
P r e p a r e d  b y :  D . J .  N a j d a

H y d r a u l i c  E n g i n e e r i n g  S e c t i o n
F a c u l t y  o f  C i v i l  E n g i n e e r i n g  a n d  G e o s c i e n c e s

D e l f t  U n i v e r s i t y  o f  T e c h n o l o g y

U s i n g  s t o r m  c l a s s i f i c a t i o n
f o r  t h e  i m p r o v e m e n t  o f
m i d - t e r m  f o r e c a s t i n g  o f
e x t r e m e  s t o r m s  a l o n g  t h e
D u t c h  c o a s t

M a r c h  2 0 2 5



The Hague, March 2025 

Report type: MSc thesis report 

Report name: Using storm classification for the improvement of mid-term forecasting of extreme 

storms along the Dutch coast 

Cover image: Generated using AI-based image creation tools 

Delft, university of technology (TUD) 

Faculty of Civil Engineering 

Department of Hydraulic Engineering 

By (TUD 4651081) 

Graduation Committee (TUD) 

(TUD) 

(TUD/HKV) 

(HKV) 

Contact 

David. J. Najda 

Dr. ir. J.A.Á. Antolínez  

Dr. ir. O. Morales-Nápoles 

ir. P.E. Kindermann 

ir. J.J. Caspers  

David. J. Najda 



Charting the Course to Coastal Clarity  March 2025 

i | P a g e  

 

Preface 
This thesis before you is part of my Master of Science in Civil Engineering at Delft University of 

Technology. It marks the end of my studies, a significant milestone in my academic journey. I began this 

research in September 2024, and it has been a rewarding and challenging experience that has brought me to 

the completion of this thesis in March 2025. 

The completion of this thesis would not have been possible without the support of several people. 

First and foremost, I would like to express my sincere gratitude to my graduation committee. To Dr. ir. 

J.A.Á. Antolínez, for his invaluable insight into the topic of weather pattern classification. His guidance in 

explaining the state-of-the-art research and particularly in helping me structure my approach while 

developing self-clustered weather patterns was incredibly helpful. Dr. ir. O. Morales-Nápoles, for his 

thoughtful contributions and assistance with the statistical aspects of the evaluation. I am also deeply 

grateful to Ir. P.E. Kindermann and Ir. J.J. Caspers, for their continuous support throughout this project. Our 

weekly meetings were always a great source of inspiration and fresh ideas, and their feedback consistently 

helped refine my approach and pushed my thinking forward. Ir. P.E. Kindermann also deserves special 

thanks for giving me the opportunity to work on this topic, setting the course for this research from our first 

conversations. 

I also wish to express my gratitude to Ir. R.P. Verboeket for the warm welcome and informative tour during 

my visit to Watermanagementcentrum Nederland (WMCN). Furthermore, my thanks go to Ir. R. Neal from 

the Met Office for answering my questions on his research methods and for generously sharing data with 

me that supported my work. A special thanks goes to the entire team at HKV lijn in water where I carried 

out my research. Their resources, expertise, and welcoming environment were invaluable to me throughout 

this process. 

Finally, I want to express my heartfelt thanks to my mother, Irina Najda, whose unwavering support and 

belief in me has been a constant throughout my life. Her gentle encouragement has not only helped me 

through my academic journey, but has been a pillar of strength in everything I do. I could not have done this 

without her. 

I hope you find this thesis both informative and thought-provoking. Happy reading! 

 
David Jonathan Najda 

The Hague, March 2025  



Charting the Course to Coastal Clarity  March 2025 

 

ii | P a g e  

 

Abstract 
Storm surges pose a critical threat to the Dutch North Sea coast, where low-lying areas are highly vulnerable 

to extreme water levels. While short-term storm surge forecasting is well established, extending predictions 

beyond 10 days remains a challenge due to the complexity of atmospheric dynamics and limitations in 

numerical models, which require extensive computational resources and lack flexibility for alternative 

forecasting techniques. This study explores the potential of weather pattern-based classification as a method 

for improving mid-term storm surge prediction. Phase I evaluates a set of predefined weather patterns (Neal, 

et al., 2018), originally developed by the Met Office for probabilistic forecasting in the UK, to assess their 

applicability for surge forecasting along the Dutch coast. The results indicate that while certain patterns 

show associations with high-surge events, they systematically underestimate surge magnitudes and, at 

longer lead times, the surge distributions associated with different patterns become increasingly similar, 

reducing their ability to distinguish between high- and low-surge conditions. Phase II explores an alternative 

self-clustered classification approach using k-means clustering with Principal Component Analysis (PCA) 

for dimensionality reduction. Several data selection methods, including surge thresholding, Maximum 

Dissimilarity Algorithm (MDA), and stratified sampling, are tested to optimise clustering. While the self-

clustered patterns show slight improvements over Neal’s predefined patterns, they still underestimate surge 

magnitudes and lack the accuracy needed for operational forecasting. A proof-of-concept evaluation using 

storm Pia (December 2023) and a representative SEAS5 storm reveals that the self-clustered weather 

patterns struggle to capture extreme surge events. Although these methods are not yet suitable for 

operational forecasting, this study suggest several possible refinements, such as sequential clustering and 

expanding the spatial domain, to be promising avenues for enhancing predictive skill.  
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Summary 
Storm surges pose a critical threat to coastal regions, particularly along the Dutch North Sea coast, where 

low-lying areas are highly vulnerable to extreme water levels. While short-term storm surge forecasting (up 

to five days) is well established, mid-term forecasting (beyond 10 days) remains a challenge. This difficulty 

arises not only from the complexity of atmospheric dynamics and ocean-atmosphere interactions but also 

from limitations in numerical forecasting models. Current operational surge forecasts rely on high-

resolution physical models that simulate surge behaviour based on meteorological conditions. While these 

models offer high reliability within a one-week timeframe, extending forecasts beyond 10 days is 

constrained by computational demands, as long-range simulations require extensive processing power, and 

model rigidity, as existing models are pre-calibrated and lack the flexibility needed to test alternative 

forecasting techniques.  

At the same time, the growing need for mid-term storm surge forecasting is driven by maintenance planning 

for Dutch flood defences. With many storm surge barriers and dikes aging, Rijkswaterstaat aims to distribute 

repair operations more evenly throughout the year, rather than concentrating them in summer when storm 

risk is lower. Reliable mid-term predictions could help optimise these schedules while ensuring flood 

defences remain functional with minimal disruptions. 

This study investigates the potential of weather pattern-based classification as a complementary tool for 

identifying high-risk periods earlier, providing an early indication of surge conditions at mid-range lead 

times to support preparedness and planning. 

The research is divided into two phases. Phase I assesses the viability of using predefined weather patterns 

(Neal, et al., 2018), which were originally developed by the Met Office for classifying large-scale 

atmospheric circulation over the UK and surrounding region. This phase investigates whether these same 

patterns can be applied to storm surge forecasting along the Dutch coast by matching them to SEAS5 

atmospheric fields. The results indicate that while certain patterns show some association with high-surge 

events, their overall predictive skill remains too weak for operational implementation. Additionally, at 

extended lead times, the surge distributions associated with different patterns become increasingly similar, 

reducing their ability to differentiate between high- and low-surge conditions. 

Phase II explores an alternative self-clustered classification approach using k-means clustering in 

combination with Principal Component Analysis (PCA) as a dimensionality reduction technique to generate 

new weather patterns tailored to Dutch storm surges. Several data selection methods, including surge 

thresholding, Maximum Dissimilarity Algorithm (MDA), and stratified sampling, were tested to optimise 

pattern separation. An entropy analysis is conducted to further assess the effectiveness of these patterns. 

The results showed that while self-clustered patterns provided slightly better differentiation than Neal’s 

predefined patterns, they retained considerable within-pattern variability, limiting predictive skill. At longer 

lead times, patterns became less distinct, reinforcing their decreasing predictive value over time. 

A proof-of-concept evaluation is conducted using storm Pia (December 2023) and a representative SEAS5 

storm to assess real-world applicability. The findings indicate that the self-clustered weather patterns 

systematically underestimate surge events across all lead times, reducing their reliability as a forecasting 

tool in their current form. 

This study demonstrates that while the tested weather pattern-based classification methods are not yet 

suitable for operational mid-term surge forecasting, they highlight avenues for improvement. Further 

refinements, such as sequential clustering and expanding the spatial domain, may enhance predictive skill 

and improve classification accuracy.  
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1   

   Introduction 
1.1 Background 
The Dutch coastal area is characterised by its low-lying topography, with significant portions of the land 

situated below sea level. This makes the Netherlands particularly vulnerable to coastal flooding. Ensuring 

the reliability of flood forecasting models is imperative to anticipate the arrival, timing, and intensity of 

these storms. While short-term forecasts (around one week ahead) facilitate timely operational decisions 

such as closing storm surge barriers, mid-term forecasting becomes crucial for maintenance and post-storm 

repair planning. Currently, the Water Management Centre Netherlands (WMCN) provides water level 

forecasting with a lead time of 10 days along the Dutch coast. However, there is an increasing demand for 

longer lead-time forecasts, similar to those already existing for the Dutch main rivers (Sumihar & Muis, 

2024).  

1.2 Dutch coastal flood defences 
To protect the hinterland from the threat of inundation, the Netherlands has developed an extensive system 

of flood defences. These include dikes, dunes, and storm surge barriers, which are strategically designed 

and constructed to withstand extreme weather conditions and prevent seawater from breaching the coastline. 

Notable examples include: 

• The Maeslant barrier (a movable 

flood barrier comprising two massive 

gates which protect densely 

populated areas, including the city of 

Rotterdam and its vital port). 

• The Eastern Scheldt barrier (a partly 

movable barrier protecting the 

Eastern Scheldt estuary while 

allowing tidal flow into the estuary to 

maintain the marine ecosystem). 

• The Afsluitdijk (a 32-km long dike 

and causeway system that separates 

the North Sea from the IJsselmeer, 

protecting a significant portion of the 

Dutch low-lying areas from flooding 

as well as facilitating land 

reclamation and agriculture) 

(Steenhuis, 2015).  

Figure 1-1 shows a map of the Netherlands, 

highlighting these flood defence structures. 

  

Oosterscheldekering

Maeslantkering

Afsluitdijk

 
Figure 1-1: Coastal flood defence infrastructure in the Netherland. 

Image adapted from (Rijkswaterstaat, 2009). 
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1.3 Relevance of mid-term forecasting 
Accurate storm surge forecasting is essential for coastal flood preparedness and operational decision-making 

in the Netherlands. The Water Management Centre Netherlands (WMCN) provides short-term storm surge 

forecasts (0–10 days) along the Dutch coast, enabling authorities to take necessary precautions such as: 

• Closing storm surge barriers (e.g., Maeslantkering, Eastern Scheldt Barrier). 

• Reinforcing flood defences where needed. 

• Issuing warnings to water managers and emergency response teams. 

These forecasts rely on physical models that simulate storm surge behaviour based on meteorological 

conditions, offering high reliability within a one-week timeframe. However, extending forecasts beyond 10 

days remains a significant challenge due to several factors: 

• The computational demands of high-resolution physical models, which require extensive 

processing power, making long-range forecasts time-intensive. 

• The lack of flexibility in existing models, which are pre-calibrated, making them difficult to adjust 

when testing alternative forecasting techniques. 

• The inherent uncertainties in mid-term atmospheric and oceanic conditions, leading to reduced 

forecast accuracy at longer lead times. 

Despite these limitations, there is a growing demand for improved mid-term storm surge forecasting, 

particularly for maintenance and repair planning of flood defences. Many Dutch storm surge barriers and 

dikes are aging, requiring more frequent maintenance to remain operational. Traditionally, maintenance 

activities were concentrated in the summer months, when the risk of severe storms was lower. However, 

due to increasing maintenance demands, Rijkswaterstaat aims to spread repair operations more evenly 

throughout the year. 

For this to be feasible: 

• Accurate mid-term forecasts are needed to determine whether maintenance activities can proceed 

safely. 

• If an extreme storm is expected, maintenance must be halted, postponed, or accelerated to ensure 

flood defences remain functional. 

• Optimised resource allocation could reduce disruptions and ensure that repairs are completed 

efficiently before a storm event. 

Given these challenges, WMCN have expressed growing interest in alternative forecasting approaches that 

can complement existing physical models. This study contributes to this effort by evaluating whether 

integrating large-scale weather pattern classification into storm surge forecasting can improve predictive 

forecasting for the Dutch coast. 

1.4 Problem statement 
In recent years, several extreme storm events have shown the limitations of mid-term storm surge 

forecasting. Notable examples include:  

• Storm Eunice and Storm Franklin (2022) – Mid-term forecasts underestimated storm intensities, 

affecting flood preparedness and response efforts (Zijderveld, Verboeket, Bosma, & IJpelaar, 2022). 
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• St. Jude’s Day Storm (2013) – The Met Office issued a five-day lead time warning for the UK, yet 

uncertainties in track and intensity made it difficult to anticipate the storm’s full impact (Met Office, 

2013). 

• Storm Xaver (2013) – Initial forecasts predicted a “significant risk” of flooding 5–6 days ahead, but 

some coastal regions experienced more severe impacts than expected (Wadey, et al., 2015). 

These cases illustrate a gap in mid-term storm surge forecasting, where predictions may lack the necessary 

lead time or precision for effective flood management. 

A potential way to address this challenge is weather pattern-based storm classification, which has been 

explored in operational forecasting systems such as the Coastal Decider developed by the Flood Forecasting 

Centre (FFC) in the UK (Neal, et al., 2018). This approach classifies storm events based on predefined large-

scale weather patterns in combination with high astronomical tides to estimate coastal flood risks. While 

this method has shown promise in the UK, its applicability to the Dutch coast remains unexplored. 

1.5 Research objectives 
The objective of this research project is to adapt and apply the Coastal Decider methodology developed by 

the Flood Forecasting Centre (FFC) in the United Kingdom to improve mid-term storm forecasting for the 

Dutch coast. By integrating large-scale weather pattern classification with nearshore hydraulic conditions, 

this study aims to enhance the accuracy of storm predictions beyond the traditional short-term forecasting 

horizon. 

Beyond the application of these predefined weather patterns, this study also develops a self-clustered set of 

weather patterns tailored to the Dutch coast, using SEAS5 pressure fields. By comparing these newly 

derived patterns with the predefined set of Neal et al. (2018), the research assesses their respective 

performance in mid-term storm surge forecasting and explores their potential added value in improving 

predictive capabilities. 

1.6 Research questions 
The main research question of this study is: 

To what extent can the integration of weather pattern-based storm classification contribute to improving 

mid-term forecasting accuracy for extreme storms impacting the Dutch coast? 

This main question is further explored through the following sub-questions: 

1. What are the key large-scale weather patterns associated with extreme storms impacting the Dutch 

coast and how do these identified weather patterns correlate with nearshore hydraulic conditions? 

2. How well do the weather patterns from Neal et al. (2018) perform in predicting storm surges along 

the Dutch coast? 

3. What is the added value of self-clustered weather patterns compared to Neal’s predefined weather 

patterns in mid-term storm surge forecasting? 

4. What are the potential practical implications and operational utility of integrating weather pattern-

based storm classification to mid-term storm forecasting for coastal flood preparedness and 

response strategies in the Netherlands? 

1.7 Research approach 
To address the posed research questions, this study is structured into two distinct phases, each focusing on 

different aspects of weather pattern-based storm surge forecasting: 
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Phase I: Evaluating Neal’s predefined weather patterns 

The first phase assesses the applicability of Neal’s predefined weather patterns to storm surge forecasting 

for the Dutch coast. SEAS5 pressure fields are matched to these patterns, and their relationship with extreme 

storm surges is analysed. This phase evaluates the effectiveness of Neal’s patterns in capturing key 

atmospheric conditions associated with high surge events and determines their predictive value for mid-

term storm forecasting. 

Phase II: Developing and assessing self-clustered weather patterns 

In the second phase, a new set of weather patterns is derived specifically for the Dutch coast using self-

clustering techniques on SEAS5 pressure fields. This phase explores whether locally optimised weather 

patterns provide improved predictive skill over Neal’s predefined set. The clustering process, classification 

performance, and the relationship between these patterns and coastal storm surges are examined to assess 

their added value in storm forecasting. 

1.8 Significance of the study 
This study contributes to both scientific knowledge and operational decision-making by: 

• Evaluating whether pattern-based classification can enhance mid-term storm forecasting. 

• Providing WMCN with insights into potential alternative forecasting methods. 

• Exploring how data-driven approaches could complement existing physical models for storm surge 

prediction. 

The findings may help inform future developments in storm surge forecasting, ultimately improving flood 

preparedness and risk management in the Netherlands. 

1.9 Thesis structure 
The remainder of this thesis is structured as follows: 

Chapter 2: Literature review provides an overview of the theoretical background relevant to this study. It 

includes a discussion on storm formation, storm surge dynamics, coastal flood risks, and forecasting 

methodologies, with a particular focus on weather pattern-based forecasting. Additionally, this 

chapter introduces the case study region: the Dutch North Sea coast. 

Chapter 3: Relevant datasets describes the meteorological and hydrodynamic datasets used in this

 research. It details data sources such as SEAS5, DCSM5, EMULATE and ERA5, explaining their

 relevance and role in storm surge forecasting. 

Chapter 4: Exploratory analysis SEAS5 examines the SEAS5 dataset, providing an initial analysis of its

 structure, key variables, and its potential for mid-term forecasting. Considerations related to initial

 conditions and surge behaviour are also explored. 

Chapter 5: Research method phase I outlines the methodology for applying Neal’s predefined weather

 patterns to SEAS5 atmospheric fields. It details data preprocessing, matching algorithms, and the l

 inking of surge events to specific weather patterns. 

Chapter 6: Evaluation of Neal weather patterns presents the results of Phase I, analysing the suitability

 of Neal’s predefined weather patterns for storm surge forecasting along the Dutch coast. It includes

 an assessment of pattern-matching accuracy, surge distribution, and predictive performance. 
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Chapter 7: Research method phase II describes the approach for generating self-clustered weather

 patterns using k-means clustering. This includes data selection, clustering methods, and

 dimensionality reduction techniques. 

Chapter 8: Data selection explores different methods for selecting relevant surge cases for clustering. The 

methods include surge thresholding, the Maximum Dissimilarity Algorithm, and stratified 

sampling. Their advantages, limitations, and impact on weather pattern classification are discussed. 

Chapter 9: Evaluation of generated weather patterns presents the results of Phase II, evaluating the

 newly generated weather patterns in their effectiveness in distinguishing storm surge variability and

 their potential improvements over existing forecasting approaches. 

Chapter 10: Evaluation of forecasting capability: a proof of concept explores the predictive performance

 of the weather pattern classification methods in a real-world forecasting scenario. Using storm Pia

 and a representative SEAS5 storm, this chapter assesses the practical viability of pattern-based surge

 forecasting and identifies key strengths and limitations of the approach. 

Chapter 11: Discussion interprets the findings from both research phases, providing an evaluation of the

 methodology and its implications. It addresses theoretical expectations versus actual performance,

 highlights methodological limitations, and discusses potential interdisciplinary applications of

 weather pattern-based forecasting. 

Chapter 12: Conclusion and recommendations summarises the main findings of the research and

 summarises the key finding of the study and discusses their broader significance. This chapter

 concludes with recommendations for future research and potential practical considerations. 

Appendices include additional details on supporting methodologies and supplementary analyses. 
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2  

Literature review 
 

2.1 Storm formation and development 
Storm formation along the Dutch coast in the North Sea is influenced by a convergence of atmospheric and 

oceanic factors. Cold polar air collides with warm, moist air from lower latitudes, creating a sharp 

temperature gradient. This contrast leads to the development of an instability along the polar front, initiating 

depression formation (Kraker, 2002). Typically, within 24 hours this instability evolves into a fully-

developed cyclone, characterised by a warm front extending north-eastward and a cold front trailing south-

eastward. The area between these fronts, known as the "warm sector," experiences overrunning of warm air 

and the surging of cold air. As the cyclone intensifies, wind speeds increase and precipitation becomes 

widespread. Eventually, the storm matures, with the cold front overtaking the warm front, resulting in the 

formation of an occlusion front. The storm gradually dissipates, losing energy as it moves over land or 

cooler waters (Aguado & Burt, 2001; Northern Vermont University, n.d.). Figure 2-1 schematically depicts 

the formation and development of such a polar front depression.  

The instability along the polar front is further amplified by the presence of the North Atlantic storm track, 

which often directs powerful low-pressure systems towards the region. As these low-pressure systems move 

over the relatively warm waters of the North Sea, they intensify, leading to the development of strong winds, 

heavy rainfall, and storm surges along the Dutch coast (Bell, Gray, & Jones, 2017). 

In addition to these large-scale drivers, 

atmospheric blocking can play a significant role 

in modulating storm development and storm surge 

dynamics. Blocking high-pressure systems over 

Scandinavia or Central Europe can obstruct the 

usual west-to-east progression of weather 

systems, causing cyclones to stall or redirect over 

the North Sea. This stagnation can lead to 

sustained onshore winds and prolonged high sea 

levels along the Dutch coast, increasing the risk of 

extreme storm surges  (Kautz, et al., 2022). Such 

blocking patterns can effectively alter storm 

tracks, either intensifying or prolonging adverse 

weather conditions, thereby shaping the severity 

of storm surge events in the region. A notable 

example of such an event was Storm Xaver in 

December 2013, where a strong anticyclone over 

southwestern Europe created a persistent and 

intensified pressure gradient across the North Sea. 

This blocking setup led to sustained north-north-

westerly winds, driving record-breaking storm 

surges along the German Bight and impacting the 

Dutch coastline as well (Kautz, et al., 2022). 

 
Figure 2-1: The formation and development of a polar front 

depression. Panel 1: Warm, moist air masses from the south meets 

cooler air masses from the north along the frontal boundary. Panel 

2: A disturbance develops on the frontal boundary between the two 

air masses. Panel 3: The warm front extends north-eastward and 

the cold front trails south-eastward. Panel 4: The depression is 

fully formed. Figure taken from (Chowdhury, 2017). 
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Winter along the Dutch coast brings about a higher likelihood of extreme weather conditions, with winter 

storms typically being associated with stronger baroclinic zones, characterised by sharp temperature 

contrasts. These contrasts are more pronounced in winter due to the larger difference in temperature between 

the poles and the equator (Schwierz, et al., 2010). 

 

2.2 Storm surge dynamics 
Storm surge is defined as an abnormal rise in sea level along a coast and is primarily caused by the intense 

winds and low atmospheric pressure associated with storms. Changes in atmospheric pressure produce 

immediate effects on the forces acting vertically on the sea surface, impacting sea level at all depths, while 

wind stress generates forces parallel to the sea surface (Pugh, 1987). Strong onshore winds push water 

towards the shore, resulting in sea levels rising above predicted tide levels (Holthuijsen, 2007). The effects 

of winds and air pressures are often intertwined in storms, making it challenging to separate their individual 

impacts. In extratropical storms like those occurring in the North Sea, both pressure and wind effects may 

be equally important, unlike tropical storms where wind stress typically dominates (Pugh, 1987). 

The space and time scales of storm surges closely mirror those of the generating storm, typically spanning 

a few hundred kilometres and lasting one to two days (Holthuijsen, 2007). However, responses to weather 

forces may vary, particularly in semi-enclosed seas like the North Sea, where surges can persist for more 

than one tidal cycle (Pugh, 1987). The extensive spatial scales and longer durations of extratropical storms 

mean that the effects of the Earth's rotation, represented by Coriolis forces, play a significant role in 

determining the seas' dynamical response, by diverting wind driven currents towards or away from the coast 

(Byrne, Horsburgh, Zachry, & Cipollini, 2017). Additionally, the natural resonant periods of seas and basins 

themselves influence the behaviour of storm surges (Pugh, 1987). 

Factors influencing storm surge severity 

Based on a comprehensive analysis of past historical flood events along the Dutch coast by de Kraker 

(2010), a trend in meteorological conditions contributing to the severity of storm surges and flooding events 

in the Netherlands has been observed. These conditions include: 

I. Wind direction – Storm surges associated with westerly and north-westerly gales pose significant 

risks to the Dutch coast. For example, the storm surge of 1 February 1953 was associated mostly 

with a north-westerly wind direction blowing from the North Sea. 

II. Moon phase - Storm surges coinciding with the Full Moon or New Moon phases tend to be more 

severe due to the gravitational influence on tides. Examples of this include the floods of 1953, 1906 

and 1808, which all occurred during periods of high spring tides.  

III. Duration - Longer-duration storm surges, spanning several tidal cycles, can exacerbate flooding 

risks. For instance, the flood event of 1953 lasted for approximately two days, during which three 

consecutive high spring tides caused unparalleled inundation levels. 

IV. Intensity - Storm surges with high wind speeds can lead to more extensive flooding and damage. 

During the storm surge of 1953, high wind speeds of force 10–11 on the Beaufort scale were 

observed, caused widespread devastation across the Dutch coastal region. 

Storm surge and tidal interactions 

Another important aspect to consider is the interaction between storm surge and tides, particularly when it 

comes to predicting coastal water levels. The timing of the storm surge relative to the astronomical tide has 

a significant impact on the actual observed water levels along the coast. Previous studies, such as Horsburgh 

& Wilson (2007) and Geerse (2020) have investigated these interactions and found that storm surges often 

do not coincide with the highest astronomical tide due to several reasons, namely: 
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I. Phase shift - The interaction between tide and surge involves a mutual phase alteration. Phase shift 

refers to the change in the timing of the tidal cycle due to the presence of a storm surge. Essentially, 

a storm surge can either advance (move forward) or retard (move backward) the timing of the peak 

of the tide. A positive storm surge (an increase in sea level) can increase the speed at which the tidal 

wave travels. This is because the surge adds to the water depth, and waves travel faster in deeper 

water. Conversely, a negative surge (a decrease in sea level) can slow down the tidal wave because 

it reduces the water depth. 

II. Tidal modulation - The generation of a storm surge is modulated by the tidal state. During low 

water, the water depth is shallower, which makes it easier for wind stress to raise the sea surface. 

This effect is less pronounced at high water when the water depth is greater. As a result, the surge 

is often larger at low water than at high water. This phenomenon is known as tidally modulated 

surge production. 

III. Traveling surge components - Surges can travel along the coast, and their timing relative to the 

tidal cycle can vary. When a surge is generated at a different location, it may arrive at a particular 

site at a different time relative to the tidal cycle than if it had been generated locally. This traveling 

nature of surge components means that the peak of the surge may not coincide with the peak of the 

astronomical tide when it reaches a specific location. 

2.3 Coastal flood risk 
The Netherlands faces a significant coastal flood risk due to its low-lying geography, with large areas 

situated below sea level. Coastal storm surges, driven by extreme weather events, pose a continuous threat 

to flood defences, infrastructure, and human safety. To manage these risks, the Dutch flood protection 

system relies on a combination of engineering measures, operational forecasting, and crisis management 

strategies (enw | expertisenetwerk waterveiligheid, 2017). 

Floor risk governance and institutional responsibilities 

In the Netherlands, the responsibility for decision-making regarding land protection against flooding falls 

primarily to Rijkswaterstaat and local water boards. These entities are tasked with the maintenance and 

operation of flood defence systems, as well as coordinating responses to potential flood threats. The 

operational teams within these organisations requiring timely and accurate information to make informed 

decisions about actions such as closing storm surge barriers. This is vital for ensuring the safety and security 

of the Dutch hinterland, where timely intervention can significantly mitigate the impact of coastal flood 

events. 

The strategy for coordinating responses to potential flood threats involves a collaborative effort between 

various parties, including (WMCN, 2023; enw | expertisenetwerk waterveiligheid, 2017):  

• Rijkswaterstaat (RWS) - The primary agency responsible for the maintenance and operation of 

national flood defences, including storm surge barriers, dikes, and dunes. RWS also plays a role in 

storm surge forecasting and crisis coordination. 

• Watermanagementcentrum Nederland (WMCN) - The national center for water management, 

responsible for storm surge forecasting, issuing flood warnings, and advising decision-makers 

during flood events. WMCN consists of multiple operational teams, including the Waterkamer, 

which monitors national water systems and issues warnings, and the Landelijke 

Coördinatiecommissie Overstromingsdreiging (LCO), which is activated when a (potential) 

flooding threat arises. In the lead-up to this, the Waterkamer and crisis advisory groups are already 

actively engaged in monitoring and decision-making.  

• Koninklijk Nederlands Meteorologisch Instituut (KNMI) - Provides meteorological forecasts 

and collaborates with WMCN to predict storm surges and high water events.  
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• Water Boards (Waterschappen) - Manage regional water infrastructure, oversee dike 

surveillance, and implement localised emergency measures. They are collectively represented by 

the Unie van Waterschappen (UvW). 

• Departementaal Coördinatiecentrum Crisisbeheersing (DCC-IenW) - The crisis management 

unit within the Ministry of Infrastructure and Water Management (IenW). It coordinates national-

level decision-making during major flood threats and serves as a link between the water crisis 

management structure and broader national crisis management organisations. 

• National Crisis Center (NCC) - Activated in extreme scenarios, leading national-level crisis 

management and public safety coordination. 

• Veiligheidsregio's (Safety Regions) - Regional emergency response units responsible for public 

safety, evacuations, and coordination with local municipalities during flood events. 

Flood warning system and colour coding 

Forecasts for storm surges are issued jointly by RWS and KNMI. When high water levels are expected, 

WMCN takes over coordination and advises local authorities on actions to be taken. The accuracy of storm 

surge forecasts is imperative for optimal operation of storm surge barriers and guidance for local authorities, 

with preparation benefiting from forecasts up to 10 days ahead (de Vries, 2013). The warning system 

employs color-coded alerts to communicate the threat posed by high water. This system, outlined in WMCN 

(2023) ensures that all involved authorities, from water managers to crisis coordinators, operate with a clear 

understanding of the severity of an impending flood event. Table 2-1 summarises these alert levels. 

Table 2-1: Flood risk warning levels in the Netherlands. 

Warning 

Level 

Description       Actions 

Green Normal 

conditions 
- No imminent flood risk. 

- Routine monitoring by water authorities. 

- No special measures required. 

Yellow Increased 

awareness 

- Potential flood threat detected, requiring heightened readiness. 

- Water levels are expected to rise but remain manageable. 

- Water authorities take standard pre-emptive measures. 

- Can occur multiple times a year. 

Orange High alert - Serious flood risk. 

- Authorities take further pre-emptive measure.  

- Occurs on average once every 5 years. 

Red Extreme 

flood risk  

- Severe flooding is imminent or occurring. 

- Full-scale crisis response measures are implemented.  

- Occurs on average once every 20-100 years. 

These warnings are based on the probability of reaching certain predefined levels of storm surge, as outlined 

in Table 2-2 by de Vries (2013). When the probability of reaching at least the ‘Warning’ level within 8 days 

in any coastal region exceeds 25%, KNMI contacts WMCN, triggering an escalation ladder for coordination 

of actions to be taken to deal with the possible consequences of high water. 
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Table 2-2: Significant levels for storm surge forecasts (de Vries, 2013) 

Level Action Exceedance [𝒚𝒆𝒂𝒓−𝟏] 

Information KNMI informs WMCN 10  

Pre-warning WMCN issues limited warnings 5  

Warning WMCN office opened, issues warnings 2  

Regional Alarm WMCN advises local authorities, LCO active 0.2  

National Alarm DG-RWS leading 5 ∗ 10−2 − 10−2  

Critical NCC leading 5 ∗ 10−3 − 10−3  

2.4 Forecasting methods 
Storm surge forecasting is important for predicting and preparing for extreme storm events and safeguarding 

coastal communities from potentially devastating inundation. To achieve accurate predictions, two main 

approaches are commonly used: numerical modelling and statistical modelling. This section explores these 

approaches and various methodologies within each category, drawing from past studies and literature 

research. 

Numerical modelling vs. statistical modelling 

Numerical modelling involves solving physical equations to simulate storm surge dynamics, while statistical 

modelling establishes relationships between atmospheric variables and storm surge outcomes using 

historical data. 

• Numerical weather prediction (NWP) - Numerical weather prediction (NWP) involves the use of 

computer models to simulate atmospheric processes and predict future weather conditions (von 

Storch, 2014). These models utilise equations of motion and mass conservation to forecast 

atmospheric variables such as wind speed, air pressure, and precipitation. NWP provides input data 

for storm surge models by predicting the meteorological conditions that drive storm surge events 

(Li & Nie, 2017). 

• Statistical models - Statistical models utilise past data to identify patterns and relationships between 

meteorological variables and storm surge outcomes. These models, while simple and fast, may 

suffer from over- or under-specification, limiting their robustness and ability to account for 

changing geophysical conditions, such as global climate change or changes to the near shore 

topography due to for instance engineering works. Such limitations are inherent to the method, 

given its reliance on statistics from past events (von Storch, 2014).  

The main advantage of numerical models is that they provide detailed and high-resolution representations 

of physical processes. Additionally, they can predict storm surges at locations without direct observations, 

a significant advantage over purely statistical methods (Woth, 2005). However, they are computationally 

expensive and require extensive data for boundary conditions and accurate local modelling (Costa, Idier, 

Rohmer, Menendez, & Camus , 2020). The main advantages of statistical models are their simplicity and 

low computational cost, making it feasible to run multiple simulations for long-term predictions (Costa, 

Idier, Rohmer, Menendez, & Camus , 2020; Woth, 2005). However, they often require extensive historical 

data and may struggle with short-term predictions and extreme events, especially in regions with complex 

geography like enclosed seas and bays (Costa, Idier, Rohmer, Menendez, & Camus , 2020). 

