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Summary

In this report I present the results from the mathematical analysis of a model neuronal network introduced
by Ermentrout and Curtu [6], extended to two space dimensions. The model can be seen as a simple model
of a cortical sheet that describes the firing rate activity of two populations of neurons coupled together,
one excitatory that displays linear adaptation and the other one inhibitory. The dynamics of the activity
is described by a system of nonlocal partial integro-differential equations in which a nonlinear sigmoidal-
shaped firing rate function is included. The (synaptic) coupling between the neurons is characterized by
local excitation and long range inhibition. Running numerical simulations with this model shows that a
travelling hexagonal activity pattern is a stable solution of the model given certain sets of values for the
parameters of the model. During this project I have investigated the mechanism behind the formation of
these patterns as solutions of the model. The results from this investigation are presented in this report.

In order to investigate the mechanism I have used methods from nonlinear dynamical systems, pattern
formation and bifurcation theory to analyze the model. I started by performing a linear stability analysis
around the uniform quiescent state of the model (which is stable before the bifurcation points). From
this analysis I could deduce the different types of bifurcation that could take place in the model. I
decided to focus on the analysis of the Hopf bifurcation in order to investigate which types of spatio-
temporal hexagonal pattern can be obtained in the model as a consequence of this type of bifurcation.
Subsequently I performed a singular perturbation analysis to obtain the general solution of the model
corresponding to spatio-temporal hexagonal activity patterns. Then I determined equilibrium solutions
of this general solution which correspond with a travelling hexagonal activity pattern and a stationary,
regularly oscillating hexagonal activity pattern. By finding these solutions through this analysis, it has
become clear what the overall mechanism is behind their formation and why these solutions behave the
way they do. Due to the fact that the stability of the trivial solution is lost at pure imaginary pairs
of eigenvalues, spatio-temporal patterns can start bifurcating from the uniform quiescent state of the
model. The exact shape of the function used to describe the coupling between the neurons in the model
determines the shape of the activity patterns that can form in the model and the nonlinear sigmoidal-
shaped firing rate function prevents the solutions from growing without bounds. The exact values of the
parameters of the model determine the stability of the activity patterns.

It is interesting to note that the oscillating hexagonal activity pattern is a solution I’ve never found in
numerical simulations. Due to a lack of time at present and the complexity of the problem at hand I have
not been able to determine the exact stability conditions on the parameters of the model for each of the
two found equilibrium solutions. However, an algorithm is presented to determine these conditions. With
these stability conditions it must be possible to also find the oscillating pattern as a stable solution in
numerical simulations with the model.
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Chapter 1

Introduction

The neurons of organisms which have a nervous system are interconnected, together forming neuronal
networks. Many areas of the brains of these species have a sheet-like architecture in which the neurons are
connected horizontally in a particular way that is clearly not random. Neurons that respond preferentially
to similar stimuli from the outside world, for example, are more strongly linked than those responding to
different stimuli. The classic example of this phenomenon is the connection pattern of neurons in parts
of the visual cortex [9]. These neurons respond to oriented bars of light and many of these cells have
a preferred angle. The interesting thing is that experiments have shown that the neurons with a more
similar angle preference are stronger linked than those with angle preferences further apart. Due to this
non-random linkage pattern, which implies spatial organization of the connections between the neurons,
it becomes possible to support the propagation of activity patterns (also known as activity waves) over
cortical sheets and the existence of these waves has, therefore, been demonstrated in many systems over
the last few decennia [3, 7]. These waves can be thought of as regions of the cortex in which the activity
of the neurons is increased and the locations of these regions change over time in a regular fashion.

1.1 Motivation for the project

Previously, during the internship of my master’s program “Brain and Cognitive Sciences”, I have investi-
gated, by using numerical simulations, whether or not a particular model with which I modelled a piece
of cortical sheet could support the propagation of a particular (spatio-temporal) activity pattern as a
stable solution [11]. If such a solution would exist, I could use it as part of a larger model with which
I could provide support for a particular developmental theory which entails that the prenatal wiring of
the neuronal interconnections in a particular brain system in rat embryos is dependent on activity waves
which sweap over the prenatal cortex of these embryos.

The pattern I was looking for, was a semi-randomly translating hexagonal activity pattern (See Figure
2.3 to get an idea of what a (regularly) translating hexagonal activity pattern looks like). Although I
found a translating hexagonal activity pattern as a stable solution, the found solution did not match
the solution I was looking for. Unfortunately, the patterns always translated over the cortical sheet in a
fixed direction with a fixed velocity of its constituting planar waves and whatever I tried, I could never
change its direction, nor the velocity of its constituting planar waves (i.e. I always found a travelling
hexagonal activity pattern). This was not what I was hoping to find because the model with this pattern
as the stable solution does not provide support for the developmental theory. At that time it remained
unclear to me why this type of solution exists in the type of model I used and why it behaves the way it
does. Therefore I have carried out the current project in order to determine the mechanism behind the
formation of these patterns as solutions in this type of model.
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Chapter 1

The model I have used for the mathematical analysis is a spatially extended version of a model developed
Bard Ermentrout and Rodica Curtu [6]. This extended version of their model is nearly identical to the
model I have used during the internship of my master’s program. I am confident that results obtained
from the analysis of the extended version of the model of Ermentrout and Curtu let themselves translate
easily to insights for the model I have used during the internship.

The structure of the report is as follows. I start with a general description of the model of Ermentrout
and Curtu. Next, I give a detailed description of the model that has been analyzed during this project.
Then I delve into the actual analysis of this model after which I present my conclusions from carrying
out this project.

1.2 The Ermentrout-Curtu model

The model of Ermentrout and Curtu is an one-dimensional model of interconnected cortical neurons on
a finite or an infinite line and consists of two homogeneous populations of neurons, one excitatory (E)
and the other one inhibitory (I). Classifying the population of cortical neurons into two sub populations
is a reasonable thing to do, because the neurons of the cortex can be divided, in the simplest sense, into
two types of cell, one excitatory and the other one inhibitory. They assumed that the excitatory neurons
display linear adaptation. This is a phenomenon observed in the activity of neurons and entails a decline
of their activity over time despite constant ongoing stimulation. This decline is a result of the constant
stimulation, because it results in constant activity of these neurons which in turn causes them to fatigue.
This makes it more and more difficult for them to stay active at the same level, hence the decline in their
activity (hence, adaptation can be seen as a slow negative feedback mechanism). The inhibitory neurons
in the model do not have a similar activity adaptation. These are reasonable asumptions, because most
excitatory neurons have some form of adaptation while the inhibitory neurons generally do not have a
similar activity adaptation [4].

Ermentrout and Curtu described the dynamics of the two populations by their firing rate activity (uj
with j ∈ E, I) and the adaptation by the variable A. The firing rate activity can be defined as the
average number of action potentials per unit time. An action potential can be seen as a characteristic
electrical pulse used by neurons to propagate signals into, through and from the brain. They assumed the
spatial connectivity (J), also known as the synaptic coupling, to be all-to-all between the the excitatory
neurons (JEE), between the excitatory neurons and the inhibitory neurons (JIE) and vice versa (JEI). No
interactions between the inhibitory neurons were included. For all of these interactions they assumed that
the strength of the interactions decrease with the distance between the neurons according to a Gaussian
curve with zero mean. Taken together, this resulted in the following general firing rate model

τE
∂uE
∂t

(x, t) = −uE(x, t) + FE (JEE ∗ uE(x, t)− JEI ∗ uI(x, t)− gA) ,

τI
∂uI
∂t

(x, t) = −uI(x, t) + FI (JIE ∗ uE(x, t)) ,

τA
∂A

∂t
(x, t) = −A(x, t) + uE(x, t).

(1.1)

τE , τI and τA represent respectively the time constants for the excitatory and inhibititory neurons and
the time constant for the adaptation. The parameter g determines the gain of the adaptation, FE and
FI are the firing-rate functions (i.e. the functions that translate the total input to a neuron through the
interconnections into a change in the firing rate activity of the neuron) and the operator Jij ∗ uj , with
i, j ∈ E, I, is defined by the convolution

Jij ∗ uj(x, t) =

∫
Jij(x− y)uj(y, t) d y.

2



Introduction

Next, Ermentrout and Curtu introduced one simplification to model (1.1). They assumed that the in-
hibition occurs on a must faster time scale than the excitation and that the firing rate activity for the
inhibitory neurons is linear. This allowed them to replace the equation that decribes the dynamical evo-
lution of the activity of the inhibitory neurons by its steady state (i.e. uI ≈ JIE ∗uE). Then they noticed
that the convolution of two Gaussian functions with zero mean is still a Gaussian with zero mean. This
implies

(JEE ∗uE−JEI ∗uI)(x, t) = (JEE ∗uE−JEI ∗JIE ∗uE)(x, t) = (JEE−JEI ∗JIE)∗uE(x, t) = J ∗uE(x, t),

where the synaptic coupling J(x) is a function of the difference of two Gaussian curves with zero mean.
Due to these simplifications, model (1.1) could be reduced to a firing rate model for only one variable u,
with the synaptic coupling defined by a Mexican hat function. This means that they assumed to have
a network of neurons in which the interconnections are characterized by local excitation and long range
(lateral) inhibition. This resulted in the following simplified model

∂u

∂t
(x, t) = −u(x, t) + F (αJ ∗ u(x, t)− gv(x, t)) ,

τ
∂v

∂t
(x, t) = −v(x, t) + u(x, t).

(1.2)

The variables u(x, t) and v(x, t) represent respectively the neuronal activity and the adaptation. The
function F represents a firing rate function, the positive parameter α determines the strength of the
synaptic coupling J between the neurons, the positive parameter g controls the gain of the adaptation
and τ is the time constant.

3
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Chapter 2

The description of the model under
investigation

The model that I have analyzed, is the following

∂u

∂t
(x, t) = −u(x, t) + F (αJ ∗ u(x, t)− gv(x, t)) ,

τ
∂v

∂t
(x, t) = −v(x, t) + u(x, t).

(2.1)

The variables u(x, t) and v(x, t) represent the same as in the model of Ermentrout and Curtu (1.2).
The only difference is that the neurons are situated on a two-dimensional neuronal sheet (Ω) so x is a
two-dimensional (Euclidian) space coordinate (x = (x, y)T). It is often assumed in analytical studies on
neuronal models that the sides of neuronal sheets are infinite in length, but since I cannot consider an
infinite domain in numerical simulations, I considered both a neuronal sheet with sides of (equal) finite
length and an infinite neuronal sheet. Hence,

x, y ∈ Ω = [−l, l]× [−l, l] where l ∈ {R>0,∞} . (2.2)

With respect to the finite neuronal sheet I “glued” the opposite edges of the neuronal sheet together.
This effectively creates a toroidal structure and implies periodic boundary conditions. The meaning of the
parameters and the firing rate function are the same as in the model of Ermentrout and Curtu. Also the
shape of the synaptic coupling was assumed to have the same properties as in the model of Ermentrout
and Curtu, although changes due to the expansion to two space dimensions had to be taken into account.
The precise shape of the synaptic coupling function used, a description of the operator J ∗ u(x, t) and
the shape of the firing rate function used will be given in following sections.

