence the range of probabilities of the 

conducted experiments is limited. One long experiment has been conducted of which the result is shown in Figure 14. 

The accuracy for low probabilities for this experiment is better as it has a lower sampling error. In this graph it seems that 

the exceedance curve based on the wave spectrum gives a better fit to the data. 
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Figure 14: Wave spectra, wave force spectra, and probability of exceedance of wave forces for experiment 6. 

5 Discussion 

The presented methodologies are based on the LWT. However, in many wave conditions waves are nonlinear. The 

impact on the accuracy of nonlinearity on the results of the flume tests is discussed in section 5.1 and 5.2. Section 5.3 

discusses the validity of the formula of Goda-Takahashi. Many designers are inclined to use this formula assuming it is 

conservative to do so. However, as shown in the present analysis of the model tests and numerical investigation (Van 

Vledder 2019 and Van Maris 2019), the formula is not conservative in some cases. A nondimensional comparison is made 

between the formula of Goda-Takahashi and the Quasi-regular LWT, spectral LWT, and New Wave LWT. 

5.1 Nonlinear effects and ‘double humps’  

Due to higher order wave effects, the peak of a wave will flatten and a ‘double hump’ in the wave pressure, wave 

force, or water level elevation develops (Goda, 1966). The magnitude of the ‘double hump’ will be the largest for the 

highest recorded waves in a time series, as these will be steeper and hence be more nonlinear. Goda (1966) made a 

classification of nonlinear effects based on the relative depth and wave steepness. This classification is applied to 

experiment 1 (unimodal, 0% swell energy) and experiment 5 (bimodal, 55% swell energy) The results are shown in the 

last row of Table 4.  

Table 4: Relative depth, wave steepness and expected nonlinear effects of the 2% of exceedance waves, based on zero-

crossing period and height. 

 Experiment 1 Experiment 5 

2% wave height (1.4 * Hm0,inc) 

(Rayleigh distribution) 

0.132 m 0.116 m 

Highest wave frequency 0.65 Hz 0.99 Hz 

Relative depth 0.19 (-) 0.38 (-) 

Wave steepness 0.042 (-) 0.074 (-) 

Nonlinear effects on wave 

pressures, forces, and crest shape 

(Goda, 1966) 

Between ‘Double humps at 

bottom’ and ‘Double humps on 

total force’ 

‘Double humps at MWL’  

 

Figure 15 shows the recorded wave force and the wave pressure at the bottom for a wave corresponding to a 2% 

probability of exceedance. A clear ‘double hump’ is visible for the wave pressure at the bottom which corresponds to 

prior publications (Goda, 1966; Le Méhauté 1976). The above-mentioned non-linear effects are present in the wave time 

series and force time series applied for the validation of the LWT for every experiment. However, the impact of non-
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linear effects on the values of the peak pressures and peak wave forces for irregular broad banded wave spectra is limited 

as shown in Figure 13. Further investigation is required for assessing the maximum range of wave steepness and the effect 

on the accuracy of the calculated force or pressure based on the (spectral) linear wave theory.  

 

Figure 15: Wave force and wave pressure corresponding to a 2% probability of exceedance wave. 

5.2 Evaluation of recorded time series – mean water elevation 

An increase in mean water level for a standing wave profile at the antinode near a wall are given by Sainflou (1928) 

and Miche (1944). This increase in water level also gives an increase in the wave force at a vertical wall. Figure 16 

presents the recorded wave force of experiment 1 (unimodal, 0% swell energy) and experiment 5 (bimodal, 55% swell 

energy). A 100.0 s moving average is applied to identify the long-term water level variations. The moving average (black 

line) of the wave force at the wall of each experiment is greater than zero and shows limited fluctuations. This could be 

explained by the force due to mean water level elevation as identified by Sainflou. The dashed red line in Figure 16 

represents the wave force due to the mean water level elevation as described by Sainflou (1928), as given by δ0 in the 

CEM (USACE, 2011). The magnitude of the force of the mean water elevation force is calculated using H = Hm0 and T = 

1/fp,sea. The match between the moving average and calculated force due to mean water elevation is quite good and stable 

for the wave forces for a unimodal and bimodal spectrum. 