Examples of numerical modelling methods 

I. Hydrodynamic models 

Hydrodynamic models simulate currents and water levels in coastal regions by solving equations of motion 

and mass conservation (von Storch, 2014). These models, such as the Dutch continental shelf model 

(DCSM), use numerical methods to discretise equations and incorporate boundary conditions from 
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meteorological forecasts (Verlaan, Zijderveld, de Vries, & Kroos, 2005). By considering factors such as 

wind stress, atmospheric pressure, and Coriolis force, hydrodynamic models predict storm surge dynamics 

(Li & Nie, 2017). 

II. Ensemble forecasting 

Ensemble forecasting involves running multiple simulations with variations in initial conditions, boundary 

conditions and model physics to account for the range of uncertainty in model inputs and formulation 

(Flowerdew, Horsburgh, & Mylne, 2009). By generating a range of possible outcomes, ensemble forecasting 

provides probabilistic forecasts. This approach contrasts with traditional single-model forecasting methods 

by explicitly considering the variability and uncertainty inherent in the atmospheric conditions driving storm 

surge events (Flowerdew, Horsburgh, & Mylne, 2009). Ensemble forecasts offer several advantages, as 

highlighted by Kohno et al. (2018). They provide various storm surge values such as mean, maximum, and 

minimum, allowing for a comprehensive assessment of potential outcomes. Additionally, ensemble 

forecasts offer spread information, aiding in the interpretation of reliability and the range of predicted values. 

However, achieving this higher reliability requires a larger number of forecast members, which in turn 

demands more computational resources. 

III. Data assimilation techniques 

Data assimilation techniques integrate real-time observational data, such as wind field datasets (Byrne, 

Horsburgh, Zachry, & Cipollini, 2017), satellite altimetry data (Madsen, Høyer, Fu, & Donlon, 2015), tide 

gauge measurements (Etala, Saraceno, & Echevarría, 2015) and atmospheric pressure observations 

(Toyoda, Fukui, Miyashita, Shimura, & Mori, 2021) into numerical models to improve forecast accuracy. 

However, as emphasised by Verlaan, Zijderveld, de Vries, & Kroos (2005), it is crucial to validate the data 

before assimilation. Incorporating erroneous observations can have a disproportionately detrimental impact 

on the forecast, outweighing the benefits of correct observations. If implemented correctly, these techniques 

help correct model biases and enhance the reliability of storm surge predictions, particularly during rapidly 

evolving storm events. 

Examples of statistical modelling methods 

I. Statistical downscaling  

Statistical downscaling is a technique used to derive high-resolution climate or weather information from 

coarse-resolution global climate model outputs. It involves establishing statistical relationships between 

large-scale atmospheric variables (predictors) and local-scale surface variables (predictands) using 

observational data (Feddersen & Andersen, 2005). The main steps in statistical downscaling are:  

i. Identifying relevant large-scale predictors from global climate model outputs that influence local 

climate variables of interest.  

ii. Developing statistical models that relate the predictors to observed local climate variables using 

techniques like regression, weather typing, or neural networks.  

iii. Applying statistical models to global climate model outputs to obtain downscaled local climate 

projections. 

There are several approaches used in statistical downscale, including: 

i. Regression-based approaches - These include methods like artificial neural networks (ANNs), 

which have been used for short-term local predictions and studying extreme events (Costa, Idier, 

Rohmer, Menendez, & Camus , 2020; Schoof, 2013).  

ii. Analog methods - These methods search historical records for patterns matching current conditions 

to predict local climate, requiring long historical series (Schoof, 2013). 
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iii. Weather generators - These stochastic models generate plausible daily weather data sequences for 

impact modelling, useful when observational data is insufficient (Schoof, 2013). 

iv. Weather-type approaches - These cluster atmospheric data into weather types for climate variability 

studies, often used for monthly and annual projections (Costa, Idier, Rohmer, Menendez, & Camus 

, 2020; Rozas Rojas, 2017; Camus, et al., 2014; Schoof, 2013). 

 

II. Deep learning / Neural Networks based forecasting 

These methods utilise artificial intelligence techniques, such as deep learning algorithms or neural networks, 

to learn complex relationships between input meteorological data and storm surge outcomes, enabling data-

driven forecasting approaches. Several studies have utilised different types of neural network architectures 

for storm surge forecasting, including Convolutional Neural Networks (CNN) (Xie, Xu, Zhang, & Dong, 

2023), Long Short-Term Memory (LSTM) (Bai & Xu, 2022), Artificial Neural Networks (ANN) (Ramos-

Valle, Curchitser, Bruyère, & McOwen, 2021) and Neural Networks (NN) (Lee, 2006). These methods offer 

the flexibility to capture nonlinear relationships in the data and can improve forecast accuracy, especially 

when traditional methods may struggle to account for complex interactions between meteorological and 

oceanographic variables. Additionally, deep learning models often exhibit faster computational speeds 

compared to their numerical counterparts, enhancing efficiency in storm surge prediction tasks. 

Summary forecasting methodologies 

Table 2-3 provides an overview of the presented storm surge forecasting methodologies and their respective 

inputs and outputs. 
Table 2-3: Overview of storm surge forecasting methodologies 

Methodology Input  Output 

Numerical 

Weather 

Prediction 

(NWP) 

Atmospheric variables (e.g., wind speed, 

air pressure, temperature, humidity, 

precipitation), sea surface temperature, 

wind stress, atmospheric pressure 

gradients 

Meteorological conditions driving 

storm surge events, including wind 

fields, atmospheric pressure patterns, 

and precipitation forecasts 

Hydrodynamic 

Models 

Meteorological conditions (e.g., wind 

stress, atmospheric pressure), 

bathymetry/topography, tidal forcing, 

land-sea boundary conditions 

Currents, water levels, storm surge, 

inundation map, wave heights, coastal 

erosion rates 

Ensemble 

Forecasting 

Variations in initial conditions (e.g., 

atmospheric pressure, wind speed, 

temperature), boundary conditions (e.g., 

sea surface temperature, land-sea 

friction), model physics 

Probabilistic forecasts of storm surge 

magnitude and extent, ensemble mean, 

maximum, and minimum values, spread 

information indicating forecast 

uncertainty 

Data 

Assimilation 

Techniques 

Real-time observational data (e.g., wind 

field datasets, satellite altimetry data, 

tide gauge measurements, atmospheric 

pressure observations), historical storm 

surge and meteorological data 

Improved forecast accuracy through 

assimilation of observational data into 

numerical models, corrected model 

biases, enhanced reliability of storm 

surge predictions 

Statistical 

Models 

Historical storm surge data, historical 

meteorological data (e.g., wind speed, 

atmospheric pressure, storm track) 

Probability of storm surge occurrence 

based on past events and meteorological 

conditions 

Deep Learning / 

Neural 

Networks 

Meteorological data (e.g., wind speed, 

atmospheric pressure, temperature), 

historical storm surge data, geographic 

features (e.g., bathymetry, shoreline 

characteristics) 

Storm surge predictions based on 

learned relationships between 

meteorological variables and storm 

surge outcomes 
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2.5 Weather-pattern based forecasting 
One way to enhance forecasts is through the use of pre-defined weather patterns, which efficiently assign 

ensemble members to the most suitable type, maximising information while minimising data quantity (Neal, 

Fereday, Crocker, & Comer, 2016). This section summarises the methodology employed in defining and 

generating weather patterns, as adapted from the work of (Neal, et al., 2018; Neal, Fereday, Crocker, & 

Comer, 2016). The approach uses cluster analysis techniques to delineate representative weather patterns 

over the UK and surrounding European area, making them suitable for application to the Dutch coastal 

context. 

I. Data preprocessing 

For the weather pattern generation, the EMSLP dataset was used, which provides a comprehensive record 

of daily mean sea level pressure (MSLP) fields spanning from 1850 to 2003 over the European and North 

Atlantic region (Allan, 2007). It should be noted that some biases exist in this dataset, particularly in regions 

with sparse data coverage or during summer months when local climatic conditions are harder to resolve. 

The dataset also tends to smooth out extreme values due to its gridding and infilling procedures (Ansell, et 

al., 2006). Before clustering, the smoothed climatology was removed from each field, thereby reducing the 

influence of the seasonal cycle on the pattern classification. Smoothed climatology refers to the long-term 

average or trend in the data, which can obscure short-term variations. 

II. Cluster analysis choices 

The cluster method involved several decisions to be made, namely: 

• Single set vs. distinct sets - The choice was made to produce a single set of patterns for the entire 

year, as distinct sets for each season would have resulted in excessive pattern numbers and hindered 

inter-season comparisons. 

• Number of patterns - A final set of 30 patterns was chosen, striking a balance between pattern 

richness versus similarity. 

• Spatial domain choice - Through iterative evaluation and objective metrics, the domain (30°W–

20°E; 35°–70°N) was identified as the most suitable, optimising temperature and precipitation 

reconstruction. This domain was primarily chosen for the UK area but also features the surrounding 

European area, making it suitable for use along the Dutch coast as well. 
 

III. Cluster analysis 

To analyse the pre-processed Mean Sea Level Pressure (MSLP), a simulated annealing variant of k-means 

clustering was employed. K-means clustering is a method used to partition a dataset into a predetermined 

number of clusters (denoted as 𝑘) based on similarity criteria. The process involves the following steps 

(Sharma, 2024): 

i. Initialisation - Randomly select 𝑘 data points from the dataset as initial cluster centroids. 

ii. Assignment - Assign each data point in the dataset to the nearest cluster centroid based on a chosen 

distance metric, such as Euclidean distance. 

iii. Update - Recalculate the centroids of the clusters based on the mean of all data points assigned to 

each cluster. 

iv. Iteration - Repeat the assignment and update steps until convergence, i.e., until the centroids no 

longer change significantly, or a predefined number of iterations is reached. 

Simulated annealing introduces a probabilistic approach to updating cluster assignments and centroids, 

allowing for robust exploration of the solution space. This method helps avoid local optima by occasionally 

accepting worse solutions based on a probability distribution, which can lead to improved clustering results 

compared to traditional k-means algorithms (Bandyopadhyay, Maulik, & Pakhira, 2001). For a more 
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detailed explanation of the theory behind k-means cluster, refer Appendix B: Theory explained (Section 

B.2). 

IV. Resultant weather patterns 

The outcome of the clustering process yielded a set of 30 weather patterns, designed primarily for medium-

range forecasting up to 15 days (see Figure 2-2). These patterns capture variations within broad-scale 

circulation types. The patterns are ordered according to their annual historic occurrence. Lower numbered 

patterns are more prevalent during the summer months, characterised by weaker MSLP anomalies. 

Conversely, higher numbered patterns are dominant in winter, exhibiting stronger MSLP anomalies.  

 
Figure 2-2: Weather patterns definitions. Figure taken from (Neal, Fereday, Crocker, & Comer, 2016). 
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2.6 Study area 

2.6.1 North Sea 

The North Sea, bordered by the United Kingdom, Norway, Denmark, Germany, Belgium, and the 

Netherlands, is a shallow shelf sea adjacent to the North Atlantic (see Figure 2-3). What sets the North Sea 

apart, particularly in relation to flood risk, is its shallow depths and relatively narrow continental shelf, 

which amplify the impacts of extreme weather events (Sünderman & Pohlmann, 2011). The North Sea's 

proximity to densely populated coastal areas exacerbates the impact of flooding and coastal inundation, 

rendering coastal communities vulnerable to storm surges and their devastating consequences for lives, 

property, and critical infrastructure. 

Den Helder

Harlingen

Delfzijl

IJmuiden

Hoek van Holland

Vlissingen

 
Figure 2-3: Map of the North Sea (left) and zoom-in of the Dutch coast (right). Image adapted from (Halava, 2015). 

Tides 

The dynamics of the North Sea are significantly influenced by astronomical tides resulting from the 

gravitational forces of the moon and sun acting on the Atlantic Ocean. Semidiurnal tides, particularly the 

M2 and S2 components, predominate at the latitudes concerned and are further amplified in the North Sea 

by resonance with the configuration of the coasts and depth of the seabed (Ozer & Legrand, 2015). These 

tidal oscillations contribute to the overall circulation and water mass transports within the North Sea. 

Atmospheric dynamics 

The atmospheric dynamics are important in shaping the circulation patterns and water mass development in 

the North Sea. Prevailing westerly winds on the northwest European shelf, associated with a meandering 

upper troposphere jet stream, contribute to the reinforcement of the cyclonic residual circulation induced by 

the tide (Ozer & Legrand, 2015). These winds, along with cyclonic activity embedded within the belt of 

westerly winds, are stronger in winter than in summer, further influencing the dynamics of the North Sea. 
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Storm surges 

Storm surges constitute the most serious hazard in the North Sea region (Ozer & Legrand, 2015; Sünderman 

& Pohlmann, 2011). The North Sea's relatively shallow depths and its broad connection to the Atlantic 

Ocean allow for the free exchange of momentum, energy, and matter between the two seas, contributing to 

the development and propagation of storm surges (Sünderman & Pohlmann, 2011). Storm surges, once 

generated, travel in the same manner as tides, posing significant risks to coastal communities and 

infrastructure along the North Sea coastlines. 

2.6.2 Dutch coast 

The Dutch coast spans approximately 450 kilometres along the North Sea and features a diverse range of 

geographical features, including sandy beaches, dunes, tidal flats, and reclaimed land. Based on literature, 

this coastal stretch may be divided into three main areas: the Delta area, the coast of Holland and the Wadden 

area (van der Spek, et al., 2022; Stolk & Dillingh, 1989). 

Delta area (Southwest) 

The Delta Area is notable for its peninsulas separated by estuaries and former tidal basins, which have been 

shaped significantly by human interventions of the past aimed at flood protection and land reclamation 

(Stolk & Dillingh, 1989). The shoreface of the Delta Area consists of extensive ebb-tidal deltas with low-

gradient platforms, dissected by tidal channels, and topped with intertidal to supratidal sand bars (van der 

Spek et al., 2022). Significant constructions in this area, include the storm-surge barrier in the Eastern 

Scheldt and the dams closing off the Veerse Gat, Grevelingen, and Haringvliet. These structures have 

transformed the region, reducing the influence of tidal processes and increasing the prominence of human-

managed coastal features (Stolk & Dillingh, 1989). 

Coast of Holland (West) 

Stretching from Hoek van Holland to Den Helder, the Coast of Holland is characterised by a nearly 

continuous row of dunes with minimal interruptions from islands or tidal inlets. This region is primarily 

influenced by wave action rather than tidal forces due to the relatively steep gradient of the shoreface, which 

supports shore-parallel breaker bars that are heavily influenced by wave energy (van der Spek, et al., 2022; 

Stolk & Dillingh, 1989). Key infrastructural elements include the sea dikes at Hondsbossche Zeewering and 

Helderse Zeewering, and the ports of Scheveningen and IJmuiden, which are notable interruptions in the 

otherwise continuous dune system forces (Stolk & Dillingh, 1989). 

 

Wadden Area (North) 

The Wadden Area, extending from the north of the Netherlands to the German border, is characterised by 

its barrier islands and extensive tidal flats. This region is heavily influenced by tidal processes, with larger 

tidal ranges and numerous tidal inlets (Stolk & Dillingh, 1989). A major transformation in this region was 

the construction of the Afsluitdijk, a 30-kilometer-long dam completed in 1932, which closed off the 

Zuiderzee from the North Sea, turning it into the freshwater IJsselmeer. This project significantly altered 

the hydrodynamics of the Wadden area, reducing the tidal influence on the former Zuiderzee while 

protecting the inland regions from flooding (Stolk & Dillingh, 1989). 

2.6.3 Considered locations 

Six locations have been selected for this study: Delfzijl, Harlingen, Den Helder, IJmuiden, Hoek van 

Holland, and Vlissingen (see Figure 2-3). These stations represent the six main tidal stations in the 

Netherlands, which are evenly distributed along the Dutch coast and have a long history of measurements 

(Stolte, et al., 2023). Most of these stations have been continuously measuring the water level for 

approximately 150 years. 
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Different wind fields may be relevant for storm surges at these different locations. For example, van den 

Brink H. (2020) showed that high storm surges in Harlingen are mainly caused by large-scale depressions 

with a strong west or northwest component, with a core around or above 60ºN. In contrast, in Hoek van 

Holland, there is a much greater chance that smaller, more localised depressions generate extreme storm 

surges. One possible explanation is that the response time of the storm surge in Harlingen may be longer 

than that in Hoek van Holland, meaning that smaller, faster-moving systems will more frequently lead to 

extreme water levels in Hoek van Holland as compared to Harlingen. Another possible explanation is that 

prolonged storms lead to a filling of the North Sea basin, resulting in extra high water levels; a phenomenon 

which does not occur in Hoek van Holland because the water drains away through the English Channel.  
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3  

 Relevant datasets 

This chapter provides an overview of the meteorological and hydrodynamic datasets used in this study. The 

datasets can be divided into two main categories: 

1. Datasets used for storm classification and surge analysis in this study: 

a. SEAS5 - Provides mean sea level pressure (MSLP) fields, which are used to classify large-

scale atmospheric conditions. 

b. DCSM5 - Provides water level and tidal data at several locations along the Dutch coast, 

corresponding to the classified weather patterns. 

2. Datasets used by (Neal, Fereday, Crocker, & Comer, 2016) to generate and apply their predefined 

weather patterns. 

a. EMULATE - Used to generate the predefined weather patterns covering the period 1850–

2003. 

b. ERA5/ERA-Interim - Used to apply the predefined weather patterns to atmospheric 

conditions from 2004–2022. 

3.1 SEAS5, HARMONIE and DCSM5 
ECMWF SEAS5 

The European Centre for Medium-Range Weather Forecasts System 5 (ECMWF SEAS5) is a seasonal 

forecasting system developed by ECMWF to provide long-term weather and climate predictions. Launched 

in November 2017, SEAS5 builds upon previous ECMWF forecasting models, improving predictive 

capabilities through ensemble forecasting techniques (ECMWF, 2018). 

SEAS5 is designed to capture the effects of large-scale climate variations, which can persist for several 

months. While traditional weather models demonstrate predictive skill up to two weeks ahead, uncertainty 

increases significantly beyond this period due to the chaotic nature of the atmosphere (ECMWF, 2021). 

SEAS5 attempts to capture this uncertainty using ensemble forecasting, where multiple simulations are run 

with slightly varied initial conditions. This approach provides a range of possible outcomes, rather than  a 

single deterministic forecast, offering probabilistic 

insights into future weather trends.  

This concept is illustrated in Figure 3-1, which 

demonstrates how an ensemble prediction system 

works. Initially, the forecasts start from nearly 

identical conditions, but over time, small variations 

in initial conditions cause the forecast trajectories 

to diverge. The spread of these trajectories 

represents the range of possible weather scenarios, 

with higher uncertainty at longer lead times. 

SEAS5 takes various inputs such as historical weather data, sea surface temperatures, and atmospheric 

composition data to initialise its simulations. It then uses numerical algorithms to simulate atmospheric 

 
Figure 3-1: Ensemble prediction system as used by ECMWF  

(adapted from (Grönquist, et al., 2019))  
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dynamics, including interactions between the atmosphere and ocean, and predicts future weather conditions. 

The model produces output variables such as temperature, precipitation, wind speed, and atmospheric 

pressure (ECMWF, 2021). 

Each month, SEAS5 generates an ensemble of 51 global seasonal forecasts, with a lead time of up to seven 

months. Additionally, hindcasts (reforecasts) spanning 1981–2016 are used to calibrate the system and 

verify its predictive performance (ECMWF, 2021). SEAS5 has a spatial resolution of 0.25 degrees 

(approximately 25 km) and a temporal resolution of 6 hours, providing four time steps per day (00:00, 06:00, 

12:00, and 18:00). 

DCSM5 

DCSM5 (Dutch Continental Shelf Model version 5) is a hydrodynamic model developed by Rijkswaterstaat, 

Deltares, and the Royal Netherlands Meteorological Institute (KNMI). This model is specifically tailored to 

simulate storm surge dynamics in the Dutch continental shelf region, considering the complex interactions 

between ocean currents, tides, and atmospheric forcing. The model operates on a 1/12° × 1/18° grid 

(approximately 8 km × 8 km) over the northwest European shelf region, utilising inputs such as 

meteorological data, oceanographic observations, and coastal topography to initialise its simulations (van 

den Brink H. , 2020; Sterl, van den Brink, de Vries, Haarsma, & van Meijgaard, 2009).  

To infer surge, DCSM5 utilises meteorological inputs such as mean sea level pressure and wind stress, 

rather than direct wind speed. It then employs advanced numerical methods to solve the shallow water 

equations, accounting for factors such as bottom friction, wind stress, and astronomical tide at the open 

boundaries (van den Brink H. , 2020). The model produces outputs such as water levels, currents, and wave 

heights.  

This model is operationally used by KNMI to predict water levels along the Dutch coast and by 

Rijkswaterstaat to produce water level forecasts for the North Sea and coastal stations, providing predictions 

up to 48 hours in advance (Zijderveld, Verboeket, Bosma, & IJpelaar, 2022). It should be noted that the 

Water Management Centre Netherlands (WMCN) operationally uses DCSM6 for its forecasts. DCSM6 is 

the successor of DCSM5 and operates at a higher resolution of 1/40° × 1/60° (approximately 1.6 km × 1.6 

km), which is five times higher than the resolution of DCSM5 (van den Brink H. , 2020). However, DCSM5 

is used for this study, as it was used to process SEAS5 simulations due to its significantly faster computation 

speed compared to DCSM6. 

Furthermore, DCSM5 is integrated with inputs from the HARMONIE model, providing additional 

meteorological data, and with the ECMWF ensemble model, extending the forecast horizon to up to 10 days 

(Zijderveld, Verboeket, Bosma, & IJpelaar, 2022). 

3.2 EMULATE 
As detailed by Ansell et al. (2006), the European and North Atlantic daily to Multidecadal climate variability 

(EMULATE) dataset was developed to examine atmospheric circulation patterns across Europe and the 

North Atlantic on a multidecadal scale. Funded by the European Community, the EMULATE project sought 

to improve understanding of climate variability by creating a long-term, daily mean sea level pressure 

(MSLP) dataset covering 1850 to 2003. Led by Professor Phil Jones at the University of East Anglia’s 

Climate Research Unit, this project was a collaborative effort involving multiple European institutions, 

including the Met Office Hadley Centre and other universities across Europe. 

Ansell et al. (2006) explain that the primary aim of the EMULATE project was to define and characterise 

long-term atmospheric circulation patterns by examining trends in persistence, transitions, and the amplitude 

of dominant patterns over a 154-year period. The project addressed the need for an extended, gridded MSLP 

dataset, as previous records were constrained by both length and spatial coverage. As a result, EMULATE 
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offers a valuable resource for assessing atmospheric influences on climate extremes and exploring the 

relationship between circulation patterns and sea surface temperature (SST) trends over the North Atlantic. 

The EMULATE dataset’s EMSLP fields were generated by blending data from 86 land-based and island 

pressure stations with marine observations from the International Comprehensive Ocean–Atmosphere Data 

Set (ICOADS) over a 5° latitude-longitude grid. The dataset provides reliable coverage for the North 

Atlantic-European region (from 70°W to 50°E and 25°N to 70°N). Early EMSLP data (1850-1880) rely 

solely on sparse terrestrial and marine observations, and from 1881 onwards, the dataset incorporates 

additional historical Northern Hemisphere gridded MSLP data, enhancing its temporal and spatial coverage. 

The EMULATE dataset uses reduced-space optimal interpolation (RSOI) to achieve spatial continuity, 

allowing for more complete representation in data-sparse regions. This approach enables EMSLP to capture 

approximately 80-90% of the daily variability when validated against historical and modern reanalysis 

datasets like ERA-40. Despite its comprehensive design, Ansell et al. (2006) note some limitations in data-

sparse areas, such as Greenland and parts of the Middle East, due to limited observational coverage in the 

early record. 

3.3 ERA5/ERA-Interim 
The ERA5 and ERA-Interim reanalysis datasets, produced by ECMWF, provide detailed climate and 

weather information, capturing a wide range of atmospheric, land surface, and oceanographic variables over 

extended historical periods. These datasets support climate research, model validation, and decision-making 

for applications like flood prediction, agricultural planning, and renewable energy production. 

 

ERA-Interim 

ERA-Interim, spanning from 1979 to August 2019, was ECMWF's primary reanalysis dataset until it was 

succeeded by ERA5. This dataset has a spatial resolution of approximately 79 km globally and includes 60 

vertical levels up to 0.1 hPa. ERA-Interim uses a 4D-Var data assimilation system based on ECMWF’s IFS 

Cycle 31r2 model version, which integrates observational data to provide improved atmospheric state 

estimates. Data are provided in six-hourly increments, with sub-daily forecast fields available at three-hour 

intervals up to 24 hours (ECMWF, 2023). 

ERA5 

ERA5, the successor to ERA-Interim, offers several advancements, covering the period from January 1940 

to the present with a significantly enhanced spatial resolution of about 31 km and 137 vertical levels up to 

0.01 hPa. Produced using an updated version of ECMWF's IFS (Cycle 41r2), ERA5 provides hourly data, 

enabling higher temporal granularity. The dataset also includes ensemble data assimilation (EDA) with a 

ten-member ensemble at 63 km resolution, offering uncertainty estimates to support a wide range of 

applications in climate monitoring and real-time weather analysis (ECMWF, 2024). 

 

ERA5 replaces ERA-Interim with a higher-resolution, continuously updated dataset that improves on the 

spatial and temporal detail, precision, and range of applications initially established by ERA-Interim.  
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EXPLORATORY ANALYSIS SEAS5         
This chapter provides an exploratory analysis of the used SEAS5 dataset. Key 
sections include a brief overview of the dataset and its atmospheric and 
hydrodynamic variables, handling initial conditions and investigating the 
atmospheric drivers behind extreme surge events through case studies of high 
and low surges. 
 

  4 
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RESEARCH METHOD 
This chapter details the process of matching SEAS5 atmospheric fields with 
Neal’s predefined weather patterns and linking them to coastal surge events. 
Key steps include data preprocessing, evaluating matching algorithms, and 
analysing surge distributions for mid-term surge forecasting. 

  5 
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NEAL WEATHER PATTERNS 
This chapter evaluates the application of Neal’s weather patterns to the 
classification of the SEAS5 dataset. Key analyses include a comparison of 
matching methods, the relationship between Neal’s patterns and surge 
variability, and the suitability of these patterns for mid-term surge prediction. 
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4  

 Exploratory analysis SEAS5  

This chapter provides an exploratory analysis of the SEAS5 dataset to understand its structure and dynamics, 

focusing on atmospheric drivers of storm surge events along the Dutch coast. The aim is to gain insights 

into the dataset and identify considerations for its effective use in subsequent analyses. 

4.1 SEAS5 dataset overview 
The SEAS5 dataset used in this study spans the period from 1981 to 2023, offering extensive temporal 

coverage of 43 years. This dataset includes nearly 3.5 million daily records, equivalent to over 9,000 years 

of synthetic data when accounting for the ensemble members. Each day is represented by four time steps: 

00:00, 06:00, 12:00, and 18:00. SEAS5 contains a wide range of atmospheric variables, the following of 

which were included in the dataset provided for this research: 

• 𝑚𝑠𝑙𝑝 - Mean sea-level pressure [hPa] 

• 𝑢10 - Zonal wind component at 10 meters [m/s] 

• 𝑣10 - Meridional wind component at 10 meters [m/s] 

• 𝑖𝑒𝑤𝑠 - Instantaneous eastward turbulent surface stress [N/m²] 

• 𝑖𝑛𝑠𝑠 - Instantaneous northward turbulent surface stress [N/m²] 

Additionally, hydrodynamic variables were computed by KNMI using the Dutch Continental Shelf Model 

version 5 (DCSM5) based on the SEAS5 dataset. These include: 

• 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 – Total water level [m+NAP] 

• 𝑡𝑖𝑑𝑒 – predicted tide level [m+NAP] 

From these hydrodynamic variables, the storm 

surge can be inferred as the difference between the 

water level and the tide. 

The SEAS5 dataset is a global model, but for this 

study, only data within the domain of DCSM5 was 

used. This dataset covers a geographical area from 

13.5°W to 13.5°E longitude and 47.0°N to 65.5°N 

latitude, encompassing the North Sea, parts of the 

Dutch coast, and surrounding areas of Western 

Europe. SEAS5 offers a fine spatial resolution of 

0.25 degrees (approximately 25 km), enabling the 

capture of localised atmospheric and 

hydrodynamic variations. The spatial domain used 

in this study, including the grid locations where 

time series of sea level and tides from DCSM5 

were computed, is shown in Figure 4-1.  

 
Figure 4-1: Map of the SEAS5 domain used in this study. The grid 

points indicate the locations where time series of sea level and tide 

data from DCSMv5 were computed. 
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4.2 Considerations to account for initial conditions 
SEAS5 operates as an ensemble forecasting system, generating 51 global seasonal forecasts every month, 

each extending up to seven months. To ensure accuracy and reliability in the analysis, only the last six 

months of each simulation are retained, with the first month discarded. This decision addresses two key 

challenges associated with initial conditions: 

1. Strong initial correlation - The initial conditions for all ensemble members are identical, leading 

to artificial correlations in the first month. This is evident from Figure 4-2, where the top left panel 

displays the water level over time, with the mean and ±1 standard deviation highlighted. The top 

right panel shows the corresponding tide levels, which do not vary across ensemble members as the 

tide is deterministic. In contrast, the water level does vary across ensembles due to differences in 

atmospheric conditions. The bottom left panel illustrates the surge values, again with the mean and 

standard deviation included. The bottom right panel zooms in on the first month, highlighting the 

initial lack of variability in surge values due to identical initial conditions across ensemble members. 

2. Initialisation effects - During the initialisation period, water level calculations begin at zero. This 

means that, depending on the starting tide level (high or low), the initial water level can create 

extreme surges (positive or negative) that do not accurately reflect atmospheric influences. 

 

 
Figure 4-2: Time series showing water level, tide, and surge at Harlingen for a single ensemble member. The initial period is 

characterised by high variability due to identical initial conditions across SEAS5 ensemble members, leading to artificial 

correlations. This period is excluded from the analysis.  

4.3 Exploration of high and low surge events test 
To gain a deeper understanding of the processes driving unusually high or low surge conditions, a case-

based exploratory analysis was conducted. By examining representative examples of both high and low 

surge events, the analysis aims to uncover how atmospheric conditions, such as wind intensity and mean 

sea level pressure (MSLP), influence surge behaviour along the Dutch coast.  
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This analysis provides valuable insights into the interplay between atmospheric drivers and observed surge 

values, offering a more nuanced understanding of the dynamics that govern surge events. By selecting 

extreme cases, this approach highlights the specific meteorological conditions that correspond to significant 

high and low surges, helping to illustrate how these conditions manifest in the SEAS5 dataset. 

The selected examples are not intended to generalise all surge conditions but rather to serve as a focused, 

illustrative investigation into the key atmospheric drivers behind extreme coastal surges. This exploration 

lays the foundation for interpreting surge behaviour in relation to broader-scale weather patterns in later 

analyses. To investigate, two representative days were selected for closer examination: one with an extreme 

high surge and another with an extreme low surge, both relative to the entire available SEAS5 dataset. 

The following approach was taken for this analysis: 

I. The SEAS5 dataset was filtered to identify days with extreme surge, defined as: 

o High surge – A maximum daily surge exceeding 4.5 𝑚 +  𝑁𝐴𝑃 at any of the six considered 

locations. A total of 22 such days were identified. 

o Low surge – A maximum daily surge below − 2.0 𝑚 +  𝑁𝐴𝑃 at any of the six locations. A 

total of 9 such days were identified.  

II. For each identified day, plots of the water level, tide, and surge were generated for various time 

intervals around the date of interest to confirm its extreme surge. 

III. Wind intensity and mean sea level pressure (MSLP) fields were then analysed for each day to 

confirm the presence of meteorological conditions consistent with the recorded surge values. 

Figures 4-3 to 4-5 present both the high surge and a low surge example, illustrating how atmospheric 

conditions directly influence surge levels. Each of these figures includes two panels, with the high surge 

example shown on the left and the low surge example on the right. 

 

Figures 4-3 and 4-4 display the extracted maximum daily surge at multiple coastal locations and a close-up 

of water level, tide, and surge values for one selected site. In both cases, the water level and tide hydrographs 

align as expected, confirming that these are indeed in-phase. Figures 4-5  and 4-6 further contextualise these 

surge events by showing surrounding periods: a two-week window and the entire SEAS5 simulation period, 

respectively. These extended views demonstrate that both the high and low surge events are indeed 

exceptional within these simulations. 

Figure 4-3 presents the MSLP and wind intensity fields from SEAS5 for the selected high and low surge 

examples. For the high surge example (left panel), the MSLP and wind intensity indicate strong landward 

winds, which align with the observed high surges. Conversely, the low surge example (right panel) shows 

strong seaward winds, consistent with the unusually low surge values. Since SEAS5 provides wind stress 

variables only, the wind speed shown in this figure was derived using the Charnock method, including a 

bias correction for consistency with the input of the WAQUA-DCSMv5 model. The detailed steps of this 

conversion process are provided in Appendix B: Theory explained (section B.4).  
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Figure 4-3: SEAS5 MSLP and wind intensity fields for the high surge example (left panel) and low surge example (right panel), 

illustrating that intense landward wind aligns with high surge and strong seaward wind correlates with low surge. 

 
Figure 4-4: Maximum daily surge values at multiple locations for a high surge (left panel) and a low surge example (right panel). 

 
Figure 4-5:  Water level, tide, and surge at Delfzijl on the high surge day (left panel) and low surge day (right panel). 
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Figure 4-6: Water level, tide, and surge at Delfzijl over a two-week period, centring on the high surge day (left panel) and low surge 

day (right panel). 