2.1 The synaptic coupling function

The function I have used for the synaptic coupling is the following

J(x, y) =
1

π

(
Aae−a(x

2+y2) −Bbe−b(x
2+y2)

)
. (2.3)

5



Chapter 2

This function is a continuous, absolutely integrable function on the surface Ω and symmetric in the origin.
The function has been constructed in such a way that nearby neurons are excited by active neurons while
neurons further away from the active neurons are inhibited. In the case of an infinite neuronal network,
the above defined coupling function is valid over the entire two-dimensional plane. In the case of a finite
neuronal network the above defined coupling function is valid for x, y ∈ [−l, l] where l ∈ R>0. Beyond
the borders of this surface this function has to be “copied” over the two-dimensional plane so that the
resulting function is double periodic of period 2l. This is, of course, a necessity to accomodate the toroidal
structure of the neuronal sheet. The parameters of this function satisfy

Aa ≥ Bb > 0, a > b > 0,

√
ln
(
Bb
Aa

)
2(b− a)

< l. (2.4)

Taken together the above garantees that the assumption of short range excitation and long range inhi-
bition is met independent of the length of a side of the neuronal sheet. Take a look at Figure 2.1(a) to
see an example of what the function for the synaptic coupling typically looks like. The operator J ∗ u in
model (2.1) represents the double convolution given by

J(x, y) ∗ u(x, y, t) =

∫∫
Ω

J(x− v, y − w)u(v, w, t) d v dw. (2.5)

The following Fourier transform is furthermore associated with the synaptic coupling

Ĵ(k) =

∫∫
Ω

J(x)eik·x dx d y (2.6)

where the variable k represents the two-dimensional wave vector (k = (k1, k2)T). This transform will be
used later on in the analysis. In the case of the function used for the synaptic coupling, application of
(2.6) when working with an infinite neuronal network, results in

Ĵ(k1, k2) = Ae
−((k1)2+(k2)2)

4a −Be
−((k1)2+(k2)2)

4b . (2.7)

Application of (2.6) when working with a finite neuronal network, results in

Ĵ(k1, k2) =
1

4
A{V (a)}e

−((k1)2+(k2)2)
4a − 1

4
B{V (b)}e

−((k1)2+(k2)2)
4b , (2.8)

with

V (x) = P1(x)Q1(x) + P2(x)Q2(x)− P1(x)Q2(x)− P2(x)Q1(x),

and

P1(x) = erf

(
2lx+ ik1

2
√
x

)
, P2(x) = erf

(
−2lx+ ik1

2
√
x

)
,

Q1(x) = erf

(
2lx+ ik2

2
√
x

)
, Q2(x) = erf

(
−2lx+ ik2

2
√
x

)
.

Take a look at Figure 2.1(b) to see an example of the Fourier transform of the prototypical example of the
function for the synaptic coupling. It should be noted that function V (x) is real-valued for all x, l ∈ R>0

and k ∈ R2. This is an important observation (which will become apparant later on in the analysis),
because this implies that function (2.8) is a real-valued function. Looking at function (2.7) it of course
clear that function (2.7) is also a real-valued function.

6



The description of the model under investigation

(a) J(x, y) (b) Ĵ(k1, k2)

Figure 2.1: (a) The synaptic coupling function J(x, y) for A = 70, B = 125, a = 0.1, b = 0.03; (b) The Fourier
transform Ĵ(k1, k2) of the synaptic coupling function depicted in (a).

2.2 The firing rate function

The function I have used as the firing rate function is the following sigmoidal function

F (u) =
1 + erη

r
· 1− e−rη

1 + e−r(u−η)
, (2.9)

with r and η positive parameters. Take a look at Figure 2.2 to see an example of the firing rate function.
This type of function is quite often used in this kind of modeling studies. If one assumes η = 0, for
example, the above equation reduces to F (u) = 2

r tanh
(
ru
2

)
and the use of a hyperbolic tangent for the

firing rate function is common in the literature. Notice that function (2.9) satisfies

F (0) = 0 and F ′(0) = 1. (2.10)

This is important because both properties make the analysis of the model easier. The first property ensures
that the uniform quiescent state of the model is the steady state of the model before the bifurcation points
(i.e. ū = 0, v̄ = 0). The second property simplifies the analysis of model (2.1) when nonlinear terms of
the model are taken into account.

It should be pointed out that the second property for the firing rate function is by no means essential
as was pointed out by Curtu [5]. As long as F ′(0) is nonzero and positive, the results from the analysis
will remain the same. If one assumes F ′(0) 6= 1 then, by the change of variables, unew = u/F ′(0),
vnew = v/F ′(0), the change of the parameters αnew = F ′(0)α, gnew = F ′(0)g, and the change of the
function Fnew = F/F ′(0) a system topologically equivalent to system (2.1) is acquired where Fnew
satisfies the properties Fnew(0) = 0 and F ′new(0) = 1. The exact shape of the firing rate function is also
not essential because for the analysis I only need that the function F (u) has continuous third derivatives
at the origin. However, the model must use some sort of bounded function to prevent that solutions of
the model can grow without bound.

7



Chapter 2

Figure 2.2: The firing rate function F (u) for r = 3, η = 0.5.

2.3 Demonstration of a stable travelling hexagonal activity pat-
tern in a numerical simulation

In order to assure myself that the spatially extended version of the model of Ermentrout and Curtu also
harbors translating hexagonal activity patterns as a stable solution just like the model I have used during
the internship of my master’s program, I have implemented the model in Matlab and I have run some
simulations to see if I could find such translating solutions as a stable solution for a certain combination
of parameter values of the model (see appendix C for the Matlab-code used for generating the numerical
simulations).

Finding a stable translating hexagonal activity pattern in the extended version of the model of Ermentrout
and Curtu with numerical simulations is not that hard to do. Take a look at Figure 2.3 to see that a
stable hexagonal activity pattern which translates over the cortical sheet in a fixed direction with a fixed
velocity of its constituting planar waves clearly exists in model (2.1). In the next chapters I present the
mathematical analysis which sheds light onto why this type of solution of this type of model exists and
behaves the way it does.

8



The description of the model under investigation

(a) t = 500 ms (b) t = 502 ms (c) t = 504 ms

(d) t = 506 ms (e) t = 508 ms (f) t = 510 ms

Figure 2.3: Results from a numerical simulation with model (2.1) for a cortical sheet consisting of 3600 neurons
positioned on a square grid (60-by-60 neurons). The colors in the figure represent the amount of activity u of the
neurons with dark red a high amount of activity and progressively cooler colors progressively lower amounts of
activity. The translating hexagonal activity pattern is evident in the figures when one looks in succession at the
sub figures from top left to bottom right. The direction of translation is south-south-west. For this simulation I
have used the synaptic coupling function depicted in Figure 2.1(a), the firing rate function depicted in Figure 2.2
and the remaining parameters of the model have values α = 1, g = 4, τ = 5 ms. The Euler forward method with
time step dt = 0.1 ms has been used as the method of intergation (See appendix C for the Matlab-code used for
generating the numerical simulations).

9
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Chapter 3

The linear stability analysis

I started the analysis of model (2.1) by performing a linear stability analysis in order to get an idea about
the general behaviour of the steady state of the full nonlinear system beyond the possible bifurcation
points. To this end I first linearized model (2.1) around the uniform quiescent state of the model:

∂u

∂t
= −u+ (αJ ∗ u− gv) +

F ′′(0)

2
(αJ ∗ u− gv)2 +

F ′′′(0)

6
(αJ ∗ u− gv)3 + . . . ,

∂v

∂t
=
−v
τ

+
u

τ
.

(3.1)

Hence, the linear operator of the model is

L0 =
∂

∂t
−
(
−1 + αJ ∗ (·) −g

1/τ −1/τ

)
. (3.2)

Subsequently I performed the linear stability analysis around the uniform quiescent state of the model.
I was looking for solutions of L0U = 0 with U = (u, v)T that are bounded and have general shape
ξ(t)ei(k·x). Application of the linear operator onto functions with this general shape results in

[
d ξ

d t
− L̂(k)ξ(t)

]
ei(k·x) = 0,

where

L̂(k) =

(
−1 + αĴ(k) −g

1/τ −1/τ

)
. (3.3)

(Here I made use of (2.5) and (2.6)). When an infinite neuronal network is considered, the above is true
for all k ∈ R2 while the above holds for all k ∈ πZ2/l when a finite neuronal network is considered.
Solving the ordinary differential equation d ξ/ d t = L̂(k)ξ(t) yields two solutions ξ1ke

λ1kt, ξ2ke
λ2kt where

ξ1,2k are two-dimensional complex vectors. Therefore the eigenfunctions of L0 have the form

ξ1,2ke
λ1,2kt±i(k·x) and ξ̄1,2ke

λ̄1,2kt∓i(k·x), (3.4)

where λ1,2k are the eigenvalues of (3.3) for each wave vector k defined by

λ1,2k =
1

2

(
tr
(
L̂(k)

)
±
√

tr
(
L̂(k)

)2

− 4 det
(
L̂(k)

))
, (3.5)

with

11



Chapter 3

tr
(
L̂(k)

)
= −1− 1/τ + αĴ(k),

det
(
L̂(k)

)
=

1

τ

(
−αĴ(k) + 1 + g

)
.

It should be noted once more that Ĵ(k) is a real-valued function for synaptic coupling functions of
general form (2.3). I could conclude therefore that both the the trace and the determinant of (3.3) must
be real-valued.

Before proceeding to the presentation of the results of the linear stability analysis, it is necessary to
introduce the concept of the set of the most unstable wave vectors of the model. I have labeled this set
K and it consists of wave vectors kj0 = (kj,10 , kj,20 )T, i.e.