The force due to mean water elevation at the wall corresponds to 5% of the total force for the unimodal experiment 

and 8% for the experiment 5 (55% swell). This increase of force is limited and within the accuracy of the applied method 

as shown in Figure 13. Note that its value is already included in the measured peak values that are compared to the various 

formulas in section 4. More investigation is required for the assessment of mean water elevation for unimodal and bimodal 

seas. 
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Figure 16: Recorded wave force time signal including moving average and the calculated force due to mean water 

elevation. 

5.3 General comparison of wave force formulae for unimodal sea states  

Multiple wave formulae for regular or unimodal wave fields have been assessed in this paper. A theoretical comparison 

of the outcome of the formulae has been performed. The results are shown in Figure 17. The outcome of the formula of 

Goda-Takahashi, Sainflou, and multiple variants of the LWT are shown in a dimensionless form at the left section of 

Figure 17. The forces below SWL are considered to provide a dimensionless comparison between the formulae. The force 

above SWL is not included in the graph due to the quadratic dependency on the wave height. The force below SWL 

according to the formula of Sainflou cannot be represented by a single line due to the quadratic relationship between the 

wave amplitude and the mean water elevation. Therefore, the force below SWL according to Sainflou is given for: 

Hm0_inc/d = 0.05, 0.1, and 0.15.  
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The right side of Figure 17 shows a comparison of LWT formulae and the formula of Goda-Takahashi, and Sainflou 

(Hm0_inc/d = 0.15 representing the conducted wave flume experiments). For the NewWave LWT and spectral LWT a 

standard JONSWAP spectrum (Hasselmann, 1973) is applied. A different shape of the spectrum results in a different 

outcome of the presented results. The following can be concluded based on Figure 17: 

1. The formulae based on the LWT show a similar pattern, the Quasi-regular LWT is the most conservative. The 

spectral LWT and New Wave LWT are less conservative for a unimodal spectrum. 

2. The formula of Sainflou corresponds to the other LWT formulae up to kph = 1.0 and generates a conservative 

estimation of the wave force. For higher values, the formula is less applicable due to the overconservative values 

of the wave force with respect to the other formulae. 

3. The formula of Goda-Takahashi performs well for kph ≲ 0.5 which corresponds to the range of tests performed 

by Goda (1972). These wave conditions correspond to a wave field exerting maximum load at breakwaters at 

shallow conditions. For this range, the LWT theories underestimate the load. 

4. Goda-Takahashi underestimates for the range of 0.5 ≲ kph ≲ 2.5 compared to LWT. This underestimation is also 

found in the experiments and in the SWASH analysis (van Vledder 2019) and (Van Maris 2019). Hence this 

underestimation seems to be realistic. 

5. Goda-Takahashi overestimates the wave force for kph ≳ 2.5. For this range, small waves and large water depths 

are present. The wave pressure does not penetrate over the full water column and the wave pressure will be zero 

somewhere between SWL and the bottom. Goda-Takahashi assumes a linear pressure profile and equals zero at 

the bottom. This assumption yields to a significant overestimation. 

 

Figure 17: Comparison between wave force formulae below SWL for 100% reflection. NOTE: results of spectral LWT 

and New Wave LWT are dependent on the shape of the wave spectrum.  

6 Conclusions 

This paper validates of the spectral LWT using wave flume experiments and the assessment of the performance of 

multiple wave force formulae for unimodal and bimodal wave spectra.  

Experiments were conducted in a wave flume for unimodal and bimodal wave spectra up to a steepness of 7.4%. The 

outcome of the wave flume experiments, and the accuracy of general formulae have been compared. The spectral LWT 
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model has been validated using the wave flume experiments. The validation shows a good agreement for unimodal (0% 

swell energy) and bimodal (up to 55% swell energy) wave spectra for the response functions, pressures, and probability 

distribution. The match between the empirical response functions and wave pressures and forces to the theoretical 

response functions forces and pressures is good. The conclusions described in this paper are drawn upon five short and 

one long experiment. Future research covering multiple wave flume tests per wave spectrum running from unimodal up 

to extreme bimodal seas will increase the accuracy of the presented validation. 