 
Figure 4-7: Water level, tide, and surge at Delfzijl over the entire SEAS5 simulation period for the high surge (left panel) and low 

surge (right panel) examples. This overview shows that both surge events represent unusual extremes in the 7-month period. 

4.4 Storm tracking within SEAS5 domain 
To assess the ability of the SEAS5 dataset to predict extreme surge events in advance, an exploratory 

analysis was conducted on 22 days with maximum daily surges exceeding 4.5 m. For each of these high-

surge events, the mean sea level pressure (MSLP) and wind intensity fields were examined 15 days prior to 

determine when the corresponding storm systems entered the model domain. 

The results indicate that, in all cases, the storm responsible for the extreme surge only entered the domain 

approximately 1–2 days before the high-surge event occurred. This suggests that attempting to predict 

extreme surge conditions using MSLP fields 15 days in advance may be inherently challenging within the 

current domain. The absence of storm systems in the domain at longer lead times implies that a larger spatial 

domain may be required to capture the early development of storms that contribute to extreme surges along 

the Dutch coast. 

However, despite this limitation, the current SEAS5 domain is retained for this study, as it aligns with the 

DCSM5 computational domain used to derive corresponding water level and tide predictions. Expanding 

the domain would require a different hydrodynamic model setup, which is beyond the scope of this research. 

An example of one of these storms is provided in Appendix I, illustrating the moment the storm enters the 

domain and demonstrating the typical evolution of such extreme events. 
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5  

 Research method phase I 

The Neal weather patterns provide a set of predefined atmospheric configurations designed to classify 

recurring large-scale weather phenomena. This chapter details the methodology employed in Phase I of this 

study to match SEAS5 atmospheric fields with Neal’s patterns and explore their relationship with storm 

surge events along the Dutch coast. The aim is to assess the suitability of Neal’s predefined patterns for 

mid-term surge prediction.  

 

The analysis begins with data preprocessing, which aligns the SEAS5 and Neal’s 30 weather patterns to 

ensure consistent spatial domains and resolutions. Following this, SEAS5 atmospheric fields are matched 

with Neal’s patterns using various metrics to identify the best alignment approach. Maximum daily surge 

values are then extracted and linked to the matched Neal patterns, enabling an investigation of how specific 

weather patterns contribute to extreme surge events. Finally, surge distributions across the patterns are 

visualised and evaluated to interpret their relevance for coastal surge prediction. A flowchart which visually 

shows the steps involved in phase I, may be seen in Figure 5-1. 
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Figure 5-1: Flowchart illustrating the steps involved in phase I. 

5.1 Data preprocessing 
The first step in comparing the SEAS5 mean sea level pressure (MSLP) fields with the Neal weather patterns 

involved ensuring a consistent spatial domain and resolution between both datasets.  

5.1.1 Domain 

As illustrated in Figure 5-2, the SEAS5 and 

Neal’s defined weather patterns cover 

different geographical extents. The Neal 

dataset has a broad domain, spanning from 

30.0°W to 20.0°E in longitude and from 

35.0°N to 70.0°N in latitude, encompassing 

the UK, parts of Europe, and surrounding 

seas. This wide range is suited for general 

weather pattern recognition over Western 

Europe. In contrast, the used SEAS5 dataset 

is more geographically focused, covering a 

smaller area from 13.5°W to 13.5°E longitude 

and 47.0°N to 65.5°N latitude, which better 

aligns with the North Sea and the Dutch coast. 

 
Figure 5-2: SEAS5 and Neal geographic bounds. SEAS5 bounds shown 

within Neal’s broader domain. 
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This restricted spatial extent of the SEAS5 domain was chosen to match the domain of DCSM5, which was 

used to compute corresponding water levels and tides based on the SEAS5 atmospheric data. 

5.1.2 Resolution 

The SEAS5 and Neal datasets also differ in spatial resolution. Neal’s dataset, developed for broader-scale 

weather pattern recognition, uses a coarser resolution with increments of 5 degrees in both latitude and 

longitude. SEAS5, optimised for higher-detail meteorological modelling, offers a much finer resolution of 

0.25 degrees. This higher resolution captures more localised variations in atmospheric pressure, making it 

suitable for detailed regional analyses. 

5.1.3 Aligning the datasets 

Two preprocessing principles were applied to align SEAS5 data with Neal's weather patterns: clipping and 

downsampling. These steps ensure that both datasets share a common spatial domain and resolution, 

facilitating accurate comparison. 

Clipping 

This first step involves adjusting the geographic bounds of the Neal dataset to match the smaller spatial 

coverage of SEAS5. This adjustment is illustrated in Figure 5-3, which shows the original Neal patterns 

with SEAS5’s domain marked within black rectangle (left panel), alongside the clipped Neal patterns (right 

panel). Colour gradients indicate mean sea level pressure, with blue representing lower pressures and red 

indicating higher pressures. 

Downsampling 

Following domain alignment, downsampling is applied to adjust the SEAS5 dataset’s finer resolution to 

match Neal’s coarser grid.  

          
Figure 5-3: Original Neal patterns (left panel) with SEAS5 bounds marked within black rectangle and clipped Neal patterns  

(right panel). Longitude on x-axis and latitude on y-axis. 
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The downsampling of SEAS5 to match 

Neal’s coarser 5-degree grid involves 

mapping the high-resolution SEAS5 data 

(originally at 0.25-degree increments) onto 

larger grid cells that match Neal’s layout and 

resolution. 

1. Grid cell alignment - SEAS5’s finer 

resolution data points are grouped into 

blocks that correspond to the larger 5-

degree grid cells in Neal. Each 5-degree 

cell in the Neal grid corresponds to 

multiple SEAS5 data points due to 

SEAS5’s finer 0.25-degree resolution. 

2. Nearest neighbour interpolation - To 

downsample, the nearest interpolation 

method is applied to assign each Neal 

grid cell the value of the closest SEAS5 

data point within that cell. This approach 

avoids averaging or creating synthetic 

values, preserving the original SEAS5 

information by selecting the nearest 

observed data point for each coarser grid 

cell. 

3. Resampling across  entire domain - This 

process is applied across the full SEAS5 domain, producing a downsampled dataset aligned with Neal’s 

grid layout and resolution. The resulting SEAS5 dataset now shares the same spatial resolution and grid 

points as Neal, allowing consistent comparisons. 

Downsampling SEAS5 was chosen over upsampling 

Neal for two main reasons. First, downsampling is 

computationally more efficient, as it reduces the number 

of data points without the need for additional 

interpolation. Second, upsampling Neal through 

methods like bilinear interpolation would not produce 

additional meaningful information; instead, it would 

only estimate intermediate values without improving the 

inherent data resolution. By aggregating SEAS5 to 

Neal’s grid, a consistent dataset was achieved while 

preserving computational efficiency and data integrity. 

Figure 5-5 presents an example of the downsampling process, comparing an original SEAS5 MSLP field 

(left) with its downsampled version (right). The down-sampled SEAS5 field shows how localised details 

captured in the higher-resolution grid are aggregated into broader cells, aligning with the resolution of 

Neal’s patterns. 

The result of the combined transformation is illustrated in Figure 5-4, which provides an overview of the 

clipping and downsampling processes. The top row displays the original datasets: SEAS5 on the left, with 

its finer resolution and limited domain, and Neal on the right, with its broader domain and coarser grid. The 

 
Figure 5-5: Comparison of an original SEAS5 MSLP field 

(left panel) with its downsampled version (right panel) to 

match Neal’s resolution. 

D 

 
Figure 5-4: Original SEAS5 resolution (top left), original Neal 

resolution (top right), SEAS5 after downsampling to match Neal's 

resolution (bottom left), and Neal after clipping to match SEAS5's 

domain (bottom right). 
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bottom row shows the datasets after preprocessing, with the Neal dataset clipped to SEAS5’s domain 

(bottom right) and SEAS5 downsampled to match Neal’s coarser resolution (bottom left). This alignment 

of domain and resolution establishes a common framework for comparing SEAS5 and Neal data, allowing 

for the next step: implementing a matching algorithm to link SEAS5 MSLP fields with Neal’s predefined 

weather patterns. 

5.2 Matching algorithms  
By matching SEAS5 mean sea level pressure (MSLP) fields with the predefined weather patterns from the 

Neal dataset, it becomes possible to classify SEAS5 atmospheric conditions into specific, recurring patterns 

that correlate with significant weather phenomena.  

Various methods may be used to perform this matching. In this analysis, methods based on Euclidean 

distance, Root Mean Square Error (RMSE), Pearson correlation and an Autoencoder model are evaluated 

to determine the most effective way to align SEAS5 data with Neal’s patterns.  

This section assumes that the reader is familiar with these metrics and their underlying principles. For a 

detailed explanation of each metric, including their mathematical expressions, please refer to Appendix B: 

Theory explained (section B.1). The appendix also outlines how these metrics were specifically applied to 

the SEAS5 and Neal datasets in this study. For further information on autoencoders, including an overview 

of how they work and the specific architectures tested in this analysis, refer to Appendix A: Autoencoder. 

5.3 Linking surge to weather patterns 
Following the pattern matching process detailed in the previous section, the next step is to analyse how these 

matched Neal patterns correspond to surge events along the Dutch coast. The Royal Netherlands 

Meteorological Institute (KNMI) has computed the corresponding water level and tide data for the synthetic 

SEAS5 dataset at several locations along the Dutch coast, which is then used to derive surge values. Surge 

is calculated as the difference between water level and tide, providing a measure of the influence of 

atmospheric conditions on sea levels. 

This analysis is conducted for the locations as previously specified in Section 2.6: Delfzijl, Harlingen, Den 

Helder, IJmuiden, Hoek van Holland, and Vlissingen. This setup results in a comprehensive dataset that 

combines atmospheric patterns with surge events. By establishing this surge-pattern relationship, it becomes 

possible to assess how specific weather patterns contribute to extreme coastal surge conditions, laying the 

groundwork for improved forecasting of high-risk 

weather events. 

5.3.1 Extracting maximum daily surge 

The SEAS5 dataset provides MSLP fields every six 

hours, while water levels derived from DCSM5 

have a time resolution of ten minutes. This results 

in 144 water level points per day, from which only 

the maximum daily surge is retained for analysis. 

Using the full set of 144 water level points for 

linking would be computationally intensive, and 

since the focus is on extreme events, using only the 

maximum daily surge provides a logical and 

efficient approach. Figure 5-6 illustrates an 

example of this extraction, highlighting peak surge 

values for each day (marked in brown).  
 

Figure 5-6: Example of maximum daily surge extraction, across 

multiple locations along the Dutch coast. The brown markers 

indicate the maximum daily surge values. 
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5.3.2 Surge-pattern linking  

Linking maximum daily surge to Neal’s 

predefined weather patterns is governed by the 

concept of lead time. Given a specified lead time, 

the maximum daily surge on a given day is first 

associated with the corresponding SEAS5 MSLP 

pattern from the preceding number of days. To 

establish a connection between SEAS5 data and 

the broader-scale Neal weather patterns, each 

SEAS5 MSLP field was first matched to its closest 

Neal pattern using a predefined similarity metric 

(see Section 5.2 for the tested similarity metrics). 

This pre-matching step allows for indirect linking 

of surge events to Neal patterns through their 

corresponding SEAS5 atmospheric conditions. 

This process, illustrated in Figure 5-7, enables the 

analysis of how prior atmospheric conditions contribute to surge events, supporting mid-term surge 

forecasting by linking extreme surge occurrences to specific, identifiable weather patterns. 

To account for the lead time, the surge data is adjusted to exclude the initial days for which there is no 

preceding SEAS5 MSLP pattern to link to. For instance, if a lead time of 5 days is used, surge data starts 

from the 6th day onward to ensure that every surge event has a corresponding SEAS5 MSLP pattern from 

the required number of days prior. Since these SEAS5 MSLP patterns have already been assigned to their 

closest matching Neal pattern, any surge event can be associated with a Neal weather pattern. 

Since SEAS5 provides four MSLP fields per day—at 00:00, 06:00, 12:00, and 18:00—the maximum daily 

surge is linked to the closest preceding SEAS5 MSLP field based on the time of the surge. For example, if 

a maximum daily surge occurs in the late afternoon, it is linked to the matched SEAS5 pattern at 12:00 

rather than the subsequent 18:00 pattern. 

5.4 Post-processing 
To analyse the relationship between Neal weather patterns and coastal surge events, boxplot visualisations 

are used to display the distribution of maximum daily surge values associated with each weather pattern. 

This approach allows for a clear and concise summary of surge variability across the predefined patterns. 

The primary goal of this visualisation is to identify distinct surge ranges for each weather pattern, facilitating 

their application in mid-term surge forecasting. 

The boxplots are generated by grouping maximum daily surge values based on their corresponding Neal 

pattern. This process is repeated across multiple locations along the Dutch coast, to capture regional 

variations in surge behaviour. Additionally, the analysis is conducted for various lead times, reflecting how 

the influence of atmospheric patterns evolves with forecast horizons. 

The ultimate goal for mid-term forecasting, with a target lead time of 15 days, is to derive distinct and well-

separated surge ranges for each Neal weather pattern. Such separation enhances the interpretability and 

utility of the patterns, enabling forecasters to link predicted atmospheric configurations to specific surge 

levels. This information can then inform decision-making processes, such as scheduling maintenance 

activities, based on the anticipated impact of forecasted weather patterns on coastal conditions.   

1 day

Lead time = 5 days

Matched Neal patterns
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Figure 5-7: Schematic representation of the surge-pattern linking 

process. The SEAS5 weather pattern of 𝑥 days before the 

maximum daily surge (based on the lead time) is assigned to its 

closest matching Neal pattern.. 
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6  

 Evaluation of Neal weather patterns 

This chapter presents the results from applying the Neal weather patterns to classify SEAS5 atmospheric 

data and relate these patterns to coastal surge events. Building on the methodology detailed in Chapter 5, 

which describes data preprocessing, pattern matching, surge linking and post-processing, this chapter 

focuses on the analysis and outcomes specific to the Neal patterns. First, a comparison of different matching 

methods (Euclidean distance, RMSE, and Pearson correlation) is provided to determine the most effective 

approach for aligning SEAS5 fields with Neal patterns. This is followed by an exploration of surge 

behaviour, including examples of extreme cases and an assessment of surge distributions across the patterns. 

The chapter concludes with an evaluation of the Neal patterns' suitability for surge prediction. 

6.1 Comparison of matching methods 
In section 5.2, several methods were presented for matching SEAS5 mean sea level pressure (MSLP) fields 

to Neal’s predefined weather patterns, including Euclidean distance, Root Mean Square Error, Pearson 

correlation, and an autoencoder-based approach. This section compares these methods, evaluating their 

effectiveness in identifying the most appropriate Neal pattern for given SEAS5 fields. 

To illustrate the differences between these methods, Figure 6-1 presents an example day with SEAS5 MSLP 

fields sampled at the four time intervals. The top row shows the downsampled SEAS5 MSLP fields, while 

the subsequent rows display the corresponding closest-matching Neal patterns based on Euclidean distance, 

RMSE, and Pearson correlation. This example day was chosen to highlight instances where the methods 

yield different matching patterns, illustrating the importance of choosing a method that best captures the 

characteristics of the dataset. It should be noted, however, that for many days, all methods identified the 

same best matching pattern, indicating a general consistency across approaches. 

Generally, Euclidean distance appears to perform the best at matching SEAS5 fields to Neal’s patterns in 

terms of capturing both structural resemblance and intensity of pressure values, based on visual inspection 

of the results. One important justification for using Euclidean distance is its consistency with the clustering 

approach used by Neal et al. (2018), who employed k-means clustering (which minimises Euclidean 

distance) to define the weather patterns. This alignment makes Euclidean distance not only effective but 

also methodologically consistent and theoretically sound for this application. 

An additional observation is the tendency for SEAS5 fields to exhibit more intense MSLP values, both highs 

and lows, compared to Neal’s patterns. This discrepancy occasionally results in no Neal pattern perfectly 

matching the SEAS5 field’s intensity, meaning the Euclidean distance metric does not always achieve a 

“perfect” match in such cases. However, among the available metrics, Euclidean distance remains the most 

reliable in capturing the structure and approximate intensity of the atmospheric patterns. 

In terms of alternative methods, an autoencoder-based approach was also tested with various architectures. 

While the autoencoder sometimes demonstrated improved matching of structural elements, such as the 

relative locations of high and low-pressure regions, it often fell short in accurately capturing the intensity of 

MSLP values. This discrepancy arose because the autoencoder architecture, as implemented, tended to focus 

more on reconstructing general spatial structures rather than preserving the exact intensity gradients 

necessary for robust surge prediction. 
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Figure 6-1: Matched SEAS5 MSLP fields (top row) with closest matching Neal patterns based on Euclidean distance (2nd row), 

RMSE (3rd row) and Pearson correlation (4th row). 

Given that Euclidean distance already provides robust results and aligns well with Neal’s clustering method, 

it was ultimately deemed unnecessary to pursue the RGB approach. Consequently, Euclidean distance was 

selected as the primary matching method due to its effectiveness and consistency with Neal’s pattern 

generation process. 

6.2 Comparison of mean, standard deviation and assignment probabilities 
The previous section highlighted that SEAS5 often displays more extreme MSLP values, both high and low, 

than those represented by the Neal patterns. To investigate this observation further, the underlying 

climatology of SEAS5 was compared with that of the EMULATE dataset, which Neal et al. (2018) used to 

generate the weather patterns. The EMULATE dataset spans 1850–2003 and SEAS5 covers 1981–2023, 

making the overlapping period from 1981–2003 a suitable timeframe for direct analysis. This comparison 

is valuable to determine whether the two datasets share a consistent climatological baseline. 

Figure 6-2 illustrates the mean and standard deviation of MSLP for both EMULATE and SEAS5 across the 

specified period. The right most plots compare the differences between SEAS5 and EMULATE, showing 

that the mean values are nearly identical, whereas SEAS5 exhibits a notably higher standard deviation. This 

suggests that, while both datasets capture the same overall climatology in terms of mean MSLP, SEAS5 

features a greater variability, with a tendency for more frequent extreme MSLP values. This difference in 

variability may be explained by differences in how the datasets are generated. EMULATE is a reanalysis 

dataset constrained by historical observations, meaning its variability is limited to what was actually 

recorded. SEAS5, in contrast, is a seasonal forecast model, which evolves freely after initialisation, 
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potentially leading to a wider spread of 

possible MSLP values. Additionally, SEAS5 is 

an ensemble forecast system, where each 

ensemble member starts from slightly 

perturbed initial conditions to account for 

forecast uncertainty. This ensemble approach 

could result in a greater range of possible 

MSLP values, contributing to the observed 

higher variability in SEAS5. 

To evaluate the effect of these intensity 

differences on pattern assignment, the 

assignment probabilities of each Neal pattern 

were examined across the two datasets. The 

results shown in Figure 6-3 indicate 

discrepancies in how frequently specific 

patterns are assigned. For instance, SEAS5 

assigns Neal pattern 17, which corresponds to 

the highest MSLP values among the patterns, 

more frequently than EMULATE. This increased assignment frequency seems to be due to SEAS5's 

tendency toward more extreme high MSLP values. Figure 6-4 shows an example of this, where the original 

SEAS5 is shown on the left panel, the downsampled SEAS5 in the middle panel and the assigned Neal 

pattern on the right panel. While the assigned pattern captures the general structure, SEAS5's MSLP values 

are noticeably more intense. This effect is observed in the opposite direction as well, where SEAS5 exhibits 

lower MSLP values than the lowest represented by the Neal patterns. For example, pattern 30, which 

corresponds to the lowest MSLP values, is assigned more frequently in SEAS5 compared to EMULATE, 

as seen in Figure 6-3. 

 
Figure 6-3: Comparison of Neal pattern assignment probabilities for SEAS5 and EMULATE (1981-2003). 

 

 
Figure 6-2: Comparison of MSLP mean and standard deviation for 

SEAS5 (1st column), EMULATE (2nd column), and their differences 

(SEAS5 - EMULATE, 3rd column) over the 1981–2003 period. 
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These observations suggest that, although 

SEAS5 and EMULATE are aligned in terms of 

mean climatology, SEAS5 displays a higher 

degree of variability, leading to a greater 

representation of extreme pressure scenarios. 

This variability likely influences the pattern 

assignment process, favouring Neal patterns 

that represent more intense pressure conditions. 

6.3 Surge distribution across Neal patterns 
To investigate the relationship between large-scale weather patterns and coastal surge events, this section 

presents an analysis of the distribution of daily maximum surge values across Neal weather patterns for 

various forecast lead times. By examining the surge distribution at different lead times, it is possible to 

assess whether certain weather patterns are more frequently associated with high surge events, which would 

indicate predictive value for storm surge forecasting. 

To illustrate the distribution of surges across Neal patterns, a series of box plots for IJmuiden is presented, 

covering lead times of 1, 3, 5, 10, and 15 days (see Figure 6-5). These plots were generated by analysing 

the entire SEAS5 dataset, with the first month of each simulation excluded to avoid initial ensemble 

correlation effects, as discussed in Section 4.2. Following the methodology from Section 5.3.2, each SEAS5 

time step was matched to the most suitable Neal pattern using Euclidean distance, and daily maximum surge 

values were computed by subtracting tide from the total water level. Box plots for the other considered 

locations are provided in Appendix G: Boxplots. 

For each lead time, the daily maximum surge values at IJmuiden were grouped according to their assigned 

Neal patterns, resulting in a box plot that captures the distribution of surge values across the 30 patterns. 

The boxes represent the 25th, 50th (median) and 75th percentiles of the surge values linked to each pattern, 

whereas the whiskers extend to the minimum and maximum surge values within each pattern grouping. 

The purpose of these box plots is to assess whether certain Neal patterns consistently associate with higher 

surge values, which could suggest predictive value for storm surge events at various forecast lead times. 

Observations 

As displayed in Figure 6-5, there is a noticeable trend as lead time increases. At shorter lead times, there is 

slightly more variability in surge values across some of the patterns. However, as the lead time extends to 

15 days, the distributions become more uniformly spread, with no clear concentration of high surges in any 

particular pattern. This even distribution at longer lead times indicates that high surge events are not strongly 

associated with specific Neal patterns when forecast lead times are extended. 

Additionally, the range of surge values associated with each pattern becomes significantly larger, as 

indicated by the extended whiskers on the box plots. This wide range further contributes to the limited 

predictive value of the Neal patterns for anticipating specific surge levels for the SEAS5 dataset, as high or 

low surges appear across nearly all patterns without clear association. 

 
Figure 6-4: Example of SEAS5 assigned to Neal pattern 17. 
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Figure 6-5: Box plots showing the distribution of daily maximum surges at IJmuiden across the 30 Neal weather patterns for lead 

times of 1, 3, 5, 10, and 15 days. Each box represents the interquartile range (25th to 75th percentiles), with the median shown as 

a horizontal line, while whiskers indicate the minimum and maximum surge values. These plots illustrate the diminishing association 

between specific Neal patterns and high surges as the lead time increases. 
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6.4 Conclusions and next steps 
The findings from Phase I highlight several potential limitations in the use of Neal weather patterns for mid-

term surge prediction along the Dutch coast. These limitations, as well as potential solutions, are 

summarised below: 

1. Matching method selection - The comparison of different pattern-matching methods demonstrated 

that Euclidean distance is the most effective approach for aligning SEAS5 MSLP fields with Neal’s 

predefined weather patterns. This method was selected due to its effectiveness in capturing both 

structural resemblance and intensity variations, as well as its consistency with the k-means 

clustering method originally used by Neal et al. (2016) to generate the weather patterns. 

2. Variability in SEAS5 data - The analysis revealed that while SEAS5 and the EMULATE dataset 

are aligned in terms of mean climatology, SEAS5 exhibits greater variability, particularly in the 

intensity of high and low MSLP values. This increased variability likely influences the pattern 

assignment process, favouring Neal patterns that represent more extreme pressure conditions. This 

discrepancy suggests that Neal patterns, developed using the EMULATE dataset, may not be 

optimally suited for classifying SEAS5 atmospheric data, as SEAS5 features more frequent extreme 

MSLP values. 

3. Domain size considerations - The spatial domain used in this study, which aligns with DCSM5, 

may be too small to capture the early development of storms that influence surge events at longer 

lead times (e.g., 15 days in advance). An analysis in Section 4.4 showed that for nearly all major 

storms in the SEAS5 dataset, the storm system only entered the domain approximately 1–2 days 

before the peak surge occurred. This indicates that the current domain size may not fully capture 

the atmospheric precursors of extreme surge events when using longer lead times. While this issue 

is related to the chosen domain rather than the Neal patterns themselves, a potential solution is to 

expand the spatial domain or implement clustering methods that account for evolving atmospheric 

conditions over multiple forecast days. 

4. Suitability of Neal patterns for surge prediction - The Neal weather patterns were designed for a 

broad range of applications, including medium-range probabilistic weather forecasting and 

assessing coastal flooding risks for the UK. As such, they may not be well-suited for capturing the 

specific dynamics that drive storm surges along the Dutch coast. One way to address this is to 

incorporate the goal of surge prediction directly into the clustering process. For example, creating 

specific clusters tailored to extreme surge events could yield patterns that are more effective for 

forecasting. The boxplots presented in Figure 6-5 and Appendix G: Boxplots indicate that the Neal 

weather patterns may not provide a reliable basis for forecasting high surges far in advance using 

the SEAS5 dataset. These plot showed that at shorter lead times, some Neal patterns exhibit a 

stronger association with high surge values. However, as the lead time increases to 15 days, the 

distribution of surge values becomes more uniform across patterns, and the range of associated surge 

values expands significantly. This suggests that Neal patterns do not strongly differentiate between 

high and low surge conditions at longer lead times, limiting their predictive value for mid-term 

surge forecasting. This conclusion holds for all considered locations along the Dutch coast. 

Based on these findings, the research will shift focus to alternative pattern classification methods in 

subsequent chapters. Phase II will explore the creation of new patterns by clustering of the SEAS5 dataset 

directly. The goal is to develop weather patterns with stronger correlations to surge events, potentially 

enhancing mid-term range surge prediction capabilities. 
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RESEARCH METHOD 
This chapter details the methodology used to generate new weather patterns 
based on SEAS5 atmospheric data using PCA and k-means clustering. The 
process involves selecting data, preprocessing it, reducing dimensionality, and 
clustering to generate interpretable weather patterns linked to surge events. 

  7 
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DATA SELECTION 
This chapter details the methodology used for selecting data from the SEAS5 
dataset for clustering the weather patterns. It explores three approaches: the 
surge threshold method, the Maximum Dissimilarity Algorithm (MDA), and the 
stratified sampling approach, outlining the rationale and methodology behind 
each. 
 

  8 
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NEW WEATHER PATTERNS 
This chapter presents the results of the generated weather patterns. It 
showcases the identified atmospheric patterns, their distributions, and their 
associated storm surge characteristics. Additionally, entropy and Kullback-
Leibler (KL) divergence analyses are included to assess the distinctiveness and 
variability of the weather patterns. 

  9 
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7  

Research method phase II 

This chapter details the methodology employed to generate weather patterns using dimensionality reduction 

via Principal Component Analysis (PCA) and clustering through k-means.  

The goal of this methodology is to classify daily atmospheric fields into distinct clusters, with each cluster 

representing a unique weather regime. The analysis begins with the selection of data from the SEAS5 

dataset, focusing on days with extreme surge conditions. In the data preprocessing step, relevant predictor 

variables are selected. Different atmospheric or hydrodynamic variables could be used depending on the 

objective and desired complexity. In this study mean sea-level pressure (MSLP) and its gradient are chosen. 

Dimensionality reduction via PCA is then applied to reduce the complexity of the data while retaining the 

most significant patterns of variability. Finally, k-means clustering is performed to group similar days into 

distinct weather patterns. The resulting patterns are analysed and visualised to interpret their meteorological 

significance. A flowchart which visually shows the steps involved in phase II, may be seen in Figure 7-1. 

The final step in this process is an evaluation step, where the generated weather patterns are assessed for 

their suitability in mid-term forecasting of high surge events. If the patterns do not sufficiently capture the 

relevant atmospheric conditions, adjustments can be made, such as modifying the number of clusters (𝑘), 

selecting different predictors, or refining the data selection method before re-running the clustering process. 
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No, adjust data selection  
Figure 7-1: Flowchart illustrating the steps involved in phase II. 

7.1 Data selection 
The SEAS5 dataset used in this study spans the period 1981 to 2023, offering an extensive temporal 

coverage of 43 years. Each month, SEAS5 provides a seasonal forecast of up to 7 months ahead, with 

predictions generated for multiple ensemble members. These ensemble members represent slightly 

perturbed versions of the initial atmospheric conditions, designed to account for uncertainty in the forecast. 

This comprehensive dataset includes a total of 3,438,035 daily records, corresponding to approximately 

9,420 years of synthetic data when combining all ensemble members. Each day is represented by four 6-

hourly timestamps. 

Given the sheer size of this dataset a targeted sub-selection of the data for clustering is necessary for two 

main reasons: 

I. Computational efficiency - The first reason is computational efficiency. Due to the large size of the 

SEAS5 dataset, working with the full dataset would be computationally expensive and time-
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consuming. A sub-selection is necessary to ensure the analysis is manageable within the 

computational constraints. 

II. Focus on extreme events - The second reason for sub-selection is related to the focus of the study: 

forecasting extreme weather events. By definition, extreme surge events occur infrequently. If 

clustering were performed on the entire SEAS5 dataset, the resulting weather patterns would 

primarily capture common, calmer conditions, making it difficult to distinguish the atmospheric 

patterns responsible for extreme surges. By selecting more days with extreme surge conditions and 

fewer days with calm conditions, the clustering process is optimised to better represent the 

atmospheric conditions linked to high surges. 

There are many ways to perform such a targeted sub-selection, and this study explores three different 

approaches: fixed surge threshold, Maximum Dissimilarity Algorithm (MDA), and stratified sampling 

approaches, which are described more fully in Chapter 8. 

To illustrate one of these methods, Figure 7-2 

shows the surge threshold approach. In this 

method, all days where the maximum daily surge 

exceeds a predefined threshold are selected for 

clustering. This ensures that the identified weather 

patterns reflect the atmospheric conditions 

associated with extreme surges. Once the weather 

patterns are generated, the analysis follows a 

similar methodology to Phase I. Specifically, the 

maximum daily surge values from the entire 

SEAS5 dataset are linked to their closest matching 

weather pattern, now referred to as Najda patterns, 

using a predefined lead time. This step is 

conceptually identical to the approach used in Phase I, where Neal patterns were assigned based on SEAS5 

MSLP fields. This process was visually depicted in Figure 5-7 and the reader may refer to it while mentally 

substituting Neal patterns with Najda patterns in this context. 

7.2 Data preprocessing 
The next step is to preprocess the selected SEAS5 dataset for clustering. This process involves selecting 

relevant atmospheric variables, computing gradients, and averaging temporal data while reducing noise and 

dimensionality. The resulting pre-processed data forms the foundation for constructing feature vectors and 

subsequent analysis. 

7.2.1 Selection of predictors 

The first step involves selecting the atmospheric variables that will serve as predictors for clustering. For 

this study, mean sea-level pressure (MSLP) and its squared gradient are chosen. MSLP provides information 

about the distribution of atmospheric pressure, which is closely tied to large-scale circulation patterns. High-

pressure and low-pressure systems, for example, are directly reflected in MSLP fields and play a significant 

role in driving regional weather. 

The squared gradient of MSLP is included to capture spatial variations in pressure. This gradient represents 

the rate of pressure change across a given distance, which is closely associated with wind intensity and 

storm-related dynamics. The spacing of isobars determines wind speed, with tighter isobar spacing 

indicating stronger winds, while their orientation provides insight into wind direction (Hegermiller, et al., 

2017). However, wind does not flow directly from high to low pressure, as the Coriolis effect deflects air 
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Figure 7-2: Schematic representation of the data selection 

process for clustering. In this example, all days where the 

maximum daily surge exceeds a predefined threshold are selected 

for clustering. 
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movement to the right in the Northern Hemisphere, causing winds to flow parallel to isobars in a geostrophic 

balance (Holton & Hakim, 2013). In reality, surface friction further modifies wind trajectories, causing 

winds to cross isobars at an angle toward lower pressure. Over land, friction is greater, leading to a more 

pronounced deviation from geostrophic flow, while over the ocean, winds align more closely with 

geostrophic balance (Wai-hung, 2010). 

Including multiple predictors can enhance the clustering process by offering a richer representation of 

atmospheric conditions, but it also requires careful handling of two important aspects: 

I. Managing data dimensionality, which is addressed through dimensionality reduction techniques 

such as Principal Component Analysis (PCA). 

II. Ensuring comparability between predictors, as differences in magnitude can cause variables with 

larger absolute values to dominate the clustering process. To prevent this, standardisation or 

normalisation techniques are applied to scale all predictors to a comparable range before clustering. 

7.2.2 Computation of gradients 

The gradient of MSLP is computed using central finite differencing, a numerical technique that estimates 

spatial changes between neighbouring grid points. While this method ensures accurate representations of 

pressure gradients, it requires excluding the outermost rows and columns of the domain, as these points lack 

sufficient neighbours for gradient calculations. Consequently, the original spatial grid of 75×109 is reduced 

to 73×105, which defines the domain for further analysis. To maintain consistency, the MSLP fields are 

also restricted to this reduced domain. 

7.2.3 Temporal averaging  

To focus on synoptic-scale variability, daily averages of the six-hourly SEAS5 fields are computed. Daily 

averaging filters out high-frequency fluctuations, such as diurnal variability, while preserving the larger-

scale patterns that are critical for clustering. This process produces a dataset of daily mean fields for both 

MSLP and its gradient, which form the basis for feature extraction in subsequent steps. 

