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2 Introduction

2.1 Motivation

Interval graphs play an important role in graph theory and have intensively been studied
for over sixty years [21]. One main reason for researchers to be interested in interval graphs
is that many real-world problems can be modeled as interval graphs in a natural way. Their
applications are very diverse and go from modelling food webs [10] to studying scheduling
problems [5, 11] and assembling contiguous subsequences in DNA mapping [35]. Let us,
for example, suppose that various university clubs need a room to offer an activity. Each
activity begins at a certain time and ends at an other time. The university administration
can only allocate one room and wants to satisfy the maximum number of activities, how can
they do ? A very efficient solution would actually be to model each activity by an interval
whose endpoints correspond to the beginning and end hours of the activity and build the
corresponding interval graph as shown in Figure 1.

Figure 1: University clubs time slots with the associated interval graph

Then, they can find the maximum set of vertices that are all pairwise non adjacent.
This therefore corresponds to solving the Maximum Independent Set problem on this
resulting interval graph. Let us now suppose that the university administration has enough
rooms for all the university clubs but that they want to allocate the least number of rooms
to satisfy all activities. They can then reuse the exact same interval graph and find the
maximum number of colours that can be allocated to each vertex so that no two vertices
with the same colour are adjacent. In other words, they solve the Colouration problem
on it.

In addition to their wide range of applications, interval graphs stand out from gen-
eral graphs due to the fact that the most studied NP-hard problems on general graphs
often become solvable in linear time on interval graphs. This is, for example, the case for
Colourability [18], Independent Set [13] as we just mentioned but also for Feedback
Vertex Set [26] that we will introduce later. Finally, the class of interval graphs is also
very convenient as its recognition can also be realised in linear time and various character-
isations have been developed [25, 14, 17]. Nevertheless, the class of interval graphs is also
very restricted as any interval graph is chordal and therefore it is not possible to represent
a cycle of length at least 4 by an interval representation.
To overcome this drawback, several generalisations of interval graphs have also been con-
sidered. In the following, we will mainly focus on 2-interval graphs, on 2-track graphs and
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more generally on t-interval graphs and d-track graphs. These classes naturally generalise
interval graphs where instead of associating one interval to each vertex we associate d in-
tervals on either the same real line or on d parallel tracks. More recently, these classes have
found some real-world applications since two intervals can, for example, model two asso-
ciated tasks in scheduling [6] or two complementary segments of RNA for RNA secondary
structure prediction and comparison.

As explained in [32], like DNA, RNA (ribonucleic acid) is assembled as a chain of nu-
cleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself by
complementary base pairing, rather than a paired double strand. This particular secondary
structure is generally characterized by helices (contiguous base pairs), and various kinds
of loops (unpaired nucleotides surrounded by helices). Furthermore, the formation of such
stable secondary structure by complementary base pairing largely determines the structural
stability and function of non-coding RNA (ncRNA). This then induces that ncRNA genes
across different species are most similar in the pattern of nucleotide complementary rather
than in the genomic sequence. Each helix of the RNA secondary structure can then be
modeled as a 2-interval as they usually needs to be disjoint in the structure. This then
allows to naturally model the secondary structure by a 2-interval graph as shown in Figure
2 below.

Figure 2: Helices in a RNA secondary structure (a) can be modeled as a set of balanced 2-
intervals among all 2-intervals corresponding to complementary and inverted pairs of letter
sequences (b), or as an independent subset in the balanced associated 2-interval graph (c).

In [12], it was even suggested to model each helix with 2 intervals of the same length: a
balanced 2-interval. This then allows to define balanced 2-interval graphs and more generally
balanced t-interval graphs and balanced d-track graphs. This is also motivated by a natural
application from scheduling where we can model two associated and disjoint tasks of the
same duration by a balanced 2-interval. In [6], they also considered that all tasks in their
framework have the same duration which motivates the use of unit 2-interval graphs and
more generally unit t-interval graphs and unit d-track graphs.

Nevertheless, most problems that are NP-hard on general graphs remain NP-hard on
d-track or t-interval graphs (for d ≥ 2 and t ≥ 2) even if we restrict the length of the
intervals. In the following, we will study the links between the different classes of multiple
interval graphs and also show that Vertex Cover, Clique Cover and Biclique Cover
are NP-complete and Feedback Vertex Set is APX-hard on unit 2-track graphs.

Finally, we will also introduce the class of boxicity d graphs which also is a generalisation
of interval graphs where instead of considering an intersection model of intervals, we use
boxes of dimension d. Seemingly similar to d-track graphs, we will see how they are related.
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2.2 Preliminaries

Let us first introduce the definition of a graph :

Definition 1. A graph is a pair G = (V,E), where V is a set whose elements are called
vertices, and E is a set of paired vertices, whose elements are called edges. The graph is said
to be simple and undirected if there can be at most one edge between two vertices and if all
the edges are bidirectional

We will now only consider simple and undirected graphs. Let us now introduce the
definition of interval graphs.

Definition 2. A graph G = (V,E) with V = {v1, v2, ..., vn} is an interval graph if there
exists a family of closed intervals I = {I1, I2, ..., In} (interval representation) associated to
the vertices such that Ii ∩ Ij 6= ∅ ⇔ (vi, vj) ∈ E. In other words, a graph is an interval
graph if it has an intersection model consisting of intervals on a straight line.

We give an example of an interval graph with its associated intervals in Figure 3.

Figure 3: An interval graph with its interval representation

Let us also note that the following theorem from [25] allows to redefine the class of
interval graphs in terms of forbidden subgraphs :

Theorem 1 ([25]). A graph G is an interval graph if and only if it does not contain Cn+4,
T2, X31, XFn+1

2 or XFn3 as an induced subgraph.

We illustrate, in Figure 4, the graphs Cn+4, T2, X31, XFn+1
2 and XFn3 .

Two subclasses of interval graphs that can be directly obtained by restricting the interval
representation are the classes of unit interval graphs and proper interval graphs defined
below.
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Figure 4: Forbidden subgraphs in an interval graph

Definition 3. An interval graph is a proper interval graph if it has an interval representation
where no interval is included in another.

Definition 4. An interval graph is a unit interval graph if it has an interval representation
where the length of each interval is one.

Also, note that it is only needed that the intervals of a unit interval graphs have the
same length as we can always re-scale them all. We say that a graph G = (V,E) is bipartite
if its vertex set V can be partitioned into two disjoint and independent sets A and B. We
thus have that V = A ∪ B and every edge of G has one endpoint in A and the other one
in B. We say that a graph is complete if every pair of vertices is connected by a unique
edge. Finally a graph G = (V,E) is complete bipartite if it is bipartite such that V = A∪B
and every pair of vertices a ∈ A and b ∈ B is connected by a unique edge. We will denote
by Km,n the complete bipartite graph whose vertex set is partitioned into A and B with
|A| = m and |B| = n. We will later call the graph K1,3 a claw (see Figure 5) and say that
a graph is claw-free if it does not contain K1,3 as an induced subgraph.

1

2

3

4

1

2 3 4

Figure 5: K1,3 and an interval representation of it
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In addition, the following theorem from [28] claims that unit interval graphs and proper
interval graphs coincide. Furthermore, it gives a simple relationship between interval graphs
and unit interval graphs.

Theorem 2 ([28]). The following statements are equivalent when G is a simple graph :

1. G is a unit interval graph

2. G is an interval graph with no induced K1,3

3. G is a proper interval graph

Below, we give a short proof of this theorem from [7].

Proof. It is easy to see that 1. → 2. (or 3. → 2.) as in any interval representation of K1,3,
the intervals of the three leaves must be pairwise disjoint but they all need to intersect
the interval of the central vertex. The interval of the central vertex must then contain the
interval of one of the leaves implying that the representation cannot be proper and that the
interval of the central vertex must be longer that the one it contains.
Let us now prove that 2.→ 3.. We therefore consider a claw-free interval graph G = (V,E)
and an interval representation that assigns to each u ∈ V an interval Iu. We now show
how we can modify this representation so it becomes proper. Since G is claw-free, there
is no pair of vertices x, y ∈ V such that Iy ⊂ Ix and Ix intersects some intervals on the
left and on the right of Iy that are disjoint from Iy. If Ix = [a, b] and Iy = [c, d] then if
a < c ≤ d < b it means that either [a, c] or [d, b] does not contain any endpoint of intervals
that do no intersect Iy. We can therefore extend Iy past the end of Ix without changing the
graph obtained by the interval representation to make it proper. We can thus repeat this
operation for each interval Iy ⊂ Ix.
What remains to prove now is that 3.→ 1., i.e., we can obtain a unit interval representation
of any graph G given a proper interval representation of it. When no interval includes
another, the right endpoints have the same order as the left endpoints. We can then process
the representation from left to right and adjust the length of each interval to 1. At each step
until all have been adjusted, let Ix = [a, b] be the unadjusted interval that has the leftmost
left endpoint. Let α = a unless Ix contains the right endpoint of some other interval, in
which case let α be the largest such right endpoint. Such an endpoint would belong to an
interval that has already been adjusted to have length 1; thus α < min{a+1, b}. Now, adjust
the portion of the representation in [a,∞) by shrinking or expanding [α, b] to [α, a+ 1] and
translating [b,∞) to [a + 1,∞). The order of endpoints does not change, intervals earlier
than Ix still have length 1, and Ix also now has length 1. Iterating this operation produces
the unit interval representation.

Moreover, we can also generalize the class of interval graphs in the two following natural
ways.

Definition 5. A graph G = (V,E) is a d-track graph if, given d parallel tracks (real lines),

there exist d families of closed intervals I (k) = {I(k)
1 , I

(k)
2 , ..., I

(k)
n } for 1 ≤ k ≤ d (d-

track representation) associated to the vertices such that I
(k)
i ∩ I(k)

j 6= ∅ on any track k
⇔ (vi, vj) ∈ E.

An alternative definition is the following :
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Definition 6. A graph G = (V,E) is a d-track graph if there exist d interval graphs
G1, G2, ..., Gd with V (G) = V (Gi) for 1 ≤ i ≤ d and satisfying E(G) = E(G1) ∪ E(G2) ∪
... ∪ E(Gd)

It can easily be seen from the definition that the 1-track graphs are the interval graphs
and for any integer d, the class of d-track graphs is included in the class of (d + 1)-track
graphs as we can realise no intersection on the last track.

Finally, let I1, I2,..., It be t disjoint intervals, we say that I is a t-interval if I =
I1 ∪ I2 ∪ .. ∪ It. Furthermore, we say that two t-intervals I and J intersect if one of the
t intervals of I intersect one of the t intervals of J . We can therefore introduce a second
natural generalisation of interval graphs below.