K = {kj0} with j = 1, 2, 3, . . . (3.6)

The wave vectors kj0 are defined as the wave vectors k for which Ĵ(k) is maximized under the restriction

kj,10 , kj,20 ∈ R in the case of an infinite neuronal network and under the restriction kj,10 , kj,20 ∈ πZ/l in the
case of a finite neuronal network. This implies for function (2.3) with parameters satisfying (2.4) that the
following holds for the wave vectors of set K

kj0 6= 0, Ĵ(kj0) > 0 and |kj0| = k0, ∀kj0 ∈ K, (3.7)

and in the case of an infinite neuronal network

Ĵ(k) < Ĵ(kj0), ∀k = (k1, k2)T /∈ K with k1, k2 ∈ R, (3.8)

while in the case of a finite neuronal network

Ĵ(k) < Ĵ(kj0), ∀k = (k1, k2)T /∈ K with k1, k2 ∈ πZ/l. (3.9)

It should be noted that the cardinality of set K is infinite in the case of an infinite neuronal network.
This is a is a direct consequence of the (Euclidean) rotation symmetry of function (2.3). In the case of
a finite neuronal network the cardinality of set K can be any multiple of four larger than or equal to
four. The exact cardinality depends, of course, on the exact values chosen for the parameters of function
(2.3). Note also that the wave vectors which belong to set K always appear by pairs with an angle of π
radians between the wave vectors. These properties are a direct consequence of the (Euclidean) rotation
symmetry of function (2.3). Finally also notice that the way in which the elements of set K are defined
in combination with assumptions (3.7), (3.8) and (3.9), implies

tr
(
L̂(k)

)
< tr

(
L̂(kj0)

)
and det

(
L̂(k)

)
> det

(
L̂(kj0)

)
,

for all k /∈ K in the case of an infinite neuronal network and for all k /∈ K with k1, k2 ∈ πZ/l in the case
of a finite neuronal network. Therefore, at the moment the uniform quiescent state loses its stability due
to variation of bifurcation parameters one or two eigenvalues belonging to the wave vectors of set K cross
the imaginary axis first and the functions from the basis for the nullspace of the linear operator L0 with
the wave vectors of set K form the basis for a center manifold that becomes the point of interest. The
functions from the basis for the nullspace of the linear operator L0 of the remaining wave vectors belong
to a stable manifold.

12



The linear stability analysis

Let me return now to the presentation of the results of the linear stability analysis. From (3.5) it follows
that, if tr(L̂(k)) < 0 and det(L̂(k)) > 0 for all wave vectors k (i.e. αĴ(k) < 1+g and αĴ(k) < 1+1/τ), then
all functions that form the basis for the nullspace of the linear operator L0 correspond to a stable manifold
and they exponentially decay in time to zero. Hence, the uniform quiescent state is asymptotically stable
under these conditions. However, if the parameter(s) of model (2.1) is (are) varied beyond a bifurcation
point, then there are three general ways in which the trivial solution can lose its stability. In terms of the
parameters of the model, these three ways are the following:

1. the determinant of L̂(k) vanishes for the wave vectors of set K while the trace remains negative
(αĴ(kj0) = 1 + g, g < 1/τ for all kj0 ∈ K). At this moment one real eigenvalue for each wave vector
of set K crosses the imaginary axis (λ1kj0

= 0), whereas λ2kj0
< 0. At this moment the onset of

stationary spatial activity patterns is expected. The exact type of pattern depends on the values of
all the parameters of the model.

2. the trace of L̂(k) vanishes for the wave vectors of set K while the determinant remains positive
(αĴ(kj0) = 1 + 1/τ, g > 1/τ for all kj0 ∈ K). At this moment complex pairs of eigenvalues for each
wave vector of set K cross the imaginary axis (λ1,2kj0

= ±iω0) and the onset of spatio-temporal

activity patterns is expected. The exact type of pattern depends on the values of all the parameters
of the model.

3. both the determinant and the trace of L̂(k) vanish for the wave vectors of set K (αĴ(kj0) = 1 +

1/τ, g = 1/τ for all kj0 ∈ K). At this moment the two eigenvalues for each wave vector of set K
vanish simultaneously (λ1,2kj0

= 0) which results in the onset of either spatio-temporal activity

patterns or stationary spatial activity patterns. Which type of pattern appears, depends on the
values of all the parameters of the model.

13
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Chapter 4

The analysis of the linearized model
including nonlinear terms

Subsequently I analyzed the linearized model including nonlinear terms (3.1) in the case that the stability
of the uniform quiescent state is lost at pure imaginary pairs of eigenvalues to see if this could lead to the
formation of new solutions consisting of spatio-temporal hexagonal activity patterns. I could also have
focused on the condition where the stability of the trivial solution is lost at pairs of zero eigenvalues to
see if this could lead to the formation of new solutions consisting of spatio-temporal hexagonal activity
patterns. I know from the linear stability analysis that either of the two conditions can lead to the onset
of spatio-temporal activity patterns. I, however, focused on the first condition and I left the analysis of
the latter condition for another time.

I considered the parameter α (i.e. the strength of the synaptic coupling between the neurons) as the
bifurcation parameter of model (2.1) and I defined the value of α for which it reaches its threshold value
as α∗. The values of the parameters τ and g were assumed fixed in such a way that they meet the
bifurcation conditions of (4.1). It should be noted that both the linear operator L0 defined by (3.2) and
the matrix L̂(kj0) defined by (3.3) for all kj0 ∈ K were evaluated at α = α∗ on the remainder of the
analysis.

Vanishing of the trace of matrix (3.3) results in λ1,2kj0
= ±iω0 for all kj0 ∈ K and this vanishing of the

trace takes place when the parameters of the model satisfy

α∗Ĵ(kj0) = 1 +
1

τ
and g >

1

τ
. (4.1)

A straightforward calculation shows that ω0 satisfies

ω0 =

√
−1 + gτ

τ
, (4.2)

and the corresponding eigenvectors Φ0 and Φ̄0 satisfy

Φ0 =

(
φ,

φ

1 + i
√
−1 + gτ

)T

and Φ̄0 =

(
φ,

φ

1− i
√
−1 + gτ

)T

. (4.3)
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Chapter 4

4.1 Determination of the sought-after general solution of the
model

I first determined which functions from the basis for the nullspace of the linear operator L0 should form
the basis for the center manifold in order for hexagonal activity patterns to start bifurcating from the
uniform quiescent state at the moment the trace of matrix L̂(kj0) vanishes (this approach was suggested
by Paul Bressloff and colleagues [2]). From this the sought-after general solution could be deduced which
subsequently allowed me to start looking for an equilibrium solution of this general solution consisting of
a translating hexagonal activity pattern.

The functions that form the basis for the center manifold must satisfy

U(x, y, t) ≈ U
(
x+ cos(β + ϕ)

2π

k0
, y + sin(β + ϕ)

2π

k0
, t

)
, U(x, y, t) ≈ U

(
x, y, t+

2π

ω0

)
(4.4)

for all x, y ∈ Ω, for all t ∈ R, for β ∈ [0, π/3〉, for ϕ ∈ {nπ/3 | n = {0, 1, 2, 3, 4, 5}} with U = (u, v)T and
k0 defined by (3.7). It should be mentioned that the angle β is a random, but fixed angle and it merely
determines the overall orientation of the hexagonal activity pattern against the x-axis. In the case of a
finite neuronal network with l ∈ R>0 these functions must furthermore satisfy

U(−l,−l < y < l, t) = U(l,−l < y < l, t) and U(−l < x < l,−l, t) = U(−l < x < l, l, t) (4.5)

for all t ∈ R. This latter assumption is a direct consequence of the periodic boundary conditions which
are a result of “glueing together” the edges of the neuronal sheet. The functions that satisfy the above
assumptions are exactly the type of functions that are doubly periodic with respect to a hexagonal lattice
L and therefore should form the basis for the center manifold.

Due to a restriction of the solution space to functions that fullfil the above, considerable difficulties
are side-stepped. As was stated in the previous chapter, (Euclidean) rotation symmetry of the function
defined for the synaptic coupling (i.e. function (2.3)) implies that set K contains an infinite number of
elements in the case of an infinite neuronal network. In the case of a finite neuronal network the set K
contains at least four elements, but this number is often larger. This implies that the basis for the center
manifold is infinite-dimensional in the case of an infinite neuronal network and (very) high-dimensional
in the case of a finite neuronal network when no restrictions are imposed on the sought-after patterns
as possible solutions for the model. This lack of restrictions makes a full analysis of linearized model
problematic. However, the symmetries of the restricted problem change from the Euclidean symmetry
in two ways. First, only a finite number of rotations and reflections remain as symmetries that preserve
the hexagonal lattice (which in this case implies the rotations and reflections of the dihedral group D6).
Second, translations act on the restricted problem modulo the hexagonal lattice: that is, translations
act as a torus T2. Therefore, the symmetry group of the hexagonal lattice problem is ΓL = D6 + T2.
Hence, it follows from double periodicity that the basis for the center manifold of the restricted problem
is twelve-dimensional and consists of functions

Φ0e
i(ω0t±kj0·x) and Φ̄0e

−i(ω0t±kj0·x) (4.6)

with kj0 ∈ K for j = 1, 2, 3 under the restriction that the angles between the different wave vectors are
2π/3 radians.
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The analysis of the linearized model including nonlinear terms

By subsequently using a singular perturbation analysis on the linearized model including nonlinear terms
(3.1) I was able to obtain the sought-after general solution of model (2.1):

U(x, t) ≈ 2Re
{

Φ0

[
Z1(t)ei(ω0t+k1

0·x) + Z2(t)ei(ω0t+k2
0·x) + Z3(t)ei(ω0t+k3

0·x)+

W1(t)ei(ω0t−k1
0·x) +W2(t)ei(ω0t−k2

0·x) +W3(t)ei(ω0t−k3
0·x)
]}

(4.7)

with kj0 ∈ K for j = 1, 2, 3 under the restriction that the angles between the different wave vectors
are 2π/3 radians. The coefficients Zj(t),Wj(t) for j = 1, 2, 3 satisfy the system of ordinary differential
equations 

Z ′j(t) = ajZj(t) + bjZj(t)|Zj(t)|2 + cjZj(t)|Wj(t)|2 + Zj(t)

3∑
l=1

(
dj,l|Wl(t)|2

)
+

Zj(t)

3∑
m=1
m 6=j

(
ej,m|Zm(t)|2

)
+ W̄j(t)

3∑
n=1
n 6=j

(
f j,nZn(t)Wn(t)

)
,

W ′j(t) = ajWj(t) + bjWj(t)|Wj(t)|2 + cjWj(t)|Zj(t)|2 +Wj(t)

3∑
l=1

(
dj,l|Zl(t)|2

)
+

Wj(t)

3∑
m=1
m6=j

(
ej,m|Wm(t)|2

)
+ Z̄j(t)

3∑
n=1
n 6=j

(
f j,nZn(t)Wn(t)

)
.