7.3 Feature vector construction 
After preprocessing, the daily atmospheric fields are transformed into feature vectors. A feature vector 

represents the spatial configuration of the selected atmospheric variables for a single day. For each variable, 

the two-dimensional grid (e.g., 73×105) is flattened into a one-dimensional vector. For example, an MSLP 

field with 73×105 grid points is reshaped into a vector of size 7,665. The gradient fields undergo the same 

transformation. These flattened vectors are then concatenated to form a single feature vector for each day. 

For two predictors (MSLP and its gradient), the resulting feature vector has a size of 15,330 (2×7,665). 

The daily feature vectors are combined into a standardised matrix. Each row of this matrix corresponds to a 

single day, and each column represents one of the 15,330 features. This feature matrix serves as the input 

for dimensionality reduction using PCA, described in the next section. 

7.4 Dimensionality reduction using PCA 
PCA is applied to address the challenges of high-dimensional data. By projecting the feature vectors onto a 

lower-dimensional space, PCA retains the dominant patterns of variability while significantly reducing 

computational complexity. 

Before applying PCA, the dataset is standardised to ensure that all predictors contribute equally to the 

analysis. Since MSLP and its gradient have different magnitudes, standardisation is necessary to prevent 

variables with larger absolute values from dominating the principal components. 
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PCA operates by identifying orthogonal axes, called principal components, that capture the largest variance 

in the dataset. These components allow for dimensionality reduction and noise filtering, enabling clustering 

algorithms like k-means to perform more effectively (Jaadi, 2024). A more detailed explanation of how 

PCA works may be found in Appendix B: Theory explained (Section B.3). This includes both a visual and 

mathematical explanation, as well as more background on the reasoning for applying PCA in this study. 

The number of components retained is 

determined by analysing the cumulative 

explained variance, which quantifies how 

much of the total variability is captured by 

the principal components. In this study, 

components are retained until they explain 

99% of the variance. Figure 7-3 presents an 

example of a cumulative scree plot (based 

on the fixed surge threshold method), 

illustrating this selection process. Note that 

this chapter focuses on explaining the 

general methodology and that the results 

for other data selection methods are 

provided in the next chapters. 

This significantly reduces the dimensionality of the data, transforming the original feature matrix into a 

latent space. In this new space, each principal component is a linear combination of the original features 

(i.e., MSLP and its gradient at all grid points). The reduced feature matrix, which still contains the same 

number of rows (representing days) as the original matrix, now has far fewer columns, making it 

computationally efficient and well-suited for clustering while still retaining the dominant patterns of 

variability in the data.  

7.5 Clustering using k-means 
The reduced feature matrix obtained after PCA is used as the input for k-means clustering. K-means is an 

unsupervised machine learning algorithm that partitions a dataset into 𝑘 clusters by iteratively minimising 

intra-cluster variance and maximising inter-cluster separation. For a detailed explanation of the k-means 

algorithm, including its mathematical foundation and iterative process, refer to Appendix B: Theory 

explained (Section B.2). A simplified visual example is also presented in this appendix. 

The choice of k, the number of clusters, affects the granularity of the resulting weather patterns. Larger 

values of 𝑘 yield more specific patterns, which capture finer-scale variations, while smaller values produce 

broader regimes that encompass general atmospheric trends. The optimal value of 𝑘 can be determined 

through exploratory analysis and various validation metrics. This study uses two such metrics: Within-

Cluster Sum of Squares (WCSS) and Between-Cluster Sum of Squares (BCSS), to evaluate the cohesion 

and separation of the clusters, respectively. WCSS measures how tightly data points are grouped within 

each cluster, while BCSS quantifies the separation between clusters. For a mathematical description as well 

as a visual example of these metrics, see Appendix B: Theory explained (Section B.2). 

 
Figure 7-3: Cumulative explained variance as a function of the number of 

principal components. 
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Figure 7-4 shows an example of the behaviour of WCSS and BCSS as functions of 𝑘 for the fixed surge 

threshold method. As 𝑘 increases, WCSS decreases because the clusters become smaller and more cohesive, 

while BCSS initially increases as the 

clusters become more distinct, eventually 

stabilising. Using the elbow method,  

𝑘 = 40 is selected as the optimal value for 

clustering in this case. This choice balances 

the trade-off between minimising WCSS 

(cohesion) and maximising BCSS 

(separation), as further increases in 𝑘 yield 

diminishing returns in both metrics. 

The k-means algorithm yields two outputs: 

the cluster centroids and the cluster 

assignments for each day. The centroids 

represent the mean feature vector for each 

cluster, providing a numerical summary of 

the corresponding weather pattern in the 

reduced latent space. The cluster 

assignments associate each day with a specific centroid, effectively grouping the days into distinct weather 

regimes. These outputs form the foundation for further analysis and visualisation of the characteristic 

weather patterns in the next sections. 

7.6 Analysis and visualisation of weather patterns 
After clustering, the mean fields for each cluster are reconstructed to represent the characteristic weather 

patterns. For each cluster, the mean MSLP and gradient fields are computed by averaging all daily fields 

assigned to that cluster. These mean fields provide a clear and interpretable representation of the spatial 

configurations associated with each weather regime. 

Since the clustering is performed in the reduced dimensional space of principal components (PCs), it is 

necessary to transform the cluster centroids back into the original feature space to reconstruct the weather 

patterns. Principal components are linear combinations of the original features, so this transformation 

involves reversing the PCA projection by applying the principal component weights to the cluster centroids. 

This step ensures that the reconstructed weather patterns are expressed in terms of the original variables 

(MSLP and its gradient) on their full spatial grid. This process effectively bridges the reduced latent space 

of the PCA with the physical meteorological fields. 

The weather patterns are generated by: 

1. Assigning daily fields - Each day is assigned to the cluster whose centroid it is closest to in the 

reduced feature space. 

2. Averaging assigned fields - For each cluster, the daily MSLP and gradient fields associated with 

the cluster are averaged, producing mean MSLP and gradient fields. 

3. Transforming centroids back - The cluster centroids are projected back from the reduced space 

to the original feature space to reconstruct the spatial representation of the characteristic weather 

patterns. 

The reconstructed patterns are visualised as spatial maps, which enable the identification of key features 

such as high-pressure ridges, low-pressure systems, and frontal zones. These patterns can be analysed to 

understand their meteorological significance and their potential impact on specific weather events. 

 
Figure 7-4: WCSS and BCSS as functions of the number of clusters (𝑘). 

Here, 𝑘 = 40 is chosen to be optimal using the elbow method. 
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7.7 Advantages and limitations of the approach 
This methodology offers several advantages. PCA reduces computational costs and enhances clustering 

performance by focusing on dominant atmospheric patterns. K-means clustering is straightforward to 

implement and provides interpretable results. The possibility of including additional predictors, such as 

wind stress, offers flexibility to refine the analysis. 

However, the approach is not without limitations. The results are highly dependent on the selected 

predictors, and insufficient predictors may fail to capture critical atmospheric features. Additionally, the 

choice of 𝑘 is subjective and may require iterative testing to optimise. 
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8  

Data selection 

In this chapter, three different methods for selecting days from the SEAS5 dataset are compared: fixed surge 

threshold, Maximum Dissimilarity Algorithm (MDA), and stratified sampling. Each of these approaches 

aims to generate a representative subset of data that captures the full range of surge conditions, but they 

differ in their methods of selection and the computational cost involved. The fixed surge threshold method 

(Method A) selects days where the maximum daily surge exceeds a defined threshold, MDA (Method B) 

focuses on selecting days that maximise dissimilarity in atmospheric conditions, and stratified sampling 

(Method C) ensures balanced representation across different surge categories. 

For all three methods, the selection of SEAS5 days for clustering is based on a surge criterion, though the 

exact approach differs per method. Once a maximum daily surge event is identified, the corresponding day 

in SEAS5 is selected, and the daily mean SEAS5 MSLP field for that day is used as input for clustering (see 

Figure 7-2 for a schematisation of this). These selected atmospheric patterns are then grouped into distinct 

weather patterns using k-means clustering. 

After the weather patterns are generated, the methodology follows the same approach as in Phase I: the 

entire SEAS5 dataset is linked to its closest-matching weather pattern based on a chosen lead time (see 

Figure 5-7 for a schematisation of this). This allows for the evaluation of surge distributions across different 

patterns, which is ultimately visualised using boxplots. 

8.1 Method A: Fixed surge threshold  
The surge threshold approach for data selection focuses on identifying extreme weather conditions by setting 

a predefined surge threshold. Specifically, days with a maximum daily surge greater than 1.5 meters at any 

of the six considered locations along the Dutch coastline were selected. On these selected days, surge values 

from all six locations are included in the dataset, even if at some locations the surge was below the surge 

threshold. This threshold was chosen as a representative indicator of "extreme" surge conditions, capturing 

significant but not overly rare storm events. This threshold of 1.5 meters corresponds to varying return 

periods depending on the location along the coastline. For example, at Delfzijl, such surge levels may occur 

multiple times a year, while at Hoek van 

Holland, they are expected roughly once every 

seven years. These return periods were 

determined through an internal analysis 

conducted by WMCN, the results of which are 

detailed in Appendix C: Surge return period 

analysis. 

While this may not represent extremely rare 

events, it is particularly relevant for practical 

applications such as planning and preparing 

for maintenance along the Dutch coast, which 

often occurs on an annual basis. Including 

these conditions ensures that significant but 
 

Figure 8-1: KDE plot comparing the full SEAS5 data with the subset 

selected using a 1.5m surge threshold and additional calm days. 
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not overly rare storm surge events are captured in the analysis, making the weather patterns actionable for 

medium-term forecasting and preparation. 

If clustering were performed solely on the extreme surge dataset (days with surge > 1.5 [m]) however, the 

resulting weather patterns would fail to represent calm conditions. This omission would introduce bias when 

applying the weather patterns to the full SEAS5 dataset for surge predictions. Specifically, days with lower 

surges would likely be misclassified into inappropriate weather patterns, as no clusters corresponding to 

such conditions would exist. 

To address this limitation, a subset of calm condition days was also included in the clustering. Calm 

conditions are defined as days where the maximum daily surge falls between 0 and 1.5 meters. To balance 

the dataset without overwhelming it with calm conditions, the number of calm days added was set to 10% 

of the extreme surge days. This brings the total number of days used for clustering to approximately 123,750 

days, which constitutes about 3.6% of the entire SEAS5 dataset (3,438,035 days). 

Figure 8-1 illustrates the distribution of the full SEAS5 dataset compared to the selected subset. As shown, 

the subset data is more focused on the higher surges, as indicated by the larger right-most peak, while the 

smaller peak represents the 10% calm conditions included in the dataset. Additionally, because all locations 

are included whenever the threshold is exceeded at any one location, many surge values below 1.5 meters 

remain in the selection. This explains why the selected dataset contains a range of lower surge values, 

beyond those added explicitly as calm conditions. This balanced approach ensures that the resulting weather 

patterns account for both extreme weather conditions and typical, calmer conditions, allowing for more 

accurate classification and interpretation of the full SEAS5 dataset. 

8.2 Method B: Maximum Dissimilarity Algorithm 
The Maximum Dissimilarity Algorithm (MDA) (Camus, Mendez, Medina, & Cofiño, 2011) was chosen to 

explore how the selection of days could be optimised by maximising the dissimilarity between them. The 

core idea of MDA is to start by selecting a single day, then iteratively selecting days that are maximally 

different from the already selected days in terms of their surge values. For a more detailed explanation of 

the theory behind MDA, including a visual example, refer to Appendix B: Theory explained (section B.5). 

Initially, the goal was to apply the MDA approach across all six surge locations. However, running MDA 

on the full SEAS5 dataset proved to be computationally intensive and time-consuming, making it 

impractical. To address this, IJmuiden was chosen as the sole location for applying MDA, as it is a central 

location, making it a suitable representative of the overall surge conditions along the Dutch coast. To further 

reduce the computational cost, a random 

sample of 10,000 days was first selected, 

representing approximately 0.29% of the total 

SEAS5 dataset. This random selection was 

done to capture a broad distribution that 

mirrors the full SEAS5 dataset, as the 

distribution of the 10k random sample was 

found to be very similar to that of the full 

SEAS5 dataset (as shown in the KDE plot in 

Figure 8-2). 

Once the random sample of 10,000 days was 

obtained, MDA was applied to this smaller 

subset. However, even with this reduced 

dataset, the computational cost of MDA was 

still high. As a result, the final number of 1,000 

 
Figure 8-2: KDE plot comparing the full SEAS5 data with the subset 

selected via Maximum Dissimilarity Algorithm (1,000 days). 
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selected days was chosen. The first day was chosen as the day with the highest surge at IJmuiden from the 

10,000-day random sample. Subsequent days were selected based on their dissimilarity to the already 

selected days. By maximising the dissimilarity between selected days, MDA guarantees that even the 

extreme surge conditions in the tails of the distribution are sufficiently represented, which would not have 

been the case with random sampling, where surge density would have influenced the selection. 

8.3 Method C: Stratified sampling 
The stratified sampling approach (Parsons, 2017) was introduced as a response to the computational 

limitations encountered with the MDA. Unlike MDA, which aims to select days that are maximally 

dissimilar from each other, stratified sampling divides the data into distinct groups (or "strata") based on 

surge levels and ensures that each group is represented. For a more theoretical explanation of stratified 

sampling, refer to Appendix B: Theory explained (section B.6). 

For the stratified sampling approach, the SEAS5 dataset was divided into nine bins, each representing a 0.5-

meter difference in surge height. The bins range from negative to positive surge values, allowing for a 

nuanced classification of different surge conditions. The surge categories were defined as follows: 

• The lowest bin includes surge values 

less than -2 meters. 

• The highest bin includes surge values 

greater than 3 meters. 

• The intermediate bins covers surge 

values between -2 and 3 meters, with 

0.5-meter intervals.  

The key feature of this disproportionate 

stratified sampling method is that the same 

number of days is selected from each 

category, regardless of the number of days in 

each surge category. Specifically, 100,000 

days were to be selected from the full dataset, 

and the same number of days was to be 

sampled from each category. For bins with fewer days than the number of samples required, all available 

days were selected. This resulted in a total of 61,132 selected days from the full dataset, offering a much 

larger sample size than MDA while maintaining a balanced representation of the surge conditions. Figure 

8-3 illustrates the resulting distribution of the subset data.  The stratified sampling approach was far more 

computationally efficient than MDA, as it could be performed on the full SEAS5 dataset without the 

computational burden of iterative dissimilarity calculations. 

8.4 Comparison of methods 
Method A results in a dataset that is skewed towards high-surge events, with fewer moderate and calm days. 

This is expected, as selection is based on extreme surge occurrences, with only a small fraction (10%) of 

additional calm conditions included. The resulting KDE plot shows a dominant peak in the higher surge 

ranges, reflecting the method’s emphasis on stormy conditions. However, this selection strategy leads to a 

lower representation of moderate surge levels, which could make it more difficult to distinguish between 

storms of different intensities. If the goal is to capture a full range of storm severities, this dataset may have 

limitations in resolving gradual transitions between calm and extreme conditions. The impact of this 

imbalance on storm classification remains uncertain, but it could lead to clusters that primarily distinguish 

between extreme storms and non-storm days, with less differentiation between varying storm intensities. 

 
Figure 8-3: KDE plot comparing the full SEAS5 data with the subset 

selected using stratified sampling (61,132 days) 
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Method B, due to its selection process prioritising maximum dissimilarity, produces a more dispersed 

dataset. The KDE plot confirms this, showing a relatively flat distribution with no dominant peaks, 

suggesting that the dataset captures a broad range of surge conditions rather than emphasising any particular 

category. However, a major concern is that by focusing on selecting maximally different days, too many 

extreme surge events may be lost. Since the goal is to improve mid-term forecasting of extreme storms, this 

raises the question of whether MDA removes the very cases that are most relevant for storm classification. 

In addition to this, the small sample size of 1,000 days presents another potential issue. This sample size 

seems insufficient for capturing the full range of storm characteristics. With such a limited selection, there 

is a risk that important storm patterns and transitional weather conditions are underrepresented. With a larger 

sample, MDA could potentially be more useful, but in its current form, it appears less suitable for this 

application. 

Method C results in a more balanced dataset, ensuring that all surge ranges are equally represented. Unlike 

Method A which strongly emphasises high surges, this approach distributes selection across different surge 

intensities, leading to a dataset that includes both extreme and moderate conditions. The KDE plot shows a 

higher proportion of very high surges (>2m) compared to the other two methods. This is because, for the 

highest surge strata, the total number of available days was lower than the target sample size for those 

categories, so all available high-surge days were selected by default. As a result, this method inherently 

retains all extreme surge events, ensuring that they are fully represented in the dataset. Additionally, the 

increased presence of lower surge conditions could help differentiate between different storm intensities, 

potentially improving the resolution of storm classification.  

Table 8-1 summarises the different parameters of the three data selection approaches. 

Table 8-1: Comparison of the three data selection approaches. 

Method Surge threshold (A) MDA (B) Stratified Sampling (C) 

Data selection Surge > 1.5 [m] + 10% 

calm conditions. 

Surge at IJmuiden; 

MDA applied. 

Surge at IJmuiden;  

stratified surge categories. 

Selected days 123,680 1000 61,132 

% of full 

SEAS5 data 

3.6% 0.03% 1.8% 

PCA 

components 

185 130 165 

Number of 

clusters, 𝒌 

40 20 40 

KDE plot 
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9  

Evaluation of generated weather patterns 

This chapter presents the results of the self-clustered weather patterns and their associated storm surge 

characteristics. The goal is to evaluate the effectiveness of the clustering methods used to define 

representative weather patterns for the Dutch. Three methods were tested: surge thresholding (Method A), 

Maximum Dissimilarity Algorithm (Method B), and stratified sampling (Method C). 

First, the generated weather patterns are visualised, along with an assessment of their distribution across 

different clusters. The relationship between these patterns and surge levels is explored through boxplots and 

heatmaps, providing insights into how different atmospheric conditions influence surge behaviour. 

To further assess the quality of the weather patterns, an entropy analysis is performed to quantify the 

variability of storm surge values within each pattern. Additionally, Kullback-Leibler (KL) divergence is 

used to compare the probability distributions of storm surge values across patterns, identifying similarities 

and redundancies. 

9.1 Weather patterns from Method A 
This section presents the weather patterns generated using Method A – the surge threshold method. This 

approach selects days with significant storm surge levels to identify patterns associated with extreme 

conditions. For details on the data selection criteria used for this method, refer to Section 8.1. 

9.1.1 Generated weather patterns 

Figure 9-2 presents the Mean Sea Level Pressure (MSLP) patterns (left) and the corresponding gradient 

patterns (right) obtained from Method A. The MSLP patterns illustrate the large-scale pressure systems 

associated with different weather patterns, where red shading indicates high-pressure areas and blue shading 

represents low-pressure systems. The gradient patterns highlight pressure differences, which drive wind 

patterns and influence storm surge dynamics. For a more detailed view of these weather patterns, refer to 

Appendix D: Generated weather patterns, which provides larger versions of these figures for improved 

visualisation. 

The distribution of cluster assignments is shown in 

Figure 9-1. This histogram displays the number of 

days assigned to each weather pattern, 

distinguishing between the full dataset and the 

subset of calm condition days included in the 

clustering. The distribution reveals that certain 

patterns occur more frequently, while others 

represent less common atmospheric states. 

Notably, the calm condition days are concentrated 

within a limited number of clusters rather than 

being evenly spread across all patterns. This is an 

expected and desirable outcome, as it suggests that 

these clusters represent predominantly calm 

 
Figure 9-1: Distribution of cluster assignments across the 40 

weather patterns. The grey bars indicate calm condition days 

included in the dataset. 
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atmospheric conditions. If the calm days were widely distributed among all clusters, it would reduce the 

contrast between extreme and non-extreme patterns, making it more difficult to accurately link weather 

patterns to their associated storm surge distributions. 

 
Figure 9-2: Mean sea level pressure (left) and pressure gradient (right) for the 40 weather patterns generated using Method A. 

9.1.2 Surge distribution per weather pattern 

The relationship between the newly generated weather patterns and storm surge values is examined by 

analysing the distribution of daily maximum surge values across the 40 Najda weather patterns (Figure 9-3). 

At shorter lead times, such as 1 day, median surge values vary across patterns, with patterns 10 and 15 

exhibiting significantly lower medians, as expected given their association with calm conditions. This 

variability suggests that certain atmospheric patterns are more strongly linked to high surges. Compared to 

the Neal weather patterns assigned to the Dutch coast (Figure 6-5), where median surge values remain within 

a narrower range (0–0.5 m), the Najda patterns show greater distinction, indicating a clustering approach 

that better captures surge-relevant differences in atmospheric conditions. 

Despite this improvement, most Najda patterns still exhibit a wide range of surge values, as reflected in the 

extended whiskers of the box plots. This large spread suggests that even within patterns typically associated 

with low surges, occasional high surges may still occur, posing challenges for operational applications. As 

lead time increases, distinctions between patterns diminish. By 15 days, median surge values converge, and 

interquartile ranges broaden, illustrating reduced predictive skill at longer forecast horizons. This pattern 

aligns with previous findings for the Neal patterns, where the association between atmospheric conditions 

and surge weakens over time. 

To further illustrate the surge probabilities associated with each Najda pattern, Figure 9-4 presents an 

alternative visualisation of the surge distributions. Here, the probability of surge values falling within 

predefined categories for lead times of 1 and 15 days are displayed. This type of visualisation may be useful 

for operational forecasting, as it provides a probabilistic estimate of surge levels associated with each 

weather pattern. For lead time = 1 day, some patterns exhibit a high probability of surges exceeding 1 meter, 

whereas others, such as patterns 10 and 15, have nearly all surge values confined to the lowest category (0-

50 cm). However, for lead time = 15 days, nearly all patterns exhibit a similar probability distribution, 

reinforcing the conclusion that these weather patterns lose their predictive skill for storm surge events at 

longer forecast horizons.  

An important consideration is that Method A was specifically designed to select high-surge days, yet this is 

not strongly reflected in the probability distributions shown in Figure 9-4. While certain patterns display an 
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increased likelihood of higher surges, the overall distributions indicate that the generated weather patterns 

do not focus sharply enough on high-surge events. This suggests that the selection method may not have 

been restrictive enough in isolating extreme surge conditions, resulting in weather patterns that still contain 

a significant range of moderate and low-surge days. 

 
Figure 9-3: Box plots showing the distribution of daily maximum surges at IJmuiden across the 40 Najda weather patterns for lead 

times of 1, 3, 5, 10, and 15 days (Method A). Each box represents the interquartile range (25th to 75th percentiles), with the median 

shown as a horizontal line, while whiskers indicate the minimum and maximum surge values. 
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Figure 9-4: Heatmap displaying the probability distribution of daily maximum surge values at IJmuiden for lead times of 1 day 

(top) and 15 days (bottom). 
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9.1.3 Shannon entropy analysis 

To assess the variability of storm surge distributions within each Najda weather pattern, an entropy-based 

analysis is performed. Entropy quantifies the spread of surge values, with higher entropy indicating greater 

variability and lower entropy suggesting more concentrated distributions. A detailed explanation of the 

entropy computation methodology is provided in Appendix B: Theory explained (section B.7) 

Figure 9-5 presents the Shannon entropy values for 

each Najda weather pattern at IJmuiden for a 1-day 

lead time. The results illustrate that some patterns 

exhibit significantly higher entropy, indicating 

substantial variability in storm surge values, 

whereas others have lower entropy, signifying 

more consistent surge behaviour within those 

patterns. A more comprehensive overview, 

including entropy values for all clustering methods 

(Methods A, B, and C) and for a 15-day lead time, 

is provided in Appendix H: Entropy analysis. 

To illustrate the contrast between high and low 

entropy patterns, Figure 9-6 compares the surge 

distributions for two representative patterns. The left panel displays the probability density functions 

(PDFs), where Pattern 4 (high entropy) shows a broad and dispersed distribution, indicating a diverse range 

of surge values. In contrast, Pattern 10 (low entropy) exhibits a sharply peaked distribution, signifying that 

surge values within this pattern are relatively consistent and confined to a narrow range. The right panel 

presents the empirical cumulative distribution functions (ECDFs), where Pattern 10 has a steep slope, 

indicating that most surge values are concentrated within a small range. In contrast, Pattern 4 has a more 

gradual slope, reflecting a wider spread of surge values. 

 
Figure 9-6: Surge distributions for Najda patterns 1 and 10 (Method A, 1-day lead time), illustrating the difference in entropy. The 

left panel shows the probability density functions (PDFs), where Pattern 1 has a broad, dispersed distribution (high entropy), while 
Pattern 10 is tightly concentrated (low entropy). The right panel presents the corresponding ECDFs. 

Since the objective is to generate well-separated, distinct weather patterns, lower entropy within clusters is 

desirable. High-entropy patterns indicate substantial internal variability, making it difficult to associate a 

given pattern with a well-defined surge range. In contrast, low-entropy patterns suggest that specific 

atmospheric conditions lead to more predictable surge outcomes. While some variability is expected, 

excessive entropy within a pattern reduces its practical value for operational forecasting, as it implies that a 

broad range of surge magnitudes may occur under similar atmospheric conditions. 

 

 

 
Figure 9-5: Entropy of surge distributions per Najda weather 

pattern for Method A. Higher entropy indicates greater surge 

variability. 
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9.1.4 Relative entropy analysis 

The Kullback-Leibler (KL) divergence, also known as relative entropy, quantifies the difference between 

probability distributions. In this context, KL divergence is used to assess how distinct the surge distributions 

are between different Najda weather patterns. A higher KL divergence indicates that two patterns produce 

significantly different surge distributions, while a lower KL divergence suggests that the patterns yield 

similar surge behaviour. For further theoretical details on KL divergence, refer to Appendix B: Theory 

explained (section B.8). 

Figure 9-7 presents the KL divergence matrices for Method A at lead times of 1 and 15 days. Darker squares 

represent higher KL divergence values, indicating greater distinctions between the corresponding patterns. 

At a lead time of 1 day, several patterns exhibit strong distinctions, particularly pattern 10, which contains 

the majority of calm condition days. This patterns shows high KL divergence when compared to patterns 

associated with extreme storm surge events, reflecting its fundamentally different surge characteristics. 

However, as lead time increases to 15 days, the differences between patterns diminish, and the KL 

divergence values become uniformly lower, illustrating the decreasing predictive value of weather patterns 

at longer time scales. 

 
Figure 9-7: KL divergence between Najda weather patterns for Method A. Left: 1-day lead time, Right: 15-day lead time. High 

values (dark squares) indicate distinct surge distributions. 

Figure 9-8 examines two patterns that exhibit the lowest KL divergence. The probability density functions 

(left panel) and empirical cumulative distribution functions (right panel) reveal that these patterns yield 

nearly identical surge distributions, despite originating from distinct atmospheric conditions (Figure 9-2).  

 
Figure 9-8: Surge distributions for Najda patterns 4 and 40 (Method A, 1-day lead time), illustrating the lowest KL divergence. 

The left panel shows the probability density functions (PDFs), while the right panel presents the corresponding ECDFs, both 

indicating highly similar surge distributions. 
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Figure 9-9 presents a dendrogram illustrating the 

clustering structure for Method A at a 1-day lead 

time. The vertical axis represents cluster distance, 

indicating the level of dissimilarity between 

patterns before they are merged into larger groups. 

For full-scale dendrograms and a more detailed 

explanation of hierarchical clustering, refer to 

Appendix E: Dendrograms. 

A clear separation between two primary groups is 

visible. The brown cluster corresponds to patterns 

predominantly associated with calm conditions, 

including patterns 10 and 15, which were 

previously identified as having the lowest median surge values. The grey cluster contains the remaining 

patterns, which exhibit more extreme surge conditions. This separation reinforces the earlier findings from 

the KL divergence analysis, where patterns associated with low surge values showed strong distinctions 

from those linked to higher surges. 

Conclusions 

This method was specifically designed to focus on storm surge conditions while still incorporating a subset 

of calm days to prevent misclassification when applied to the full SEAS5 dataset. The results indicate that 

this objective has been partially achieved. 

While certain patterns, particularly those associated with calm conditions, are clearly distinguishable, many 

patterns exhibit overlapping surge distributions, leading to redundancy within the classification. This lack 

of differentiation suggests that the clustering method used in Method A may not be fully optimised to 

separate surge-relevant atmospheric states. 

The presence of clearly distinguishable calm-condition patterns, as seen in both the KL divergence analysis 

(Figure 9-7) and hierarchical clustering (Figure 9-9), suggests that the methodology effectively separates 

low-surge conditions from higher-surge events. Patterns 10 and 15, which contain the majority of calm days, 

exhibit strong KL divergence when compared to patterns associated with extreme surge events. This 

confirms that the inclusion of calm days in the clustering process was successful in ensuring that lower surge 

conditions are properly accounted for. 

However, while distinct calm-condition patterns emerge, the separation among extreme surge patterns 

appears less pronounced. Many patterns exhibit similar surge distributions, with overlapping interquartile 

ranges (Figure 9-3) and low KL divergence values (Figure 9-8). This suggests that while the clustering 

approach captures a spectrum of surge conditions, it may not be fully optimised to differentiate between 

different types of high-surge events. Ideally, the patterns should reflect meaningful differences in 

atmospheric conditions that lead to varying surge responses, yet some patterns with distinct meteorological 

structures yield nearly identical surge distributions. 

 

9.2 Weather patterns from Method B 
This section presents the weather patterns generated using Method B – the Maximum Dissimilarity 

Algorithm (MDA). This method selects days by maximising their dissimilarity in terms of storm surge 

values, ensuring that both extreme and unique surge events are well-represented. For details on the data 

selection process and rationale behind this approach, refer to Section 8.2. 

 

 

 
Figure 9-9: Hierarchical clustering dendrogram for Najda 

patterns (Method A, 1-day lead time). 
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9.2.1 Generated weather patterns 

Figure 9-10 presents the Mean Sea Level Pressure (MSLP) patterns (left) and their corresponding pressure 

gradient fields (right) obtained using Method B. Unlike Method A, which utilised 40 patterns, this approach 

employs only 20 patterns, as this was determined to be the optimal number of clusters based on the Within-

Cluster Sum of Squares (WCSS) and Between-Cluster Sum of Squares (BCSS) criteria (see Section 7.5). 

 
Figure 9-10: Mean sea level pressure (left) and pressure gradient (right) for the 20 weather patterns generated using Method B. 

Figure 9-11 presents the distribution of cluster assignments across the 20 weather patterns generated using 

Method B. Unlike Method A, which incorporated a broader dataset with both high and low surge conditions, 

the Maximum Dissimilarity Algorithm (MDA) was applied to a much smaller subset of the SEAS5 dataset 

due to computational constraints. 

As a result, the distribution of assigned days across 

patterns is notably uneven. Some patterns, such as 

Patterns 7 and 10, contain very few assigned days, 

while others, like Patterns 1 and 9, have 

significantly more. This imbalance suggests that 

some patterns represent more commonly occurring 

atmospheric configurations, while others capture 

rarer, more extreme conditions. The presence of 

sparsely populated clusters highlights a limitation 

of working with a reduced dataset: although MDA 

ensures a diverse range of surge conditions, the 

constrained selection process results in certain 

patterns being underrepresented. 

9.2.2 Surge distribution per weather pattern 

The distribution of daily maximum surge values across the 20 Najda weather patterns generated using 

Method B is shown in Figure 9-12. At a lead time of 1 day, there is noticeable variation in median surge 

values across patterns, though most exhibit a wide range of surge values. Unlike Method A, some patterns 

in Method B extend to significantly lower surge values, reaching as low as -2 meters. This is a direct 

consequence of the Maximum Dissimilarity Algorithm (MDA), which selects days to maximise variability, 

ensuring that both extreme high and low surge events are represented. 

 

 
Figure 9-11: Distribution of cluster assignments across the 20 

weather patterns for Method B. 
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Figure 9-12: Box plots showing the distribution of daily maximum surges at IJmuiden across the 20 Najda weather patterns for 

lead times of 1, 3, 5, 10, and 15 days (Method B). Each box represents the interquartile range (25th to 75th percentiles), with the 

median shown as a horizontal line, while whiskers indicate the minimum and maximum surge values. 
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9.2.3 Shannon entropy analysis 

The Shannon entropy values for surge distributions 

across the 20 Najda weather patterns generated 

using Method B are presented in Figure 9-13. The 

entropy values are consistently high across all 

patterns, indicating that within-pattern variability 

remains significant. This suggests that while the 

MDA ensures diverse surge conditions across all 

patterns, it does not necessarily optimise intra-

cluster homogeneity. In other words, the method 

captures a broad range of surge behaviours, but 

individual patterns may still contain a mix of 

different surge conditions, limiting their ability to 

produce well-separated, predictable surge 

distributions. 

9.2.4 Relative entropy analysis 

The Kullback-Leibler (KL) divergence matrix for Method B is shown in Figure 9-14, illustrating how 

distinct the surge distributions are between different Najda weather patterns. At a lead time of 1 day, several 

patterns exhibit high KL divergence (darker squares), indicating strong differences in their surge 

distributions. Compared to Method A, the divergence values appear more pronounced for some patterns, 

reflecting the impact of the Maximum Dissimilarity Algorithm (MDA), which intentionally selected a more 

varied set of days. 

 
Figure 9-14: KL divergence between Najda weather patterns for Method B. Left: 1-day lead time, Right: 15-day lead time. 

Divergence decreases with longer lead times. 