Definition 7. A graph G = (V,E) with V = {v1, v2, ..., vn} is an t-interval graph if there
exists a family of t-intervals I = {I1, I2, ..., In} (t-interval representation) associated to the
vertices such that Ii ∩ Ij 6= ∅ ⇔ (vi, vj) ∈ E. In other words, a graph is a t-interval graph
if it has an intersection model consisting of t-intervals on a straight line.

We can thus notice that the 1-interval graphs are the interval graphs and that for any
integer t, the class of t-interval graphs is included in the class of (t + 1)-interval graphs as
we can let an interval of each t-interval be disjoint from any other interval. Furthermore, it
can be seen that the class of t-track graphs is included in the class of t-interval graphs as
we can merge the t tracks by placing them one after the other. It thus forms t-intervals on
a single real line.

Finally, as for interval graphs, we can restrict all the intervals to have the same length
in a d-track or a t-interval representation to obtain the classes of unit t-interval graphs and
unit d-track graphs.

Furthermore, if only the intervals of each t-interval have the same length then we say
that the t-interval graph is balanced. Similarly, if only the intervals that represent the same
vertex on each track have the same length then we also say that the d-track graph is balanced.

Finally, let us also introduce the notion of depth for all the introduced classes so far.
The depth of a family of d-intervals (resp. d-track intervals) is the maximum number of
intervals that share a common point.

We can also define the track number t(G) or the interval number i(G) of a graph G
as the minimum integer d such that G is a d-track or a d-interval graph. Analogously, we
define the unit track number tu(G) or the unit interval number iu(G) of a graph G as the
minimum integer d such that G is a unit d-track or a unit d-interval graph. In [23], some
upper bounds on the unit track number and the track number of any graph are given :

Theorem 3. Let G be a graph on n vertices, m edges and maximum degree ∆. Then
t(G) ≤ bn2 c and tu(G) ≤ dm2 e

Proof. The bounds are proved by induction. First let us prove that t(G) ≤ bn2 c. The bound
clearly holds for the base case n ≤ 1 since this results in a graph with no edge and thus no
tracks are needed. Let us now assume that the graph has some edges (otherwise no tracks
are needed). Let (u, v) be an edge of the graph and let us consider the subgraph of G with
the vertices u and v deleted. By the induction hypothesis, this subgraph can be represented
on bn−2

2 c tracks. We can now expand the representation by adding two disjoint intervals
on each track for u and v. Finally, we open a new track and put two overlapping (but not
included in one another) intervals for u and v. Finally for each vertex intersecting u or v
(or both) we can add an interval that overlaps u or v (or both). For each vertex that does
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not intersect u nor v, we add a disjoint interval. We therefore obtain a representation of G
on bn−2

2 c+ 1 = bn2 c tracks.
Let us now prove that tu(G) ≤ dm2 e. Similarly, the base case m ≤ 1 is obvious since we may
just add two overlapping and disjoint intervals on one track to realise one edge. Let us now
assume that m ≥ 2 and assume that a vertex u is adjacent to at least two vertices v and w.
Otherwise, if every vertex has degree at most one, the edges of the graph form a matching
and this can be realised on one track by pairs of overlapping intervals. By induction the
subgraph of G with the edges (u, v) and (u,w) deleted can be realised on dm−2

2 e tracks
with unit intervals. Let us now open a new track and represent the vertices u, v and w by
three unit intervals U , V and W such that U intersects both V and W . We finally add a
disjoint unit interval for each remaining vertex of the graph. We therefore obtain a unit
representation of G on dm−2

2 e+ 1 = dm2 e tracks.

Similarly, it is known that i(G) ≤ dn+1
4 e [19] and iu(G) ≤ dn−1

2 e [2], i(G) ≤ d
√
m
2 e + 1

[4] and iu(G) ≤ dm2 e [2] , and i(G) ≤ iu(G) ≤ d∆+1
2 e [20, 33].

Last but not least, we will also mention the class of boxicity d graph defined thereafter.

Definition 8. A graph G = (V,E) with V = {v1, v2, ..., vn} is a boxicity d graph if there
exists a family of boxes of dimension d B = {B1, B2, ..., Bn} (box representation) associated
to the vertices such that Bi ∩Bj 6= ∅ ⇔ (vi, vj) ∈ E. In other words, a graph is a boxicity d
graph if it has an intersection model consisting of boxes of dimension d.

An example of a boxicity 2 graph is given below in Figure 6.

Figure 6: A boxicity 2 graph with a box representation of it

We can again notice that the graphs of boxicity 1 are the interval graphs and that for
any integer d, the class of graphs of boxicity d is included in the class of graphs of boxicity
d+ 1 as we can project a dimension d+ 1 representation onto one of dimension d. Finally,
if a graph G has a box representation where the boxes are hypercubes (the boxes have unit
length) of dimension d then we say that the resulting graph has cubicity d.
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3 Inclusions between the multiple interval classes

In this section we will study the different inclusions between the introduced classes.

a1 a2 a3 a3

b1 b2 b3

Track 1: a1

b1

a2

b2

a3

b3

a4

Track 2 : a3

b1

a4

b2

a1

b3

a2

Figure 7: a 2-track representation of K4,3

Property 1. Any 2-track realisation of K4,3 is contiguous on the two tracks

Proof. By modifying the proof in [34], we can also introduce the definition of t-tight graphs
on t tracks. As Km,n is triangle free, it can only be realized by depth 2 t-track represen-
tations. Therefore, when we read the representation from left to right, on each track, we
obtain at most one new edge at the left endpoint of each interval. However, no new edge
arises if the left endpoint of an interval is not included in another interval such as with the
leftmost interval on each track. We can therefore realise at most (m+ n− 1) edges on each
track and therefore |E| ≤ (m+n−1)t. We then get that we need at least t ≥ mn

m+n−1 tracks
to represent Km,n. Therefore, when mn

m+n−1 is an integer t we say that Km,n is t-tight on
t tracks. This then implies that any t-track realisation of a t-tight graph is contiguous on
t tracks since an intersection of intervals must occur at the left endpoint of every interval
after the first one. Finally, by setting m = 4 and n = 3, we have that mn

m+n−1 = 12
6 = 2.

Therefore K4,3 is 2-tight on 2 tracks and a realisation of it is displayed in Figure 7.

Let us now give a compact representation of K4,3 that will be useful to prove the next
Property. (Figure 8)

10



Figure 8: A compact representation of K4,3

Property 2. The class of balanced 2-track graphs is strictly included in the class of 2-track
graphs

Proof. The inclusion is trivial, any balanced 2-track representation is a 2-track represen-
tation. Let us now build a 2-track graph that is not balanced 2-track. For that, we will
take the example of a 2-interval graph that is not balanced 2-interval constructed in [15]

and make some modifications. We then consider a chain of five K
(i)
4,3 linked so that a

(i)
4

is adjacent to a
(i+1)
1 and a

(i)
2 is adjacent to a

(i+1)
3 . This will therefore give a collection of

intervals that overlap on both tracks. Finally, we add two vertices I1, I2 such that I1 is

adjacent to a
(1)
4 , all the vertices of K

(2)
4,3 , a

(3)
1 and b

(4)
2 and I2 is adjacent to b

(2)
2 , a

(3)
4 , all

the vertices of K
(4)
4,3 and a

(5)
1 . This graph then has a 2-track representation but no balanced

2-track ones as illustrated in the following Figure 9.

I1 I2

a
(1)
1

b
(1)
1

a
(1)
2

b
(1)
2

a
(1)
3

b
(1)
3

a
(1)
4

a
(2)
1

b
(2)
1

a
(2)
2

b
(2)
2

a
(2)
3

b
(2)
3

a
(2)
4

a
(3)
1

b
(3)
1

a
(3)
2

b
(3)
2

a
(3)
3

b
(3)
3

a
(3)
4

a
(4)
1

b
(4)
1

a
(4)
2

b
(4)
2

a
(4)
3

b
(4)
3

a
(4)
4

a
(5)
1

b
(5)
1

a
(5)
2

b
(5)
2

a
(5)
3

b
(5)
3

a
(5)
4

I1

I2

a
(1)
3

b
(1)
1

a
(1)
4

b
(1)
2

a
(1)
1

b
(1)
3

a
(1)
2

a
(2)
3

b
(2)
1

a
(2)
4

b
(2)
2

a
(2)
1

b
(2)
3

a
(2)
2

a
(3)
3

b
(3)
1

a
(3)
4

b
(3)
2

a
(3)
1

b
(3)
3

a
(3)
2

a
(4)
3

b
(4)
1

a
(4)
4

b
(4)
2

a
(4)
1

b
(4)
3

a
(4)
2

a
(5)
3

b
(5)
1

a
(5)
4

b
(5)
2

a
(5)
1

b
(5)
3

a
(5)
2

I1

I2

Figure 9: An example of a 2-track graph that is not balanced 2-track
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By construction, on track 1, the length of I1 needs to be strictly greater than the length
of I2 whereas, on track 2, the length of I2 needs to be strictly greater than the length of I1.

Therefore, even if we set the length of the intervals from the K
(i)
4,3 so that both intervals of

I1 have the same length, it is not possible to do so for I2.

Also notice that similar graphs can be built to prove the more general case that the class
of balanced d-track graphs is strictly included in the class of d-track graphs. The following
two properties also naturally hold for d > 2 tracks.

Property 3. The class of unit 2-track graphs is strictly included in the class of balanced
2-track graphs.

Proof. The inclusion is trivial, since a unit 2-track representation is a balanced 2-track
representation. To show that the inclusion is strict, we can consider the graph K1,5. It
can easily be represented on two tracks such that the interval of the central vertex has the
same length on both tracks. However, one of the tracks will be composed of the interval
of the central vertex and three non intersecting intervals that intersect it, i.e., an interval
representation of a claw. Therefore, K1,5 cannot be a unit 2-track graph.

By reusing the gadget K4,4−e introduced in [15] we can also prove the following property.

Property 4. The class of unit 2-track graphs is strictly included in the class of unit 2-
interval graphs. The class of balanced 2-track graphs is strictly included in the class of
balanced 2-interval graphs.

Proof. The two inclusions are trivial since we can put one track after the other to obtain a
2-interval representation. Let us consider the graph K4,4 − e that is a K4,4 with one edge
deleted. Since K4,4 is triangle-free, it is only representable by a t-track representation of
depth 2. However, in this case we have E ≤ (m + n − 1)t since each interval can at most
intersect one interval on its left endpoint except for the first interval. As K4,4 − e has 15
edges then t ≥ 15

7 > 2 and thus we need at least 3 tracks to represent it. Therefore K4,4−e is
not a 2-track graphs although it is a unit 2-interval graph and thus also a balanced 2-interval
graph as shown in [15].