(4.8)

The details of the singular perturbation analysis are given in appendix A and the definitions for the
coefficients of (4.8) are given in (A.26).
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Chapter 4

4.2 Determination of equilibrium solutions for the sought-after
general solution of the model

After the determination of the sought-after general solution of the model, I could start looking for equilib-
rium solutions of this general solution and I could start trying to determine the qualitative picture of the
bifurcating patterns that are associated with these equilibrium solutions. Finding equilibrium solutions
for the sought-after general solution boils down to finding equilibrium solutions for the system of ordinary
differential equations from (4.8).

In order to find these, I started by writing this system in polar coordinates. Therefore I defined Zj = rje
iθj

and Wj = Rje
iφj for j = 1, 2, 3. Then system (4.8) is equivalent to the system



r′j(t) = aj1rj(t) + bj1(rj(t))
3 + cj1rj(t)(Rj(t))

2 + rj(t)

3∑
l=1

(
dj,l1 (Rl(t))

2
)

+

rj(t)

3∑
m=1
m6=j

(
ej,m1 (rm(t))2

)
+Rj(t)

3∑
n=1
n6=j

(
f j,n1 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

R′j(t) = aj1Rj(t) + bj1(Rj(t))
3 + cj1Rj(t)(rj(t))

2 +Rj(t)

3∑
l=1

(
dj,l1 (rl(t))

2
)

+

Rj(t)

3∑
m=1
m 6=j

(
ej,m1 (Rm(t))2

)
+ rj(t)

3∑
n=1
n 6=j

(
f j,n1 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

θ′j(t) = aj2 + bj2(rj(t))
2 + cj2(Rj(t))

2 +

3∑
l=1

(
dj,l2 (Rl(t))

2
)

+

3∑
m=1
m6=j

(
ej,m2 (rm(t))2

)
+Rj(t)(rj(t))

−1
3∑

n=1
n 6=j

(
f j,n2 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

φ′j(t) = aj2 + bj2(Rj(t))
2 + cj2(rj(t))

2 +

3∑
l=1

(
dj,l2 (rl(t))

2
)

+

3∑
m=1
m 6=j

(
ej,m2 (Rm(t))2

)
+ rj(t)(Rj(t))

−1
3∑

n=1
n 6=j

(
f j,n2 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

(4.9)

for j = 1, 2, 3. Finding equilibrium solutions for this system of ordinary differential equations is cum-
bersome because of the term ei(θn(t)+φn(t)−θj(t)−φj(t)) in the above equations. Fortunately I thought of a
small trick that I could apply which made the search for equilibrium solutions for this system easier. The
nice thing is also that I could justify its application in retrospect.

Curtu and Ermentrout investigated what types of spatial and spatio-temporal pattern could stabilize in
their model (1.2) [6]. They found that both travelling (i.e. regularly translating) and regularly oscillating
wave patterns are stable (spatio-temporal) solutions given the right conditions of the model (these patterns
cannot simultaneously be stable so at a Hopf bifurcation, for example, either one of the two stabilizes).
Therefore I thought that similar spatio-temporal patterns expanded to two space dimensions (i.e. a
travelling hexagonal activity pattern and a stationary, regulalry oscillating hexagonal activity pattern)
might also stabilize in the current model under investigation (i.e. model (2.1). Actually I already know
from numerical simulations with the model that a travelling hexagonal activity pattern does indeed
stabilize in the model (see Figure 2.3 for an example).
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The analysis of the linearized model including nonlinear terms

Now in order for a stationary, regularly oscillating hexagonal activity pattern to oscillate with a constant
frequency, the following must hold: θ̄1 ≈ φ̄1 ≈ θ̄2 ≈ φ̄2 ≈ θ̄3 ≈ φ̄3. Regularly translating hexagonal
patterns on the other hand can only travel with a constant velocity if the following holds: θ̄1 ≈ θ̄2 ≈ θ̄3

and φ̄1 ≈ φ̄2 ≈ φ̄3. Assuming this allows me to take ei(θ̄n(t)+φ̄n(t)−θ̄j(t)−φ̄j(t)) = 1 when looking for
equilibrium solutions and after applying this simplification, it becomes relatively easy to find equilibrium
solutions for the system from (4.9).

4.2.1 The travelling hexagonal activity pattern

I found two equilibrium solutions that corrspond to travelling hexagonal activity patterns by assuming
r̄1 = r̄2 = r̄3 = 0 or R̄1 = R̄2 = R̄3 = 0 (and hence also θ̄1 ≈ θ̄2 ≈ θ̄3 and φ̄1 ≈ φ̄2 ≈ φ̄3). Assuming
r̄1 = r̄2 = r̄3 = 0 implies the following for the equilibrium values of R1, R2 and R3:

R̄1 =

√
a1

1e
32
1 e

23
1 − a1

1b
2
1b

3
1 + a2

1b
3
1e

12
1 − a3

1e
12
1 e

23
1 + a3

1b
2
1e

13
1 − a2

1e
13
1 e

31
1

b11b
2
1b

3
1 − b11e23

1 e
32
1 − b21e13

1 e
31
1 − b31e12

1 e
21
1 + e32

1 e
21
1 e

13
1 + e31

1 e
12
1 e

23
1

,

R̄2 =

√
a2

1e
31
1 e

13
1 − a2

1b
1
1b

3
1 + a3

1b
1
1e

23
1 − a3

1e
21
1 e

13
1 + a1

1b
3
1e

21
1 − a1

1e
23
1 e

31
1

b11b
2
1b

3
1 − b11e23

1 e
32
1 − b21e13

1 e
31
1 − b31e12

1 e
21
1 + e32

1 e
21
1 e

13
1 + e31

1 e
12
1 e

23
1

,

R̄3 =

√
a3

1e
21
1 e

12
1 − a3

1b
1
1b

2
1 + a2

1b
1
1e

32
1 − a2

1e
31
1 e

12
1 + a1

1b
2
1e

31
1 − a1

1e
32
1 e

21
1

b11b
2
1b

3
1 − b11e23

1 e
32
1 − b21e13

1 e
31
1 − b31e12

1 e
21
1 + e32

1 e
21
1 e

13
1 + e31

1 e
12
1 e

23
1

.

(4.10)

Here it is assumed that the coefficients of the system of ordinary differential equations from (4.9) have
values such that the above equilibrium values are real. It should be noted that the equilibrium values of
R1, R2 and R3 are all equal. This becomes apparent after a careful examination of all the parameters
that constitute the equilibrium values (see (A.26)) and therefore I introduce

S := R̄1 = R̄2 = R̄3. (4.11)

Assuming R̄1 = R̄2 = R̄3 = 0 results in finding the same equilibrium values for r1, r2 and r3 as for
R1, R2 and R3 in (4.10) with R̄1 replaced by r̄1, R̄2 replaced by r̄2 and R̄3 replaced by r̄3 (and therefore
the following als holds: r̄1 = r̄2 = r̄3 = S). The equilibrium solutions for θj and φj in the case of
r̄1 = r̄2 = r̄3 = 0 are

θ̄j(t) =

aj2 + cj2S
2 +

3∑
l=1

(
dj,l2

)
S2 +

3∑
n=1
n 6=j

(
f j,n2

)
S2

 t,

φ̄j(t) =

aj2 + bj2S
2 +

3∑
m=1
m 6=j

(
ej,m2

)
S2

 t,

(4.12)

for j = 1, 2, 3. When it is assumed that R̄1 = R̄2 = R̄3 = 0, then the equilibrium solutions for θj for
j = 1, 2, 3 are the same as in (4.12) with φ̄j(t) replaced by θ̄j(t) and θ̄j(t) replaced by φ̄j(t).
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Chapter 4

Taken together the above found equilibrium solutions for the system of ordinary differential equations
from (4.9) imply that model (2.1) has a solution that can be approximated by

U(x, t) ≈ 2S · Re
{

Φ0

[
ei(ω0t±k1

0·x) + ei(ω0t±k2
0·x) + ei(ω0t±k3

0·x)
]}

(4.13)

for α > α∗, sufficiently close to α∗ with the angles between the different wave vectors equal to 2π/3
radians and with ω0 and Φ0 defined respectively by (4.2) and (4.3). Here I made use of the fact that
ω0t + θ̄j(t) ≈ ω0t and ω0t + φ̄j(t) ≈ ω0t at α → α∗. This follows from the fact that all terms on

the right-hand side in (4.12) contain the parameter aj1 or aj2 in their numerators. Looking at (A.26), it
becomes apparent that these parameters are comparatively small at α → α∗. Hence ω0t + θ̄j(t) ≈ ω0t
and ω0t+ φ̄j(t) ≈ ω0t.

The solution from (4.13) does indeed clearly represent a travelling hexagonal activity pattern and the
velocity of the individual travelling planar waves that constitute the travelling hexagonal activity pattern
is c = ±ω0/k0. Notice that the assumptions θ̄1 ≈ θ̄2 ≈ θ̄3 and φ̄1 ≈ φ̄2 ≈ φ̄3 were justified. This follows
from (4.12) and looking carefully at the parameters that constitute the coefficients of the equilibrium
solutions of (4.12).