Figure 9-15 presents the hierarchical clustering dendrogram for Method B. Unlike Method A, where two 

primary groups (calm and extreme conditions) were clearly distinguishable, Method B exhibits a more 

complex clustering structure. While some patterns are still grouped closely together, suggesting similar 

surge distributions, the overall structure is less dichotomous. This is likely a result of the MDA selection 

process, which maximised dissimilarity rather than explicitly separating calm and extreme surge days. 

 
Figure 9-13: Entropy of surge distributions per Najda weather 

pattern for Method B. 
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The findings suggest that Method B produces 

patterns that are more evenly spread in terms of 

surge characteristics, as reflected by the wider 

distribution of KL divergence values. However, 

the overlap between some patterns indicates that 

certain atmospheric states still yield similar surge 

distributions. 

Conclusions 

Method B was designed to maximise diversity in 

surge conditions through MDA. The results 

confirm that this approach effectively captures a 

broad range of surge behaviours, ensuring that 

extreme and unique events are well-represented. 

However, the high Shannon entropy values observed across all patterns (Figure 9-13) suggest that intra-

cluster homogeneity remains limited, reducing the ability to form well-separated and predictable surge 

distributions. The KL divergence analysis (Figure 9-14) indicates that some patterns exhibit strong 

distinctions, but many still overlap, highlighting challenges in differentiating similar surge conditions. In 

contrast to Method A, the hierarchical clustering (Figure 9-15) results show a more structured separation of 

surge regimes, suggesting that MDA provides a better distinction between weather patterns despite the 

persistence of internal variability. 

9.3 Weather patterns from Method C 
This section presents the weather patterns generated using Method C – the Stratified sampling approach. 

This method systematically selects days by dividing the dataset into surge-based categories and ensuring 

balanced representation across different surge levels. For further details on the data selection process, refer 

to Section 8.3. 

9.3.1 Generated weather patterns 

Figure 9-16 presents the Mean Sea Level Pressure (MSLP) patterns (left) and their corresponding pressure 

gradient fields (right) obtained using Method C. This approach utilises 40 weather patterns, similar to 

Method A, but differs in how the days are selected. Method C employs a stratified sampling technique, 

ensuring that the dataset includes a balanced representation of different surge levels. This method aims to 

mitigate biases that might arise from the natural imbalance in surge event frequencies, ensuring that both 

extreme and more typical weather conditions are well-represented. 

 
Figure 9-15: Hierarchical clustering dendrogram for Najda 

patterns (Method B, 1-day lead time). 
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Figure 9-16: Mean sea level pressure (left) and pressure gradient (right) for the 40 weather patterns generated using Method C. 

Figure 9-17 displays the distribution of cluster 

assignments across the 40 weather patterns 

generated using Method C. Several patterns, such 

as Patterns 4, 9, and 37, have a notably higher 

number of assigned days, indicating that they 

capture atmospheric conditions that occur 

frequently within the dataset. Conversely, 

Patterns 10, 19 and 26 contain significantly fewer 

assigned days, suggesting that they represent 

rarer atmospheric conditions or more extreme 

surge events. 

9.3.2 Surge distribution per weather pattern 

Figure 9-18 presents the distribution of daily maximum surge values across the 40 Najda weather patterns 

for Method C. At a lead time of 1 day, there is noticeable variation in the interquartile range (IQR) across 

different patterns. Some patterns exhibit narrow boxes, indicating more consistent surge values within those 

clusters, while others display much broader distributions, reflecting greater internal variability. This 

contrasts with Method A, where the interquartile ranges appear more uniform across all patterns. 

As lead time increases, the distinctions between patterns diminish, similar to what was observed for Methods 

A and B. By 15 days, the median surge values across all patterns converge, and interquartile ranges broaden, 

reinforcing the finding that the predictive skill of the weather patterns weakens at longer lead times. 

 
Figure 9-17: Distribution of cluster assignments for Method C. 
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Figure 9-18: Box plots showing the distribution of daily maximum surges at IJmuiden across the 40 Najda weather patterns for 

lead times of 1, 3, 5, 10, and 15 days (Method C). Each box represents the interquartile range (25th to 75th percentiles), with the 

median shown as a horizontal line, while whiskers indicate the minimum and maximum surge values. 
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9.3.3 Shannon entropy analysis 

Figure 9-19 presents the Shannon entropy values 

for the surge distributions across the 40 Najda 

weather patterns generated using Method C. The 

entropy values exhibit considerable variation, with 

some patterns displaying low entropy, indicating 

well-defined and more predictable surge 

distributions, while others exhibit significantly 

higher entropy, reflecting greater internal 

variability. These results indicate that while 

Method C improves the representation of different 

surge levels, it does not fully eliminate internal 

variability within patterns. High-entropy patterns 

remain, which may limit the predictability of 

certain weather patterns, particularly for 

operational forecasting applications. 

9.3.4 Relative entropy analysis 

The Kullback-Leibler (KL) divergence matrix for Method C is shown in Figure 9-20, illustrating the 

distinctiveness of surge distributions across the 40 Najda weather patterns. Compared to Methods A and B, 

more instances of high KL divergence are visible, indicating that some patterns exhibit substantially 

different surge distributions. However, as with the other methods, these differences fade as the lead time 

increases, with the KL divergence values nearly disappearing at 15 days, reinforcing the finding that these 

weather pattern distinctions lose predictive value at longer lead times. 

 
Figure 9-20: KL divergence between Najda weather patterns for Method C. Left: 1-day lead time, Right: 15-day lead time. Strong 

divergence suggests well-separated patterns. 

To further assess the structure of the clusters generated using Method C, the hierarchical clustering 

dendrogram in Figure 9-21 is examined. This dendrogram reveals multiple well-defined groups, more 

distinct than those observed for Methods A and B. The larger number of independent branches suggests that 

Method C has generated patterns that are more internally coherent yet distinct from one another. 

  

 
Figure 9-19: Entropy of surge distributions per Najda weather 

pattern for Method C.  
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Conclusions 

Method C was designed to ensure a balanced 

representation of different surge levels through 

stratified sampling. The results confirm that 

this approach effectively captures a diverse 

range of surge behaviours while maintaining 

more structured pattern distinctions. 

The Shannon entropy analysis (Figure 9-19) 

shows considerable variation. Compared to 

Methods A and B, the KL divergence analysis 

(Figure 9-20) indicates stronger separation 

between certain patterns, suggesting improved 

differentiation between atmospheric states. 

The hierarchical clustering results (Figure 

9-21) further support this, revealing clearer 

distinctions between groups. 

9.4 Observations and key takeaways  
This section compares the three clustering methods (A, B and C) in terms of their ability to generate distinct 

and surge-relevant weather patterns. The comparison is based on the boxplots (representing the distribution 

of surge values across patterns), Shannon entropy (representing the internal variability of surge values within 

patterns) and KL divergence (representing the degree of separation between surge distributions across 

patterns). 

The boxplots show that while all three methods capture a range of surge conditions, they differ in within-

pattern variability. Method A produces relatively stable surge distributions, with clear separation between 

calm and extreme conditions, though some overlap remains. Method B shows more constrained surge values 

within individual patterns, likely due to the limited dataset used for clustering. Method C has the highest 

within-pattern variability, as indicated by its large IQRs, which represent a broad range of surge conditions 

but reduce separation between patterns. 

Method A exhibits the largest differences in mean surge values, aligning with its use of extreme and calm 

condition days. Calm-condition patterns have narrow IQRs, while non-calm patterns show greater 

variability. Compared to Neal’s clustering, the self-clustered methods provide clearer differentiation 

between patterns, though not yet distinct enough for operational use due to remaining overlap. As lead time 

increases, surge distributions across patterns become increasingly similar, reducing predictive value for all 

methods. 

Method C consistently has the largest IQRs, reflecting significant internal variability. Methods A and C also 

capture more extreme surge events, as shown by their wider whiskers, whereas Method B, using MDA, 

results in fewer extreme surge cases. This suggests that B prioritises general atmospheric variability over 

clustering extreme events. 

These findings align with the entropy analysis, where Method C shows the highest entropy values, reflecting 

its large within-pattern variability. Method A exhibits lower entropy in its calm condition patterns, 

confirming their predictability, while the surge-dominated patterns have higher variability. 

KL divergence provides insight into how distinct the weather patterns are. While all methods exhibit some 

overlap between patterns, Method A shows strong distinctions between its calm and extreme surge patterns, 

 
Figure 9-21: Hierarchical clustering dendrogram for Najda 

patterns (method B, 1-day lead time). 

 

 



Charting the Course to Coastal Clarity  March 2025 

 

66 | P a g e  

 

making these clusters well-separated. Method C exhibits the highest KL divergence for certain patterns, 

meaning it successfully differentiates some weather conditions, though the high internal variability within 

patterns limits its overall predictive reliability. Method B results in fewer highly distinct patterns, as its 

selection approach focuses on maximising variability between patterns rather than creating clear-cut 

clusters. 

Figure 9-22 provides a qualitative comparison of entropy and KL divergence across methods. The left panel 

illustrates the Shannon entropy values for each method at lead times of 1 and 15 days. Higher entropy values 

indicate greater within-pattern variability, with Method C displaying the largest spread. The right panel 

presents KL divergence values, showing how distinct the surge distributions are across different weather 

patterns. Higher KL divergence suggests better separation between patterns, though extreme values in some 

methods indicate isolated highly distinct patterns rather than a consistent trend across all clusters. 

 
Figure 9-22: Entropy (left) and KL divergence (right) comparison across methods for both Neal and Najda weather patterns 

(IJmuiden, LT = 1 day and LT = 15 days). 

For practical applications, these differences matter for storm surge prediction and risk assessment. Method 

A successfully separates calm and extreme surge conditions, making it useful when distinguishing high-

impact events is a priority. Method C provides the broadest representation of surge conditions, ensuring that 

diverse weather events are captured, but at the cost of higher internal variability, which may reduce its 

usefulness for precise forecasting. Method B appears to produce patterns with lower internal variability, but 

it remains unclear whether this is a result of the MDA itself or the smaller dataset used for clustering. This 

makes it difficult to assess its suitability for practical applications without further validation. Ultimately, the 

choice of method depends on whether the priority is capturing a wide range of surge conditions or achieving 

well-separated patterns that balance internal consistency with predictive reliability. 
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10  

Evaluation of forecasting 

capability: a proof of concept 

The ability to accurately forecast storm surges is essential for coastal management and flood risk assessment. 

This chapter presents a qualitative proof-of-concept analysis investigating how well the self-clustered 

weather patterns predict the high surge at the peak of a representative SEAS5 storm, chosen as a proxy for 

storm Pia. The analysis does not aim to provide a fully quantitative validation but instead explores whether 

the weather patterns can offer useful early warning signals for extreme surge events. 

Since storm Pia’s atmospheric data was not processed in a format compatible with the weather patterns, a 

similar storm from the SEAS5 dataset was selected as a stand-in. The chapter first introduces storm Pia’s 

characteristics and impact, followed by the selection process of a representative SEAS5 storm, and finally 

examines the predictive performance of the weather patterns (Methods A, B and C) in forecasting the peak 

surge of the proxy storm. 

10.1 Storm Pia: characteristics and impact 
Storm Pia developed in mid-December 2023 and significantly impacted Northern Europe. The storm 

originated near Iceland on 20 December 2023, rapidly intensifying as it moved south-eastward under the 

influence of a strong jet stream. Within 24 hours, its central pressure dropped from 985 hPa to 960 hPa, 

indicating rapid deepening. On 20 December, Pia was centred over Iceland. Less than 24 hours later, it 

progressed toward southern Sweden, moving quickly eastward. The storm’s cold front swept across the 

North Sea, significantly affecting the Netherlands with strong winds and elevated water levels. The storm 

was particularly intense over the northern parts of the Dutch coast (Zijderveld, et al., 2024). 

Pia’s strong west-to-northwest winds over the North Sea led to high storm surges along the Dutch coast. 

Wind speeds reached 7-8 Bft (50-74 km/h) in the southern North Sea, with 9-10 Bft (75-102 km/h) over the 

northern North Sea and Wadden Sea. These winds, combined with high waves, caused significant water 

level increases at coastal locations, including Delfzijl and Harlingen. In fact, most of the main stations along 

the coast experienced water levels 

that exceeded WMCN warning levels 

(Zijderveld, et al., 2024). 

Figure 10-1 shows the water level, 

tide, and surge for during storm Pia at 

Delfzijl, with the coloured horizontal 

lines indicating various warning 

thresholds as defined by WMCN. At 

Pia’s peak surge in Delfzijl, the 

orange warning threshold was 

exceeded, with water level reaching 

412 cm + NAP. This logs the 13th  

highest observed surge in Delfzijl 

 
Figure 10-1: Observed water level, tide and surge at Delfzijl during storm Pia 

(21-22 December 2023).The green, yellow, and orange horizontal lines represent 

different warning thresholds defined by WMCN for water level. 
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since 1900. The exceedance frequency for Pia’s peak water level in Delfzijl was 13 times per 100 years, 

reflecting the rarity of the event (Zijderveld, et al., 2024). 

In response to the rising water levels, all six of Rijkswaterstaat's storm surge barriers were closed (the 

Maeslantkering, Oosterscheldekering, Hartelkering, Haringvlietsluizen, Hollandsche IJsselkering, and the 

Ramspol barrier). This event marked a significant milestone, as it was the first time that all six barriers were 

closed simultaneously, with the Maeslantkering being automatically operated for the first time 

(Rijkswaterstaat, 2023). 

Following the closure of all six storm surge barriers, the impact of storm Pia on the Netherlands was largely 

mitigated, with no widespread catastrophic flooding occurring. However, several coastal areas did 

experience localised flooding. In Oudeschild on Texel, water levels of 2.7 meters above NAP inundated the 

harbour, and Harlingen saw water levels reach 3.2 meters, causing flooding of the quaysides. In 

Scheveningen, roads in the port area were briefly submerged before receding. Delfzijl, which had forecasted 

water levels of 4.7 meters above NAP, saw precautionary measures taken, including advisories for hotel 

guests to relocate (DutchNews, 2023). While the storm caused notable disruptions, the effectiveness of the 

storm surge barriers and early warning measures prevented more severe flooding along the Dutch coast. 

10.2 Selection of a representative SEAS5 storm 
Need for a representative storm 

For this analysis, a SEAS5 storm was selected as a proxy for Pia due to practical constraints. The self-

clustered weather patterns were designed to work with SEAS5 data, and storm Pia’s raw atmospheric data 

was not processed into the same domain, resolution, and format as the weather patterns. Given the proof-

of-concept nature of this study, using a similar SEAS5 storm was deemed sufficient to assess the predictive 

value of the weather patterns. 

Selection process 

To find the most representative SEAS5 storm, two key criteria were considered: 

• The storm had to closely match Pia’s water level, tide, and storm surge values at the Dutch coast. 

• The storm trajectory and meteorological characteristics needed to resemble Pia’s observed path and 

behaviour. 

The initial filtering focused on hydrodynamic similarity. Pia’s recorded water level peaked at 4.12 m + 

NAP, with a tide of 1.40 m + NAP and a storm surge of 2.72 m. Only SEAS5 storms with water level, tide, 

and surge values within ±2 cm of Pia’s values were selected, yielding 32 candidate storms. 

With this initial selection, the storm trajectory and meteorological evolution were analysed to determine 

how each candidate's low-pressure system, wind fields, and pressure gradients evolved over time. The goal 

was to identify a storm that not only matched Pia’s surge characteristics but also followed a similar west-

to-east track across the North Sea. 

Among the 32 candidates, the synthetic SEAS5 storm on 22-23 December 1994 (from the ensemble forecast 

of October 1994) was identified as the best match. Table 10-1 shows that the water level, tide, and surge 

values of this SEAS5 storm closely resemble those of Pia at its peak. Moreover, the trajectory of this SEAS5 

storm closely resembles Pia’s observed movement, with rapid intensification mirrored the deepening of 

Pia’s low-pressure system. The wind patterns associated with this storm also exhibit strong north-westerly 

winds over the North Sea, further reinforcing its similarity to Pia’s structure. The evolution of this SEAS5 

storm is illustrated in Appendix I: Trajectory comparison of storm Pia and the representative SEAS5 storm, 
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which presents a sequence of snapshots showing its pressure contours and wind vectors at different time 

steps and comparing these to storm Pia. 

The evolution of the selected SEAS5 storm is illustrated in Figure 10-2, which shows a comparison of the 

water level, tide, and surge for both storm Pia and the representative SEAS5 storm at Delfzijl. The red 

vertical line marks the moment of Pia’s peak water level. While there are differences in the time leading up 

to Pia’s peak, the SEAS5 storm serves as a reasonable proxy for Pia in this proof-of-concept analysis. 

Table 10-1: Comparison of water level, tide, and surge at the peak of Storm Pia and the representative SEAS5 storm at Delfzijl 

 Storm Pia Representative SEAS5 storm 

Water level 412.0 cm + NAP 411.9 cm + NAP 

Tide 140.0 cm + NAP 141.4 cm + NAP 

Surge 272.0 cm 270.5 cm 

 
Figure 10-2: Plots of water level, tide and surge evolution of storm Pia and the representative SEAS5 storm. 

10.3 Weather pattern-based prediction for the SEAS5 storm 
Methodology 

To assess the forecasting capability of the weather patterns, surge predictions were made for the peak surge 

of the representative SEAS5 storm on 1994-12-23, using the self-clustered weather patterns (Methods A, B 

and C). For each lead time, the surge prediction was based on the corresponding SEAS5 field from earlier 

dates. For example, for lead time 1, the prediction was made using the SEAS5 field from 1994-12-22, and 

for lead time 15, the prediction was made using the SEAS5 field from 1994-12-08. This concept may be 

visually viewed in Figure 5-7. Surge predictions were made up to 15 days in advance, which in this study 

has been defined as a mid-term forecast.  

The methodology involved the following steps: 

1. Lead time matching: The SEAS5 field for each lead time (from 1 to 15 days before the 

representative surge) was selected based on the date. The surge prediction was made using these 

SEAS5 fields. Figure 5-7 illustrates this process. 

2. Pattern matching: The selected SEAS5 field was then matched to the closest self-clustered pattern 

(Methods A, B and C) via Euclidean distance. 

3. Surge prediction via boxplots: Once the closest self-clustered pattern was identified, the surge 

prediction associated with that pattern was obtained from the corresponding boxplots (Figures 9-3, 

9-12 and 9-18 for Methods A, B and C, respectively). The median surge and interquartile range 

(IQR) for each self-clustered pattern were compared to the actual surge of 2.705 m from the 

representative SEAS5 storm to evaluate the prediction accuracy. 
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Results and observations 

Figure 10-3 presents a facet grid plot showing the predicted median surge for each method, with shaded 

IQR regions illustrating forecast uncertainty. The black dashed line indicates the actual surge of 2.705 m on 

1994-12-23.  

 
Figure 10-3: Predicted median surge with IQR for representative SEAS5 storm across Methods (A, B and C). 

The results show that prediction accuracy improves as the lead time shortens. For longer lead times, the 

predictions significantly underestimate the surge. For example, at a 15-day lead time, the median surge 

predictions were as low as 0.27 m for Method A, compared to the actual surge of 2.705 m. However, even 

at shorter lead times (e.g., 1 day), the predictions are still notably off, with the highest predicted median 

surge at 1.72 m (Method B). The discrepancy between the predicted median surge and the actual surge 

remains large across all methods. 

When comparing Methods A, B, and C, the predicted surge patterns are somewhat similar, but there are 

differences in the timing of when the surge predictions start to increase. Method A, for example, keeps the 

predicted surge low for a longer time before showing any upward trend, while Methods B and C begin to 

show a surge increase slightly earlier. This difference might be important when interpreting operational 

forecasts, where an earlier signal of a high surge could be crucial. 

Uncertainty, as shown by the interquartile range (IQR), remains substantial across all lead times. The IQR 

fluctuates between approximately 0.5 and 1 m throughout the lead times, reflecting considerable uncertainty 

in the predicted surge levels.  
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 Discussion 

This study investigated the potential of integrating weather pattern-based classification into mid-term storm 

surge forecasting for the Dutch coast. The research was conducted in two phases: Phase I assessed the 

applicability of Neal et al. (2018) predefined weather patterns, while Phase II explored self-clustered 

patterns derived directly from the SEAS5 dataset. 

This chapter explores several key questions: Why was this method expected to work (Section 10.1)? Why 

did it struggle, both for Neal’s predefined patterns and the self-clustered methods (Section 10.2)? What are 

the practical implications for WMCN (Section 10.3)? And how does weather pattern classification fit into 

broader interdisciplinary applications (Section 10.4)? 

11.1 Conceptual basis for weather pattern-based storm surge forecasting 
The central hypothesis of this study was that large-scale weather pattern classification could enhance mid-

term storm surge forecasting for the Dutch coast by identifying recurring atmospheric configurations 

associated with extreme surge events. This idea was motivated by the demonstrated success of weather 

pattern-based forecasting in the UK by Neal et al. (2018). 

Reasons for applying weather pattern classification 

I. Synoptic-scale influence on storm surges - The formation and intensity of storm surges along the 

Dutch coast are heavily influenced by large-scale atmospheric circulation patterns (Section 2.2). De 

Kraker (2010), has shown that low-pressure systems over the North Sea, combined with strong 

north-westerly winds, are primary drivers of extreme surge events in this region. By classifying 

these recurring synoptic configurations, the expectation was that storm surge risks could be 

anticipated further in advance than is currently possible with traditional numerical models. 

II. Potential for extending forecast lead times - Currently, operational storm surge models provide 

reliable forecasts up to 10 days ahead (Section 1.3). However, extending beyond this lead time is 

challenging due to computational demands, a lack of flexibility in existing models and inherent 

atmospheric uncertainty. Weather pattern classification, if successful, could serve as a 

complementary tool to identify high-risk periods earlier, bridging the gap between short-term 

numerical forecasts and long-term climate projections. 

III. Comparison with existing pattern-based forecasting methods – Neal’s weather patterns, originally 

developed for the UK, have been successfully applied in flood risk forecasting (Section 2.5). This 

study aimed to assess whether a similar methodology could be adapted to the Dutch coastal context 

using both these predefined weather patterns from Neal et al. (2018) (Phase I, Chapter 6) and self-

clustered weather pattern derived from SEAS5 data (Phase II, Chapter 9). 

Despite these theoretical justifications, the results indicated that weather pattern classification did not 

significantly improve storm surge predictability at longer lead times. The following section analyses the key 

reasons for this outcome. 
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11.2 Assessment of predictive skill and methodological limitations 
While the theoretical foundations for applying weather pattern classification to storm surge forecasting 

appeared promising, the results showed that neither Neal’s predefined weather patterns nor the self-clustered 

methods were able to significantly improve predictive skill for the Dutch coast in their current form. Instead 

of identifying distinct atmospheric configurations that consistently preceded extreme surge events, the 

classifications exhibited considerable overlap between different surge magnitudes. Several factors 

contributed to this outcome, related to dataset choices, methodological assumptions, and fundamental 

characteristics of storm surge formation. 

This section first evaluates Neal’s predefined weather patterns and then examines the self-clustered methods 

(A, B, and C), analysing the methodological limitations that contributed to their weaker-than-expected 

performance. 

11.2.1 Neal weather patterns 

Several factors may have contributed to the limited predictive skill of Neal’s weather patterns for Dutch 

storm surge forecasting, including: 

I. Spatial domain mismatch: clipping of Neal’s patterns - Neal’s patterns were originally derived 

over a larger North Atlantic-European domain, based on how well UK temperature and precipitation 

time series could be reconstructed using only the weather pattern classification (Neal, Fereday, 

Crocker, & Comer, 2016). This domain was not explicitly optimised for storm surge forecasting, 

but rather for understanding UK climatological variability and weather regime transitions. In this 

study, the Neal patterns had to be clipped to match the smaller DCSM5 domain. As shown in Figure 

5-2, this clipping may have removed crucial large-scale atmospheric structures, particularly those 

influencing storm development in the North Atlantic, where many extreme storms impacting the 

Dutch coast originate (Bell, Gray, & Jones, 2017) (Section 2.1). Thus, the domain mismatch may 

have weakened the ability of Neal’s weather patterns to capture surge-relevant atmospheric 

conditions, limiting their effectiveness in the Dutch coastal context. 

II. Optimised for the UK - Unlike this study, which aimed to use weather patterns explicitly for storm 

surge forecasting, Neal’s method was designed as a flexible approach for post-processing ensemble 

forecasts in various applications, including but not limited to storm surge forecasting (Neal, 

Fereday, Crocker, & Comer, 2016). Additionally, the weather patterns were not explicitly tailored 

to Dutch storm surge characteristics, meaning that the optimal atmospheric patterns for UK flood 

risk may not necessarily align with those influencing Dutch surge events.  

III. Absolute MSLP vs. anomalies - Another key difference is that Neal’s clustering method used 

MSLP anomalies, while in this study, absolute MSLP values were applied. Anomaly-based 

clustering removes seasonal and large-scale biases, making it potentially better suited to identifying 

deviations that drive extreme weather events. By contrast, using absolute MSLP values may have 

resulted in weaker clustering performance, as it does not highlight deviations from climatological 

norms. 

IV. Differences Between EMULATE and SEAS5 - Neal’s clustering was performed on 154 years of 

observed data (EMULATE dataset), whereas in this study, the same patterns were applied to 9000+ 

years of SEAS5 seasonal forecast data. While Section 6.2 showed that the mean MSLP values in 

EMULATE and SEAS5 were similar, the standard deviation was found to be higher in SEAS5. This 

suggests that SEAS5 contains a greater degree of variability, meaning that applying weather pattern 

classifications derived from EMULATE to SEAS5 may have introduced inconsistencies that 

weakened the pattern-matching process. 
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11.2.2 Self-clustered patterns 

The goal of the self-clustering methods was to generate new weather patterns optimised for Dutch storm 

surge forecasting, using SEAS5-based data. However, the classifications struggled to meaningfully separate 

extreme surge events from moderate or low-surge cases for longer lead times, similarly to the Neal weather 

patterns. Several common issues affected all three self-clustering approaches, related to lead time selection, 

predictor choices, and spatial domain constraints. 

This section first examines these general methodological challenges that impacted all self-clustered 

approaches. It then provides a method-specific evaluation of Methods A, B, and C, assessing their individual 

performance and limitations. 

General analysis 

The following general aspects influenced the performance of all self-clustering methods: 

I. Lead time considerations: were the right days clustered? 

A major limitation of the current methodology is that days were selected for clustering based on peak surge 

values. This means that clustering was performed on the same day as the maximum surge, rather than on 

the preceding atmospheric conditions that led to the event. 

For storm surge forecasting, identifying precursors is more useful than classifying conditions on the surge 

day itself. Since the goal of pattern-based classification is to provide mid-term forecasts, the current 

approach may have weakened the usefulness of the resulting clusters for real-world applications. 

A more effective strategy would involve: 

• Selecting surge events but clustering based on the preceding atmospheric conditions, which would 

better capture storm evolution. 

• Exploring multi-day sequences instead of clustering on individual days, as storms often take several 

days to develop before reaching peak surge levels. 

 

II. Atmospheric variable selection: was MSLP sufficient? 

This study relied solely on mean sea level pressure (MSLP) as the primary atmospheric variable for 

clustering, using two predictors: MSLP itself and its gradient. However, since the gradient is directly derived 

from MSLP, the clustering was effectively based on just one underlying variable. While MSLP plays an 

important role in defining large-scale weather patterns, other variables also influence storm surge dynamics 

and could improve clustering performance. 

The gradient of MSLP provides indirect information about wind strength and direction, as the spacing of 

isobars describes wind speed, and their orientation indicates wind direction (Hegermiller, et al., 2017; 

Espejo, Camus, Losada, & Méndez, 2014). However, this relationship is not always direct, as Coriolis forces 

and surface friction modify the actual wind trajectory, particularly in the boundary layer (Holton & Hakim, 

2013). Pugh (1987) highlights that in extratropical cyclones, both pressure and wind stress contribute to 

storm surge formation. The omission of wind stress as a predictor may therefore have limited the ability of 

the clustering methods to distinguish between storm patterns that generate high surges and those that do not. 

III. Spatial domain constraints: was the study area too small? 

As discussed in the previous section, the Neal weather patterns had to be clipped to fit the SEAS5 domain 

used in this study, based on the DCSM domain. Similarly, the self-clustered patterns were all derived within 

the same study area also. 
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This raises the same concern: many storms that generate extreme surges along the Dutch coast originate in 

the North Atlantic, which is out of scope in this study. If key storm features develop outside the clustering 

domain, then pattern-based classification may inherently struggle to provide useful signals at longer lead 

times. One way to address this would be to expand the clustering domain to include the North Atlantic, 

capturing storm development before it reaches the Dutch coast. 

Method-specific analysis 
The following sections evaluate the performance of each self-clustering method individually, assessing their 

strengths and limitations, and discussing how specific methodological choices influenced their ability to 

improve storm surge predictability. 

I. Method A 

Findings and insights 

Method A applied a fixed storm surge threshold to classify high-surge days for clustering. This approach 

successfully identified a clear separation between calm conditions and storm-related patterns, as reflected 

in the boxplots (Figure 9-3) and dendrogram results (Figure 9-9). The calm condition patterns were well-

defined, demonstrating that the method captured large-scale differences between stormy and non-stormy 

weather regimes. 

Challenges and areas for improvement 

While Method A effectively differentiated stormy from calm conditions, the use of a fixed surge threshold 

across all locations introduced regional inconsistencies. For instance, the average surge in Delfzijl is 

significantly larger than in Vlissingen (Appendix C: Surge return period analysis), meaning that the same 

threshold could classify a moderate event in one location but an extreme event in another. 

Moreover, because all locations were included whenever the threshold was exceeded at any one station, the 

dataset included many surge values below 1.5 meters (beyond those added by the calm condition days), 

resulting in greater variability within the high-surge clusters. This contributed to less distinct extreme-surge 

patterns, limiting their predictive value. 

Possible future refinements 

• Using a fixed return period for the surge instead of a fixed threshold could improve regional 

consistency and ensure a balanced representation of extreme events across all locations. Instead of 

applying a universal surge threshold, the selection could be location-specific, ensuring that storm 

days are based on historical exceedance probabilities for each site. 

• Performing clustering separately for each location could further improve the optimisation of 

weather patterns. Instead of assigning storm days to all locations when a threshold is exceeded at 

just one site, clustering could be conducted independently for each location, ensuring that the 

identified patterns are better tailored to local surge dynamics. 

 

II. Method B 

Findings and insights 

Method B used the Maximum Dissimilarity Algorithm (MDA) to select a representative subset of 1000 days 

from the SEAS5 dataset. Due to computational constraints, MDA could not be applied directly to the entire 

SEAS5 dataset, which spans over 3.5 million days. Instead, the approach first randomly selected a 

subsample of 10,000 days from the full dataset. Then, within this randomly drawn subset, MDA was applied 

to further refine the selection to 1000 days, resulting in the final dataset representing a diverse range of 

atmospheric conditions while maintaining a mix of high-surge and low-surge events. 
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Interestingly, despite working with a subsample rather than the full SEAS5 dataset, the randomly selected 

10,000-day subset retained a very similar surge distribution to the full dataset. This suggests that even a 

reduced selection can preserve the overall statistical properties of SEAS5, making random sampling a viable 

preprocessing step for large-scale surge classification. 

Additionally, while MDA promotes diversity in the selected cases, it still ensured that extreme surge days 

were adequately represented, particularly at IJmuiden, the representative location used for MDA selection. 

Despite selecting cases based on a single reference location, the final dataset contained a broad range of 

surge values across other locations as well, indicating that IJmuiden-based selection still provided a 

reasonably representative distribution along the Dutch coast. 

Challenges and areas for improvement 

The selection of only 1000 days was a major constraint, as it was purely a computational necessity rather 

than an optimal methodological choice. Given that SEAS5 contains over 9,000 years of data, this small 

sample size is likely not to have been sufficient to capture the full range of distinct weather patterns relevant 

to Dutch storm surges. 

Another issue is that the resulting cluster assignments were highly imbalanced, with some weather patterns 

containing very few assigned days (<10 days). The presence of sparsely populated clusters indicates another 

limitation of working with a reduced dataset: although MDA ensures a diverse set of surge conditions, the 

constrained selection process leads to underrepresentation of certain patterns. 

Additionally, MDA treats all surge categories equally, meaning that moderate and extreme surge events are 

weighted the same in the selection process. However, for storm surge forecasting, a more nuanced approach 

that prioritises high-surge conditions could be more beneficial. Assigning more weight to high-surge events 

during MDA selection could help generate more weather patterns focused on extreme conditions, improving 

differentiation within the highest surge categories. 

Finally, the selection process used only a single representative location, IJmuiden, for computational 

reasons. While the results suggest that the selected data still provided a broad and representative surge 

distribution across other locations (see Appendix F: KDE plots), it remains unclear whether certain localised 

surge dynamics were underrepresented due to this single-location selection approach. 

Possible future refinements 

• Increasing the dataset size would provide better statistical robustness of clustering, ensuring that all 

relevant atmospheric configurations are adequately represented. 

• Instead of relying solely on IJmuiden, exploring multi-location MDA selection could enhance 

regional representativeness and ensure that the chosen days for clustering better reflect coast-wide 

surge dynamics. 

• Refining the MDA selection process to prioritise storm surge-relevant cases could enhance its 

effectiveness in storm classification. 

 

III. Method C 

Findings and insights 

Method C aimed to improve dataset balance by ensuring a more even representation of high-surge and low-

surge cases, preventing the clustering process from being overly dominated by calm conditions. This 

approach successfully resulted in a broader distribution of surge events, capturing a range of surge values 

across different surge categories (e.g., low, medium, high). 
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A key advantage of this method was that all high-surge events for IJmuiden (the reference location used for 

this method) were included in the dataset. Since there were fewer high-surge days available, it was not 

possible to perform a random selection within the highest surge strata, so instead, all high-surge days were 

retained. This ensures that extreme surge events were always included in the clustering process, in addition 

to the more moderately distributed cases from other strata. 