Let us also introduce the class of linear arboricity ≤ 2 graphs that are the graphs that
can be decomposed into at most 2 forests whose connected components are paths.

This class contains the class of maximum degree 3 graphs [22] and is contained in the
class of maximum degree 4 graphs and in the class of unit 2-track graphs. As a matter of
fact, we can prove a stronger statement :

Property 5. Linear arboricity ≤ 2 graphs are exactly the depth 2 unit 2-track graphs

Proof. Suppose a graph has linear arboricity ≤ 2, then it can be decomposed into at most 2
forests of paths. On the first track, we realise one of the two forests by adding a unit interval
for each vertex of the forest and we realise the paths by a succession of overlapping intervals.
On the second track, we then realise the other forest in the same way. The representation
obtained is then of depth 2, since paths are triangle free. Now suppose we are given a
depth 2 unit 2-track representation. Then, on each track, since the representation is unit,
the representation is proper and thus no interval is included in an other and therefore an
interval only intersects other intervals that contain one of its extremities. Furthermore, as
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the representation is of depth 2, the extremity of each interval can only be contained in
one other interval. We thus have that any interval can only intersect two other intervals,
it can therefore only form a succession of overlapping intervals. Each contiguous succession
of intervals then represents a path so each track realises a forest of paths. As there are two
tracks, the graph is of linear arboricity ≤ 2.

We can then compile the following inclusions in Figure 10.

unit interval

intervalunit 2-track

balanced 2-trackunit 2-interval

balanced 2-interval 2-track

2-interval

linear arboricity ≤ 2
= depth 2 unit 2-track

maximum degree 3

maximum degree 4

Figure 10: Map of inclusions

Let us note that unit 2-track graphs and interval graphs are not related since C4 is
unit 2-track but is not interval but K1,5 is interval but is not unit 2-track. Similarly, unit
2-interval graphs and interval graphs are not related. We also cannot include unit 2-interval
graphs in (balanced) 2-track graphs (or the other way around) since K4,4 − e is a unit 2-
interval graphs but is not a 2-track graph and K1,5 is a balanced 2-track graph but is not a
unit 2-interval graph. Finally, balanced 2-interval graphs and 2-track graphs are not related
as we can notice that the graph built in Property 2 is not balanced 2-interval.
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4 Bound on the unit track number

Let us now see how to modify an interval representation of a graph G to obtain a unit
ψ(G)-track representation where ψ(G) is the claw-number of G. Furthermore, we will give
a bound on the unit track number of any graph given its track number. We define the track
number t(G) of a graph G as being the smallest integer d such that G is d-track. Similarly,
we define the unit track number tu(G) of a graph G as being the smallest integer d such
that G is unit d-track. Finally, for any graph G, we define the claw number ψ(G) as being
the maximum n such that K1,n is an induced subgraph of G.

We will then give an upper bound on the unit track number with respect to the track
number. For that, we will first introduce an algorithm to transform an interval representa-
tion of a K1,d+1-free graph into a unit d-track representation.

1: procedure MaxIndependentSet(I )
2: Let S = ∅
3: while I 6= ∅ do
4: Select I as the interval that ends the first in the representation I
5: Put I in S
6: Remove all intervals in the representation I that intersect I

7: return S

We will denote by Si the elements of S.

Algorithm 1

1: Let S = MaxIndependentSet(I )
2: Open |S| tracks
3: Put Si and Si+1 on the track Ti
4: Put all the intervals that intersect Si or Si+1 (or both) on Ti
5: Remove all the intervals from Ti that end in Si or that end after Si but do not intersect

an interval disjoint from Si
6: for 0 ≤ i < ψ(G) do
7: Put all tracks Tj such that j ≡ i (mod ψ(G)) one after the other

8: Add, on each track, a disjoint interval for each vertex that is not represented on the
track

Lemma 4. Let S be the set of intervals returned by the procedure MaxIndependentSet(I ).
Then the vertices associated to the intervals of S form a maximum independent set of G.

Proof. First of all, let us show that all the intervals of S are disjoint. The procedure first
selects the interval I of the representation that has the smallest right endpoint. It then
removes all the intervals that intersect I and then repeats the operation. After removal, the
representation only consists of intervals that are disjoint from I. Therefore the next selected
interval will also be disjoint from I. Inductively, all selected intervals in S are disjoint. Now
let us show that S is maximal. Suppose it is not and that S′ is a maximal independent set.
Let S = {S1, S2, ..., Sn} and S′ = {S′1, S′2, ..., S′n+1} . First notice that S′1 cannot end before
S1 and S′n+1 cannot start after the end of Sn otherwise they would have been selected by
the procedure. As S and S′ are different then there must be a first interval S′k which is not
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in S and we can suppose that all the intervals S′j , j < k coincide with the first ones of S. As
S′k is not in S then S′k must end after the end of Sk. However if we select Sk instead of S′k
then {S1, .., Sk, S

′
k+1, .., S

′
n+1} would also be a maximal independent set. We can therefore

replace all the intervals of S′ by the ones of S. It is therefore not possible that S′ is bigger
than S.

As the set of intervals represents a maximum independent set then we have that any
interval in the representation intersects at least one interval of S.

Lemma 5. Algorithm 1 returns a valid ψ(G)-track representation.

Proof. To prove that the representation is indeed valid we need to make sure that Algorithm
1 never puts twice the same interval on a track. It is easy to see that before merging the
tracks it only puts an interval once. Let us now prove that when we merge two tracks
T (i) and T (ψ(G)+i) there was no interval in common and therefore no interval is duplicated.
Suppose there was an interval I on both tracks. Then since I is on T (i) and on T (ψ(G)+i),
it must at least intersect S(i+1) and S(ψ(G)+i). Furthermore, I must end after S(ψ(G)+i)

and intersect another interval J disjoint from S(ψ(G)+i). However in this case I intersects
ψ(G) + 1 disjoint intervals in the original representation : S(i+1), .. , S(ψ(G)+i) and J . This
is impossible as this would form a K1,ψ(G)+1. Therefore the final representation is indeed a
valid ψ(G)-track representation.

Lemma 6. Algorithm 1 returns a ψ(G)-track representation of G.

Proof. What we need to prove is that, for each intersection of an interval I and an interval
J in the original interval representation, there is a track on which the intervals I and J
intersect. As S is a maximal independent set and the graph G has claw number ψ(G), then
I and J must intersect at least one interval of S and at most ψ(G) intervals of S. Suppose
both of them intersect the same interval Sk. Then I and J intersect on the track Tk−1 as
this track contains Sk and all the intervals that intersect Sk. So let us suppose I and J do
not intersect any same interval of S. In this case neither I nor J is included in the other.
So let us suppose I begins before J . As they are intersecting there should be an interval
Sk and an interval Sk+1 in S such that I intersects Sk and J intersects Sk+1. Therefore the
intersection between I and J is realised on the track Tk since it contains Sk, Sk+1 and all
the intervals that intersect one of them or both except the ones that end in Sk or the ones
that ends after Sk but does not intersect a disjoint interval from Sk. However I ends after
Sk since it intersects J and J is disjoint from Sk. Therefore I and J should be intersecting
on Tk.

Theorem 7. The ψ(G)-track representation of G returned by Algorithm 1 is unitary.

Proof. We should now prove that, on each track, the interval representation does not contain
any interval that intersects 3 disjoint intervals (as this would form a claw). First notice that
when we merge two tracks together, we do not create any intersection so we just need to
check that before merging the tracks, none of them contained any interval that intersects 3
disjoint intervals. It is indeed the case as on each track we only put two disjoint intervals Sk
and Sk+1 and some intervals that intersect them. Furthermore we do not add the intervals
that end in Sk. Therefore if there is an interval that intersects 3 disjoint intervals then we
can assume without loss of generality that the leftmost one is Sk and the two others are
intersecting Sk+1 (there cannot be a disjoint interval between Sk and Sk+1). However the
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central interval should then be disjoint from Sk and ends before the end of Sk+1, which is
impossible otherwise we would have selected this interval as Sk+1.

Let us now use this algorithm to obtain an upper bound on the unit track number of
any graph.

Lemma 8. Let G be a graph and let G1, G2, . . . , Gj be graphs such that V (G) = V (Gp) for
1 ≤ p ≤ j and E(G) = E(G1)∪E(G2)∪ . . .∪E(Gj). Then tu(G) ≤ tu(G1) + tu(G2) + . . .+
tu(Gj)

Proof. Realise each Gi on tu(Gi) tracks and put all the tracks in parallel. This indeed
gives a unit tu(G1) + tu(G2) + . . . + tu(Gj) track representation of G therefore tu(G) ≤
tu(G1) + tu(G2) + . . .+ tu(Gj)

Lemma 9. Let r(ψ) denote the largest real number such that there exists a graph G with
claw number ψ such that tu(G) = r(ψ)t(G). Then, there exists an interval graph G′ such
that tu(G′) = r(ψ)

Proof. Let G be a graph with claw number ψ such that t(G) = b and tu(G) = b · r(ψ).
Then, there exist interval graphs G1, G2, . . . , Gb such that V (Gi) = V (G) for 1 ≤ i ≤ b and

E(G) = E(G1) ∪ E(G2) ∪ . . . ∪ E(Gb). By Lemma 8, r(ψ) · b = tu(G) ≤
∑b
i=1 tu(Gi). It

follows that there exists at least one i, (1 ≤ i ≤ b) such that tu(Gi) ≥ r(ψ). Recalling that
Gi is a interval graph and thus t(Gi) = 1 we have tu(Gi) ≥ r(ψ) · t(Gi). From the definition
of r(ψ), it follows that tu(Gi) = r(ψ) · t(Gi) = r(ψ), as required.

Theorem 10. For any graph G of claw number ψ, tu(G) ≤ ψt(G)

Proof. Let G be a graph of claw number ψ, then according to lemma 9, there exists an
interval graphG′ such that tu(G′) = r(ψ). However by running Algorithm 1 onG′, we obtain
that tu(G′) ≤ ψ and therefore r(ψ) ≤ ψ. We thus get that tu(G) = r(ψ)t(G) ≤ ψt(G)
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5 Problems on these classes

As already introduced, most problems that are NP-hard on general graphs remain NP-hard
on d-track and t-interval (for d ≥ 2 and t ≥ 2) graphs. In the table below, we sum up
some of these results. Here ”P” means that the problem is in P, ”NP” that the problem has
been shown to be NP-hard and ”GI” that it is GI-hard. When the problem is NP-hard and
that the parameterized complexity of it has been studied for these classes of graphs then we
denote by ”FPT” the fact that the problem is FPT and by ”W[1]” that it is W[1]-hard.