4.2.2 The stationary, regularly oscillating hexagonal activity pattern

I found another equilibrium solution that corresponds to a stationary, regularly oscillating hexagonal
activity pattern by assuming r̄1 = R̄1, r̄2 = R̄2 and r̄3 = R̄3 (and hence also θ̄1 ≈ φ̄1 ≈ θ̄2 ≈ φ̄2 ≈ θ̄3 ≈
φ̄3). This implies the following for the equilibrium values of r1, r2, r3, R1, R2 and R3:

r̄1 = R̄1 =E
[
a1

1

(
d23

1 + e23
1 + f23

1

) (
d32

1 + e32
1 + f32

1

)
− a1

1

(
b21 + c21 + d22

1

) (
b31 + c31 + d33

1

)
+

a2
1

(
d12

1 + e12
1 + f12

1

) (
b31 + c31 + d33

1

)
− a2

1

(
d13

1 + e13
1 + f13

1

) (
d32

1 + e32
1 + f32

1

)
+

a3
1

(
d13

1 + e13
1 + f13

1

) (
b21 + c21 + d22

1

)
− a3

1

(
d12

1 + e12
1 + f12

1

) (
d23

1 + e23
1 + f23

1

) ] 1
2

,

r̄2 = R̄2 =E
[
a1

1

(
d21

1 + e21
1 + f21

1

) (
b31 + c31 + d33

1

)
− a1

1

(
d23

1 + e23
1 + f23

1

) (
d31

1 + e31
1 + f31

1

)
+

a2
1

(
d13

1 + e13
1 + f13

1

) (
d31

1 + e31
1 + f31

1

)
− a2

1

(
b11 + c11 + d11

1

) (
b31 + c31 + d33

1

)
+

a3
1

(
b11 + c11 + d11

1

) (
d23

1 + e23
1 + f23

1

)
− a3

1

(
d13

1 + e13
1 + f13

1

) (
d21

1 + e21
1 + f21

1

) ] 1
2

,

r̄3 = R̄3 =E
[
a1

1

(
b21 + c21 + d22

1

) (
d31

1 + e31
1 + f31

1

)
− a1

1

(
d21

1 + e21
1 + f21

1

) (
d32

1 + e32
1 + f32

1

)
+

a2
1

(
b11 + c11 + d11

1

) (
d32

1 + e32
1 + f32

1

)
− a2

1

(
d12

1 + e12
1 + f12

1

) (
d31

1 + e31
1 + f31

1

)
+

a3
1

(
d12

1 + e12
1 + f12

1

) (
d21

1 + e21
1 + f21

1

)
− a3

1

(
b11 + c11 + d11

1

) (
b21 + c21 + d22

1

) ] 1
2

,

(4.14)

with

E =
[ (
b11 + c11 + d11

1

) (
b21 + c21 + d22

1

) (
b31 + c31 + d33

1

)
+(

d12
1 + e12

1 + f12
1

) (
d23

1 + e23
1 + f23

1

) (
d31

1 + e31
1 + f31

1

)
+(

d13
1 + e13

1 + f13
1

) (
d21

1 + e21
1 + f21

1

) (
d32

1 + e32
1 + f32

1

)
−(

b11 + c11 + d11
1

) (
d23

1 + e23
1 + f23

1

) (
d32

1 + e32
1 + f32

1

)
−(

d12
1 + e12

1 + f12
1

) (
d21

1 + e21
1 + f21

1

) (
b31 + c31 + d33

1

)
−(

d13
1 + e13

1 + f13
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) (
b21 + c21 + d22

1

) (
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1 + e31
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1

) ]− 1
2

.
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The analysis of the linearized model including nonlinear terms

Here it is again assumed that the coefficients of the system of ordinary differential equations from (4.9)
have values such that the above equilibrium values are real. It should be noted that the equilibrium
values of R1, R2 and R3 are all equal (and therefore also equal to r1, r2 and r3). This becomes once more
apparent after a careful examination of all the parameters that constitute the equilibrium values (see
(A.26)) and therefore I introduce

T := r̄1 = R̄1 = r̄2 = R̄2 = r̄3 = R̄3. (4.15)

The equilibrium solutions for θj and φj are

θ̄j(t) = φ̄j(t) =

aj2 + (bj2 + cj2)T 2 +

3∑
l=1

(
dj,l2

)
T 2 +

3∑
m=1
m 6=j

(
ej,m2

)
T 2 +

3∑
n=1
n 6=j

(
f j,n2

)
T 2

 t (4.16)

for j = 1, 2, 3.

Taken together the above found equilibrium solution for the system of ordinary differential equations
from (4.9) imply that model (2.1) has a solution that can be approximated by

U(x, t) ≈ 4T
[
cos(k1

0 · x) + cos(k2
0 · x) + cos(k3

0 · x)
]
· Re

{
Φ0e

iω0t
}

(4.17)

for α > α∗, sufficiently close to α∗ with the angles between the different wave vectors equal to 2π/3
radians and with ω0 and Φ0 defined respectively by (4.2) and (4.3). Here I once more made use of the
fact that ω0t + θ̄j(t) ≈ ω0t and ω0t + φ̄j(t) ≈ ω0t at α → α∗. This follows from the fact that all terms

on the right-hand side in (4.16) contain the parameter aj1 or aj2 in their numerators. Looking at (A.26),
it becomes apparent that these parameters are comparatively small at α→ α∗. Hence ω0t+ θ̄j(t) ≈ ω0t
and ω0t+ φ̄j(t) ≈ ω0t.

The solution from (4.17) does indeed clearly represent a stationary, regularly oscillating hexagonal activity
pattern. The individual standing planar waves that constitute the activity pattern are periodic in space
with spatial frequency k0, and periodic in time with temporal frequency ω0. Notice that the assumption
θ̄1 ≈ φ̄1 ≈ θ̄2 ≈ φ̄2 ≈ θ̄3 ≈ φ̄3 was justified. This follows from (4.16) and looking carefully at the
parameters that constitute the coefficients of the equilibrium solutions of (4.16).

4.3 On the stability of the found equilibrium solutions

As the last step of the analysis I wished to determine the stability conditions on the coefficients of the
system of ordinary differential equations from (4.9) for the above found equilibrium solutions, assuming
that these conditions do exist. However, this is a lot of work as a consequence of the large number of
coeffcients in the system of ordinary differential equations from (4.9), the dimensionality of the system,
the complexity of the equilibrium solutions and the complexity of the coefficients themselves (see (A.26)
for the definitions of these coeffcients). Unfortunately I don’t have the time anymore at present to carry
out this part of the analysis. Therefore I cannot present a complete derivation of these conditions here,
but I will present an algorithm that can be used to determine these conditions.

Determination of the stability conditions on the coefficients of the system of ordinary differential equations
from (4.9) for the above found equilibrium solutions boils down to a determination of the conditions on
the coefficents such that the eigenvalues of the linearized system of rj(t) and Rj(t) for j = 1, 2, 3 around
the equilibrium solutions are all situated in the left half of the complex plane. Hence the first step of the
procedure consists of linearizing the following system
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r′j(t) = aj1rj(t) + bj1(rj(t))
3 + cj1rj(t)(Rj(t))

2 + rj(t)

3∑
l=1

(
dj,l1 (Rl(t))

2
)

+

rj(t)

3∑
m=1
m 6=j

(
ej,m1 (rm(t))2

)
+Rj(t)

3∑
n=1
n 6=j

(
f j,n1 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

R′j(t) = aj1Rj(t) + bj1(Rj(t))
3 + cj1Rj(t)(rj(t))

2 +Rj(t)

3∑
l=1

(
dj,l1 (rl(t))

2
)

+

Rj(t)

3∑
m=1
m 6=j

(
ej,m1 (Rm(t))2

)
+ rj(t)

3∑
n=1
n 6=j

(
f j,n1 rn(t)Rn(t)ei(θn(t)+φn(t)−θj(t)−φj(t))

)
,

(4.18)

for j = 1, 2, 3 around the equilibrium solutions (4.10) and (4.12) or (4.14) and (4.16). Fortunately the
equilibrium solutions of (4.12) and (4.16) for θ̄j and φ̄j are such that ei(θn(t)+φn(t)−θj(t)−φj(t)) = 1 holds for
both linearizations. This simplifies the linearized systems slightly. The characteristic polynomials of the
linearized systems need to be determined next. The linearized systems are six-dimensional systems so the
characteristic polynomials for these systems are monic sextic polynomials (with indeed very complicated
expressions for the coefficients of these polynomials). The stability conditions on the coefficients of the
system of ordinary differential equations from (4.18) can be determined now such that the eigenvalues of
the linearized system of rj(t) and Rj(t) for j = 1, 2, 3 around the equilibrium solutions are all situated
in the left half of the complex plane by finding the conditions on these coefficients for which the roots of
the monic sextic polynomials are all positioned in the left half of the complex plane.

Finding these conditions is not at all straightforward, but there is a relatively easy solution. Recently
Huang and Cheng have published an article in which they present a clear method to determine the neces-
sary and sufficient conditions on the coefficients of general monic sextic polynomials with six real-valued
coefficients such that the polynomial does not have any positive roots [10]. The characteristic polynomials
for the linearized systems under consideration have real-valuad coefficients, because the coefficients in
the system of ordinary differential equations from (4.9) are real-valued and the first constriction imposed
on the coefficients in this system was that they were assumed to have values such that the equilibrium
solutions would be real-valued. Hence, the method of Huang and Cheng can be used to determine the
stability conditions on the coefficients of the system of ordinary differential equations from (4.9) for the
above found equilibrium solutions.

Carrying out the above outlined procedure by hand is of course nearly impossible, but with an implemen-
tation in a computer program like Matlab or Maple, for example, it must be possible to find stability
conditions on the coefficients of the system of ordinary differential equations from (4.9), and therefore
find possible parameter values of g, τ, r, η, plus coupling J(x), such that the stable pattern selected in the
bifurcation at α∗ is a travelling hexagonal activity pattern or a stationary, regularly oscillating hexagonal
activity pattern.
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Conclusions

I have analyzed a model neuronal network introduced by Ermentrout and Curtu, extended to two space
dimensions. The model can be seen as a simple model of a cortical sheet that describes the firing rate
activity of two populations of neurons coupled together, one excitatory that displays linear adaptation
and the other one inhibitory. The dynamics of the activity is described by a system of nonlocal partial
integro-differential equations in which a nonlinear sigmoidal-shaped firing rate function is included. The
synaptic coupling between the neurons is characterized by local excitation and long range inhibition.
Running numerical simulations with the model shows that a stable travelling hexagonal activity pattern is
a solution of the model given certain sets of values for the parameters of the model. I wanted to investigate
the mechanism behind the formation of these patterns and the performed analysis have provided me with
a clear picture of this mechanism.

The mathematical analysis shows that it is indeed possible for spatio-temporal patterns to start forming
in the model when the uniform quiescent state loses stability in the bifurcation at α∗. The patterns start
bifurcating from the uniform quiescent state when the gain of the adaptation is strong enough or the
adaptation is slow enough which effectively results in a Hopf bifurcation. At this moment the stability
of the trivial state is lost at pure imaginary pairs of eigenvalues belonging to the wave vectors of set
K and the functions from the basis for the nullspace of the linear operator L0 with wave vectors of
set K form the basis for a center manifold. Based solely on the linear stability analysis it is expected
that these solutions start growing without bounds. However, the nonlinear sigmoidal-shaped firing rate
function prevents this and effectively limits this unbounded growth so that the patterns can form. The
exact shape of the synaptic coupling function determines which wave vectors will be elements of set K
and these elements determine the shapes of the patterns that can possibly form in the model. Which
pattern stabilizes, if any, depends on the exact values of the parameters g, τ, r and η of the model. The
values for these parameters determine the values of the coefficients of the system of ordinary differential
equations which describes the evolution of the coefficients of a general solution which correspond to a
certain type of activity pattern. The values for the parameters of the model determine the equilibrium
solution(s) of the system of ordinary differential equations and their stability which in turn determines
the type of pattern and the stability of the general solutions.