 

The kernel density estimation (KDE) plots (Figure 8-3) revealed that for IJmuiden, the resulting surge 

distribution exhibited multiple peaks. This suggests that certain surge values were overrepresented within 

each category, potentially biasing the clustering process. 

Another notable observation was that nearby locations (Hoek van Holland and Den Helder) exhibited similar 

KDE structures to IJmuiden, while more distant locations (Delfzijl and Vlissingen) showed smoother 

distributions (Appendix F: KDE plots). This indicates that while the stratified sampling preserved variability 

in surge categories at locations close to IJmuiden, it may have been less representative for more distant 

locations where surge behaviour differs more significantly. 

Challenges and areas for improvement 

Although Method C improved the balance between high-surge and low-surge cases, the fact that stratified 

sampling was based only on IJmuiden meant that the resulting weather patterns were optimised primarily 

for this location. While this still produced reasonably broad surge distributions for other locations, it is 

unclear whether the storm conditions most relevant for Vlissingen or Delfzijl were sufficiently captured. 

The KDE analysis suggests that locations closer to IJmuiden were better represented, while locations farther 

away had smoother, less pronounced peaks in their surge distributions. This suggests that surge variability 

at distant locations may not have been fully preserved, potentially limiting the ability of the weather patterns 

to distinguish regionally specific storm surge dynamics. 

Key lessons and possible future adjustments 

• Expanding stratified sampling to include all locations rather than just IJmuiden could improve 

regional representativeness. By applying stratification individually at each location, rather than 

assuming that IJmuiden-based classification generalises well to the entire Dutch coast, the resulting 

weather patterns could be better optimised for location-specific surge behaviour. 

• Refining the way surge categories are defined to reduce overrepresentation of certain surge values 

within each category could lead to more uniform distributions, preventing biases in the clustering 

process. 

11.2.3 Key takeaways 

The assessment of both Neal’s predefined weather patterns and the self-clustered approaches has shown 

several key limitations and areas for improvement in applying weather pattern classification for storm surge 

forecasting: 

 

• Predefined weather patterns may not generalise well across regions - Neal’s patterns were 

optimised for UK climate conditions and flood forecasting, making them less effective for Dutch 

storm surges. Differences in spatial domain, dataset characteristics, and clustering methodology 

likely reduced their applicability. 

• Selecting clustering days based on peak surge values may not be optimal - Instead, clustering 

should focus on the atmospheric conditions leading up to extreme surge events rather than the surge 

day itself. 
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• MSLP alone may not be sufficient - Incorporating additional predictors such as wind stress could 

improve the ability of clustering to distinguish between storm intensities. 

• Expanding the spatial domain could improve predictive skill - Many storms that drive extreme 

surges originate in the North Atlantic, a region that was outside the SEAS5 domain used in this 

study. Expanding the clustering domain could improve early detection of relevant storm patterns. 

• Sample size matters - Increasing the number of selected days for clustering, particularly in MDA-

based methods, could prevent overfitting to a small subset of cases, improving the statistical 

robustness of the classification. 

• Regional surge dynamics should be considered - Methods that rely on a single representative 

location (e.g., IJmuiden) may not fully capture surge variability across the Dutch coast. Expanding 

the methodology to account for regional differences could improve classification accuracy. 

11.3 Practical implications for WMCN and operational forecasting  
The results of this study provide insights into how weather pattern classification could be applied within 

WMCN’s operational framework. While the classification methods did not improve longer lead-time 

predictability, they may still have value in certain forecasting scenarios. The usefulness of these weather 

patterns depends largely on the specific forecasting objective. 

If the goal is to predict whether a high surge will occur 15 days in advance, weather pattern classification, 

as currently defined, provides little practical value. The surge distributions across different weather patterns 

at such long lead times show too much overlap, making it difficult to distinguish between high and low 

surge events. However, if the focus shifts to a shorter-term forecast within an existing ensemble prediction, 

such as using an SEAS5 forecast for 14 days from now to assess surge risk at day 15, then the classification 

becomes more relevant. At shorter lead times, the 1-day lead time boxplots show clearer distinctions 

between weather patterns, suggesting that such an approach could help refine surge risk assessments based 

on ensemble forecasts. 

In situations where WMCN aims to determine only whether a high surge event will occur (binary 

classification), Method A appears to be the most effective. The clustering method successfully distinguished 

between calm and extreme surge days, as reflected in both the boxplots and dendrogram results, where two 

distinct pattern groups emerged. This suggests that weather pattern classification could serve as a 

probabilistic screening tool to flag periods of increased surge risk. However, if the goal is to estimate the 

severity of the surge, the weather patterns appear less suitable. Many of the identified patterns exhibit wide 

surge distributions, meaning that within a single pattern, surge values can vary by several meters. As a result, 

while weather classification may be useful for indicating the likelihood of extreme conditions, it lacks the 

precision needed for impact-based surge forecasting. 

11.4 Potential interdisciplinary applications 
The methodology explored in this study, using weather pattern-based classification to predict storm surge, 

has broader applications in meteorology and climate impact studies. As summarised by Ireland, Robbins, 

Neal, Barciela, & Gilbert (2024), this approach is already being used in various forecasting applications. 

Given its ability to classify large-scale atmospheric configurations, it could be extended to other 

environmental hazards where atmospheric patterns play a significant role in driving extreme events. 

One clear application is in precipitation forecasting. Just as this study attempted to associate weather patterns 

with storm surge probability, a similar approach could be used to predict heavy rainfall events and associated 

riverine flooding (Richardson, et al., 2020). Identifying weather patterns linked to extreme precipitation 

could enhance flood early warning systems by providing probabilistic insights at longer lead times than 

traditional hydrodynamic models alone. 
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Another potential application is in forecasting temperature extremes, such as heatwaves and cold spells. 

Specific weather patterns can be linked to prolonged high or low temperatures. This relationship could be 

leveraged to improve health risk forecasting, such as anticipating periods of excess mortality linked to 

extreme temperatures (Huang, et al., 2020). 

Beyond direct hazard forecasting, this method could also support renewable energy resource management. 

Wind and solar energy production are highly sensitive to large-scale atmospheric circulation, and classifying 

weather patterns could improve energy demand and supply predictions. Wind energy forecasting, for 

instance, could benefit from identifying circulation patterns that lead to persistent high-wind conditions over 

offshore wind farms. Similarly, cloud cover patterns associated with large-scale systems could inform solar 

energy output projections.  
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12  

 Conclusion and 

recommendations 

12.1 Conclusions 
This study investigated the potential of integrating weather pattern-based storm classification into mid-term 

storm surge forecasting for the Dutch coast. Two distinct research phases were conducted: Phase I, which 

evaluated the suitability of Neal et al. (2018) predefined weather patterns, and Phase II, which explored the 

development of self-clustered weather patterns tailored to Dutch storm surge dynamics. 

While Neal’s weather patterns offer a structured classification of large-scale atmospheric conditions, the 

results of this study suggest that their direct application to mid-term storm surge forecasting  for the Dutch 

shore presents several challenges, resulting in limited differentiation between high- and low-surge 

conditions, especially at the longer lead times. Similarly, the self-clustered weather patterns did not 

consistently demonstrate significant improvements over the predefined ones, highlighting methodological 

limitations and potential areas for refinement. 

A primary limitation was lead time considerations. The self-clustered patterns tended to describe the weather 

at the moment of peak surge, rather than the preceding atmospheric conditions that contributed to storm 

development. As a result, the patterns were not necessarily representative of the conditions that drive surges 

days in advance, limiting their usefulness for mid-term forecasting. 

Additionally, the spatial domain of this study may have constrained predictive performance. Many storm 

systems affecting the Dutch coast originate over the Atlantic Ocean, beyond the study’s selected region. 

Without accounting for these early-stage developments, the method struggled to capture the evolution of 

storms at longer lead times. 

Despite these limitations, the findings suggest that weather pattern-based classification retains potential as 

a probabilistic forecasting tool, particularly at shorter lead times. However, the method could also be 

valuable for longer lead times with further optimisation, calibration, and methodological refinements. 

Section 12.2 will further explore recommendations for future research, including potential refinements to 

the methodology, alternative clustering strategies, and expanded datasets that could enhance the predictive 

skill of weather pattern-based storm surge forecasting. 

The remainder of this section addresses the research questions posed in Section 1.6. First, the four sub-

questions are answered, followed by the main research question. 

What are the key large-scale weather patterns associated with extreme storms impacting the Dutch 

coast and how do these identified weather patterns correlate with nearshore hydraulic conditions? 

Extreme storm surges along the Dutch coast are primarily driven by specific large-scale atmospheric 

patterns that induce strong onshore winds and low atmospheric pressures over the North Sea. These 

conditions elevate sea levels and intensify nearshore hydraulic impacts. Key weather patterns include: 

• Deep low-pressure systems over the North Atlantic and North Sea: These systems, often associated 

with extratropical cyclones, generate powerful westerly to north-westerly winds. The prolonged 
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onshore wind stress pushes seawater toward the Dutch coastline, leading to elevated sea levels and 

increased storm surge potential. For example, Storm Pia (December 2023) developed near Iceland 

and rapidly deepened as it tracked toward Scandinavia, bringing strong north-westerly winds and 

significant storm surges along the Dutch coast (Zijderveld, et al., 2024).  

• Blocking high-pressure systems over Scandinavia or Central Europe: Such systems can impede 

the usual west-to-east progression of weather patterns, causing cyclones to stall or redirect over the 

North Sea. This stagnation can result in sustained wind conditions and prolonged high sea levels 

along the Dutch coast. For instance, during Storm Xaver (December 2013), a blocking high over 

southwestern Europe intensified the pressure gradient, leading to prolonged north to north-westerly 

winds and record-breaking storm surges in the North Sea (Kautz, et al., 2022). 

These findings are supported by the exploratory SEAS5 surge event analysis (Section 4.3), which showed 

that extreme surge events consistently occurred during periods of strong westerly to north-westerly winds, 

driven by deep low-pressure systems positioned either over the North Sea or just north of Scotland. 

Furthermore, storm evolution animations (Section 4.4 and Appendix J: Storm evolution in the considered 

domain) demonstrated that many surge-driving storms originated in the North Atlantic, well outside the 

study domain, and only entered the model region one or two days before peak surge. This emphasises the 

importance of considering precursor storm development over a larger spatial domain when attempting to 

predict storm surges further in advance. 

How well do the weather patterns from Neal et al. (2018) perform in predicting storm surges along 

the Dutch coast? 

The Neal weather patterns were not able to reliably predict storm surge levels along the Dutch coast. While 

some patterns showed a higher likelihood of high surge events, the surge distributions were too similar 

across all patterns, making it difficult to distinguish between those associated with high, moderate, or low 

surge. This lack of differentiation means that the Neal patterns cannot be used operationally as a stand-alone 

tool for storm surge forecasting along the Dutch coast. 

A key limitation was the broad-scale nature of the Neal patterns, which were originally developed for UK 

storm risk assessment rather than Dutch coastal flood forecasting. Their spatial coverage and classification 

criteria did not fully capture the local meteorological and hydrodynamic influences that drive storm surges 

along the Dutch coast. Since storm surges are highly sensitive to regional wind fields and coastline 

orientation, the predefined patterns may have been too generalised to accurately resolve the specific 

conditions that lead to high surges in the Netherlands. 

What is the added value of self-clustered weather patterns compared to Neal’s predefined weather 

patterns in mid-term storm surge forecasting? 

The self-clustered weather patterns, as defined in this study, did not provide a clear advantage over Neal’s 

predefined patterns in terms of surge predictability in the mid-term lead times. None of the three tested 

methods produced distinct enough classifications to reliably separate high-surge from low-surge conditions. 

Of the three methods: 

 

• Method A (Fixed surge threshold) overrepresented extreme surge events in some locations while 

underrepresenting them in others, leading to inconsistencies in the clustering results. 

• Method B (Maximum Dissimilarity Algorithm, MDA) suffered from severe data limitations due to 

computational constraints, making its clusters too small to be useful. 

• Method C (Stratified sampling) offered the most balanced representation of different surge levels 

but still struggled to produce clusters that meaningfully distinguished between the severity of storm 

surge risks. 
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Method C seems the most reasonable choice, but even this approach did not outperform Neal’s patterns in 

a way that would justify operational implementation in its current form. 

However, at shorter lead times, the self-clustered weather patterns demonstrated some improvements over 

Neal’s patterns. The boxplots showing the distribution of surges across the weather (Figures 9-3, 9-12 and 

9-18 compared to Figure 6-5) indicate that the range of surge values within each self-clustered pattern was 

generally less wide, meaning that the classification provided more consistent surge estimates. Additionally, 

the mean surge values of the self-clustered patterns were more distinct from one another, which aligns with 

the goal of creating weather patterns that effectively differentiate between high and low surge conditions.  

Although the tested methods did not yield clear improvements on the mid-term timescale, self-clustered 

weather patterns still hold potential advantages over predefined classifications. Custom clustering allows 

for greater flexibility in adapting to changing storm patterns and could be refined further by incorporating 

additional variables such as wind stress, storm tracks, surge etc. While this study did not find immediate 

improvements, future research into optimising self-clustering techniques, potentially with an expanded 

domain or additional predictors, could provide valuable insights for mid-term storm surge forecasting along 

the Dutch coast. 

What are the potential practical implications and operational utility of integrating weather pattern-

based storm classification to mid-term storm forecasting for coastal flood preparedness and response 

strategies in the Netherlands? 

Weather pattern-based storm classification was explored as a complementary tool to existing mid-term 

storm surge forecasting methods. The results indicate that in its current form, the approach is not yet suitable 

for operational use, as the generated weather patterns do not consistently provide a clear distinction between 

high-surge and low-surge events. This limits their immediate applicability for decision-making in storm 

surge risk management. 

However, this does not mean that weather pattern classification has no potential value. The ability to 

categorise large-scale atmospheric conditions remains a promising avenue for improving situational 

awareness and probabilistic forecasting. With further refinements, this approach has the potential to enhance 

mid-term forecast reliability and support decision-making for storm surge preparedness. 

At shorter lead times, the weather pattern classification as explored in this study, shows greater potential, 

particularly when used alongside ensemble forecasting frameworks. Instead of applying the classification 

blindly at long lead times, it may be more effective when used within an existing SEAS5 forecast. For 

example, rather than trying to predict a high-surge event 15 days in advance, a more practical approach 

would be to first generate an SEAS5 ensemble forecast for day 14 and then apply the weather pattern 

classification to assess surge risk for day 15. The 1-day lead time boxplots indicate that at these shorter 

timeframes, weather patterns are more distinctly linked to surge probabilities, meaning this approach could 

help refine probabilistic risk assessments and improve decision-making. 

An additional use-case is binary classification, where the goal is to determine whether a high-surge event is 

likely within a given timeframe. Method A showed promise in this regard, successfully distinguishing 

between calm and extreme surge days. This suggests that weather pattern classification could serve as a 

probabilistic screening tool, helping to highlight periods of increased surge risk. Such an approach could be 

particularly valuable for early warning systems, where forecasters need to assess broad-scale risk levels 

rather than predict exact surge magnitudes. 

At this stage, generating operationally useful weather patterns is not trivial and requires further optimisation 

before it can be effectively integrated into storm surge forecasting systems. The next section (12.2) provides 
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specific suggestions on how the methodology could be improved to better capture storm surge dynamics 

and increase its operational value. 

To what extent can the integration of weather pattern-based storm classification contribute to 

improving mid-term forecasting accuracy for extreme storms impacting the Dutch coast? 

In its current form, weather pattern-based classification does not significantly improve mid-term storm surge 

forecasting accuracy. The tested methods did not produce patterns that reliably differentiate between surge 

levels, limiting their operational usefulness. However, the concept remains promising if further refined.  

12.2 Recommendations for future research 
The results of this study indicate that while weather pattern-based classification provides a structured 

approach to analysing storm surge events, its effectiveness in mid-term forecasting remains uncertain. The 

generated patterns do not consistently align well with high-surge events (as shown in Chapter 9) on the mid-

term timescale, highlighting limitations in the current methodology. To improve the applicability of this 

approach, it is recommended that future research prioritises the following areas as discussed in the following 

sub-sections. 

12.2.1 Priorities for improving weather pattern-based forecasting 

To enhance the effectiveness of weather pattern-based classification, several methodological improvements 

could be explored: 

I. Introducing lead-time considerations in data selection 

One of the most critical limitations of the current approach is that clustering was based on the weather 

conditions occurring on the high-surge day itself, rather than the atmospheric conditions that led to the surge 

event. Since storm surge buildup is a multi-day process, future research should shift toward a sequential 

clustering approach, where weather patterns are classified based on conditions in the days leading up to a 

surge event rather than the surge day itself. 

A lead time of 15 days would likely be a good starting point, as it is long enough to capture the full evolution 

of a storm system while avoiding arbitrary selection biases in choosing how many preceding days to include. 

By focusing on the precursor conditions responsible for generating a storm surge rather than the conditions 

occurring simultaneously with it, this adjustment would make the approach more relevant for mid-term 

forecasting applications. 

This concept is already applied in the boxplot analysis linking maximum daily surge to preceding weather 

patterns (Figure 5-7). Adopting a similar approach for clustering would help identify causal relationships 

between weather patterns and surge events. 

II. Expanding the clustering domain 

The current study only considers a limited domain centred around the North Sea, but many surge-driving 

storms originate in the North Atlantic before moving into the study region (as shown in Section 4.4). If a 

storm is already fully developed upon entering the study domain, the clustering process misses the critical 

precursor conditions that led to its formation. 

To better capture the full lifecycle of storms affecting the Dutch coast, the clustering domain should be 

expanded to include a larger portion of the North Atlantic. This would help resolve the atmospheric 

conditions that precede extreme storm surges, particularly those linked to deep low-pressure systems 

tracking from the west. 

Additionally, masking land areas within the clustering domain could improve classification quality. Since 

land-based atmospheric features contribute little to storm surge formation, their inclusion may introduce 
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unnecessary noise into the clustering process. By removing land regions from the classification, the 

clustering algorithm could focus more directly on oceanic and coastal meteorological patterns, potentially 

improving pattern distinctiveness. 

III. Revisiting data selection criteria: fixed return period vs. fixed surge threshold 

Currently, Method A selects high-surge events based on a fixed surge threshold, which does not account for 

regional differences in typical surge magnitudes. For instance, Delfzijl experiences significantly higher 

surges than Vlissingen (see Appendix C: Surge return period analysis), meaning that a uniform threshold 

overrepresents extreme events in some locations and underrepresents them in others. 

A more robust alternative is to select events based on a fixed return period rather than a fixed surge threshold. 

For example, defining storm days based on a 1-year return period at each location would ensure that the 

clustering includes storms of similar rarity across all sites, improving comparability and better aligning with 

mid-term forecasting applications for repair and maintenance scheduling. 

A related consideration is whether a single set of weather patterns should be derived for the entire Dutch 

coast or whether separate weather patterns should be defined per location. If weather patterns were generated 

individually for each site, they would more precisely capture local meteorological influences on storm surge, 

potentially improving location-specific predictability. However, this would require deriving multiple sets of 

weather patterns rather than a single set, increasing the workload during the development phase. Future 

research should explore whether this additional effort leads to meaningful forecast improvements, or if a 

compromise approach, such as grouping locations with similar storm surge responses into regional subsets, 

provides a good balance between accuracy and efficiency. 

12.2.2 Further methodological improvements 

Beyond refining data selection and clustering criteria, alternative techniques and computational 

enhancements may provide better predictive performance: 

IV. Expanding the predictor set 

This study relied solely on mean sea level pressure (MSLP) and its gradient as the primary atmospheric 

predictors for clustering. While MSLP plays a fundamental role in defining large-scale weather patterns, 

other variables also influence storm surge dynamics. Future research could therefore explore incorporating 

additional predictors into the clustering process, such as: 

• Wind stress components (zonal and meridional): These determine surface wind forcing, which is a 

primary driver of storm surge generation. 

• Sea surface pressure anomalies: While MSLP was already used, anomalies relative to a 

climatological mean could highlight pressure deviations that are more relevant for storm activity. 

• Sea surface temperature: Warmer waters can contribute to storm development and intensification, 

affecting the likelihood of strong onshore winds and high surges. 

• Surge itself: While not useful for operational forecasting (as it is the target variable), it could 

enhance clustering accuracy when generating weather patterns for training purposes. 

Additionally, rather than weighting all predictors equally, future research could assign different weights 

based on their relative importance in driving storm surge events. Given that both pressure and wind effects 

play an equally significant role in extratropical storm surges in the North Sea (Pugh, 1987), MSLP and wind 

stress could be given equal weight, while secondary variables such as sea surface temperature might receive 

lower weighting. These weights could be determined empirically through sensitivity analyses, optimising 

predictor selection for better classification results. 
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V. Investigating alternative clustering methods 

While k-means clustering is the most commonly used method for weather pattern classification, alternative 

machine learning approaches may also be tested to assess their ability to capture the complexity of storm 

surge-related weather patterns. Future research could explore: 

• Hierarchical clustering – Allows nested relationships between weather patterns to be analysed, 

potentially providing a more flexible classification structure (Gueffier, et al., 2024). 

• Self-Organising Maps (SOMs) – A neural network-based approach that has shown promise in 

classifying atmospheric circulation patterns (Doan, Kusaka, Sato, & Chen, 2020). 

• Hidden Markov Models (HMMs) – Captures sequential transitions between weather states, making 

it potentially well-suited for modelling storm evolution  (Ailliot, Thompson, & Thomson, 2009). 

• Other Machine Learning approaches (Random Forests etc.) – More flexible classification models 

such as Random Forest, that could provide probabilistic weather pattern assignments for storm surge 

risk assessment (Bellinghausen, Hünicke, & Zorita, 2024). 

Since clustering is ultimately a means of identifying key atmospheric states, testing these alternative 

methods could provide deeper insights into which weather patterns are most relevant for mid-term surge 

forecasting. 

VI. Expanding data selection for clustering using high-performance computing 

A key motivation for using SEAS5 instead of historical datasets (such as ERA5 or EMULATE) is its large 

dataset size (3.5 million days), which provides a more comprehensive representation of possible weather 

patterns. However, due to computational limitations in this study, only a small fraction of this dataset was 

used in clustering; for example, Method A used just 100k days (~275 years). While this is the highest number 

of days tested in this study, it is only moderately larger than the maximum length of historical datasets 

available for the Dutch coast (~150 years). Given that SEAS5 has the potential to provide much longer 

climatological records, it remains unclear whether this sample size is sufficient to fully represent the 

atmospheric variability present in SEAS5. 

To better utilise the full potential of SEAS5, future research should investigate expanding the sample size 

used in clustering. This could improve the robustness of weather patterns, better capture rare but important 

surge-driving conditions, and enhance the overall classification of atmospheric states. 

One way to achieve this is by leveraging high-performance computing resources, such as DelftBlue. 

Running the clustering algorithms on an HPC system would allow: 

• A significantly larger sample size 

• Testing higher values of 𝑘 (number of clusters) 

• Expanding data selection beyond a single location, as in Methods B and C, where storm days were 

selected based only on surge conditions at IJmuiden. 

12.2.3 Operational recommendations for WMCN 

Beyond methodological refinements, there are several considerations for how weather-pattern-based 

classification could be integrated into operational forecasting at WMCN. It is important to emphasise that 

this approach is not intended to replace numerical storm surge models but rather to serve as a complementary 

tool. By linking large-scale atmospheric circulation patterns to storm surge probabilities, weather-pattern-

based classification could provide additional insights for mid-term risk assessment and decision-making. 

A key next step would be to assess whether the self-clustered weather patterns identified in this study could 

be leveraged for real-time ensemble forecasting applications. The methodology developed in this study was 
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designed with operational use in mind, but due to time constraints, its integration with real-time ECMWF 

ensemble forecasts was not tested. Future research could explore how well these weather patterns perform 

when applied to operational ensemble forecasts at different lead times. This would provide insight into 

whether self-clustered weather patterns can improve probabilistic storm surge predictions and whether 

adjustments to the classification scheme are needed for practical forecasting applications. 

Additionally, since self-clustered weather patterns showed better separation of mean surge levels than 

Neal’s predefined patterns at shorter lead times, their initial implementation could focus on near-term risk 

assessment rather than extended-range forecasting. 

Another operational consideration is whether to derive location-specific weather patterns rather than using 

a single set of patterns for the entire Dutch coast. While this study classified weather patterns on a national 

scale, defining patterns per region or station may improve local forecast accuracy. However, this would 

require testing to determine whether the added effort of deriving multiple location-specific classifications 

leads to a meaningful improvement in predictive skill. 

12.3 Concluding remarks 
While the specific self-clustered weather patterns in this study did not yet achieve the desired level of 

predictive skill, the broader concept of weather pattern-based classification remains promising. Large-scale 

atmospheric circulation plays a fundamental role in driving storm surges, and with further refinement, this 

method could still provide valuable insights for mid-term forecasting. 

The results of this study should not be seen as a dismissal of the approach but rather as a stepping stone 

toward improving it. By refining the methodology and integrating it with other forecasting tools, weather 

pattern-based classification has the potential to become a valuable complement to numerical surge models. 

Continued research in this direction may unlock new ways to better anticipate storm surge risk at longer 

lead times, enhancing preparedness and decision-making.  



Charting the Course to Coastal Clarity  March 2025 

 

86 | P a g e  

 

Bibliography 
Actueel Hoogtebestand Nederland. (2025). Dataroom. Retrieved 02 18, 2025, from AHN: 

https://www.ahn.nl/dataroom 

Aguado, E., & Burt, J. (2001). Understanding Weather & Climate (ISBN-10: 0321987306 ed.). Upper 

Saddle River. 

Ailliot, P., Thompson, C., & Thomson, P. (2009). Space–Time Modelling of Precipitation by Using a 

Hidden Markov Model and Censored Gaussian Distributions. Journal of the Royal Statistical 

Society, 405-426. doi:10.1111/j.1467-9876.2008.00654.x 

Alake, R. (2023, 11 24). Loss Functions in Machine Learning Explained. Retrieved from datacamp: 

https://www.datacamp.com/tutorial/loss-function-in-machine-

learning?dc_referrer=https%3A%2F%2Fwww.google.com%2F 

Allan, R. (2007, 03 01). EMULATE Mean Sea Level Pressure data set (EMSLP). Retrieved 05 13, 2024, 

from Met Office: https://www.metoffice.gov.uk/hadobs/emslp/ 

Ansell, T., Jones, P., Allan, R., Lister, D., Parker, D., Brunet, M., . . . Xoplaki, E. (2006). Daily Mean Sea 

Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–

2003. American Meteorological Society. 

Bai, L., & Xu, H. (2022). Accurate storm surge forecasting using the encoder–decoder long short term 

memory recurrent neural network. Physics of Fluids. doi:https://doi.org/10.1063/5.0081858 

Bandyopadhyay, S., Maulik, U., & Pakhira, M. (2001). Clustering using simulated annealing with 

probabilistic redistribution. International Journal of Pattern Recognition and Artificial 

Intelligence, 269-285. 

Bell, R., Gray, S., & Jones, O. (2017). North Atlantic storm driving of extreme wave heights in the North 

Sea. Journal of Geophysical Research: Oceans, 122(4). doi:10.1002/2016JC012501 

Bellinghausen, K., Hünicke, B., & Zorita, E. (2024). Using Random Forests to Predict Extreme Sea-

Levels at the Baltic Coast at Weekly Timescales. EGU sphere. 

doi:https://doi.org/10.5194/egusphere-2024-2222 

Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer Science + Business 

Media. 

Braverman, M. (2011). COS597D: Information Theory in Computer Science - Lecture 3.  

Byrne, D., Horsburgh, K., Zachry, B., & Cipollini, P. (2017). Using remotely sensed data to modify wind 

forcing in operational storm surge forecasting. Natural Hazards, Volume 89, pages 275–293. 

Camus, P., Mendez, F., Medina, R., & Cofiño, A. (2011). Analysis of clustering and selection algorithms 

for the study of multivariate wave climate. Coastal Engineering, 58(6):453-462. 

doi:10.1016/j.coastaleng.2011.02.003 

Camus, P., Menéndez, M., Méndez, F., Izaguirre, C., Espejo, A., Cánovas, V., . . . Medina, R. (2014). A 

weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical 

Research: Oceans, 7389-7405. doi:10.1002/2014JC010141 



Charting the Course to Coastal Clarity  March 2025 

87 | P a g e  

 

Charnock, H. (1955). Wind stress on a water surface. Royal Meteorological Society, 81(350), 639-640. 

doi:https://doi.org/10.1002/qj.49708135027 

Chen, S., & Guo, W. (2023). Auto-Encoders in Deep Learning - A Review with New Perspectives. 

mathematics, 1777. doi:https://doi.org/10.3390/math11081777 

Chowdhury, R. (2017, 03 18). Air mass & Frontal depression [Illustration]. Retrieved from GSP Training 

Centre (GTC): https://silo.tips/download/air-mass-frontal-depression 

Connor, S. (2013, 10 27). St Jude's Day Storm: The bad news is the long-term forecast’s no better. 

Retrieved 05 27, 2024, from Independent: https://www.independent.co.uk/news/science/st-jude-s-

day-storm-the-bad-news-is-the-longterm-forecast-s-no-better-8907691.html 

Costa, W., Idier, D., Rohmer, J., Menendez, M., & Camus , P. (2020). Statistical Prediction of Extreme 

Storm Surges Based on a Fully Supervised Weather-Type Downscaling Model. Journal of Marine 

Science and Engineering. 

de Kraker, A. (2010). Flood events in the southwestern Netherlands and coastal Belgium, 1400-1953. 

Hydrological Sciences Journal, 913-929. doi:https://doi.org/10.1623/hysj.51.5.913 

de Vries, H. (2013). Dealing with extreme storm surges in The Netherlands. De Bilt: KNMI. 

Dekking, F., Kraaikamp, C., Lopuhaä, H., & Meester, L. (2005). A Modern Introduction to Probability and 

Statistics: Understanding Why and How. London: Springer. 

Doan, Q., Kusaka, H., Sato, T., & Chen, F. (2020). A structural self-organizing map (S-SOM) algorithm 

for weather typing. Geoscientific Model Development. doi:https://doi.org/10.5194/gmd-2020-278 

DutchNews. (2023, 12 22). High tides and storm Pia bring flooding to Dutch coastal towns. Retrieved 

from DutchNews: https://www.dutchnews.nl/2023/12/high-tides-and-storm-pia-bring-flooding-to-

dutch-coastal-towns/ 

ECMWF. (2018, 01). ECMWF’s new long-range forecasting system SEAS5. Retrieved 05 13, 2024, from 

ecmwf: https://www.ecmwf.int/en/newsletter/154/meteorology/ecmwfs-new-long-range-

forecasting-system-seas5 

ECMWF. (2021). SEAS5 user guide.  

ECMWF. (2023, 09 27). What are the changes from ERA-Interim to ERA5 and ERA5-Land? Retrieved 10 

31, 2024, from ECMWF: https://confluence.ecmwf.int/pages/viewpage.action?pageId=74764925 

ECMWF. (2024, 10 30). ERA5: data documentation. Retrieved 10 31, 2024, from ECMWF: 

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation 

enw | expertisenetwerk waterveiligheid. (2017). Grondslagen voor hoogwaterbescherming.  

Espejo, A., Camus, P., Losada, I., & Méndez, F. (2014). Spectral Ocean Wave Climate Variability Based 

on Atmospheric Circulation Patterns. American Meteorological Society. doi:DOI: 10.1175/JPO-D-

13-0276.1 

Etala, P., Saraceno, M., & Echevarría, P. (2015). An investigation of ensemble-based assimilation of 

satellite altimetry and tide gauge data in storm surge prediction. Ocean Dynamics, 435–447. 



Charting the Course to Coastal Clarity  March 2025 

 

88 | P a g e  

 

Feddersen, H., & Andersen, U. (2005). A method for statistical downscaling of seasonal ensemble 

predictions. Tellus A: Dynamic Meteorology and Oceanography, 398-408. 

doi:10.3402/tellusa.v57i3.14656 

Flowerdew, J., Horsburgh, K., & Mylne, K. (2009). Ensemble Forecasting of Storm Surges. Marine 

Geodesy, 91-99. doi:https://doi.org/10.1080/01490410902869151 

Fritz. (2023, 09 18). Understanding the Mathematics behind K-Means Clustering. Retrieved 01 08, 2025, 

from fritz: https://fritz.ai/mathematics-behind-k-means-clustering/ 

Geerse, C. (2020). Interactie tussen opzet en getij: Tijdsmodellering van de rechte opzet, voortbouwend op 

ideeën van Horseburgh & Wilson. Rijkswaterstaat - WVL. 

Grönquist, P., Düben, P., Ben-Nun, T., Dryden, N., Lavarini, L., Li, S., & Hoefler, T. (2019). Predicting 

Weather Uncertainty with Deep Convnets. doi:10.48550/arXiv.1911.00630 

Grus, J. (2015). Data Science from Scratch (First Edition ed.). United States of America: O'Reilly Media. 

doi:ISBN: 978-1-491-90142-7 

Gueffier, J., Gheusi, F., Lothon, M., Pont, V., Philibert, A., Lohou, F., . . . Vial, A. (2024). Weather regimes 

and related atmospheric composition at a Pyrenean observatory characterized by hierarchical 

clustering of a 5-year data set. European Geosciences Union. doi:https://doi.org/10.5194/acp-24-

287-2024 

Gutierrez, D. (2018, 11 23). Unsupervised Learning: Evaluating Clusters. Retrieved 01 16, 2025, from 

ODSC: https://opendatascience.com/unsupervised-learning-evaluating-clusters/ 

Haenel, V., Gouillart, E., & Varoquaux, G. (2013). Python Scientific lecture notes. EuroScipy tutorial 

team. Retrieved from http://scipy-lectures.github.com 

Halava. (2015, 13 5). Map of the North Sea [Illustration]. Retrieved from 

https://en.wikipedia.org/wiki/North_Sea#/media/File:North_Sea_map-en.png 

Hayes, A., James, M., & Beer, K. (2024, 08 19). How Stratified Random Sampling Works, With Examples. 