Interval 2-track 2-interval

Unit Unres. Unit Balanced Unres. Unit Balanced Unres.

Recognition P P NP NP NP ? NP NP

3-Colourability P P NP NP NP NP NP NP

Clique P P P P P FPT FPT FPT

Clique Cover P P NP NP NP NP NP NP

Colourability P P NP NP NP NP NP NP

Domination P P W[1] W[1] W[1] W[1] W[1] W[1]

Feedback Vertex Set P P NP NP NP NP NP NP

Hamiltonian Cycle P P NP NP NP NP NP NP

Hamiltonian Path P P NP NP NP NP NP NP

Independent Dominating Set P P W[1] W[1] W[1] W[1] W[1] W[1]

Independent Set P P W[1] W[1] W[1] W[1] W[1] W[1]

Maximum Cut ? NP NP NP NP NP NP NP

Monopolarity P P NP NP NP NP NP NP

Polarity P P NP NP NP NP NP NP

Graph Isomorphism P P ? GI GI GI GI GI

Vertex Cover P P NP NP NP NP NP NP

Figure 11: Table summing up the complexity of some problems on the classes of interval,
2-track and 2-interval graphs

5.1 Vertex Cover

Introduced in [24], the Vertex Cover problem is one of the 21 Karp’s problems that
have been proven to be NP-complete on general graphs. We give the definition of Vertex
Cover below :

Vertex Cover

Input: An undirected graph G = (V,E), a positive
integer K ≤ |V |

Question: Is there a vertex cover of size K or less,
that is, a subset V ′ ⊆ V such that |V ′| ≤ K
and, for each edge (u, v) ∈ E, at least one of u
and v belongs to V ′ ?

Let us now show that Vertex Cover remains NP-complete on unit 2-track graphs (and
thus on (unit) d-track and (unit) d-interval graphs for any d ≥ 2).
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Note, however, that this result can also be inferred as Vertex Cover is already NP-
complete on graphs of maximum degree 3 [16].

Theorem 11. Vertex Cover is NP-complete on depth 2 unit 2-track graphs

Proof. As Vertex Cover is in NP for general graphs then we also have that Vertex
Cover is in NP for depth 2 unit 2-track graphs. Let us now prove that Vertex Cover is
NP-hard on depth 2 unit 2-track graphs. To show it, we will consider 3-SAT with at most 3
occurrences per variable and 2 or 3 variables per clauses (that has been shown NP-complete
in [30]) to Vertex Cover. Note that we can assume without loss of generality that in
this case each literal can appear at most twice (otherwise we can set the variable linked to
the literal to the value that will satisfy the three clauses in each the literal appears) Let
us consider an instance of this problem with variable set X = {x1, x2, .., xn} and clause set

C = {c1, c2, .., cm} where ci = {l(1)
i , l

(2)
i , l

(3)
i } if ci is a 3-clause or ci = {l(1)

i , l
(2)
i } if ci is a

2-clause.
We will then revisit the classical reduction from 3-SAT to Vertex Cover in [16] by

introducing a new gadget for the 2-clauses in our variation of 3-SAT.
For each variable xi ∈ X, we build the following truth-setting component Ti = (Vi, Ei)

where Vi = {xi, xi} and Ei = {(xi, xi)}. (two vertices for xi and its complement joined by
an edge) (see Figure 12)

xi xi

Figure 12: Gadget Ti for each variable

For each 3-clause cj ∈ C, we build the following satisfaction testing component Sj =

(V ′j , E
′
j) where V ′j = {l(1)

j , l
(2)
j , l

(3)
j } and E′j = {(l(1)

j , l
(2)
j ), (l

(1)
j , l

(3)
j ), (l

(2)
j , l

(3)
j )} (a triangle of

the three vertices for the literals) (See Figure 13)

l
(1)
j l

(2)
j

l
(3)
j

Figure 13: Gadget Sj for each 3-clause

Finally for each 2-clause cj ∈ C, we build the following satisfaction testing component

S′j = (V ′j , E
′
j) where V ′j = {l(1)

j , l
(2)
j , uj , vj} and E′j = {(l(1)

j , l
(2)
j ), (l

(1)
j , uj , (l

(2)
j , uj), (uj , vj)}

(a triangle of the three vertices for the 2 literals and the dummy vertex uj and a pendant
vertex vj adjacent to uj) (see Figure 14)
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l
(1)
j l

(2)
j

uj

vj

Figure 14: Gadget S′j for each 2-clause

Furthermore, for each clause, we also build the communicating edges E′′j between the
vertices of V ′j representing the literals and the vertices of Vi representing the variables such
that an edge between a literal and a variable is drawn if they are equal. In other words, let

us assume, for example that l
(1)
j = xk, l

(2)
j = xl and l

(3)
j = xm for some 1 ≤ k ≤ n, 1 ≤ l ≤

n, 1 ≤ m ≤ n then E′′j = {(l(1)
j , xk), (l

(2)
j , xl), (l

(3)
j , xm)}.

For example, let X = {x1, x2, x3, x4} and C = {c1, c2} such that c1 = (x1, x2, x3) and
c2 = (x1, x3, x4). We then build the following graph :

l
(1)
1 l

(2)
1

l
(3)
1

l
(1)
2 l

(2)
2

l
(3)
2

x1 x1 x2 x2 x3 x3 x4 x4

Figure 15: Example of construction of the full gadget

Let us introduce another example. Let X = {x1, x2, x3} and C = {c1, c2} such that
c1 = (x1, x2, x3) and c2 = (x1, x3). We then build the following graph :
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l
(1)
1 l

(2)
1

l
(3)
1

l
(1)
2 l

(2)
2

u2

v2

x1 x1 x2 x2 x3 x3

Figure 16: Example of construction of the full gadget

Finally, the construction of the instance of Vertex Cover is completed by setting K =

n+ 2m and G = (V,E) where V = (
n⋃
i=1

Vi)∪ (
m⋃
j=1

V ′j ) and E = (
n⋃
i=1

Ei)∪ (
m⋃
j=1

E′j)∪ (
m⋃
j=1

E′′j ).

It is easy to see that the construction can be realised in polynomial time.
Let us now show that C is satisfiable if and only if G has a vertex cover of size K or less.

Suppose V ′ ⊆ V is a vertex cover of G with |V ′| ≤ K. By construction V ′ must contain
at least one vertex from each Ti to cover the single edge in Ei and at least two vertices
from each Sj to cover the three edges in E′j . As this implies that |V ′| ≥ n+ 2m = K then
V ′ contains exactly one vertex from each Ti and two vertices of each Sj . As it has exactly
either xi or xi then we obtain a truth assignment τ : X → {T, F} such that τ(xi) = T if
xi ∈ V ′ and τ(xi) = F if xi ∈ V ′. As V ′ has two vertices from each Sj (the gadget of the
3-clauses), it covers the three edges in E′j and at most two edges of E′′j . We should then
show that the last edge of each E′′j is covered by a vertex of some Vi that belongs to V ′. But
that therefore implies that the corresponding literal xi or xi is true under τ and satisfies
the clause cj . Similarly, as V ′ has two vertices from each S′j (the gadget of the 2-clauses),
one of the two vertices must be uj (otherwise it is not possible to cover all the edges in E′j)

and the other vertex must either be l
(1)
j or l

(2)
j to cover the edge (l

(1)
j , l

(2)
j ). However, the

other vertex is not in the vertex cover and so its corresponding communicating edge must
therefore be covered by a vertex of some Vi that belongs to V ′. So again, that therefore
implies that the corresponding literal xi or xi is true under τ and satisfies the clause cj . As
this holds for every clause, τ is a satisfying truth assignment for C.

Conversely, let τ : X → {T, F} be a truth assignment for C. We can build a vertex cover
V ′ that contains one vertex from each Ti, two vertices from each Sj and two vertices from
each S′j . For each Ti, we include xi if τ(xi) = T or xi otherwise. This ensures that at least
one of the two or three edges from each set E′′j is covered since τ satisfies every clause. For
each Sj , we then only need to include the endpoints of the two other edges in E′′j . For each
S′j , we include uj and the endpoint of the other edge in E′′j . This will then give a vertex
cover of size K.

Let us now show that the graph G is a unit 2-track graph of depth 2. For each truth
setting component Ti, we represent xi and xi by two unit intervals Xi and Xi. Let us put
all the pairs Xi and Xi on the track 1 and on the track 2. If both xi and xi are adjacent to
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at most one vertex l
(2)
j for some j (i.e. the corresponding variable appears as a second literal

for some clause at most once) then let us make the right endpoint of Xi intersect the left
endpoint of Xi on track 1 and be disjoint on track 2. Otherwise let us make them be disjoint
on track 1 but intersect in the same way on track 2. (if one of them is a second literal of
some clause twice, say xi, then xi cannot be in any other clause and xi can be in at most
one other clause so we can make them intersect on track 2). For each satisfaction testing

component Sj (resp. S′j), we represent l
(1)
j , l

(2)
j and l

(3)
j (resp. uj) by three unit intervals

L
(1)
j , L

(2)
j and L

(3)
j (resp. Uj) on track 1 such that the right endpoint of L

(1)
j intersects the

left endpoint of L
(3)
j (resp. Uj) and the right endpoint of L

(3)
j (resp. Uj) intersects the left

endpoint of L
(2)
j . Furthermore, let us suppose that the vertex l

(2)
j is adjacent to xi with

interval Xi. Then we make the right endpoint of L
(2)
j intersect the left endpoint of Xi.

However, as a literal may appear twice then if the left endpoint of Xi is already intersecting

some L
(2)
j′ then we can revert the intervals L

(1)
j , L

(2)
j and L

(3)
j (resp. Uj) and make the left

endpoint of L
(2)
j intersect the right endpoint of Xi instead. Similarly, on track 2, we put

L
(1)
j and L

(2)
j such that the right endpoint of L

(1)
j intersects the left endpoint of L

(2)
j . Let

us now suppose that the vertex l
(1)
j is adjacent to xi′ with interval Xi′ . Then we make the

left endpoint of L
(1)
j intersect the right endpoint of Xi′ . Again, if needed we can revert the

intervals. Finally, on track 2, let us assume that l
(3)
j = xi′′ (in the case of a 3-clause) with

interval Xi′′ we add L
(3)
j (resp. Uj) so that its right endpoint intersect the left endpoint of

Xi′′ (resp. Vj that represents vj). If needed again, the left endpoint of L
(3)
j may intersect

the right endpoint of Xi′′ instead. We then add an other disjoint interval for each other
vertex not represented on one of the tracks to make the representation valid.