The spatio-temporal hexagonal patterns I have found as equilibrium solutions of the model consist of
travelling hexagonal activity patterns and stationary, regularly oscillating hexagonal activity patterns.
The former solution I have also found quite frequenctly as a stable solution in numerical simulations with
the model. The latter solution, however, is a solution I’ve never found in numerical simulations and it is
a new solution for me.
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This makes it very unfortunate that I don’t have the time anymore at present to determine the stability
conditions on the coefficients of the system of ordinary differential equations from (4.9) for the found
patterns, assuming that these conditions do exist. Provided with these conditions I would be able to
find possible parameter values of g, τ, r, η, plus coupling J(x) such that the stable pattern selected in the
bifurcation at α∗ is a stationary, regularly oscillating hexagonal activity pattern and this would allow
me to demonstrate the pattern in numerical simulations with the model. Finding these conditions would
furthermore provide me with a clear theorem about the conditions under which, which type of hexagonal
activity pattern stabilizes as a solution of the model. But on the bright side, an algorithm has been
presented and it is merely a matter of time to implement the algorithm and find the conditions.

The analysis also sheds some light on why I haven’t found a semi-randomly translating hexagonal activity
pattern as a stable solution of this type of model. The equilibrium solutions that I have found, are either
hexagonal activity patterns with planar waves as constituting waves which travel over the plane with
a constant velocity or (hexagonal) activity patterns with standing planar waves as constituting waves
which are both periodic in space and time. These solutions are clearly different from a semi-randomly
translating hexagonal activity pattern. I do not expect to find other equilibrium solutions in the model
that correspond to spatio-temporal hexagonal activity patterns in the case of a Hopf bifurcation although
I should mention that I haven’t searched extensively for other solutions. I also cannot expect to find spatio-
temporal hexagonal activity patterns in the case that the stability of the uniform quiescent state is lost at
the moment one eigenvalue crosses the imaginary axis for each of the wave vectors of set K. This scenario
will lead to stationary hexagonal activity patterns.

This leaves me with one other option. Namely, the case when the stability of the uniform quiescent state is
lost at pairs of zero eigenvalues. I do not expect to find the desired semi-randomly translating hexagonal
activity pattern as a stable solution in this case, but I haven’t investigated it either. Ermentrout and
Curtu [6] mention the possibility of a stable modulated wave pattern in their model when the stability of
the uniform quiescent state is lost at a pair of zero eigenvalues. This pattern bifurcates from a travelling
wave solution through another Hopf bifurcation that introduces a new frequency in the solution and
they describe this pattern as a pattern characterized by two different frequencies, one correspondig to
the orbital motion and the other to radial oscillations. This sounds interesting and therefore I would like
to study this double-zero bifurcation in model (2.1) to find out what type of (stable) activity patterns
actually can be obtained in this case.

As a last note I also want to mention that the analysis of model (2.1) is not complete with respect to
the overall shape of patterns that can form in the model. As mentioned above, the shape of the synaptic
coupling function determines which wave vectors will be elements of set K and these elements determine
the shapes of the patterns that can possibly form in the model. Playing around with the code of the
numerical implementation of the model by choosing different combinations of values for the parameters
of the model will result quite easily in stable solutions of the model which consist of patterns with
a different overall shape. I have obtained, for example, stationary stripe and square activity patterns,
stationary regularly oscillating square activity patterns and travelling square activity patterns. It might
be interesting to determine under which conditions these and presumably other patterns will be stable
and how they differ from and interact with the stability conditions of hexagonal activity patterns.
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The singular perturbation analysis

I started by carrying out a proper scaling of the variables of the model and the bifurcation parameter
with respect to the small perturbation quantity ε. Scaling solution U(x, t) results in

U(x, t) = εU0(x, t) + ε2U1(x, t) + ε3U2(x, t) + . . . = ε

(
u0

v0

)
+ ε2

(
u1

v1

)
+ ε3

(
u2

v2

)
+ . . . (A.1)

A good scaling for the bifurcation parameter α is

α = α∗ + ε2γ with ε ∈ {R | |ε| � 1}, γ ∈ R. (A.2)

The linearization of model (2.1) in linear and higher order terms (i.e. expansion (3.1)) can be written in
the equivalent form

L0U = (α− α∗)
(
J ∗ u

0

)
+

(
F ′′(0)

2 (αJ ∗ u− gv)2

0

)
+

(
F ′′′(0)

6 (αJ ∗ u− gv)3

0

)
+ . . . (A.3)

With the singular perturbation expansion (A.1), the first vector-component of equation (A.3) then reads
as

[εL0U0 + ε2L0U1 + ε3L0U2 +O(ε4)](1) = ε2γJ ∗ u+
F ′′(0)

2
[α∗J ∗ u− gv + (α− α∗)J ∗ u]2+

F ′′′(0)

6
[α∗J ∗ u− gv + (α− α∗)J ∗ u]3 + . . . = ε2

F ′′(0)

2
[α∗J ∗ u0 − gv0]2+

ε3γ(J ∗ u0) + ε3F ′′(0)[α∗J ∗ u0 − gv0][α∗J ∗ u1 − gv1] + ε3
F ′′′(0)

6
[α∗J ∗ u0 − gv0]3 +O(ε4),

from which follows

[L0U0 + εL0U1 + ε2L0U2 +O(ε3)](1) = ε
F ′′(0)

2
[α∗J ∗ u0 − gv0]2 + ε2{γ(J ∗ u0+

F ′′(0)[α∗J ∗ u0 − gv0][α∗J ∗ u1 − gv1] +
F ′′′(0)

6
[α∗J ∗ u0 − gv0]3}+O(ε3). (A.4)

The second vector-component of equation (A.3) reads as

[L0U0 + εL0U1 + ε2L0U0 +O(ε3)](2) = 0. (A.5)
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The first equation that I needed to solve was L0U0 = 0 which is exact up to the order O(ε). In order
to solve this equation I first considered the basis of the center manifold which has been determined in

chapter 4. This basis consists of the following functions: {Φ0e
i(ω0t±kj0·x), Φ̄0e

−i(ω0t±kj0·x)} for kj0 ∈ K,
j = 1, 2, 3 under the restriction that the angles between the different wave vectors are 2π/3 radians with
Φ0, Φ̄0 and ω0 defined by (4.2) and (4.3) respectively. Therefore the solution U0 can be written as

U0 =

3∑
j=1

(
Zj(ε

2t)Φ0e
i(ω0t+kj0·x) +Wj(ε

2t)Φ0e
i(ω0t−kj0·x) + c.c.

)
, (A.6)

where I have chosen the time scale Zj = Zj(ε
2t) and Wj = Wj(ε

2t) and with the abbreviation c.c.
denoting the complex conjugation of the expression it follows within parentheses. Next I have expanded
Zj and Wj as

Zj = Zj(0) + Z ′j(0)ε2t+O(ε4) and Wj = Wj(0) +W ′j(0)ε2t+O(ε4). (A.7)

Introducing (A.7) in (A.6) results in

U0 =

3∑
j=1

([
Zj(0)Φ0e

i(ω0t+kj0·x) +Wj(0)Φ0e
i(ω0t−kj0·x) + c.c.

]
+

tε2
[
Z ′j(0)Φ0e

i(ω0t+kj0·x) +W ′j(0)Φ0e
i(ω0t−kj0·x) + c.c.

])
+O(ε4). (A.8)

The following holds:

L0(Φ0e
i(ω0t±kj0·x)) = 0 and L0(Φ̄0e

−i(ω0t±kj0·x)) = 0.

Therefore application of the linear operator L0 on (A.8) results in

L0U0 = ε2
3∑
j=1

(
Z ′j(0)L0

(
Φ0te

i(ω0t+kj0·x)
)

+W ′j(0)L0

(
Φ0te

i(ω0t−kj0·x)
)

+ c.c.
)

+O(ε4). (A.9)

Application of the linear operator L0 on Φ0te
i(ω0t±kj0·x) gives

∂

∂t

(
Φ0te

i(ω0t±kj0·x)
)
−
(
−1 + α∗J ∗ (·) −g

1/τ −1/τ

)
Φ0te

i(ω0t±kj0·x).

This results in

Φ0e
i(ω0t±kj0·x) + t

∂

∂t

(
Φ0e

i(ω0t±kj0·x)
)
− t
(
−1 + α∗J ∗ (·) −g

1/τ −1/τ

)
Φ0e

i(ω0t±kj0·x).

This latter expression is equivalent with

Φ0e
i(ω0t±kj0·x) + tL0(Φ0e

i(ω0t±kj0·x)).

The second term in the last expression is zero as was noted previously. Hence,

L0

(
Φ0te

i(ω0t±kj0·x)
)

= Φ0e
i(ω0t±kj0·x). (A.10)
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Along similar lines, I also obtained

L0

(
Φ̄0te

−i(ω0t±kj0·x)
)

= Φ̄0e
−i(ω0t±kj0·x). (A.11)

Introducing (A.10) and (A.11) in (A.9) results in the following expression for L0U0:

L0U0 = ε2
3∑
j=1

(
Z ′j(0)

(
Φ0e

i(ω0t+kj0·x)
)

+W ′j(0)
(
Φ0e

i(ω0t−kj0·x)
)

+ c.c.
)

+O(ε4). (A.12)

The next equation that I needed to solve was L0U1 = F ′′(0)
2 S with the first component of S defined by

(A.17) while the second component of S is zero. This equation is also exact up to the order O(ε) when
using the solution U0. I started by defining D ∈ C as

D :=

(
1 +

1

τ
,−g

)
Φ0 = φ+ iφ

√
−1 + gτ

τ
= φ(1 + iω0). (A.13)

with Φ0 and ω0 defined respectively by (4.2) and (4.3). Subsequently I evaluated J ∗u0 which resulted in

J ∗ u0 =

3∑
j=1

(
Ĵ(kj0)

[
ZjΦ

1
0e
i(ω0t+kj0·x) +WjΦ

1
0e
i(ω0t−kj0·x) + c.c.

])
,

from which follows

J ∗ u0 =

3∑
j=1

(
Ĵ(kj0)

[
φZj(0)ei(ω0t+kj0·x) + φWj(0)ei(ω0t−kj0·x) + c.c.

])
+O(ε2). (A.14)

In the latter equation I’ve made use of (A.7).
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A similar evaluation of α∗J ∗ u0 − gv0 resulted in

α∗J ∗ u0 − gv0 =

3∑
j=1

((
1 +

1

τ

)[
Zj(0)Φ1

0e
i(ω0t+kj0·x) +Wj(0)Φ1

0e
i(ω0t−kj0·x) + c.c.