Retrieved from Investopedia: 

https://www.investopedia.com/terms/stratified_random_sampling.asp 

Hegermiller, C., Antolinez, J., Rueda, A., Camus, P., Perez, J., Erikson, L., . . . Mendez, F. (2017). A 

Multimodal Wave Spectrum–Based Approach for Statistical Downscaling of Local Wave Climate. 

American Meteorological Society. doi:DOI: 10.1175/JPO-D-16-0191.1 

HKV. (2024, 04 03). Over ons. Retrieved 05 04, 2024, from HKV: https://www.hkv.nl/over-hkv/ 

Holthuijsen, L. (2007). Waves in Oceanic and Coastal Waters. New York: Cambridge University Press. 

Holton, J., & Hakim, G. (2013). An Introduction to Dynamic Meteorology (5th Edition ed.). Elsevier. 

Horsburgh, K., & Wilson, C. (2007). Tide-surge interaction and its role in the distribution of surge 

residuals in the North Sea. Journal of Geophysical Research. doi:10.1029/2006JC004033 

Huang, W., Charlton-Perez, A., Lee, R., Neal, R., Sarran, C., & Sun, T. (2020). Weather regimes and 

patterns associated with temperature-related excess mortality in the UK: a pathway to sub-

seasonal risk forecasting. Environmental Research Letters. doi:https://doi.org/10.1088/1748-

9326/abcbba 



Charting the Course to Coastal Clarity  March 2025 

89 | P a g e  

 

Icelandic Met Office. (2015, 11 16). HARMONIE - numerical weather prediction model. Retrieved 05 13, 

2024, from Icelandic Met Office: https://en.vedur.is/weather/articles/nr/3232 

Ireland, L., Robbins, J., Neal, R., Barciela, R., & Gilbert, R. (2024). Generating weather pattern 

definitions over South Africa suitable for future use in impact-orientated medium-range 

forecasting. International Journal of Climatology. doi:DOI: 10.1002/joc.8396 

Jaadi, Z. (2024, 02 23). Principal Component Analysis (PCA): A Step-by-Step Explanation. Retrieved 12 

02, 2024, from built in: https://builtin.com/data-science/step-step-explanation-principal-

component-analysis 

Johnson, S., Stockdale, T., Ferranti, L., Balmaseda, M., Molteni, F., Magnusson, L., . . . Monge-Sanz, B. 

(2019). SEAS5: the new ECMWF seasonal forecast system. Geoscientific Model Development, 

1087–1117. doi:https://doi.org/10.5194/gmd-12-1087-2019 

K. (2023, 03 31). PCA And It’s Underlying Mathematical Principles. Retrieved 01 08, 2025, from 

Analytics Vidhya: https://www.analyticsvidhya.com/blog/2021/09/pca-and-its-underlying-

mathematical-principles/ 

Kautz, L., Martius, O., Pfahl, S., Pinto, J., Ramos, A., Sousa, P., & Woollings, T. (2022). Atmospheric 

blocking and weather extremes over the Euro-Atlantic sector – a review. Weather and Climate 

Dynamics, 305-336. doi:https://doi.org/10.5194/wcd-3-305-2022 

Kohno, N., Dube, S., Entel, M., Fakhruddin, S., Greenslade, D., Leroux, M., . . . Thuy, N. (2018). Recent 

Progress in Storm Surge Forecasting. Trypical Cyclone Research and Review, 128-139. 

doi:https://doi.org/10.6057/2018TCRR02.04 

Kraker, A. (2002). Historic Storms in the North Sea Area, an Assessment of the Storm Data, the Present 

Position of Research and the Prospects for Future Research (ISBN : 978-3-642-07744-9 ed.). 

Climate Development and History of the North Atlantic Realm. 

Lee, T. (2006). Neural network prediction of a storm surge. Ocean Engineering, 483-494. 

doi:https://doi.org/10.1016/j.oceaneng.2005.04.012 

Li, J., & Nie, B. (2017). Storm surge prediction: present status and future challenges. IUTAM Symposium 

on Storm Surge Modelling and Forecasting, (pp. 3-9). doi:10.1016/j.piutam.2017.09.002 

Madsen, K., Høyer, J., Fu, W., & Donlon, C. (2015). Blending of satellite and tide gauge sea level 

observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. JGR 

Oceans, 6405-6418. 

Majewski, P. (2020, 09 04). Anomaly Detection in Computer Vision with SSIM-AE. Retrieved from 

medium: https://medium.com/@majpaw1996/anomaly-detection-in-computer-vision-with-ssim-

ae-2d5256ffc06b 

Met Office. (2013). St. Jude's day storm (Cylone Christian).  

Neal, R., Dankers, R., Saulter, A., Lane, A., Millard, J., Robbins, G., & Price, D. (2018). Use of 

probabilistic medium- to long-range weather-pattern forecasts for identifying periods with an 

increased likelihood of coastal flooding around the UK. Meteorological applications, 534-547. 

doi:https://doi.org/10.1002/met.1719 



Charting the Course to Coastal Clarity  March 2025 

 

90 | P a g e  

 

Neal, R., Fereday, D., Crocker, R., & Comer, R. (2016). A flexible approach to defining weather patterns 

and their application in weather forecasting over Europe. Meteological Applications, 389–400. 

doi:10.1002/met.1563 

Nieuwhuis, T. (2023). Modelling the effect of twin storms on dune erosion.  

Northern Vermont University. (n.d.). Chapter 12 - Mid latitude Cyclones. Retrieved 05 08, 2024, from 

Northern Vermont University: 

https://apollo.nvu.vsc.edu/classes/met130/notes/chapter12/midlat_cyclones_intro.html 

Ozer, J., & Legrand, S. (2015). BEAWARE II : Review of the physical oceanography in the area of the 

Bonn Agreement. OD Nature. 

Parsons, V. (2017). Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd. 

doi:10.1002/9781118445112.stat05999.pub2 

Port of Rotterdam. (n.d.). Purpose, missie, visie en strategie. Retrieved 06 05, 2024, from Port of 

Rotterdam: https://www.portofrotterdam.com/nl/over-het-havenbedrijf/purpose-missie-visie-en-

strategie 

Pugh, D. (1987). Tides, Surges and Mean Sea-Level. Swindon, UK: John Wiley & Sons. 

Ramos-Valle, A., Curchitser, E., Bruyère, C., & McOwen, S. (2021). Implementation of an Artificial 

Neural Network for Storm Surge Forecasting. JGR Atmospheres. doi:10.1029/2020JD033266 

Richardson, D., Neal, R., Dankers, R., Mylne, K., Cowling, R., Clements, H., & Millard, J. (2020). 

Linking weather patterns to regional extreme precipitation for highlighting potential flood events 

in medium- to long-range forecasts. Meteorological Applications. doi:https://doi-

org.tudelft.idm.oclc.org/10.1002/met.1931 

Rijkoverheid. (2018, 03 27). Rijkswaterstaat Informatiepunt Water, Verkeer en Leefomgeving (WVL). 

Retrieved 05 04, 2024, from rijksoverheid: 

https://www.rijksoverheid.nl/contact/contactgids/rijkswaterstaat-water-verkeer-en-leefomgeving-

wvl 

Rijksoverheid. (2017, 07 28). Taken van een waterschap. Retrieved 05 04, 2024, from rijksoverheid: 

https://www.rijksoverheid.nl/onderwerpen/waterschappen/taken-waterschap 

Rijkswaterstaat. (2009). Water management in the Netherlands [Illustration].  

Rijkswaterstaat. (2019). Water management in the Netherlands. Rijkswaterstaat & the Association of 

Dutch Water Authorities. 

Rijkswaterstaat. (2023, 12 21). Terugblik hoge waterstanden en storm Pia; december 2023. Retrieved 

from Rijkswaterstaat: https://www.rijkswaterstaat.nl/nieuws/archief/2023/12/storm-pia 

Rijkswaterstaat. (2023, 10 24). Waterberichtgeving. Retrieved 05 04, 2024, from rijkswaterstaat: 

https://www.rijkswaterstaat.nl/water/waterbeheer/watermanagementcentrum-

nederland/waterberichtgeving 

Rijkswaterstaat. (2024, 04 29). Crisisadvisering. Retrieved 05 04, 2024, from rijkswaterstaat: 

https://www.rijkswaterstaat.nl/water/waterbeheer/watermanagementcentrum-

nederland/crisisadvisering 



Charting the Course to Coastal Clarity  March 2025 

91 | P a g e  

 

Rozas Rojas, C. (2017). Assessing the impact of climate change on longshore sediment transport along the 

central Dutch coast using statistical downscaling. Delft: Delft University of Technology. 

Sampaio, C. (2023, 11 17). Definitive Guide to K-Means Clustering with Scikit-Learn. Retrieved 01 16, 

2025, from StackAbuse: https://stackabuse.com/k-means-clustering-with-scikit-learn/ 

Schoof, J. (2013). Statistical Downscaling in Climatology. Geography Compass, 249-265. 

doi:10.1111/gec3.12036 

Schwierz, C., Köllner-Heck, P., Mutter, E., Bresch, D., Vidale, P., Wild, M., & Schär, C. (2010). Modelling 

European winter wind storm losses in current and future climate. Climatic Change, 101:485–514. 

doi:10.1007/s10584-009-9712-1 

Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 379-

423. doi:10.1002/j.1538-7305.1948.tb01338.x 

Sharma, P. (2024, 05 21). The Ultimate Guide to K-Means Clustering: Definition, Methods and 

Applications. Retrieved 05 27, 2024, from Analytics Vidhya: 

https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/ 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 1929-

1958. 

Steenhuis, M. (2015). water & heritage: material, conceptual and spiritual connections. Leiden: 

Sidestone Press. 

Sterl, A., van den Brink, H., de Vries, H., Haarsma, R., & van Meijgaard, E. (2009). An ensemble study of 

extreme storm surge related water levels in the North Sea in a changing climate. Ocean Science, 5, 

369–378. 

Stolk, A., & Dillingh, D. (1989). A short review of the Dutch coast. Commission of the European 

Communities. 

Stolte, W., Baart, F., Muis, S., Hijma, M., Taal, M., Le Bars, D., & Drijfhout, S. (2023). 

Zeespiegelmonitor. Deltares. 

Sumihar, J., & Muis, S. (2024). Exploration long term predictions of wind and air pressure in the North 

Sea. Delft: Deltares. 

Sünderman, J., & Pohlmann, T. (2011). A brief analysis of North Sea physics. Oceanologia, 663-689. 

doi:doi:10.5697/oc.53-3.663 

Toyoda, M., Fukui, N., Miyashita, T., Shimura, T., & Mori, N. (2021). Uncertainty of storm surge forecast 

using integrated atmospheric and storm surge model: a case study on Typhoon Haishen 2020. 

Coastal Engineering Journal, 135-150. 

TU Delft, SLIMM Lab & Aidrolab. (2024). CEGM2003 - Data Science and Artificial Intelligence for 

Engineers. Retrieved from https://interactivetextbooks.citg.tudelft.nl/dsaie/intro.html 

van Aalst, J. W. (2019, 10 22). De 21 waterschappen [illustration]. Retrieved from wikipedia: 

https://nl.wikipedia.org/wiki/Lijst_van_Nederlandse_waterschappen#/media/Bestand:2019-

Waterschap-prov-1200.png 



Charting the Course to Coastal Clarity  March 2025 

 

92 | P a g e  

 

van den Brink, H. (2020). Het gebruik van de ECMWF seizoensverwachtingen voor het berekenen van de 

klimatologie van extreme waterstanden langs de Nederlandse kust. De Bilt: Koninklijk 

Nederlands Meteorologisch Instituut. 

van den Brink, M. (2020). Guardians of Public Value: How Public Organisations Become and Remain 

Institutions (ISBN 978-3-030-51700-7 ed.). palgrave macmillan. 

van der Spek, A., van der Werf, J., Oost, A., Vermaas, T., Grasmeijer, B., & Schrijvershof, R. (2022). The 

lower shoreface of the Dutch coast – An overview. Ocean and Coastal Mangament. 

doi:https://doi.org/10.1016/j.ocecoaman.2022.106367 

Verlaan, M., Zijderveld, A., de Vries, H., & Kroos, J. (2005). Operational storm surge forecasting in the 

Netherlands: developments in the last decade. Philosophical Transactions: Mathematical, 

Physical and Engineering Sciences, 1441-1453. doi:10.1098/rsta.2005.1578 

von Storch, H. (2014). Storm surges: Phenomena, forecasting and scenarios of change. 23rd International 

Congress of Theoretical and Applied Mechanics, (pp. 356 – 362). doi:doi: 

10.1016/j.piutam.2014.01.030 

Wadey, M., Haigh, I., Nicholls, R., Brown, J., Horsburgh, K., Carroll, B., . . . Bradshaw, E. (2015). A 

comparison of the 31 January - 1 Februari 1953 and 5-6 December 2013 coastal flood events 

around the UK. Frontiers in Marine Science. 

Wai-hung, L. (2010, 12). Geostrophic Wind. Retrieved from Hong Kong Obervatory: 

https://www.hko.gov.hk/en/education/weather/meteorology-basics/00010-geostrophic-wind.html 

Willett, P. (1999). Dissimilarity-Based Algorithms For Selecting Structurally Diverse Sets Of Compounds. 

Journal of Computational Biology, 447-457. 

WMCN. (2023). Landelijk Draaiboek Hoogwater en Overstromingsdreiging. Lelystad: 

Watermanagementcentrum Nederland (WMCN). 

Woth, K. (2005). Regionalization of global climate change scenarios: An ensemble study of possible 

changes in the North Sea storm surge statistics. Hamburg: Universität Hamburg. 

Xie, W., Xu, G., Zhang, H., & Dong, C. (2023). Developing a deep learning-based storm surge forecasting 

model. Ocean Modelling. doi:https://doi.org/10.1016/j.ocemod.2023.102179 

Zijderveld, A., Netel, S., Verboeket, R., Driebergen, J., van Schaik, M., & van Galen, L. (2024). 

Stormvloedrapport SR101. Lelystad: Watermanagementcentrum Nederland (WMCN). 

Zijderveld, A., Verboeket, R., Bosma, B., & IJpelaar, R. (2022). Stormvloedrapport SR100. 

Watermanagementcentrum Nederland. 

 

  



Charting the Course to Coastal Clarity  March 2025 

93 | P a g e  

 

Appendix A: Autoencoder 

A.1 Introduction to autoencoders 
An autoencoder is a type of artificial neural network designed to learn a compressed representation of input 

data. It has two main parts: 

• Encoder - Compresses the input data into a smaller, "latent" space representation. This compression 

process captures essential features while discarding unnecessary details. 

• Decoder - Reconstructs the original data from this compressed form, aiming to make the output as 

similar to the input as possible. 

For this study, autoencoders are used to learn the fundamental patterns in SEAS5 mean sea level pressure 

(MSLP) data and compare these patterns to the predefined Neal weather patterns. 

A.2 Why use an autoencoder for pattern matching? 
The main advantage of using an autoencoder is its ability to capture complex spatial patterns. By training 

the autoencoder on SEAS5 data, a so-called "latent space" is created that represents key atmospheric 

features. The trained encoder can then transform both SEAS5 and Neal patterns into this latent space, 

allowing for a meaningful comparison of the patterns. 

A.3 Autoencoder architectures used 
Three different autoencoder architectures were tested, each with increasing complexity. The differences in 

complexity allowed exploration of how varying network depths and features affected the autoencoder's 

ability to capture essential atmospheric patterns. The architectures are illustrated in Figure A-1, with the 

following specifications: 

 

• Simple architecture - Compresses the data to a low-dimensional representation and reconstructs it 

with minimal complexity. 

• Intermediate architecture - Increases the depth of the encoder and decoder, with additional filters 

to capture more details. 

• Complex architecture - Uses a much deeper encoder and decoder, compressing data further and 

capturing finer spatial details through additional layers. 
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Figure A-1: Three autoencoder architectures used for matching SEAS5 MSLP fields to Neal patterns, displayed in increasing 

complexity from top to bottom. Top: simple architecture, middle: intermediate architecture, bottom: complex architecture.  

 

A.4 Key hyperparameters in the autoencoder model 
Hyperparameters are settings that define the structure and operation of the model. Adjusting these can 

significantly impact how well the autoencoder learns to represent the data. Here are some key 

hyperparameters used in this study, explained for those unfamiliar with deep learning concepts (Chen & 

Guo, 2023): 

 

• Hidden layers - Hidden layers add depth to the network, allowing it to learn more complex patterns. 

Adding more layers can increase the model's ability to capture detailed structures but also raises the 

risk of "overfitting" (fitting too closely to the training data, reducing generalisation). 

• Neurons per layer - Each layer consists of neurons, which process pieces of information. More 

neurons allow the model to capture finer details but also increase the risk of overfitting. 

• Latent space size - The latent space is the compressed representation of the data. A smaller latent 

space forces stronger compression, discarding more details, while a larger latent space retains more 

information but may include unnecessary details. 

• Activation function - Activation functions introduce non-linear patterns, helping the model capture 

complex relationships. Common choices include ReLU (Rectified Linear Unit), sigmoid, and tanh. 

Each function has unique properties that affect how the model processes information (Chen & Guo, 

2023). 
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• Loss function - This function measures the difference between the input and the reconstructed 

output, guiding the model to improve its accuracy. The loss function tells the autoencoder how close 

its reconstruction is to the original data. Two loss functions were tested: 

o Mean Squared Error (MSE) - Focuses on reducing pixel-level differences between the 

input and output images (Alake, 2023). 

o Custom hybrid loss - Combines MSE with Structural Similarity Index Measure (SSIM), 

which evaluates structural similarity. SSIM is beneficial for retaining visual structure, as it 

assesses contrast, luminance, and structural information, reflecting how humans perceive 

visual details (Majewski, 2020). 

A.5 Model regularisation techniques: dropout and batch normalisation 
To prevent overfitting and help the model generalise better, two regularisation techniques were used: 

• Dropout - During training, dropout randomly deactivates certain neurons in each layer, preventing 

the model from becoming too reliant on specific neurons and thus helping it generalise better 

(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

• Batch normalisation - This technique normalises the output of each convolutional layer, stabilising 

the learning process and accelerating convergence. By maintaining consistent input distributions 

across layers, batch normalisation improves model efficiency and robustness (Chen & Guo, 2023). 

These techniques contribute to faster convergence and better generalisation, helping the model learn more 

stable representations of SEAS5 data. 

A.6 Training configuration and hyperparameter comparison 
Each autoencoder architecture was trained with different configurations to optimise learning. Below is a 

comparison of the three main versions: 

 
Table A-0-1: Comparison autoencoder architecture 

Aspect Simple Intermediate Complex 

Architecture 

complexity 

Simple encoder-decoder Deeper with 

regularisation 

Increased depth and 

more filters 

Encoder layers 2 layers; 32, 64 filters 3 layers: 64, 128, 256 

filters 

4 layers: 64, 128, 256, 

512 filters 

Decoder layers 2 layers: 64, 32 filters 3 layers: 256, 128, 64 

filters 

4 layers: 512, 256, 128, 

64 filters 

Dropout layers None 3 dropout layers; rate of 

0.3 

3 dropout layers; rate of 

0.25 

Batch 

normalisation 

None Applied after each layer Applied after each layer 

Learning rate 1e-4 1e-4 with decay 1e-5 with decay 

Loss function MSE Custom SSIM with MSE Custom SSIM with MSE 

Data 

augmentation 

None Yes Yes, with more 

variations 

Epochs 10 100 100 

Early stopping No Yes, patience 10 epochs Yes, patience 5 epochs 

 

These settings control how the model learns and help determine the final quality of pattern recognition. 
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Appendix B: Theory explained 

This appendix provides a detailed explanation of key theoretical concepts relevant to this study. These 

explanations are intended to assist readers who may require additional context or a refresher on the 

foundational principles. The topics covered include: Matching metrics (B.1), K-means clustering (B.2) and 

Principal Component Analysis (B.3). 

 

B.1 Matching algorithms: Euclidean distance, RMSE and Pearson correlation 
In Section 5.2 of the main report, various matching algorithms were employed to compare SEAS5 mean sea 

level pressure (MSLP) fields with weather patterns from the Neal dataset. The methods used included 

Euclidean distance, Root Mean Square Error (RMSE), and Pearson correlation. These metrics provide 

distinct ways to quantify the similarity or difference between the SEAS5 fields and the Neal dataset weather 

patterns. Additionally, an autoencoder model was utilised for matching purposes; further details regarding 

the autoencoder can be found in Appendix A: Autoencoder 

Euclidean distance 

The first approach used to match SEAS5 mean sea level pressure (MSLP) fields to Neal’s weather patterns 

is based on Euclidean distance. Neal’s patterns were created using k-means clustering, which itself 

minimises Euclidean distance within clusters. Therefore, using Euclidean distance for the matching process 

is consistent with the methodology Neal used to define these patterns, making it a logical choice for 

comparison. 

Each SEAS5 MSLP field is matched to the closest Neal pattern by calculating the Euclidean distance 

between the MSLP field and each of Neal’s 30 predefined patterns. For each time step in the SEAS5 dataset, 

the Euclidean distance is computed as follows:  

𝑑 = √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 

where 𝑑 represent the Euclidean distance, 𝑝𝑖 are the SEAS5 MSLP values, 𝑞𝑖 are the corresponding values 

in a Neal pattern, and 𝑛 is the total number of grid points. The pattern with the smallest Euclidean distance 

is identified as the best match, representing the closest resemblance to SEAS5’s atmospheric state at that 

time. 

Root Mean Squared Error (RMSE) 

The second used approach to match SEAS5 MSLP fields with Neal’s weather patterns is based on Root 

Mean Squared Error (RMSE). RMSE is a commonly used measure of the average magnitude of error 

between two sets of values, providing an indication of similarity between datasets by quantifying the average 

deviation. Using RMSE allows for a comparison between SEAS5 and Neal patterns in a way that highlights 

the overall fit between their respective pressure values across the grid. 

For each time step in the SEAS5 dataset, the RMSE is calculated between the SEAS5 MSLP field and each 

of Neal’s 30 predefined weather patterns. RMSE is computed as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑖 − 𝑞𝑖)

2

𝑛

𝑖=1
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where 𝑅𝑀𝑆𝐸 represents the Root Mean Squared Error 𝑝𝑖 are the SEAS5 MSLP values, 𝑞𝑖 are the 

corresponding values in a Neal pattern, and 𝑛 is the total number of grid points. The Neal pattern with the 

lowest RMSE value is considered the best match, representing the closest fit to SEAS5’s atmospheric state 

for that time step. 

Pearson correlation 

The third approach used to match SEAS5 MSLP fields to Neal’s weather patterns is based on Pearson 

correlation. Pearson correlation measures the linear relationship between two datasets, providing a value 

between -1 and 1. A correlation close to 1 indicates a strong positive relationship, where the pressure values 

in SEAS5 align closely with those in Neal’s patterns. Conversely, a correlation near -1 suggests an inverse 

relationship, while a value around 0 indicates no linear relationship. 

 

For each time step in the SEAS5 dataset, Pearson correlation is calculated between the SEAS5 MSLP field 

and each of Neal’s 30 predefined weather patterns. The Pearson correlation coefficient is computed as 

follows: 

𝑟 =
∑ (𝑝𝑖 − �̅�)
𝑛
𝑖=1 (𝑞𝑖 − �̅�)

√∑ (𝑝𝑖 − �̅�)
2𝑛

𝑖=1 √(∑ (𝑞𝑖 − �̅�)
2𝑛

𝑖=1 )

 

where 𝑟 represents the Pearson correlation coefficient, 𝑝𝑖 are the SEAS5 MSLP values, 𝑞𝑖are the 

corresponding values in a Neal pattern, �̅� and �̅� are the mean values of the SEAS5 and Neal data, 

respectively, and 𝑛 is the total number of grid points. The Neal pattern with the highest correlation (closest 

to 1) is identified as the best match, representing the closest linear relationship to SEAS5’s atmospheric 

state for that time step. 

 

B.2 K-means clustering 
K-means clustering is one of the most widely used unsupervised machine learning algorithms for 

partitioning a dataset into distinct groups or clusters. It operates iteratively to assign each data point to one 

of 𝑘 predefined clusters based on its features (Grus, 

2015). This section explains the four fundamental 

steps of the k-means algorithm: initialisation, cluster 

assignment, centroid update, and repeat-until-

convergence (Sharma, 2024). The accompanying 

figures illustrate these steps. 

Initialisation 

The first step in K-means clustering is the 

initialisation of cluster centroids. 𝑘 centroids are 

chosen randomly within the feature space of the 

dataset. These centroids serve as the starting points for 

the clustering process. The initial placement of 

centroids can have a significant impact on the 

algorithm’s outcome and can influence the final 

clusters' quality. Figure B-1 illustrates the random 

initialisation of centroids for a sample dataset. 

 
Figure B-1: Random placement of initial centroids among 

unclustered data points to start the 𝑘-means process. 
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Cluster assignment 

In the cluster assignment step, each data point 𝑥𝑖 in the 

dataset is assigned to the cluster whose centroid is 

closest to it. The closest cluster is determined using a 

predefined distance metric; often the Euclidean 

distance is chosen. Mathematically, the cluster 𝑗 
assigned to a data point 𝑥𝑖 is determined by (Fritz, 

2023): 

𝑗 = 𝑎𝑟𝑔 min
𝑘
‖𝑥𝑖 − 𝜇𝑘‖ 

2 

Here, 𝜇𝑘 represents the centroid of the 𝑘-th cluster and 

‖𝑥𝑖 − 𝜇𝑘‖ 
2 is the Euclidean distance between 𝑥𝑖 and 

𝜇𝑘. This step effectively partitions the dataset into 𝑘 

clusters based on proximity to the centroids. Figure 

B-2 demonstrates the result of the cluster assignment 

process for the initial iteration. 

Update of centroids 

After assigning data points to clusters, the centroids of 

each cluster are updated. The new centroid of a cluster 

is calculated as the mean of all data points assigned to 

that cluster. The mathematical expression for updating 

the centroid 𝜇𝑘 of cluster 𝑘 is: 

𝜇𝑘 =
1

𝑁𝑘
∑ 𝑥𝑖
𝑥𝑖∈𝐶𝑘

 

where: 

• 𝐶𝑘 – is the set of points assigned to cluster 𝑘 

• 𝑁𝑘 – is the number of points in 𝐶𝑘 

• 𝜇𝑘 – is the new centroid of cluster 𝑘 

This computation ensures that the centroid reflects the 

central location of the points in its cluster. Figure B-3 illustrates the updated centroids after the first iteration. 

 

Iterate until convergence 

The cluster assignment and centroid update steps are repeated iteratively until the algorithm converges. 

Convergence is typically defined as one of the following definitions (Sharma, 2024) : 

i. when the centroids no longer change significantly  

ii. when the cluster assignments stabilise 

iii. when a pre-defined maximum number of iterations is reached 

This iterative process ensures that the clusters are refined progressively, leading to a locally optimal partition 

of the dataset.  The plots in Figure B-4 illustrate the iterative updates of centroids and cluster assignments 

until convergence is achieved. In this case, convergence is defined as the state where the cluster assignments 

stabilise. 

  

 
Figure B-2:  Data points are assigned to their closest cluster 

centroids based on the Euclidean distance, forming the 

initial clusters. 
 

 
Figure B-3: Cluster centroids are recalculated based on the 

mean position of the data points within each cluster. 
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Determining the optimal number of clusters 𝒌 

Selecting an appropriate number of clusters, 𝑘, is a critical step in applying the k-means clustering algorithm. 

An inadequate choice of 𝑘 can lead to underfitting or overfitting, potentially reducing the interpretability or 

effectiveness of the clustering. Various techniques are available to guide the selection of 𝑘, including the 

elbow method, silhouette score, and statistical metrics like the within-cluster sum of squares (WCSS) and 

 
Figure B-4: Subsequent iterations demonstrate the refinement of clusters through iterative re-assignment of data points  

and updates to centroids until convergence is achieved. Convergence in this case is marked by stabilised cluster 

assignment. 
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between-cluster sum of squares (BCSS), which were utilised in this project. These measures are 

conceptually explained below. 

1. Within-Cluster Sum of Squares (WCSS) 

WCSS is a metric that quantifies the compactness of clusters by measuring how tightly data points are 

grouped around their respective centroids. Specifically, WCSS is the sum of squared distances between each 

data point and the centroid of its cluster. It is mathematically expressed as (Sampaio, 2023): 

𝑊𝐶𝑆𝑆 =  ∑  ∑ ‖𝑥𝑖 − 𝜇𝑘‖
2

𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1 

 

where: 

• 𝐶𝑘 – is the set of data points in cluster 𝑘  

• 𝑥𝑖 – is an individual data point 

• 𝜇𝑘 – is the centroid of cluster 𝑘 

As 𝑘 increases, WCSS decreases because more clusters result in tighter groupings of points. However, 

diminishing returns are observed beyond a certain value of 𝑘, where adding more clusters provides little 

improvement in compactness. This forms the basis of the elbow method, where the "elbow" in the WCSS 

curve indicates the optimal 𝑘. 

 

2. Between-Cluster Sum of Squares (BCSS) 

BCSS measures the separation between clusters by quantifying the dispersion of cluster centroids relative 

to one another. It is computed as the average squared distance between all pairs of centroids and is given by 

(Sampaio, 2023): 

𝐵𝐶𝑆𝑆 =
1

𝑁
∑ ∑ ‖𝜇𝑖 − 𝜇𝑗‖

2
𝐾

𝑗=𝑖+1

𝐾

𝑖=1

 

where: 

• 𝑁 – is the total number of unique centroid pairs  

• 𝜇𝑖 and 𝜇𝑗 – are the centroids of clusters 𝑖 and 𝑗, respectively 

Higher BCSS values indicate better-separated clusters, which is desirable in clustering tasks. As 𝑘 increases, 

BCSS initially grows because the clusters become more distinct, but it stabilises when adding more clusters 

no longer increases the separation significantly (Gutierrez, 2018). 

The selection of 𝑘 is guided by examining the behavior of WCSS and BCSS together. The ideal 𝑘 is chosen 

to balance these two objectives: 

• Minimise WCSS to ensure compact and cohesive clusters 

• Maximise BCSS to ensure well-separated and distinct clusters 

Figure B-5 illustrates the concepts of Within-Cluster Sum of Squares (WCSS) and Between-Cluster Sum of 

Squares (BCSS) using a two-cluster example. The left plot demonstrates WCSS by showing the intra-cluster 

variance, where the lines represent the distances between data points and their respective cluster centroids. 

This variance reflects the compactness of each cluster. The right plot visualises BCSS by showing the 
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distance between the centroids of the two clusters, represented by the dashed line. This distance indicates 

the separation between clusters. 

 
Figure B-5: Visualisation of intra-cluster variance (WCSS) and inter-cluster distance (BCSS) in a two-cluster example. 

By plotting WCSS and BCSS against 𝑘, the elbow method is applied. The optimal 𝑘 corresponds to the 

point where WCSS begins to flatten (indicating diminishing returns), and BCSS stabilises, showing that 

further increases in 𝑘 do not improve separation significantly.  

B.3 Principle Component Analysis (PCA) 

Principal Component Analysis (PCA) is a dimensionality reduction technique widely used to simplify high-

dimensional datasets while retaining as much of the original information as possible. PCA achieves this by 

identifying new orthogonal directions, called principal components, along which the data varies the most. 

These principal components allow for a reduced representation of the data that is computationally efficient 

and easier to interpret (Grus, 2015; Haenel, Gouillart, & Varoquaux, 2013). 

Reasons for applying PCA in this study 

When clustering data using k-means, the input data must first be represented in a standardised feature matrix 

𝑿𝒔𝒕𝒅. In this study, the predictors used are the mean sea level pressure (MSLP) and its gradient. The data 

has a fine spatial resolution, with 73x107 grid points, amounting to 7,811 datapoints per predictor. For a 

single day, this results in a total of 15,622 datapoints (features). With many days included in the dataset, the 

original feature matrix becomes extremely large and computationally expensive to process: 

𝑿𝒔𝒕𝒅 = [

𝐷𝑎𝑦 1 ⟶ [𝑚𝑠𝑙𝑝_1,… ,𝑚𝑠𝑙𝑝_𝑛, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_1, … , 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛]

𝐷𝑎𝑦 2 ⟶ [𝑚𝑠𝑙𝑝_1,… ,𝑚𝑠𝑙𝑝_𝑛, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_1, … , 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛]
⋮ ⋮ ⋮

𝐷𝑎𝑦 𝑇 ⟶ [𝑚𝑠𝑙𝑝_1,… ,𝑚𝑠𝑙𝑝_𝑛, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_1, … , 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑛]

]      

This original high-dimensional feature matrix poses two main challenges: 

1. Dimensionality reduction - The high number of features makes clustering computationally 

intensive. PCA reduces the dimensionality of 𝑿𝒔𝒕𝒅 by transforming it into a smaller set of principal 

components (PCs) that still capture the majority of the dataset's variance. The transformation is 

represented as: 
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𝑿𝒔𝒕𝒅
𝑃𝐶𝐴
→  𝑿𝒔𝒕𝒅,𝒓𝒆𝒅𝒖𝒄𝒆𝒅 

 where the reduced matrix 𝑿𝒔𝒕𝒅,𝒓𝒆𝒅𝒖𝒄𝒆𝒅 has the same rows (samples) but a much smaller number 

 of columns (principal components): 

𝑿𝒔𝒕𝒅,𝒓𝒆𝒅𝒖𝒄𝒆𝒅 = [

𝐷𝑎𝑦 1 ⟶ [𝑃𝐶_1,…𝑃𝐶_𝑁]

𝐷𝑎𝑦 2 ⟶ [𝑃𝐶_1,…𝑃𝐶_𝑁]
⋮ ⋮ ⋮

𝐷𝑎𝑦 𝑇 ⟶ [𝑃𝐶_1,…𝑃𝐶_𝑁]

] 

2. Noise reduction - With high-dimensional data, the Euclidean distances used in k-means clustering 

can become less meaningful. This phenomenon, known as the "curse of dimensionality, makes it 

difficult to distinguish between clusters, as the distances are overwhelmed by noise from irrelevant 

or redundant features " (Fritz, 2023; Grus, 2015). By retaining only the most significant principal 

components, PCA effectively filters out noise, ensuring that the clustering results are more 

meaningful. 