By construction, each interval intersects at most two other disjoint intervals, always at
their extremities only and always at most one interval for each extremity is intersected. The
construction is therefore of depth 2. Furthermore, the maximum degree of the graph is 3
since the vertices of the truth setting components Vi have degree at most 3 (the other vertex
of Vi and at most two other vertices from V ′j since a literal appears at most twice) and the
vertices of the satisfaction testing components V ′j have degree at most 3 (the two others
vertices in the triangle they form and either a vertex from Vi or the pendant vertex vj)

(We can also notice that this implies that all intervals are displayed)
For example, let us consider the same example X = {x1, x2, x3, x4} and C = {c1, c2}

such that c1 = (x1, x2, x3) and c2 = (x1, x3, x4) whose gadget graph is displayed on figure
16. Let us then build the corresponding depth 2 unit 2-track representation of this graph :
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Track 1:

L
(1)
1

L
(3)
1

L
(2)
1

X3

X3 L
(1)
2

L
(3)
2

L
(2)
2

X4

X4

X1

X1

X2

X2

Track 2 : X1

L
(1)
1

L
(2)
1 X1

L
(1)
2

L
(2)
2

X2

L
(3)
1

X3

L
(3)
2

X2 X3 X4 X4

Figure 17: Depth 2 unit 2-track representation of the graph given in the first example

5.2 Feedback Vertex Set

Let us now consider the Feedback Vertex Set problem. This also is one of the 21
Karp’s problems that have been proved to be NP-complete on general graphs. We give the
definition of Feedback Vertex Set below :

Feedback Vertex Set

Input: An undirected graph G = (V,E), a positive
integer K ≤ |V |

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ K
such that V ′ contains at least one vertex from
every cycle in G ?

In [27], it was shown that Feedback Vertex Set was APX-complete on graphs with
maximum degree 4 by reducing Vertex Cover in cubic graphs to Feedback Vertex
Set with maximum degree 6 and then introducing some gadgets to reduce the maximum
degree down to 4. We will actually show that the resulting graph in their proof is even a
depth 2 unit 2-track graph (linear arboricity ≤ 2) which is strictly contained in the class of
maximum degree 4 graphs (K5 for example has maximum degree 4 but is not depth 2 unit
2-track)

Theorem 12. Feedback Vertex Set is APX-complete on depth 2 unit 2-track graphs

Proof. Let us recall the usual reduction of Vertex Cover to Feedback Vertex Set
in [24]. Suppose we have a graph G = (V,E). Let G′ = (V ′, E′) be a copy of G but for
each edge (u, v) ∈ E we add a vertex wuv ∈ V ′ and two edges so that (u,wuv) ∈ E′ and
(v, wuv) ∈ E′. (See Figure 18)
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1 2 3

4

G

1 2 3

4

w12 w23

w24 w34

G′

Figure 18: An example graph G with the corresponding transformation G′

This reduction clearly takes polynomial time.
As Vertex Cover in cubic graphs is already APX-hard it implies that Feedback

Vertex Set with maximum degree 6 is APX-hard too as argued in [27]. We will now reuse
their gadgets to reduce the maximum degree of the graph to 4 and call G′4 the resulting
graph.

Let us first consider the gadget to replace every degree 6 vertex of the graph to obtain
a graph of maximum degree 5:

23



v1

v2

v3

v4

v5

v6 v7

Figure 19: Gadget to reduce degree 6 vertices to degree 5

It can be seen that the original graph has a FVS K of size t if and only if the resulting
graph with the degree 6 vertices replaced by the above gadget has a FVS K ′ of size t+ 2n6

where n6 is the number of nodes of degree 6. Let us suppose u is a degree 6 vertex, if u is
in a FVS K then we can add v1, v3 and v5 in K ′ as they intersect all the internal cycles but
also all the other cycles that visit a vertex of the gadget. If now, u is not in a FVS then we
can add v6 and v7 in K ′ to delete all the internal cycles. Conversely, we can argue that the
smallest possible FVS K ′ needs to contain either v6 and v7 or v1, v3 and v5 in which case we
can build easily a FVS K for the original graph. From the graph it is clear that we cannot
pick only one vertex to delete all the internal cycles. If we only pick two then it can only be
v6 and v7 but that only deletes the internal cycles but none of the external ones, this will
thus correspond to not picking the replaced vertex in G. If now, K ′ is minimal it contains
at most 3 vertices since it is enough to delete all the internal cycles and the ones that visit
a vertex of the gadget : this corresponds to picking the replaced vertex in G. Therefore we
always obtain a FVS of size K = K ′ − 2n6

Let us now give a unit 2-track representation of this gadget that we decompose into
several blocks :
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Track 1:
v1

v2

v3

v4

v5

v6 v7

Track 2 :
v1

v7

v6

v5

v3 v2 v4

Figure 20

Let us then introduce the gadget used in [27] to reduce the maximum degree of the graph
from 5 to 4. For that we will replace all the degree 5 vertices of the graph (each v1 and v3)
by the following graph :

U367

U257

U345

U246

u2

u3

u4

u5

u6

u7

Figure 21: Gadget to reduce degree 5 vertices
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It can then be seen that the original graph contains a FVS K of size t if and only if the
resulting graph with the vertices of degree 5 replaced by the above gadget has a FVS K ′ of
size t+ 3n5 where n5 is the number of degree 5 vertices. This comes from the fact that, if a
vertex v is in K then we can add v2, v3, v4 and v7 in K ′ since they intersect all the internal
cycles but also each cycle that visits a node of the gadget. If u is not in K ′ then we can
add U345, U257 and U367 as they intersect all the internal cycles. Conversely, we can also
notice that K ′ needs to have at least these three vertices for each gadget and at most four
and thus build K from K ′.

Let us now give a unit 2-track representation of this gadget that we decompose into
several blocks :

Track 1:
u3

u2

U246

u4

U345

u5

U257

u7

U367

u6

Track 2 :

U246

u6

u5 U345

u3

U367 U257

u2

u4

u7

Figure 22

Let us now first replace v1 and v3 from the first gadget by the second gadget to obtain
a full gadget to replace any vertex of degree 6 and get a graph G′4 of maximum degree 4.

We will denote u
(1)
k the vertices of the gadget that replaces v1 and u

(3)
k the vertices of the

gadget that replaces v3. For that we replace v3 by the second gadget and we connect u
(3)
2

to v4, u
(3)
3 to v6, u

(3)
4 to v2 and u

(3)
6 to v7. Furthermore, we replace v1 by the second gadget

and we connect u
(1)
2 to v6, u

(1)
6 to v2 and u

(1)
7 to v7.

Let us then now show that we can represent the resulting graph on two unit tracks. Let
us first give a unit 2-track representation of the full gadget :

Track 1:
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246

u
(1)
4

U
(1)
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Figure 23

Let us now build a unit 2-track representation of the full graph G′4 with maximum degree
4. Let us note that, originally, the graph G is cubic and therefore unit 2-track and that G′

has degree 6 because for each edge we added a vertex wuv. Let us first omit the vertices
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wuv and thus first focus on realising G and the gadgets. As G is cubic it has a unit 2-track
representation of depth 2. Therefore, in any unit 2-track representation of G, if an interval
intersects two other intervals on one track, it intersects exactly one on the other. Let us
consider a unit 2-track representation of depth 2 of G and let us replace every interval I on

the first track by the intervals of the full gadget on the track 1 so that u
(1)
3 always intersect

an interval (we take the symmetry of the path of intervals of the gadget if we replace an
interval I that did not intersect any other on its left extremity). Therefore, if I used to
intersect two intervals on the first track then I only intersects one interval on the second

track, we then replace I by the block of intervals u
(1)
4 , u

(1)
7 and v7 such that u

(1)
4 intersects

the interval I used the intersect (we take the symmetry if I used to intersect an interval on
its right extremity). Now, if I used to intersect only one interval on the first track then I
intersects two intervals on the second track, we then replace I again by the block of intervals

u
(1)
4 , u

(1)
7 so that u

(1)
4 intersects one of the intervals I used the intersect and by the block

v5, v6 so that v5 intersects the other interval I used to intersect since the extremity of v5 is
free on track 1 (as I used to intersect only one interval on the first track). This therefore

gives us a representation of G′4 with the wuv omitted. We can now use the intervals v2, u
(3)
7

and v4 for each variable to realise the edges with the vertices wuv.
For that we will first go through each interval I of the representation of G from left to

right from the first track to the second.

If I intersects two intervals on the first track, then we add the block of intervals v2 , u
(3)
4

and u
(3)
7 for I on the second track. If now I only intersects one interval on the first track,

then we add the block of intervals U
(3)
257, u

(3)
2 , v4 on the second track. Similarly, if I is on the

second track. We will therefore have a series of intervals, one after the other, in the order
they appear in the 2-track representation of G, on the second track.

We can then add the intervals wHI to intersect the block of intervals representing H and
the one representing I for each intersection of intervals H and I in the representation of G.

We also need to make sure that v4 intersects wHI if the block of intervals U
(3)
257, u

(3)
2 , v4 is

used to represent I (We can just take the symmetry of the block).
We therefore realise all the edges with the wuv and thus clearly obtain a depth 2 unit

2-track representation of G′4

5.3 Clique Cover

Similarly, Clique Cover also is NP-complete on general graphs. Let us first introduce the
problem and prove that it remains NP-complete on unit 2-track graphs.

Clique Cover

Input: An undirected graph G = (V,E), a positive
integer K ≤ |V |

Question: Can the vertices of G be partitioned
into k ≤ K disjoint sets V1, .., Vk such that, for
1 ≤ i ≤ k the subgraph induced by Vi is a com-
plete graph ?

Let us note that this result can be inferred as Clique Cover already is NP-complete
on graphs with maximum degree 3 as shown in [8] and that the class of maximum degree 3
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graphs is actually included in the class of unit 2-track graphs.