]
− g

[
Zj(0)Φ2

0e
i(ω0t+kj0·x) +Wj(0)Φ2

0e
i(ω0t−kj0·x) + c.c.

])
+O(ε2),

from which follows

α∗J ∗ u0 − gv0 =

3∑
j=1

(
D
[
Zj(0)ei(ω0t+kj0·x) +Wj(0)ei(ω0t−kj0·x)

]
+ c.c.

)
+O(ε2). (A.15)

In the latter two equations I’ve made use of (A.7) and (A.13). Now, using equations (A.4), (A.12), (A.14)
and (A.15) I obtained

L0U1 =
F ′′(0)

2
S + ε

[
T−

3∑
j=1

(
Z ′j(0)

(
Φ0e

i(ω0t+kj0·x)
)

+W ′j(0)
(
Φ0e

i(ω0t−kj0·x)
)

+

c.c.

)
− L0U2

]
+O(ε2) (A.16)

where the first vector-components of S and T are

S(1) =

3∑
j=1

{(
D2

[
(Zj(0))

2
e2i(ω0t+kj0·x) + (Wj(0))

2
e2i(ω0t−kj0·x)+

Zj(0)

3∑
l=1
l 6=j

(
Zl(0)ei(2ω0t+(kj0+kl0)·x)

)
+Wj(0)

3∑
m=1
m 6=j

(
Wm(0)ei(2ω0t−(kj0+km0 )·x)

)
+

2Zj(0)

3∑
n=1

(
Wn(0)ei(2ω0t+(kj0−k

n
0 )·x)

)]
+DD̄

[
Zj(0)

3∑
p=1
p 6=j

(
Z̄p(0)ei((k

j
0−k

p
0)·x)

)
+

Wj(0)

3∑
q=1
q 6=j

(
W̄q(0)ei((k

q
0−k

j
0)·x)

)
+ 2Zj(0)

3∑
r=1

(
W̄r(0)ei((k

j
0+kr0)·x)

)]
+

c.c.

)
+ 2DD̄

[
Zj(0)Z̄j(0) +Wj(0)W̄j(0)

]}
(A.17)

and
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T(1) = γ

3∑
j=1

(
Ĵ(kj0)

[
φZj(0)ei(ω0t+kj0·x) + φWj(0)ei(ω0t−kj0·x) + c.c.

])
+

F ′′(0)

3∑
j=1

(
D
[
Zj(0)ei(ω0t+kj0·x) +Wj(0)ei(ω0t−kj0·x)

]
+ c.c.

)
[α∗J ∗ u1 − gv1] +

F ′′′(0)

6


3∑
j=1

(
D
[
Zj(0)ei(ω0t+kj0·x) +Wj(0)ei(ω0t−kj0·x)

]
+ c.c.

)
3

(A.18)

while the second vector-components are zero. Using the expanded form of S(1) from (A.17) I could write
U1 in a similar manner, with ξi ∈ C2 for i = {1, 10}, as

U1 =

3∑
j=1

{(
ξj1 (Zj)

2
e2i(ω0t+kj0·x) + ξj2 (Wj)

2
e2i(ω0t−kj0·x)+

Zj

3∑
l=1
l 6=j

ξj,l3

(
Zle

i(2ω0t+(kj0+kl0)·x)
)

+Wj

3∑
m=1
m 6=j

ξj,m4

(
Wme

i(2ω0t−(kj0+km0 )·x)
)

+

Zj

3∑
n=1

ξj,n5

(
Wne

i(2ω0t+(kj0−k
n
0 )·x)

)
+ Zj

3∑
p=1
p 6=j

ξj,p6

(
Z̄pe

i((kj0−k
p
0)·x)

)
+

Wj

3∑
q=1
q 6=j

ξj,q7

(
W̄qe

i((kq0−k
j
0)·x)

)
+ Zj

3∑
r=1

ξj,r8

(
W̄re

i((kj0+kr0)·x)
)

+ c.c.

)
+

ξj9
(
ZjZ̄j

)
+ ξj10

(
WjW̄j

)}
.

Introducing (A.7) in the above equation results in

U1 =

3∑
j=1

{(
ξj1 (Zj(0))

2
e2i(ω0t+kj0·x) + ξj2 (Wj(0))

2
e2i(ω0t−kj0·x)+

Zj(0)

3∑
l=1
l 6=j

ξj,l3

(
Zl(0)ei(2ω0t+(kj0+kl0)·x)

)
+Wj(0)

3∑
m=1
m 6=j

ξj,m4

(
Wm(0)ei(2ω0t−(kj0+km0 )·x)

)
+

Zj(0)

3∑
n=1

ξj,n5

(
Wn(0)ei(2ω0t+(kj0−k

n
0 )·x)

)
+ Zj(0)

3∑
p=1
p 6=j

ξj,p6

(
Z̄p(0)ei((k

j
0−k

p
0)·x)

)
+

Wj(0)

3∑
q=1
q 6=j

ξj,q7

(
W̄q(0)ei((k

q
0−k

j
0)·x)

)
+ Zj(0)

3∑
r=1

ξj,r8

(
W̄r(0)ei((k

j
0+kr0)·x)

)
+ c.c.

)
+

ξj9
(
Zj(0)Z̄j(0)

)
+ ξj10

(
Wj(0)W̄j(0)

)}
+O(ε2).
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Application of the linear operator L0 on the above equation results in

L0U1 =

3∑
j=1

{(
ξj1

[
2iω0 − L̂(2kj0)

]
(Zj(0))

2
e2i(ω0t+kj0·x) + ξj2

[
2iω0 − L̂(2kj0)

]
(Wj(0))

2
e2i(ω0t−kj0·x)+

Zj(0)

3∑
l=1
l 6=j

ξj,l3

[
2iω0 − L̂(kj0 + kl0)

] (
Zl(0)ei(2ω0t+(kj0+kl0)·x)

)
+

Wj(0)

3∑
m=1
m6=j

ξj,m4

[
2iω0 − L̂(kj0 + km0 )

] (
Wm(0)ei(2ω0t−(kj0+km0 )·x)

)
+

Zj(0)

3∑
n=1

ξj,n5

[
2iω0 − L̂(kj0 − kn0 )

] (
Wn(0)ei(2ω0t+(kj0−k

n
0 )·x)

)
−

Zj(0)
3∑
p=1
p 6=j

ξj,p6

[
L̂(kj0 − kp0)

] (
Z̄p(0)ei((k

j
0−k

p
0)·x)

)
−

Wj(0)

3∑
q=1
q 6=j

ξj,q7

[
L̂(kq0 − kj0)

] (
W̄q(0)ei((k

q
0−k

j
0)·x)

)
−

Zj(0)

3∑
r=1

ξj,r8

[
L̂(kj0 + kr0)

] (
W̄r(0)ei((k

j
0+kr0)·x)

)
+ c.c.

)
−

ξj9L̂(0)
(
Zj(0)Z̄j(0)

)
− ξj10L̂(0)

(
Wj(0)W̄j(0)

)}
+O(ε2).

Next I matched the coefficients of the terms (Zj(0))
2
e2i(ω0t+kj0·x), (Wj(0))

2
e2i(ω0t−kj0·x), and so on in

equation (A.16) with the coefficients in the above equation up to the order O(ε). This results in

ξj1 = ξj2 =
D2F ′′(0)

2

[
2iω0I− L̂(2kj0)

]−1
(

1
0

)
, ξj,l3 =

D2F ′′(0)

2

[
2iω0I− L̂(kj0 + kl0)

]−1
(

1
0

)
,

ξj,m4 =
D2F ′′(0)

2

[
2iω0I− L̂(kj0 + km0 )

]−1
(

1
0

)
, ξj,n5 = D2F ′′(0)

[
2iω0I− L̂(kj0 − kn0 )

]−1
(

1
0

)
,

ξj,p6 =
−|D|2F ′′(0)

2

[
L̂(kj0 − kp0)

]−1
(

1
0

)
, ξj,q7 =

−|D|2F ′′(0)

2

[
L̂(kq0 − kj0)

]−1
(

1
0

)
,

ξj,r8 = −|D|2F ′′(0)
[
L̂(kj0 + kr0)

]−1
(

1
0

)
, ξj9 = ξj10 = −|D|2F ′′(0)

[
L̂(0)

]−1
(

1
0

)
,

or equivalently
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ξj1 = ξj2 =
D2F ′′(0)

2
[

3(1/τ−g)
τ +

(
1
τ + 2iω0

) (
1 + 1

τ

) (
1− Ĵ(2kj0)

Ĵ(kj0)

)] ( 1
τ + 2iω0

1
τ

)
,

ξj,l3 =
D2F ′′(0)

2
[

3(1/τ−g)
τ +

(
1
τ + 2iω0

) (
1 + 1

τ

) (
1− Ĵ(kj0+kl0)

Ĵ(kj0)

)] ( 1
τ + 2iω0

1
τ

)
,

ξj,m4 =
D2F ′′(0)

2
[

3(1/τ−g)
τ +

(
1
τ + 2iω0

) (
1 + 1

τ

) (
1− Ĵ(kj0+km0 )

Ĵ(kj0)

)] ( 1
τ + 2iω0

1
τ

)
,

ξj,n5 =
D2F ′′(0)

3(1/τ−g)
τ +

(
1
τ + 2iω0

) (
1 + 1

τ

) (
1− Ĵ(kj0−kn0 )

Ĵ(kj0)

) ( 1
τ + 2iω0

1
τ

)
,

ξj,p6 =
|D|2F ′′(0)

2
[
g + 1− (1+1/τ)Ĵ(kj0−k

p
0)

Ĵ(kj0)

] (1
1

)
, ξj,q7 =

|D|2F ′′(0)

2
[
g + 1− (1+1/τ)Ĵ(kq0−k

j
0)

Ĵ(kj0)

] (1
1

)
,

ξj,r8 =
|D|2F ′′(0)

g + 1− (1+1/τ)Ĵ(kj0+kr0)

Ĵ(kj0)

(
1
1

)
, ξj9 = ξj10 =

|D|2F ′′(0)

g + 1− (1+1/τ)Ĵ(0)

Ĵ(kj0)

(
1
1

)
.