Thus, PCA is applied before clustering to prepare a reduced feature matrix where the dimensionality is 

smaller, and the data is denoised. This reduced matrix is subsequently used as input for the k-means 

algorithm, ensuring more reliable and efficient clustering. 

More details on k-means clustering may be found in section B.1 of this appendix. The rest of this section 

explains the mathematical steps involved in applying PCA and gives a simplified visual example of PCA. 

PCA - mathematically explained 

The PCA process involves several steps (K, 2023): 

I. Standardisation of the dataset 

PCA begins by standardising the dataset so that features with larger scales do not dominate the results. Each 

feature is centred by subtracting its mean and scaled to have unit variance. For a dataset 𝑿 with 𝑛 samples 

and 𝑝 features, the standardised dataset is: 

𝑿𝒔𝒕𝒅 =
𝑿 − 𝜇

𝜎
 

where 𝜇 is the mean vector, and 𝜎 is the standard deviation vector of the features. 

 

II. Compute the covariance matrix 

The covariance matrix of the standardised data is computed to capture the relationships between different 

features. It is defined as: 

𝑪 =
1

𝑛 − 1
𝑿𝒔𝒕𝒅
⊤ 𝑿𝒔𝒕𝒅 

The covariance matrix is a square symmetric matrix where each element represents the covariance between 

two features. 
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III. Calculate eigenvectors and eigenvalues 

Next, eigenvectors and eigenvalues of the covariance matrix are computed. The eigenvectors represent the 

principal components, which define the new axes of the transformed dataset, and the eigenvalues indicate 

the amount of variance captured by each principal component. 

𝑪𝒗 =  𝜆𝒗 

Here, 𝒗 is an eigenvector (principal component), and 𝜆 is its corresponding eigenvalue, representing the 

variance explained by that component. 

IV. Sort and select principal components 

The eigenvalues are sorted in descending order, and the top 𝑚 eigenvectors corresponding to the largest 

eigenvalues are selected. This selection determines the dimensionality of the reduced dataset. 

 

The explained variance indicates the proportion of the dataset’s total variance captured by each principal 

component and is calculated as: 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝜆𝑖

∑ 𝜆𝑗
𝑝
𝑗=1

 

 

To decide how many principal components to retain (e.g. to determine 𝑚) , a scree plot is often used. A 

scree plot displays the eigenvalues (or explained variance) in descending order against the principal 

component index.  

In this study, a cumulative scree plot was used to determine the number of principal components to retain. 

Principal components were selected such that their cumulative explained variance reached 99%. This 

approach ensures that nearly all the variability in the dataset is preserved while reducing the dimensionality. 

V. Transform the data 

The data is projected onto the selected principal components to obtain the reduced representation: 

𝒁 = 𝑿𝒔𝒕𝒅𝑾 

Here, 𝑾 is the matrix of selected eigenvectors, and 𝒁 is reduced dataset. 

 

PCA - visually explained 

This sub-section explains the principles of PCA through a visual demonstration using a 3D example. PCA 

is commonly applied to datasets in high-dimensional spaces with many more features (axes). However, as 

such spaces cannot be visualised directly, a simplified 3D example is used to provide an intuitive 

understanding of how PCA works. 

 

Figure B-6 shows a dummy dataset in its original form, represented in a 3D feature space. Each axis 

corresponds to one of the original features (e.g., 𝑋, 𝑌, and 𝑍). The data points are scattered across this space, 

and their distribution reflects the variance captured by each feature. 
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Overlaying this dataset are the principal component axes (𝑃𝐶1, 𝑃𝐶2, and 𝑃𝐶3), which are computed as the 

directions that capture the greatest variance in the data. These principal components are orthogonal to each 

other and are ranked in order of the variance they explain. Thus, 𝑃𝐶1 is the direction of maximum variance; 

𝑃𝐶2 is the direction orthogonal to 𝑃𝐶1 that explains the second most variance and 𝑃𝐶3 is the direction 

orthogonal to both 𝑃𝐶1 and 𝑃𝐶2, explaining the remaining variance. This visualisation demonstrates how 

PCA identifies new axes that better represent the structure of the data. 

 

 

 

The top plot of Figure B-7 projects the data onto the original feature axes (𝑋, 𝑌, and 𝑍). Each data point's 

position along these axes reflects its values in the original feature space. This plot reveals the relative 

contributions of the features to the dataset's overall variance, as well as potential redundancy, where multiple 

features may be capturing similar information. PCA seeks to reduce such redundancy by re-expressing the 

dataset in terms of principal components, which better summarise the variance in the data. 

 

The bottom plot of Figure B-7 plot shows the same data projected onto the principal component axes (𝑃𝐶1, 

𝑃𝐶2, and 𝑃𝐶3). In this new space 𝑃𝐶1 captures the majority of the variance, as evidenced by the wider 

spread of the data along this axis. The 𝑃𝐶2, and 𝑃𝐶3 components capture progressively less variance. This 

transformation reveals the underlying structure of the data, simplifying the dataset while retaining most of 

its variability. By reducing the dataset to just the first few principal components (e.g., 𝑃𝐶1 and 𝑃𝐶2), PCA 

achieves dimensionality reduction without significant loss of information. 

B.4 Computing wind speed from wind stress using the Charnock method 
The wind speed was derived from the wind stress fields provided in SEAS5, using the Charnock method, 

with an additional correction factor applied for bias correction in the WAQUA model, which requires a 10% 

increase in stress values. The eastward (𝜏𝐸) and northward (𝜏𝑁) components of the wind stress were first 

used to calculate the total wind stress magnitude (𝜏): 

𝜏 = 1.1√𝜏𝐸
2 + 𝜏𝑁

2  

 
Figure B-6: Visualisation of a dummy dataset in 3D, 

with principal components overlaid to show the 

directions of maximum variance. 

 
Figure B-7: Comparison of variance in the original features  

(X, Y, Z) and the PCA latent space (PC1, PC2, PC3). 
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where the 10% correction factor is applied by multiplying the stress by 1.1. This corrected stress value is 

then used to determine the friction velocity  (𝑢∗)  and subsequently the 10-meter wind speed (𝑢10) based 

on the following steps: 

1. Friction velocity calculation: The friction velocity (𝑢∗) is calculated by: 

u∗ = √
𝜏

𝜌𝑎
   

where 𝜌𝑎 is the density of air, taken as 1.21 [𝑘𝑔/𝑚3] 

2. Surface roughness length calculation: The surface roughness length 𝑧0 is derived using 

Charnock’s relationship: 

𝑧0 =
𝛼𝑀𝜈

𝑢∗
+
𝛼𝐶𝑢

∗2

𝑔
 

Here, 𝛼𝑀 is set to 0.11 (following (Charnock, 1955)), 𝜈 is the kinematic viscosity of air 

(1.5 ∗ 10−5[𝑚2/𝑠]), 𝑔 is the gravitational acceleration (9.81 [𝑚/𝑠2]), and 𝛼𝐶 is the 

Charnock parameter, set to 0.025 [−]. 

3. Drag coefficient calculation: Using 𝑧0, the drag coefficient (𝐶𝐷) is computed as: 

𝐶𝐷 = (
𝑘

𝑙𝑛 (
𝑧
𝑧0
)
)

2

 

where 𝑘 is the Von Kármán constant (0.4) and 𝑧 is the reference height (10 [𝑚]) 

4. Pseudo wind speed calculation: Finally, the 10-meter wind speed (𝑢10) is derived by: 

𝑢10 =
𝑢∗

√𝐶𝐷
 

This method ensures that the wind speed calculation accurately reflects the conditions specified by the stress 

fields, with adjustments to match the requirements of the WAQUA model. Additionally, wind direction was 

computed using the eastward (𝑢10) and northward (𝑣10) wind components from SEAS5, with the direction 

calculated as: 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  (𝑎𝑟𝑐𝑡𝑎𝑛 (
−𝑢10
−𝑣10

)
180

𝜋
)  𝑚𝑜𝑑 360 

B.5 Maximum Dissimilarity Algorithm (MDA) 
The Maximum Dissimilarity Algorithm (MDA) is a method used to select a representative subset of data 

from a larger dataset by maximising the dissimilarity between each of the selected points. This technique is 

particularly useful when the goal is to ensure that the selected points are as diverse as possible, thereby 

providing a broad representation of the entire dataset (Willett, 1999). 

Reasons for applying MDA in this study 

MDA is employed in this study as a way to select a set of days that represent the full range of variability 

present in the dataset, ensuring that the chosen days are spread across the feature space. Unlike random 

sampling, which may result in highly similar or redundant samples, MDA explicitly focuses on selecting 

points that are maximally different from each other. This is achieved by calculating pairwise dissimilarities 

and iteratively choosing the point that maximises the minimum distance from the already selected points. 
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This method is particularly advantageous in cases where a limited number of samples need to be selected 

but where it is crucial that these samples reflect the underlying diversity of the full dataset. For instance, in 

this study, the goal was to select days with extreme surge values from a large dataset of surge predictions, 

ensuring that these selected days cover a wide range of surge scenarios. 

MDA - mathematically explained 

The MDA process follows these steps: 

1. Initial selection - The first point is chosen from the dataset. This can be done either randomly 

or based on specific criteria, such as selecting a day with the highest surge.  

2. Iterative selection - For each subsequent point, the algorithm computes the dissimilarity 

(distance) between the candidate point and the already selected points. The goal is to select the 

point that is maximally dissimilar from the set of previously chosen points. Mathematically, this 

is done by selecting the point 𝑥𝑛𝑒𝑥𝑡 that maximises the minimum distance to all previously 

selected points: 

𝑥𝑛𝑒𝑥𝑡 = arg𝑚𝑎𝑥𝑥𝑖∈{𝑥𝑖,…,𝑥𝑘}𝑚𝑖𝑛𝑗=𝑖
𝑘 𝑑(𝑥𝑖, 𝑥𝑗) 

where: 

o 𝑋 – is the full dataset of points 

o {𝑥1, 𝑥2, … , 𝑥𝑘} – are the points already selected 

o 𝑑(𝑥𝑖 , 𝑥𝑗) – is the dissimilarity (typically the Euclidean distance) between points 𝑥𝑖 and 𝑥𝑗 

3. Termination - Repeat this process until the desired number of points have been selected. 

MDA - visually explained 

To illustrate how the Maximum Dissimilarity 

Algorithm (MDA) works, consider a simplified 2D 

dataset of points, as shown in Figure B-8. The goal 

of MDA is to iteratively select data points such that 

each selected point is as different as possible from 

the ones already chosen. The algorithm begins by 

selecting an initial point (either randomly or 

preselected), after which it iterates through the 

remaining points, choosing the one that is farthest 

from the previously selected points. 

In this simplified example the first point is 

randomly selected from the dataset, and labelled 1 

in the plot. This point is used as the starting 

reference for subsequent selections. The second 

point is selected to be the one that is most dissimilar 

to the first point. This is calculated by finding the 

point that has the maximum minimum distance to 

the already selected points (in this case, just the first point). The second point is labelled 2. The algorithm 

then continues iterating through the dataset, always selecting the point that has the largest minimum distance 

to the set of previously selected points. 

The key takeaway from this visualisation is that MDA ensures that the selected points are spread across the 

feature space, thus maximising the diversity of the chosen subset. This method is particularly useful when 

one wants to cover as much of the data's variability as possible with a smaller sample. 

 

 
Figure B-8: Visual representation of the Maximum Dissimilarity 

Algorithm (MDA) applied to a 2D dataset. The points labeled 1 

to 5 represent the order of selection based on maximising the 

minimum distance from the already selected points. 
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B.6 Stratified sampling 
Stratified sampling is a method that divides a dataset into subgroups, or "strata," that share specific 

characteristics. The aim is to ensure that each subgroup is adequately represented in the sample (Hayes, 

James, & Beer, 2024). 

Reasons for applying stratified sampling in this study 

Stratified sampling is employed in this study to ensure that extreme surge events are adequately represented 

in the final sample. Extreme surge categories are rare, and without stratified sampling, random sampling 

might result in these conditions being underrepresented.  

By dividing the dataset into nine surge categories (ranging from very low to extreme), stratified sampling 

guarantees that each category is represented equally. This approach allows the study to capture the full 

variability of surge conditions, with particular emphasis on ensuring extreme surges are included. The 

method ensures that the selected days reflect the range of surge scenarios, which might otherwise be 

overlooked in random sampling. 

Stratified sampling explained 

Stratified sampling involves several steps to ensure that each subgroup (or stratum) is adequately 

represented in the sample. The process can be broken down as follows: 

1. Divide the data into strata - The dataset is first divided into different strata based on a specific 

variable, such as surge values in this study. In the case of surge data, the strata are created by 

defining bins (ranges) of surge values. For example, bins may be defined for surge values less 

than -2 meters, between -2 and -1 meters, and so on. 

2. Determine the number of samples to be selected from each stratum - In this study, the 

number of samples selected from each stratum is the same for all strata, regardless of how many 

data points are in each surge category. This ensures that extreme surge categories are adequately 

represented. For instance, if 100,000 days are to be selected, an equal number of samples (in 

this case, 11,111 days) is chosen from each of the 9 defined surge bins. 

3. Random sampling within each stratum - Once the strata have been defined and the sample 

size for each stratum has been determined, the algorithm selects a random sample from each 

stratum. This ensures that the selected points are representative of the variations within each 

surge level. Mathematically, this process can be represented as: 

𝑆𝑎𝑚𝑝𝑙𝑒𝑖 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑛𝑖 𝑓𝑟𝑜𝑚 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝑖 

where 𝑛𝑖 represents the number of samples selected from stratum 𝑖. 

B.7 Entropy and Empirical Cumulative Distribution Functions (ECDFs) 
Shannon entropy is a fundamental concept in information theory that quantifies the amount of uncertainty 

or variability in a probability distribution (Shannon, 1948). It measures how unpredictable or dispersed a 

dataset is. In this study, Shannon entropy is used to assess the variability of storm surge distributions 

associated with different weather patterns. A higher entropy value indicates a more diverse range of storm 

surge values within a given pattern, while a lower entropy suggests that surge values are more concentrated 

around certain values. 

Mathematical definition 

For a discrete probability distribution 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}, the Shannon entropy is given by (Shannon, 1948): 

𝐻(𝑃) = −∑𝑝𝑖 log2 𝑝𝑖
𝑖
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where: 

• 𝐻(𝑃) – is the Shannon entropy 

• 𝑝𝑖 – represents the probability of each discrete value 𝑥𝑖 occurring in the dataset. 

Entropy is highest when the probabilities are uniformly distributed (i.e., all outcomes are equally likely) and 

lowest when the probabilities are highly concentrated around specific values. This concept is illustrated in 

Figure B-9, where the left panel shows a uniform distribution with the highest possible entropy, the middle 

panel depicts a moderate entropy distribution following a normal shape, and the right panel demonstrates a 

highly concentrated distribution with the lowest entropy. 

 
Figure B-9: Example of entropy in different probability distributions. 

Empirical Cumulative Distribution Functions (ECDFs) 

To compute entropy, it is necessary to estimate the probability distribution of storm surge values for each 

weather pattern. In this study, this is done using Empirical Cumulative Distribution Functions (ECDFs). 

The ECDF of a dataset provides an estimate of the cumulative probability of a random variable by 

calculating the fraction of observations that fall below a given value. Mathematically, for a sample of 𝑛 

observations 𝑥1, 𝑥2, … , 𝑥𝑛, the ECDF is defined as (Dekking, Kraaikamp, Lopuhaä, & Meester, 2005): 

𝐹(𝑥) =
1

𝑁
∑1(𝑥𝑖 ≤ 𝑥)

𝑛

𝑖=1

 

where: 

• 𝐹(𝑥) – is the cumulative probability up to 𝑥 

• 1(𝑥𝑖 ≤ 𝑥) – is an indicator function that equals 1 if 𝑥𝑖  ≤ 𝑥 and 0 otherwise 

• 𝑛 – is the total number of observations 

The ECDF is a non-parametric estimator of the cumulative distribution function (CDF), meaning it does not 

assume a specific underlying probability distribution. 

A visual example of the construction of an ECDF is illustrated in Figure B-10. The left panel shows a 

dummy dataset as a histogram, displaying the frequency of fictious storm surge values. The right panel 

presents the corresponding ECDF, which accumulates the proportion of observations below each threshold. 
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Figure B-10: Visual example of ECDF. Histogram of the data (left) and the corresponding ECDF (right). 

Applications in this study 

In this study, Shannon entropy is computed for each Najda weather pattern based on the probability 

distribution of storm surge values. The probability distributions are obtained using Empirical Cumulative 

Distribution Functions (ECDFs), which estimate the probabilities of different surge values occurring within 

each weather pattern. 

To compute the entropy: 

1. Storm surge values are sorted within each Najda weather pattern. 

2. The ECDF is computed to determine the proportion of data points below each surge value. 

3. Probabilities are extracted from the ECDF. 

4. Shannon entropy is calculated using the formula above. 

By computing Shannon entropy for each pattern, this study identifies which weather patterns are associated 

with the most diverse and uncertain surge outcomes. 

Interpretation of results 

The entropy value may be interpreted as follows: 

• High entropy patterns exhibit greater variability in storm surge values, meaning that the storm 

surges associated with those weather patterns are less predictable and more widely spread.  

• Low entropy patterns have more concentrated storm surge values, meaning that the storm surge 

levels for those patterns are more consistent and predictable. 

B.8 Kullback-Leibler (KL) divergence 
The Kullback-Leibler (KL) divergence is a fundamental concept in information theory that measures the 

difference between two probability distributions (Bishop, 2006). Kl divergence is also known as relative 

entropy (Braverman, 2011). In this study, KL divergence is used to quantify how different the storm surge 

distributions are between pairs of Najda weather patterns. A low KL divergence between two patterns 

indicates that their storm surge distributions are similar, whereas a high KL divergence suggests substantial 

differences in their surge behaviour. 

Mathematical definition 

For two probability distributions, 𝑃 (true distribution) and 𝑄 (approximate distribution), the KL divergence 

is defined as (Bishop, 2006): 
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𝐷𝐾𝐿(𝑃||𝑄) =∑𝑃(𝑖) log2
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

where: 

• 𝐷𝐾𝐿(𝑃||𝑄) – represents the divergence from 𝑄 to 𝑃 

• 𝑃(𝑖) – is the probability of event 𝑖 in the true distribution 

• 𝑄(𝑖) – is the probability of event 𝑖 in the comparison distribution 

KL divergence is asymmetric, meaning that 𝐷𝐾𝐿(𝑃||𝑄) ≠ 𝐷𝐾𝐿(𝑄||𝑃). This means the measure is not a true 

"distance" metric but rather an indication of how much information is lost when approximating 𝑃 using 𝑄. 

Computing KL divergence 

In this study, KL divergence is applied to compare the storm surge probability distributions associated with 

different Najda weather patterns. The probability distributions of storm surges are estimated using Kernel 

Density Estimation (KDE), a non-parametric technique that smooths the observed surge values to 

approximate a continuous probability density function (Dekking, Kraaikamp, Lopuhaä, & Meester, 2005). 

This process is illustrated in Figure B-11, where a histogram of storm surge values is overlaid with the 

corresponding KDE curve. The KDE provides a smooth estimate of the probability density, avoiding the 

binning artifacts of histograms while capturing the underlying distribution more accurately.  

The steps involved in computing KL divergence are: 

1. Define a common grid of surge values 

spanning the full range of observations. 

2. Estimate probabilities for each weather 

pattern by calculating surge occurrence 

frequencies over this grid. 

3. Compute KL divergence between each pair of 

patterns using the formula above. 

4. Construct a KL divergence matrix, where 

each entry represents the divergence between 

two patterns. 

To facilitate interpretation, the computed KL 

divergence values are visualised as heatmaps in the 

main report, where darker colours represent stronger 

distinctions between weather patterns.  

Handling of infinite KL divergence 

In cases where one weather pattern completely lacks certain surge values that appear in another pattern, KL 

divergence becomes mathematically infinite. To ensure meaningful visualisation and comparison, infinite 

values are replaced with a large finite value for plotting purposes. This allows the heatmaps to represent 

extreme differences while avoiding issues with numerical instability. 

Interpreting KL divergence in this study 

KL divergence may be interpreted as follows: 

• Low KL divergence between two weather patterns means that their storm surge distributions are 

similar, suggesting that those patterns produce comparable surge behaviour. 

• High KL divergence indicates that the storm surge distributions are significantly different, meaning 

that one weather pattern is associated with a very different range of surge values than another. 

 
Figure B-11: Visual example of KDE curve. The histogram 

shows discrete surge value counts, while the KDE curve 

provides a smooth probability density estimate. 
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• Infinite KL divergence occurs when one distribution assigns zero probability to a surge value that 

is present in the other distribution. This signifies complete dissimilarity between the patterns. 

These three scenarios are illustrated in Figure B-12. The left plot shows two similar distributions with minor 

differences, resulting in low KL divergence. The middle plot represents high KL divergence, where the 

distributions differ significantly but still share some overlap. The right plot illustrates infinite KL 

divergence, where the two distributions have completely non-overlapping support, leading to an undefined 

or infinite KL value. 

 
Figure B-12: Examples of KL divergence scenarios. Left: Low KL divergence—two similar distributions. Middle: High KL 

divergence—distinct but overlapping distributions. Right: Infinite KL divergence—completely non-overlapping distributions. 

By analysing the KL divergence matrix, the redundancy and distinctiveness of the weather patterns may be 

assessed in terms of their associated storm surge distributions. Patterns with very low KL divergence may 

be considered redundant, while patterns with high KL divergence indicate unique storm surge behaviour. 
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Appendix C: Surge return period analysis 

This appendix briefly describes a small internal study conducted by WMCN to link return periods to surge 

values along the Dutch coast. The analysis, shared generously by WMCN, provides valuable insights into 

the frequency of storm surges at several coastal locations. 

The study focused on the storm season, defined as the period from 1st October to 31st March, and included 

only storm surges exceeding 50 cm. For each location, the return period (x-axis) was linked to the high-

water surge values (y-axis). The results are visualised in Figure C-0-1 figure below, where each colour 

represents a different location, and the legend indicates the length of the historical record used for the 

analysis. For example, at Vlissingen, records spanning from 1881 to 2017 were utilised. 

This analysis highlights the variability in return periods for different surge thresholds across locations, 

reflecting both regional differences and the influence of long-term data availability. Based on these results, 

Table C-0-1 summarises the approximate surge values for two key metrics: 

• Surge threshold = 1.5 m: This threshold was used in the Method A of Phase II to capture significant 

but not overly rare storm surge events. 

• Return period = 1 year: While not directly used in the methodological framework of Phase II, 

incorporating return period-based surge values into future forecasting models is recommended. This 

is discussed further in Section 12.2.1, where improvements to weather pattern-based forecasting are 

proposed. 

Table C-0-1: Approximate return period for various surge thresholds across multiple locations along the Dutch coast 

Location Return Period [year] 

for surge = 1.5 [m] 

Surge threshold [cm] for  

Return Period = 1 [year] 

Delfzijl 2.30 185 

Harlingen 2.00 180 

Den Helder 0.80 142 

IJmuiden 0.50 130 

Hoek van Holland 0.40 125 

Vlissingen 0.17 110 

 

 

  

Figure C-0-1: Relationship between return periods (x-axis) and high-water surge values in cm (y-axis) for various 

locations along the Dutch coast. 
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Appendix D: Generated weather patterns 

This appendix provides larger versions of the mean sea level pressure (MSLP) and pressure gradient weather 

pattern plots for Methods A, B, and C, allowing for a more detailed examination of the generated patterns 

beyond the smaller visualisations presented in the main text. 
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Method A: Surge threshold 
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Method B: MDA 
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Method C: Stratified sampling 
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Appendix E: Dendrograms 
This appendix presents larger versions of the dendrograms for each tried method (A, B and C), providing a 

clearer view of the hierarchical clustering structure.  

A dendrogram is a tree-like diagram used to visualise the arrangement of clusters in hierarchical clustering. 

It shows how individual elements (in this case, Najda weather patterns) are progressively merged into larger 

clusters based on their similarity. 

The vertical axis represents the cluster distance, which quantifies the dissimilarity between merged clusters. 

The higher the merging occurs on the dendrogram, the more dissimilar the clusters are. The horizontal axis 

represents the individual weather patterns, which are gradually grouped together. 

In this study, the dendrogram helps to assess how distinct or redundant the generated weather patterns are. 

If patterns merge at very low distances, it suggests redundancy, meaning some clusters may be too similar. 

Conversely, if patterns remain separate until high distances, it indicates greater distinctiveness among the 

clusters. 

 

 

 

 

 

 

Method A: Surge threshold 
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Method B: MDA 

 
 

Method C: Stratified sampling 
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Appendix F: KDE plots 
This appendix provides the Kernel Density Estimation (KDE) plots for all six locations considered in the 

study. While the main report focuses on the results for IJmuiden, as methods B and C are applied based on 

surge data from this location, the following KDE plots present the distribution of maximum daily surge 

values for all six locations under each of the three data selection methods. 

• Method A (Surge threshold) focuses on selecting days with high surges, emphasising extreme 

weather conditions. 

• Methods B and C (MDA and Stratified sampling) aim to capture a broad surge distribution, 

including both high and low surge days, ensuring a more balanced representation across surge 

categories. 

These plots visually compare the surge distribution of the selected subset data against the full SEAS5 

dataset, showcasing how the data selection methods influence the resulting subset and their representation 

of various surge conditions. 

Method A: Surge threshold 
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Based on the KDE plots for Method A, a few observations/conclusions can be made: 

i. The fixed surge threshold approach prioritises the inclusion of high surge days, making sure 

extreme surge events are adequately represented in the dataset.  

ii. The surge in Delfzijl is inherently higher than in other locations like Vlissingen. As a result, many 

days were selected based on the surge exceeding the 1.5-meter threshold in Delfzijl, while on the 

same days, surge values in Vlissingen may have been much lower, not exceeding the threshold. 

This could skew the selection process toward locations with higher surge levels. 

 

 

 

 

 

 

 

Method B: MDA 
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Based on the KDE plots for Method B, a few observations/conclusions can be made: 

i. Balanced surge distribution: Method B attempts to capture a broader range of surge values by 

maximising the dissimilarity between selected days. The KDE plots show that, compared to 

Method A, the sampled data in this approach better reflects a balanced distribution of surge values, 

including both high and low surges, for all locations. 

ii. Focus on extreme events maintained: While MDA promotes diversity in the selection process, it 

still ensures that extreme surge days are adequately represented. This is evident in locations like 

IJmuiden, where extreme surge values are included in the sampled data without overwhelming the 

lower surge values. As IJmuiden was used for the MDA selection, this result was expected for that 

location. However, it is notable that for the other locations, the surge distribution is also quite broad, 

despite the data not being selected based on these locations. This suggests that selecting based on 

a single location may still provide a broad and representative distribution of surge values for other 

locations along the Dutch coast as well. 

 

Method C: Stratified sampling 

 



Charting the Course to Coastal Clarity  March 2025 

 

122 | P a g e  

 

Based on the KDE plots for Method C, a few observations/conclusions can be made: 

i. Concentrated surge distribution for IJmuiden: Method C results in a KDE plot for IJmuiden that 

shows multiple peaks, indicating that the stratified sampling method captures a range of surge 

values across different surge categories (e.g., "low," "medium," "high," etc.). While there are peaks 

corresponding to both lower and higher surge values, the distribution is not uniform within each 

surge category. This is likely due to an overrepresentation of certain surge values within each 

category. 

ii. Peaked distributions for nearby locations: The KDE plots for Hoek van Holland and Den Helder 

also exhibit relatively peaked distributions, similar to IJmuiden. This can be attributed to the fact 

that these locations are relatively close to IJmuiden, and therefore, their surge behaviour is likely 

to be similar. As the stratified sampling is based on surge data from IJmuiden, the resulting 

distributions for these locations show a similar structure. 

iii. Smoother surge distributions for more distant locations: For Delfzijl and Vlissingen, which are 

farther from IJmuiden, the KDE plots appear smoother. This could be due to differences in the 

surge behaviour at these locations compared to IJmuiden. As the surge events at these more distant 

locations may not exhibit the same concentration of surge values within certain bins, the stratified 

sampling captures a more even distribution of surge values across the categories, resulting in 

smoother plots without the pronounced peaks observed in IJmuiden and the nearby locations. 
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Appendix G: Boxplots 
This appendix presents the boxplots illustrating the distribution of daily maximum surge values for different 

weather patterns, for both Neal patterns and the custom-generated patterns (Methods A, B, and C). These 

plots offer a comparative overview of surge behaviour across various locations along the Dutch coast and 

at different lead times. 

While the main report focuses on the surge distribution for IJmuiden, the analysis here showcases the results 

for the other considered locations: Vlissingen, Hoek van Holland, Den Helder, Harlingen and Delfzijl.  

The analysis is presented for lead times up to 10 days. The 15-day lead time boxplot has been excluded from 

this appendix, as it has been observed that, from a lead time of 10 days onward, the surge distributions 

across the weather patterns become increasingly similar. This indicates that the predictive usefulness of the 

surge data at longer lead times is limited, as the influence of the weather patterns converges over time. 

 

Neal patterns 

Vlissingen 
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Method A: Surge threshold 
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Method B: MDA 
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Method C: Stratified sampling 
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Appendix H: Entropy analysis 
This appendix presents the results of the entropy analysis conducted for the different clustering methods 

used in this study. Shannon entropy quantifies the uncertainty within each weather pattern’s surge 

distribution. KL divergence measures the dissimilarity between weather pattern distributions. Figure H-1 

presents the Shannon entropy of the surge distributions for Neal’s weather patterns (top row), as well as for 

Methods A, B, and C (subsequent rows). Figure H-2 presents the KL divergence (relative entropy) matrices, 

showing how different weather patterns compare in terms of surge distribution dissimilarity. 

  

 

  
Figure H-1: Shannon entropy values for the surge distributions of each weather pattern across the four clustering methods  

(Neal, A, B, and C). Higher entropy values indicate greater uncertainty in surge levels within a given pattern. 
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Figure H-2: KL divergence matrices for the surge distributions of each weather pattern across the four clustering methods  

(Neal, A, B, and C). Higher KL divergence values indicate greater dissimilarity between weather pattern surge distributions. 
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Appendix I: Trajectory comparison of storm Pia and the 

representative SEAS5 storm 
This appendix illustrates the trajectories of storm Pia and the selected representative SEAS5 storm. The 

comparison highlights how closely the path of the SEAS5 storm mirrors Pia’s trajectory, particularly with 

regard to its rapid movement across the North Sea. 

Figure I-1 illustrates the trajectory of storm Pia, which developed in mid-December 2023. The storm 

originated near Iceland and moved quickly south-eastward across Northern Europe, impacting the 

Netherlands. 

Figure I-2 shows the trajectory of the selected SEAS5 storm from the ensemble forecast of October 1994, 

which was used as a proxy for storm Pia. As seen in the figure, the SEAS5 storm follows a similar west-to-

east path across the North Sea, with rapid intensification similar to Pia. Both storms exhibit fast progression 

across the region, reinforcing the SEAS5 storm’s suitability as a proxy for this analysis. 

 

 
Figure I-1: Trajectory of storm Pia (December 2023), showing its rapid movement from Iceland towards the Baltic Sea.  

Taken from (Zijderveld, et al., 2024).  

 



Charting the Course to Coastal Clarity  March 2025 

141 | P a g e  

 

 
Figure I-2: Trajectory of the representative SEAS5 storm (22-23 December 1994), showing its similar west-to-east path and rapid 

movement across the North Sea. 
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Appendix J: Storm evolution in the considered domain 
This appendix provides a detailed visualisation of how storms develop and enter the SEAS5 model domain 

before leading to extreme surge events. As discussed in Section 4.4, an analysis was conducted on 22 days 

with maximum daily surges exceeding 4.5 m, examining the mean sea level pressure (MSLP) and wind 

intensity fields 15 days prior to each surge event. The analysis revealed that for all cases, the responsible 

storm system only entered the domain approximately 1–2 days before the high-surge event occurred. 

To illustrate this pattern, this appendix presents an example of one such storm. The contour lines in the 

figures represent the MSLP fields, while the arrows indicate wind speed and direction. For the high-surge 

event on January 25, 1983, at 18:00, the storm system entered the SEAS5 domain on January 24, 1983, at 

06:00, meaning only 36 hours elapsed between the storm’s first appearance in the domain and the peak 

surge. These visuals support the conclusion that the limited spatial domain may restrict the ability to predict 

extreme surge events well in advance.  
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