Theorem 13. Clique Cover is NP-complete on depth 2 unit 2-track graphs

Proof. As Clique Cover is in NP for general graphs then we also have that Clique
Cover is in NP for depth 2 unit 2-track graphs. Let us now prove that Clique Cover
is NP-hard on depth 2 unit 2-track graphs. To show it, we will reduce LSAT to Clique
Cover. We recall that an LSAT formula is a 3-SAT formula in which each clause (viewed as
a set of literals) intersects at most one other clause, and, moreover, if two clauses intersect,
then they have exactly one literal in common [3]. Let us then consider an instance of this
problem with variable set X = {x1, x2, .., xn} and clause set C = {c1, c2, .., cm}.
From the proof of [3], we can also notice that if two clauses are intersecting then these
clauses only have two literals.

For each variable xi ∈ X we build the following truth-setting component Ti = (Vi, Ei)
where Vi = {xi, xi, ui} and Ei = {(xi, ui), (xi, ui)} (See Figure 24)

xi xi

ui

Figure 24: Gadget Ti for each variable

For each clause cj ∈ C, we create a vertex cj and we connect it to the vertices that
represent its literals. Furthermore, if two clauses ci and cj intersect, we also add an edge
between the two vertices ci and cj . Note that, each vertex cj may only be adjacent to one
other vertex ci. We can now set K = 2n and notice that this construction can be realised
in polynomial time.

For example, let X = {x1, x2, x3, x4} and C = {c1, c2, c3} such that c1 = (x1, x3) and
c2 = (x1, x3) and c3 = (x2, x3, x4) We then build the following graph :

x1 x1

u1

x2 x2

u2

x3 x3

u3

x4 x4

u4

c1 c2 c3

Figure 25: Example of construction of the full gadget
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A satisfying truth assignment for this example would be τ(x1) = T , τ(x2) = F τ(x3) =
F , τ(x4) = T . This then gives a clique cover of G with 8 cliques such that K1 = {x1, u1},
K2 = {x2, u2}, K3 = {x3, u3}, K4 = {x4, u4}, K5 = {x3, c1, c2}, K6 = {x4, c3}, K7 = {x1}
and K8 = {x2}

Let us now prove that C is satisfiable if and only if G has a clique cover of size K or less.
Suppose G can be partitioned into K cliques or less. Since, in each truth-setting component
Ti, xi and xi are not adjacent then at least two cliques are needed to cover them. Then G
needs at least 2n = K cliques to be covered. Since G is covered by 2n cliques then there
cannot be any truth setting component Ti where xi, xi and ui are in three different cliques.
Therefore there should be a clique Ki with vertex set {xi, ui} or {xi, ui} for each compo-
nent. We can then define a truth assignment τ : X → {T, F} with τ(xi) = T if xi ∈ Ki

and τ(xi) = F if xi ∈ Ki. Furthermore, as n cliques are required for all the Ki’s then it
implies that any other clique of the cover must contain one vertex xi or its complement xi
not covered by Ki. As G is entirely covered by cliques then any vertex cj is in a clique that
therefore also contains a vertex xi or xi. However, if a vertex cj is in the same clique as a
vertex xi or xi then they are adjacent in G. By construction, this therefore means that the
literal xi or xi is in cj . By definition of our truth assignment τ , xi or xi is therefore true
since it is not in Ki and thus cj is satisfied. Since all the cj are put in a clique with some
xi then all the clauses are satisfied.
Conversely, let τ : X → {T, F} be a truth assignment for C. Then, if τ(xi) = T then we
add xi and ui in a clique, otherwise we add xi and ui. Now for each vertex xi or xi that
is not in a clique yet, if it is in two different clauses then we can put it with the vertices
corresponding to the clauses in which it appears in the same clique. Finally we only need to
consider the variables that appear in only one clique. Then, we just need to find a perfect
matching between the vertices of the clauses and the ones of the variables and this can be
done in polynomial time since this resulting graph is bipartite. By construction, as τ is
a satisfying assignment then such a matching should exist. (Some variables may not be
matched with a clause since the clause can be satisfied by some other variables, in this case
we can just add a clique that only contains the vertex of this variable). This therefore gives
a cover of G with 2n cliques.

Let us now give a unit 2-track representation of this graph. For each clause we add a
unit interval on the first track. For each pair of intersecting clauses, we add a unit interval
for the literal that they share (there can only be one shared literal in LSAT) that intersects
both. Furthermore, at the other extremity, we add a unit interval for another literal that
is in the clause. Note that this literal cannot be in any other clause (since a clause may
intersect only one other clause and they can only share one literal) so we cannot add the
same interval twice. For each clause that do not intersect any other clause, we just add
two unit intervals that represent two of its literals at the extremities of the interval that
represents the clause. Finally, on the other track, we add three unit intervals for xi, xi
and ui so that ui intersects both xi and xi at its extremities. For each pair of intersecting
clauses, we add two unit intervals that are intersecting. Finally, we can add a unit interval
for each clause and make it intersect its remaining literal if needed. (note that this is needed
if the clause is a 3-clause, which cannot be the case if the clause intersects another one)

Let us then build the corresponding unit 2-track representation of the example :
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Track 1: c1 c2

x3x1 x1

c3

x2 x3

Track 2 : x1

u1

x1 x2

u2

x2 x3

u3

x3

c3

x4

u4

x4 c1

c2

Figure 26: unit 2-track representation of the graph given in the first example

5.4 Biclique Cover

We can now consider a similar problem where instead of partitioning the vertex sex of a
graph with as few cliques as possible, we partition it with as few bicliques as possible. Let
us recall that a biclique is a complete bipartite graph, i.e. a graph G = (V,E) whose vertex
set V can be partitioned into two independent sets A and B (V = A ∪ B) and such that
every vertex of A is adjacent to every vertex of B (∀a ∈ A, ∀b ∈ B, (a, b) ∈ E) We can then
formulate the Biclique Cover problem below :

Biclique Cover

Input: An undirected graph G = (V,E), a positive
integer K ≤ |V |

Question: Can the vertices of G be partitioned
into k ≤ K disjoint sets V1, .., Vk such that, for
1 ≤ i ≤ k the subgraph induced by Vi is a com-
plete bipartite graph ?

Again, this result can be inferred as Biclique Cover already is NP-complete on graphs
with maximum degree 3 as shown in [9].

Theorem 14. Biclique Cover is NP-complete on depth 3 unit 2-track graphs

Proof. As Biclique Cover is in NP for general graphs then we also have that Biclique
Cover is in NP for depth 3 unit 2-track graphs. Let us now, again, reduce LSAT to
Biclique Cover on depth 3 unit 2-track graphs. Let us then consider an instance of
LSAT with variable set X = {x1, x2, ..., xn} and clause set C = {c1, c2, ..., cm}

For each variable xi ∈ X we build the following truth setting component Ti = (Vi, Ei)
where Vi = {xi, xi, ui, vi, vi} and Ei = {(vi, ui), (vi, ui), (vi, vi), (vi, xi), (vi, xi)} (See Figure
27)
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vi vi

ui

xi xi

Figure 27: Gadget Ti for each variable

For each clause cj ∈ C we create a vertex cj and we connect it to the vertex xi if xi is
in cj or to xi if xi is in cj . We can now set K = 2n and notice that this construction can
be realised in polynomial time.

For example, let X = {x1, x2, x3, x4} and C = {c1, c2, c3} such that c1 = (x1, x2, x3) and
c2 = (x1, x3, x4) and c3 = (x2, x3, x4). We then build the following graph :

v1 v1

u1

x1x1

v2 v2

u2

x2x2

v3 v3

u3

x3x3

v4 v4

u4

x4x4

c1 c2 c3

Figure 28: Example of construction of the full gadget

Let us now prove that C is satisfiable if and only if G has a biclique cover of size K
or less. Suppose G can be partitioned into K bicliques or less. Since each truth setting
component contains a triangle and thus not a biclique then at least two bicliques are needed
to cover it and thus at least 2n bicliques to cover G. Since G is covered by 2n bicliques
then there cannot be any truth setting component Ti where its vertices are in three different
bicliques. Therefore each Ti must be covered with two bicliques and therefore one of the
two bicliques, say Ki should either be {xi, ui, vi} or {xi, ui, vi}. We can then define a truth
assignment τ : X → {T, F} with τ(xi) = T if xi ∈ Ki and τ(xi) = F if xi ∈ Ki. Further-
more, as n bicliques are required for all the Ki’s then it implies that any other biclique of
the cover must contain at least one vertex xi or its complement xi not covered by Ki. As,
G is entirely covered by bicliques, then any vertex cj is in the same biclique as a vertex xi
or xi. However by construction, if a vertex cj is in the same biclique as xi or xi, it means
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that the literal xi or xi is in cj . By definition of our truth assignment τ , xi or xi is therefore
true since it is not in Ki and thus cj is satisfied. Since all the cj are put in a biclique with
some xi, then all the clauses are satisfied.
Conversely, let τ : X → {T, F} be a truth assignment for C. Then, if τ(xi) = T then
we add xi, ui and vi in a biclique, otherwise we add xi, ui and vi. Now for each vertex
xi (or xi) that is not in a biclique yet, if it is in two different clauses then we can put xi
and vi (or xi and vi) with the vertices corresponding to the clauses in which it appears in
the same biclique. Finally we only need to consider the variables that appear in only one
clause. Then, we just need to find a perfect matching between the vertices of the clauses
and the vertices of the literals and this can be done in polynomial time since this resulting
graph is bipartite. By construction, as τ is a satisfying assignment then such a matching
should exist. (Some variables may not be matched with a clause since the clause can be
satisfied by some other variables, in this case we can just add a biclique that only con-
tains the vertex of this variable and its corresponding vi). For each pair of matched vertices
(xi, cj), we add xi, cj and vi to a biclique. This therefore gives a cover of G with 2n bicliques.

Let us now show that this graph is unit 2-track. On the first track, we add a unit in-
terval for each clause. For each clause cj , we add two unit intervals that represent two of
its literals at the extremities such that none of this literals are shared. Then, we add the
corresponding interval vi or vi at the extremity of each interval xi or xi. (We may add a
unit interval for the literal that has not yet been chosen to intersect the interval of a clause)
On the second track, we add three unit intervals for each component Ti, such that vi, vi
and ui are intersecting. Then, we add an interval for each cj and we make it intersect their
remaining literal’s interval if needed.

Let us then build the corresponding unit 2-track representation of the example :

Track 1: v1 c1

x2x1

v2 v1 c2

x1 x4

v4 v2

x2

c3

x3

v3 x3

v3

x4

v4

Track 2 : v1

v1

u1

v2

v2

u2

v3

v3

u3

v4

v4

u4

c1 C2 c3

x3 x4

Figure 29: unit 2-track representation of the graph given in the first example
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6 Boxicity and Track number

Boxicity d graphs and d track graphs seem to have a very close definition. In [29], it was
actually shown that a boxicity d graph can be seen as the intersection of d tracks, whereas
a d-track graph is, by definition, the union of d tracks. More formally, they proved the
following lemma :

Lemma 15 ([29]). Given a graph G, the minimum positive integer d such that there exist
interval graphs G1, G2, ..., Gd with V (G) = V (Gi) for 1 ≤ i ≤ d and satisfying E(G) =
E(G1) ∩ E(G2) ∩ ... ∩ E(Gd) is equal to the boxicity of G.