Nonlinear effects like ‘double-humps’ and elevated mean sea level have been observed. However, the nonlinear effects 

had minor impact on the accuracy of the values of characteristic peak load determined by the spectral linear theories. Use 

of a higher-order non-linear wave theory using a quasi-regular assumption is not expected to lead to a better, and probably 

worse, prediction of peak forces for bimodal sea states. 

Spectral LWT and New Wave LWT are well applicable for both unimodal and bimodal broad banded wave spectra. 

These theories use an arbitrary wave spectrum as input and do not depend on only one wave height and wave period. A 

linearization factor γlin for the pressure above SWL equal to 1.0 (-) gives a conservative result for the pressure response. 

This yields a conservative result for wave forces. Both formulae can estimate a wave force generated by a broad-banded 

wave spectrum with sufficient accuracy. However, the New Wave LWT gives limited information about the contribution 

of a certain wave frequency to the total wave pressure or wave force. The spectral LWT provides this information in the 

shape of a force spectrum or pressure spectrum. This insight of the contribution of a certain frequency to the total wave 

force or pressure is of great added value of the spectral LWT for the design of large hydraulic structures as prior described. 

This insight gives the designer more information and sensibility of the structure to certain wave frequencies. The 

probability distribution of wave forces is estimated well for the tested broad banded bimodal wave spectra using a 

Rayleigh distribution and the spectral LWT. The use of the significant force as scale parameter gives a good match 

between the probability distribution obtained from wave flume data and the applied formula.  

A model accounting for the spectral shape is recommended for the evaluation of wave forces and wave pressures on 

vertical walls loaded by broad banded or bimodal wave spectrum. The spectral LWT and the New Wave LWT perform 

well. Traditional formulae like the formula of Goda-Takahashi, Sainflou, or quasi-regular LWT should be used with care 

for limited swell components (up to 20% swell energy).  

The pressure profiles of Goda-Takahashi represent the total force well for low values of kph but are less applicable for 

the design of hydraulic structures (lock gates, weirs, barriers, drive mechanism) located on a horizontal bed. For the design 

of these structures, the pressure profile near SWL could dominates the loads on steel parts, drive mechanism, gate 

supports, etc. A formula representing the pressure profile the best should be chosen for design. Global analysis of stability 

of breakwaters and other hydraulic structures (founded on a berm or horizontal bed) should also be checked using Goda-

Takahashi formula. 

For conditions with greater relative depth and high values of kph as tested in the experiment and bimodal seas, Goda-

Takahashi and Sainflou should not be used. The impact on the wave force of limited swell energy increases for an 

increasing depth as shown by the shape of the response functions. For bimodal seas the quasi-regular LWT can be applied 

instead of the traditional quasi-regular LWT by applying a quadratic sum of two pressure profiles (one corresponding to 

swell component and the one corresponding to the sea component of the spectrum). 

At last, a comparison is made between wave force formulae for unimodal wave spectra. The prior described wave 

formulae are derived for specific conditions. The common wave force formulae are mainly derived for regular waves or 

unimodal narrow spectrum. The following can be concluded for the accuracy of the formulae for a range of kph:  

• For low values of kph (kph ≲ 0.5) for structures located on a horizontal bed and on a berm, the formula of 

Goda-Takahashi should be used. The formula of Goda-Takahashi has been developed for shallow water 

conditions (kph < 0.5) and (near) breaking waves for the global analyses of the stability of breakwaters 

(sliding and overturning) and gives a conservative result. The formula of Goda-Takahashi accounts for 

breaking waves for geometries with a berm at the toe of the hydraulic structure. This aspect is not 

incorporated for formulae using LWT 

• For moderate values of kph (0.5 ≲ kph ≲ 2 up to 3) spectral LWT seems best suited for structures on a 

horizontal bed. For this range, spectral LWT approach is conservative with respect to Goda-Takahashi, and 

realistic, according to the presented experiments. For kph = 0.5 up to 1.0 Goda-Takahashi should be used 
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with care, the rate of conservatism depends on the spectral shape For the wave pressures of the unimodal 

spectrum tested in the wave flume (kph = 1.22) Goda-Takahashi underestimated the pressure profile below 

SWL and underestimated the total wave force by 12%. 