However, we will show that we cannot bound the track number of a graph by its boxicity.

Theorem 16. For any integer m ≥ 2, the complete bipartite graph Km,m has boxicity 2

and track number d m2

2m−1e.

Proof. Let us first notice that for all m ≥ 2 Km,m has a representation of boxicity 2.
Consider m rectangles Ri (1 ≤ i ≤ m) defined by the 4 points Ai, Bi, Ci and Di such that
Ai = (0, 2(i − 1)), Bi = (2m − 1, 2i(i − 1)), Ci = (2m − 1, 2i − 1) and Di = (0, 2i − 1).
These m rectangles represent the m vertices of the same independent set and are such
that they are all identical and disjoint but such that all the lines (Ai, Bi) and (Ci, Di) are
parallel. Similarly, we represent the other independent set of Km,m by m identical and
disjoint rectangles R′i (1 ≥ i ≥ m) defined by the 4 points A′i, B

′
i, C

′
i and D′i such that

A′i = (2(i− 1), 0), B′i = (2i− 1, 0), C ′i = (2i− 1, 2m− 1) and D′i = (2(i− 1), 2m− 1). Again,
all the lines (A′i, D

′
i) and (B′i, C

′
i) are parallel. Furthermore, each rectangle Ri intersects all

the rectangles R′i. This is therefore a valid boxicity 2 representation of Km,m. We give, for
example, a boxicity 2 representation of K4,4 below :

R4

R3

R2

R1

R′4R′3R′2R′1

Figure 30: A boxicity 2 representation of K4,4 (some rectangles have been shifted for clarity
reasons)

Let us now prove that Km,m can only be realised on at least d m2

2m−1e tracks. As Km,m

is triangle-free, it can only be realised by a t-track representation of depth 2. However, in
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this case, we obtain at most one new edge at the left endpoint of each interval, except the
first one of each track and therefore we can realise at most |E| ≤ (2m − 1)t edges on t

tracks. Since Km,m has m2 edges we then need at least t ≥ d m2

2m−1e tracks to realise all the
edges.

It would also be interesting to see whether we can bound the boxicity of a graph by its
track number. The next theorem also shows that it is not possible. Let us first define the
join of two graphs G and H, denoted G ⊕H, as being the graph formed by adding all the
possibles edges between a vertex of G and a vertex of H. In other words, if G = (VG, EG)
and H = (VH , GH) then G⊕H = (VG ∪ VH , EG ∪EH ∪ {(u, v)|u ∈ G, v ∈ H}). In the next
theorem, we use the graph Gn built in [31] in the following way : G1 is the graph consisting
of two non adjacent vertices and Gn = Gn−1 ⊕G1.

Theorem 17. For any integer n ≥ 1, the graph Gn has track number 2 but boxicity n.

Proof. In [31], the lemma 7 shows that Gn has boxicity n, we therefore just need to show
that Gn can be represented on two tracks. To do that, let us first notice that given a 2-track
representation of Gn−1 we obtain Gn by adding two intervals, I and J on each track such
that I intersects all the intervals of the representation of Gn−1 on the first track and J
intersects all the intervals of the representation on the second track. Then on the first track
we can just add J next to I so that it does not intersect any interval. Similarly, on the
second track, we add I next to J so that it does not intersect any interval. Let us denote by
V = {v1, v2, ...v2n} the vertices of Gn and associate the interval Ik for each vk. On the first
track, for each k ∈ {1, ..., n} we add Ik = [0, 3k−1] and Ik+1 = [2 · 3k−1, 3k]. On the second
track, for each k ∈ {1, ..., n} we add Ik = [2 · 3k−1, 3k] and Ik+1 = [0, 3k−1]. We therefore
obtain a 2-track representation of G : the intervals Ik and Ik+1 are clearly not intersecting
for each k ∈ {1, ..., n}. Furthermore, on the first track Ik intersects all the intervals Ik′ with
k′ < k and on the second track Ik+1 intersects all the intervals Ik′ with k′ < k. We give, for
example, a 2-track representation of G3 below :

Track 1:

I1 I2

I3 I4

I5 I6

Track 2 :

I2 I1

I4 I3

I6 I5

Figure 31: A 2-track representation of G3 (some intervals have been shortened for clarity
reasons)
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Also notice that the graph G3 in the last example allows us to show that the class of unit
2-track graphs is not included in the class of boxicity 2 graphs and thus cubicity 2 graphs.
As a matter of fact, we can also represent G3 with two unit tracks as follows :

Track 1:

I1 I2

I3 I4

I5 I6

Track 2 :

I1 I2

I4 I3

I6 I5

Figure 32: A unit 2-track representation of G3 (some intervals have been shortened for
clarity reasons)

It would, nonetheless, be interesting to investigate the relationship between unit d-track
graphs and cubicity d graphs further. As a matter of fact, it is possible that the class of
cubicity 2 graphs is included in the class of unit 2-track graphs. The main argument comes
from the fact that K1,5 is neither a cubicity 2 graph nor a unit 2-track graph even though
K1,4 both is. Furthermore, a cubicity 2 representation seems to be more restricted than a
unit 2-track one since it has some local structure where a square can only intersect other
squares that are close to it, whereas with two tracks, an interval on the second track can
intersect some intervals that are far from it on the first one. Moreover, by noticing that
a cubicity 2 graph can be built by considering the intersection of two tracks, it also seems
that it is more restrictive than the union of two tracks. Finally, finding a graph that is not
unit 2-track but that is of cubicity 2 seems to be harder than expected. In [1], they could
not find any interval graph of claw number 3 or 4 that had a cubicity of 3, which could
have also been a good example since it may also be the case that any interval graph of claw
number 4 or less is unit 2-track.

However, we can notice that cubicity 3 graphs are not included in unit 3-track graphs
since K1,8 has cubicity 3 (we can intersect a cube on each of the 8 vertices of a cube).
Therefore, taking the intersection of 3 tracks is somehow not more restrictive that the union
of 3 tracks. We can also realise that a cubicity d graph can have a claw number of at most
2d whereas a d′-track graph can have a claw number of at most 2d′.
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7 Characterization of unit 2-interval graphs

Finally, we can notice that a natural generalisation of the result in [28], that the class of
K1,3-free interval graphs is equal to the class of unit interval graphs, would be to prove that
K1,5-free 2-interval graphs are unit 2-interval. However this is not true as shown in the
following theorem :

Theorem 18. The class of K1,5-free 2-interval graphs is not included in the class of unit
2-interval graphs.

Proof. Let us consider the graph G composed of three claws whose central vertices u, v and
w are connected and thus form a triangle. Respectively, the three vertices that also are
connected to u are denoted u1, u2 and u3, the ones connected to v are v1, v2 and v3 and the
ones connected to w are w1, w2 and w3. This graph is clearly K1,5-free and 2-interval but
is not unit 2-interval. If we try to realise the triangle {u, v, w} with one of their 2 intervals
then one of these intervals will be trapped, say w, and cannot be used to intersect any
interval w1, w2 and w3 and they will thus need to be intersected with the second interval of
w, but then this would form a claw and thus the representation is not unit. Now if we use
several intervals for the triangle, say one interval of u intersects one interval of v. Then the
second interval of u and the second intervals of v are used to intersect an interval of w then
again this interval of w will have no free extremity and thus its second interval will have to
intersect w1, w2 and w3. For any vertex u, we will use uL and uR to denote the left interval
and the right interval of u. Let us then give a 2-interval representation of G in Figure 33.

u v

w

u1

u2

u3

v1

v2

v3

w1

w2

w3

uL

u1 u2 u3

uR

wL

vL

v1 v2

vL

v3

w1 w2 w3

wR

Figure 33: The graph G with a 2-interval representation of it
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Nevertheless, we can make the conjecture that any K1,5-free interval graph is unit 2-
interval. This also comes as a natural generalization of [28]. It can also easily be seen
that unit 2-interval graphs are K1,5-free. Even though we were not able to prove it, we
noticed that the difficulty of transforming an interval representation of a K1,5-free graph
into a unit 2-interval representation comes from the maximal K1,3’s of the graph due to
their asymmetry. We say that a graph has a maximal K1,3 if there is a central vertex of a
K1,3 that is not a central vertex of a K1,4. An interval representation of K1,3 will have a
long interval that intersects three non overlapping intervals such that the one in the middle
is included in the long interval. However it is not clear how to cut the interval to make it
become a 2-interval and how to dispatch the other intervals. Surprisingly, it is not difficult
to fix the problem with the K1,4’s of the graph and we can then give an algorithm for
that. We can also notice that the real difficulty comes from the fact that in an interval
representation of K1,3 only one interval may be included in the long interval corresponding
to the central vertex of the claw. In the case where two intervals are included then we can
similarly use the same cutting rules as in the following algorithm.

We assume that I = [i1, i2],A = [a1, a2] and so on

1: procedure InnerIntervals(I,I )
2: J = {J ∈ I |J and I are intersecting}
3: A = argminJ∈J {j2}
4: D = argmaxJ∈J {j1}
5: JA = {J ∈J |j1 > a2}
6: JD = {J ∈J |j2 < d1}
7: B = argminJ∈JA

{j2}
8: C = argmaxJ∈JD

{j1}
9: return B,C

Algorithm 2 Cutting Algorithm

1: A = ∅
2: M = maxI∈I (i2) + 1
3: for each I ∈ I do
4: if IsCentralVertex(nI ,G) then
5: B, C = InnerIntervals(I,I )
6: iL = [i1,b2]
7: iR = [c1,i2]
8: I’ = iL ∪ iR
9: else

10: I ′ = I ∪ [M,M + 1]
11: M = M + 2

A = A ∪ I ′
12: return A

IsCentralVertex checks if the vertex associated to the current interval is the central vertex
of a claw (this can be done by checking if the complement of the neighbourhood of nI has
a triangle for example). If that is the case then by assumption nI is the central vertex of a
4-claw and thus I has 4 disjoint intervals intersecting it. As it can have more than a 4-tuple
of disjoint intervals InnerIntervals makes sure to select to following tuple (A,B,C,D) such
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that A and B is the left most couple of disjoint intervals intersecting I and C and D the
right most one. Notice also than B and C are necessary included in I and then B is included
in iL and C in iR. Let us give an example of how the algorithm works in Figure 34.

I

A B C D

E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13

iL iR

A B C D

E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 34: Example of how the algorithm cuts I
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Let us first introduce a couple of definitions. For each interval I ∈ I , Algorithm 2
checks if it intersects at least three disjoint intervals, if that is the case then we say that
I is cut into two partial intervals iL and iR. Otherwise, I remains complete and a dummy
interval is added so it forms a 2-interval. Finally we say that an interval J = [j1, j2] is before
I = [i1, i2] if j2 < i1 and that J is after I if i2 < j1. If J is after I but before K then we
say that J is between I and K. We also say that a graph is maximal-3-claw-free if for any
vertex u of G, u is the central vertex of K1,3 ⇔ u is the central vertex of K1,4.

Theorem 19. Let G be a K1,5-free interval graph. Then if G is maximal-3-claw-free, G
is unit 2-interval. Furthermore, given an interval representation of G, a unit 2-interval
representation of G can be computed in polynomial time

To prove theorem 19, let us show that Algorithm 2 computes, for any maximal-3-claw-
free and K1,5-free graph G, a unit 2-interval representation of G.

Lemma 20. Let G be an interval graph and I be its interval representation. Then Algo-
rithm 2 computes a 2-interval representation of G.

Proof. Let us first notice that Algorithm 2 outputs a collection A of 2-intervals. This is the
case as we only add intervals I of the form iL∪ iR with iL and iR disjoint. Let us now prove
that the 2-interval representation output by Algorithm 2 is a representation of G. First of
all, it does not create nor delete any vertex as |A | = |I |. Second of all, it does not omit
any edge : either an interval remains complete and thus unchanged or an interval is cut
into iL and iR. As iL = [i1, b2] or iR = [c1, i2] then if an edge is forgotten there should be
an interval E included in (b2, c1) but if it is the case then this would form a K1,5 in the
original graph as A, B, C, D and E would be 5 disjoint intervals intersecting I. Finally, it
does not create any new edge, since we either cut intervals or we create a series of intervals
[M,M + 1] that do not intersect any interval.

We must now show that the 2-interval representation obtained by Algorithm 2 is unit.
As an interval graph is unit if and only if it is 3-claw-free, i.e., if it has an interval repre-
sentation such that none of its intervals intersects three disjoints intervals then a 2-interval
representation is unit if none of the intervals intersects three disjoints intervals. Now let us
prove the following lemma :

Lemma 21. At the end of Algorithm 2, if an interval I ∈ I remains complete, there cannot
be three disjoint complete intervals intersecting it and if I is cut into iL and iR, there cannot
be three disjoint complete intervals intersecting iL nor iR.

Proof. First of all, it is trivial that if I remains complete it cannot intersect three disjoint
complete intervals because this would form a claw in the original graph and we would have
thus cut I. Furthermore, it is easy to see that there cannot be three disjoint complete
intervals intersecting iL by construction. Indeed, when I has been cut, Algorithm 2 chose
two intervals A and B and so that they are disjoint and that b2 is the smallest,i.e., Algorithm
2 chose the leftmost couple of disjoint intervals. Similarly, C and D were chosen so that
they are disjoint and that c1 is the greatest. If there were three disjoint intervals M , N and
O intersecting iL (resp. iR) then B (resp. C) would have been N and thus iL (resp. iR)
would not have intersected O (resp. M) (See Figure 35)
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iL iR

A B C D

M N O

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 35: Algorithm 2 would have chosen B=N here as n1 > a2 and n2 < b2

We can now start to prove that there cannot be three disjoint intervals intersecting any
interval at the end of Algorithm 2.

Lemma 22. At the end of Algorithm 2, if an interval I intersects three disjoint intervals
u, v, w (in this order) then either v is complete or we can find an interval V ′ included in v
that is complete

Proof. If V is partial then either v = vL or v = vR. If v = vL then there is a complete
interval B included in V . If v = vR then there is a complete interval C included in V .

Lemma 23. At the end of Algorithm 2, if an interval I intersects three disjoint intervals
u, V , w (in this order) with V complete, then I must be partial

Proof. According to lemma 21, if w = W is complete, u must be partial. If u = uR then
originally there was some complete interval U that has been cut into uL and uR, but then
U , V and W would have cause I to be cut too : impossible. Therefore u=uL but then there
is a complete interval B included in uL that shares the same end as uL and hence intersects
I. Thus B, V and W are three disjoint complete intervals : this would have force I to be
cut too. Symmetrically, if u = U is complete, w must be partial. But for the same reason,
if w = wL then I would have been cut and if w = wR then there is a complete interval
C included in wR and sharing the same beginning as wR intersecting I as well. U ,V and
C would then force I to be cut. Identically, if both u and w are partial and u = uR and
w = wL then also originally there are two complete intervals U and W that would have
cause I to be cut. If u = uR and w = wR then there is a complete interval C that shares
the same beginning as wR and originally there is a complete interval U that has been cut
into uL and uR so I would have been cut. Symmetrically if u = uL and w = wL. Finally, if
u = uL and w = wR, then there are a complete interval B and a complete interval C that
would have caused I to be cut too. We illustrate this in the following two figures.
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uL uR V W

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 36: I would be cut as in the original representation there was an interval U intersecting
I

I

uRuL

B V W

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 37: If U has been cut then there was a complete interval B that intersects I

Lemma 24. At the end of Algorithm 2, a partial interval i cannot intersect three disjoint
intervals u, V , w (in this order) with V complete

Proof. As i is partial then either i = iL or iR. We first assume that i = iL. Then if u is
complete then iL would not intersect w since U and V is a couple of two disjoint complete
intervals and iL ends at the end of the second interval of the leftmost couple. Same if u is
partial and u = uR then originally there is a complete interval U such that U and V were
a couple of two disjoint complete intervals so iL would not intersect w. We can assume
that u = uL but then there is a complete interval B that shares the same end as uL so B
also intersects iL. Therefore iL would not intersect w since B and V would form a couple
of disjoint intervals. Now let us assume that i = iR, if w is complete that iR would not
intersect u since V and W is a couple of two disjoint complete intervals and iR starts at
the beginning of the first interval of the rightmost couple Similarly if w = wL, there was
a complete interval W cut into wL and wR that formed a couple of complete intervals so
iR would not begin before the beginning of V and thus would not intersect u. Finally if
w = wR then there is a complete interval C that shares the same beginning as wR and thus
V and C is a couple of disjoint intervals so iR does not intersect u either.

Therefore according to lemma 22, if there are three disjoint intervals u, v and w inter-
secting I, we can find a complete interval V ′ such that u, V ′ and w are disjoint. However
in this case, according to lemma 23, I is necessarily partial but then according to lemma 24
this is not possible. Therefore we cannot have three disjoint intervals on any interval I at
the end of Algorithm 2.
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8 Conclusion

Interval graphs have been tremendously studied and their real-life applications are diverse.
Furthermore, most problems on interval graphs are easy as they can be solved efficiently by
a polynomial time algorithm. However, the class of interval graphs is relatively restricted
and some real-life problems need more intervals to be modeled. For this reason, t-interval
graphs and d-track graphs have been introduced. Nonetheless, despite their wide range
of applications, most problems on these classes unfortunately remain intractable for t ≥ 2
and d ≥ 2. As we have shown, it is the case for Vertex Cover, Feedback Vertex
Set, Clique Cover and Biclique Cover but also for most problems that are NP-hard
on general graphs. Even approximating them is difficult on these classes as we showed, for
example, that Feedback Vertex Set was APX-hard on unit 2-track graphs. Finally, even
within a parameterized framework, many problems are W[1]-hard on 2-track graphs such
as Domination or Independent Set. It is also surprising to notice that restricting the
length of the intervals in a d-track or a t-interval representation does not make any problem
simpler. It would then be interesting to see if there is some problem where restricting the
length allows to solve the problem significantly faster and to understand how we can take
advantage of this restriction.

The different classes of t-interval and d-track graphs all are related and different algo-
rithms to switch from one representation to the others have been introduced. we gave an
algorithm that modifies an interval representation to obtain a unit ψ-track representation
where ψ is the claw number of the associated graph. Similarly, we gave an algorithm to
obtain a unit 2-interval representation of an interval graph of claw number 4 but with no
maximal K1,3.

Finally, despite having a close structure to d-track graphs at first sight, the class of
boxicity d graphs contains graphs that cannot be represented on d tracks and vice versa.
It would however be interesting to see whether the class of cubicity 2 graphs is strictly
included in the class of unit 2-track graphs or not. This seems to be possible since we can
at most represent K1,4 but not K1,5 with both a unit 2-track representation and a cubicity
2 representation. Furthermore, we would naturally believe that taking the intersection of
two (or more) tracks is more restricting than taking their union. As shown, this is not
true for d-track graphs and boxicity d graphs (for d ≥ 2) but it may hold if we consider
two unit tracks. However, we can notice that cubicity 3 graphs are not included in unit
3-track graphs since we can represent a K1,8 with a cubicity 3 representation. Therefore,
from d = 3, taking the intersection of unit tracks gives different graphs than taking the
union. Furthermore, in [1], they gave an upper bound on the cubicity of an interval graph
in regards to its claw number Ψ. However, as explained their upper bound may not be tight
as they have not found any interval graph with cubicity greater than dlog(Ψ)e. It therefore
seems natural to conjecture that we can represent an interval graph of claw number Ψ be a
cubicity dlog(Ψ)e representation as this would come as a generalization of the Theorem of
Roberts stating that an interval graph is unit if and only if it does not contain an induced
K1,3. Similarly, we would also expect the unit interval number or even the unit track number
of an interval graph with claw number Ψ to be dΨ

2 e and thus improve the result obtained
by our algorithms in section 4 and section 7.

Finally, as most problems remain NP-hard on t-interval graphs and d-track graphs (for
t ≥ 2 and d ≥ 2) as illustrated in Section 5 (Feedback Vertex Set and Clique Cover
for example), some interesting directions would be to study the parameterized complexity
of these problems on the stated classes of graphs and see if we can use their structure to
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design better FPT algorithms or to obtain polynomial kernels.
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[6] Reuven Bar-Yehuda, Magnús M Halldórsson, Joseph Naor, Hadas Shachnai, and Irina
Shapira. Scheduling split intervals. SIAM Journal on Computing, 36(1):1–15, 2006.

[7] Kenneth P Bogart and Douglas B West. A short proof that“proper= unit”. arXiv
preprint math/9811036, 1998.
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