• For high values of kph (kph > 2 to 3) a formula based on the LWT is best suited. The formula of Goda-

Takahashi has not been developed for this range and gives an overly conservative estimate of the wave force 

for nonbreaking waves. This overly conservative estimate yields from the triangular schematization of the 

wave force below SWL.  

• The formula of Sainflou can be used as conservative approach up to (kph ≲ 1.0). Sainflou is over-conservative 

with respect to the other formulae for higher values of kph. 
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Notation 

Name Symbol Unit 

Wave amplitude a m 

Reference wave amplitude, used for linearization, = ½γlinHm0 aref m 

Frequency f Hz 

Peak frequency of the swell spectrum fp,swell Hz 

Peak frequency of the wind sea spectrum fp,sea Hz 

(peak) force F N/m 

Force per unit of width calculated by New Wave theory FNW N/m 

Significant force per unit of width; the average third-highest peak forces of all incoming  

Waves 

F1/3 N/m 

Force per unit of width due to the swell part of the spectrum  FLWT,swell N/m 

Force per unit of width due to the wind sea part of the spectrum FLWT,sea N/m 

Significant force per unit of width Fm0 N/m 

Peak force per unit of width exceeded by x% of the incoming waves Fx% N/m 

Gravitational acceleration g m/s2 

Water depth h m 

Wave height of single wave H m 

Extreme design wave height Hd m 

Unreflected wave height. Hm0_inc m 

Discretization step of wave spectrum based on wave number Δk m-1 

Wave number k m-1 

Wave number pertaining to the design wave and local wavelength kd m-1 

Wave number pertaining to peak frequency and local wavelength kp m-1 

Wavelength L m 

(local) wavelength corresponding to fp,sea Lp,sea m 

(local) wavelength corresponding to fp,swell Lp,swell m 

Relative swell variance Msw  

Zeroth order moment of spectrum, equal to variance of signal m0 m2 
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Name Symbol Unit 

Wind sea variance (total variance above the frequency with the minimum between  

the swell and wind peaks in the spectrum) 

m0,sea m2 

Swell variance (total variance density between 0Hz and the minimum between  

the swell and wind peaks in the spectrum) 

m0,swell m2 

Pressure p N/m2 

Pressure at water line p1 N/m2 

Significant pressure; the average third-highest peak pressures of all incoming waves P1/3 N/m2 

Significant pressure Pm0 N/m2 

Peak pressure exceeded by x% of the incoming waves Px% N/m2 

Reflection coefficient, ratio of reflected to incoming significant wave height r  

Force-response per unit of width RηF N/m2 

Force-response per unit of width above SWL RηF,top N/m2 

Force-response per unit of width below SWL RηF,sub N/m2 

Pressure-response above SWL Rηp,top N/m3 

Pressure-response below SWL Rηp,sub N/m3 

Wave steepness based on local wavelength and peak period sp - 

Wave steepness based on fictitious deep-water wavelength and peak period sop - 

Variance density spectrum of force per unit of width SFF 𝑁2 (𝑚2 𝐻𝑧)⁄  

Wave spectrum, a.k.a. variance density spectrum of water surface elevation  Sηη 𝑚2 𝐻𝑧⁄  

Variance density spectrum of pressures Spp 𝑁2 (𝑚4 𝐻𝑧)⁄  

Significant wave period (average period of the periods corresponding to the highest one 

third of waves) 

T1/3 s 

Wave period corresponding to peak of the wave spectrum Tp s 

Vertical coordinate relative to seabed z m 

Vertical elevation of top of structure ztop m 

Factor in Goda’s formula representing the berm geometry and impulsive wave loading. α1 - 

Factor in Goda’s formula representing the berm geometry and impulsive wave loading. α2 - 

Water level setup at wall according to Sainflou δ0 m 

Empirical factor for linearization of force induced by wave crest (z > h) γlin - 

Relative swell peak frequency Φsw - 

Mass density of water ρ kg/m3 
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