The last equation that I needed to solve was

L0U2 = T−
3∑
j=1

(
Z ′j(0)

(
Φ0e

i(ω0t+kj0·x)
)

+W ′j(0)
(
Φ0e

i(ω0t−kj0·x)
)

+ c.c.
)

(A.19)

which is also exact up to the order O(ε) when using the solution U0 and U1 found above. This equation
is a direct consequence of (A.16). I started by defining K,L,M ∈ C and N,P,Q ∈ R as

D2F ′′(0)

2
Kj := α∗Ĵ(2kj0)ξj,11 − gξ

j,2
1 = α∗Ĵ(2kj0)ξj,12 − gξ

j,2
2 ,

D2F ′′(0)

2
Lj,l := α∗Ĵ(kj0 + kl0)ξj,l,13 − gξj,l,23 = α∗Ĵ(kj0 + kl0)ξj,l,14 − gξj,l,24 ,

D2F ′′(0)M j,m := α∗Ĵ(kj0 − km0 )ξj,m,15 − gξj,m,25 ,

|D|2F ′′(0)

2
N j,n := α∗Ĵ(kj0 − kn0 )ξj,n,16 − gξj,n,26 = α∗Ĵ(kn0 − kj0)ξj,n,17 − gξj,n,27 ,

|D|2F ′′(0)P j,p := α∗Ĵ(kj0 + kp0)ξj,p,18 − gξj,p,28 ,

|D|2F ′′(0)Qj := α∗Ĵ(0)ξj,19 − gξ
j,2
9 = α∗Ĵ(0)ξj,110 − gξ

j,2
10 .

31



Appendix A

Next I evaluated α∗J ∗ u1 − gv1 which resulted in

α∗J ∗ u1 − gv1 =

3∑
j=1

{(
D2F ′′(0)

2
Kj (Zj(0))

2
e2i(ω0t+kj0·x) +

D2F ′′(0)

2
Kj (Wj(0))

2
e2i(ω0t−kj0·x)+

D2F ′′(0)

2
Zj(0)

3∑
l=1
l 6=j

Lj,l
(
Zl(0)ei(2ω0t+(kj0+kl0)·x)

)
+
D2F ′′(0)

2
Wj(0)

3∑
l=1
l 6=j

Lj,l
(
Wl(0)ei(2ω0t−(kj0+kl0)·x)

)
+

D2F ′′(0)Zj(0)

3∑
m=1

M j,m
(
Wm(0)ei(2ω0t+(kj0−k

m
0 )·x)

)
+
|D|2F ′′(0)

2
Zj(0)

3∑
n=1
n 6=j

N j,n
(
Z̄n(0)ei((k

j
0−k

n
0 )·x)

)
+

|D|2F ′′(0)

2
Wj(0)

3∑
n=1
n 6=j

N j,n
(
W̄n(0)ei((k

n
0−k

j
0)·x)

)
+ |D|2F ′′(0)Zj(0)

3∑
p=1

P j,p
(
W̄p(0)ei((k

j
0+kp0)·x)

)
+ c.c.

)
+

|D|2F ′′(0)Qj
(
Zj(0)Z̄j(0)

)
+ |D|2F ′′(0)Qj

(
Wj(0)W̄j(0)

)}
+O(ε2). (A.20)
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Subsequently I introduced the result from (A.20) into (A.18) and I determined the essential terms in

T(1). These terms are those that include the exponential ei(ω0t±kj0·x) and their complex conjugates for
j = 1, 2, 3. Therefore (A.18) also reads as

T(1) =

3∑
j=1

([
γĴ(kj0)φZj(0) + (F ′′(0))2D|D|2

{
Zj(0)|Zj(0)|2

(
Kj

2
+Qj

)
+ Zj(0)|Wj(0)|2Qj+

3∑
l=1

(
Zj(0)|Wl(0)|2(M j,l + P j,l)

)
+

3∑
m=1
m 6=j

(
Zj(0)|Zm(0)|2(Lj,m +N j,m)

)
+

3∑
n=1
n6=j

(
Zn(0)Wn(0)W̄j(0)(N j,n + P j,n)

)}
+
F ′′′(0)

6
D|D|2

{
3Zj(0)|Zj(0)|2+

2Zj(0)|Wj(0)|2 + 4

3∑
l=1

(
Zj(0)|Wl(0)|2

)
+ 4

3∑
m=1
m 6=j

(
Zj(0)|Zm(0)|2

)
+

4

3∑
n=1
n 6=j

(
Zn(0)Wn(0)W̄j(0)

)}]
ei(ω0t+kj0·x)+

[
γĴ(kj0)φWj(0) + (F ′′(0))2D|D|2

{
Wj(0)|Wj(0)|2

(
Kj

2
+Qj

)
+ |Zj(0)|2Wj(0)Qj+

3∑
l=1

(
|Zl(0)|2Wj(0)(M j,l + P j,l)

)
+

3∑
m=1
m6=j

(
Wj(0)|Wm(0)|2(Lj,m +N j,m)

)
+

3∑
n=1
n 6=j

(
Zn(0)Z̄j(0)Wn(0)(N j,n + P j,n)

)}
+
F ′′′(0)

6
D|D|2

{
3Wj(0)|Wj(0)|2+

2|Zj(0)|2Wj(0) + 4

3∑
l=1

(
|Zl(0)|2Wj(0)

)
+ 4

3∑
m=1
m 6=j

(
Wj(0)|Wm(0)|2

)
+

4

3∑
n=1
n 6=j

(
Zn(0)Z̄j(0)Wn(0)

)}]
ei(ω0t−kj0·x)

)
+ c.c.+ . . . (A.21)

Now I was in the position to find a solution for (A.19). In order to have a solution I needed the right term
of (A.19) to be orthogonal on the basis of the nullspace of the linear operator L∗0, the adjoint operator of
the linear operator L0. Here I made use of the Fredholm alternative method [12]. I introduced the linear
operator L∗0 in appendix B and subsequently I proved that this operator is indeed the adjoint operator
of L0 on the space of functions that satisfy the assumptions (4.4) (and in the case of a finite neuronal
network also the assumptions (4.5)) with the (standard) inner product (B.4). The details of the proof
are given in appendix B. I also provided the basis of the nullspace of L∗0 in appendix B which is (B.2).
Therefore the following holds

< T−
3∑
j=1

(
Z ′j(0)

(
Φ0e

i(ω0t+kj0·x)
)

+W ′j(0)
(
Φ0e

i(ω0t−kj0·x)
)

+ c.c.
)
,Ψ0e

i(ω0t±kj0·x) >=

2π
ω0∫

0

d t

∫∫
Ω

[
T−

3∑
j=1

(
Z ′j(0)

(
Φ0e

i(ω0t+kj0·x)
)

+W ′j(0)
(
Φ0e

i(ω0t−kj0·x)
)

+ c.c.
) ]
·Ψ̄0e

−i(ω0t±kj0·x) d x = 0.
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Based on the fact that Φ · Ψ̄0 = 1 and using T(1) from (A.21) and T(2) = 0, I obtained

Z ′j(0) = ãjZj(0) + bjZj(0)|Zj(0)|2 + cjZj(0)|Wj(0)|2 + Zj(0)

3∑
l=1

(
dj,l|Wl(0)|2

)
+

Zj(0)

3∑
m=1
m 6=j

(
ej,m|Zm(0)|2

)
+ W̄j(0)

3∑
n=1
n 6=j

(
f j,nZn(0)Wn(0)

)
,

W ′j(0) = ãjWj(0) + bjWj(0)|Wj(0)|2 + cjWj(0)|Zj(0)|2 +Wj(0)

3∑
l=1

(
dj,l|Zl(0)|2

)
+

Wj(0)

3∑
m=1
m 6=j

(
ej,m|Wm(0)|2

)
+ Z̄j(0)

3∑
n=1
n 6=j

(
f j,nZn(0)Wn(0)

)
,

(A.22)

with

ãj = γĴ(kj0)φΨ̄1
0,

bj = |D|2DΨ̄1
0 ·
[
(F ′′(0))2

(
Kj

2
+Qj

)
+
F ′′′(0)

2

]
,

cj = |D|2DΨ̄1
0 ·
[
(F ′′(0))2Qj +

F ′′′(0)

3

]
,

dj,l = |D|2DΨ̄1
0 ·
[
(F ′′(0))2

(
M j,l + P j,l

)
+

2F ′′′(0)

3

]
,

ej,m = |D|2DΨ̄1
0 ·
[
(F ′′(0))2

(
Lj,m +N j,m

)
+

2F ′′′(0)

3

]
,

f j,n = |D|2DΨ̄1
0 ·
[
(F ′′(0))2

(
N j,n + P j,n

)
+

2F ′′′(0)

3

]
. (A.23)

The time variable in the above is ε2t, ãj = aj/ε2 and aj , bj , cj , dj,l, ej,m, f j,n are of order 1. After applying
the scaling εZj(0)↔ Zj , εWj(0)↔Wj , and ε2t↔ t, I obtained

Z ′j(t) = ajZj(t) + bjZj(t)|Zj(t)|2 + cjZj(t)|Wj(t)|2 + Zj(t)

3∑
l=1

(
dj,l|Wl(t)|2

)
+

Zj(t)

3∑
m=1
m 6=j

(
ej,m|Zm(t)|2

)
+ W̄j(t)

3∑
n=1
n 6=j

(
f j,nZn(t)Wn(t)

)
,

W ′j(t) = ajWj(t) + bjWj(t)|Wj(t)|2 + cjWj(t)|Zj(t)|2 +Wj(t)

3∑
l=1

(
dj,l|Zl(t)|2

)
+

Wj(t)

3∑
m=1
m6=j

(
ej,m|Wm(t)|2

)
+ Z̄j(t)

3∑
n=1
n 6=j

(
f j,nZn(t)Wn(t)

)
,

(A.24)

for j = 1, 2, 3. Hence, the sought-after general solution can be approximated by

U(x, t) ≈ 2Re
{

Φ0

[
Z1(t)ei(ω0t+k1

0·x) + Z2(t)ei(ω0t+k2
0·x) + Z3(t)ei(ω0t+k3

0·x)+

W1(t)ei(ω0t−k1
0·x) +W2(t)ei(ω0t−k2

0·x) +W3(t)ei(ω0t−k3
0·x)
]}

(A.25)
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with kj0 ∈ K for j = 1, 2, 3 under the restriction that the angles between the different wave vectors
are 2π/3 radians. The coefficients Zj(t),Wj(t) for j = 1, 2, 3 satisfy the system of ordinary differential
equations defined above.

As a final step I have rewritten the coefficients of this system of ordinary differential equations in order
to help me find equilibrium solutions of this system in chapter 4. Equations (4.3), (B.3) and (A.13) imply

φΨ̄1
0 =

1

2
− i 1

2
√
gτ − 1

,

DΨ̄1
0 =

1 + 1/τ

2
+ i

g − (1 + 1/τ

2
√
gτ − 1

.

Therefore I could write aj , bj , cj , dj,l, ej,m, f j,n, using γ = (α−α∗)/ε2, α∗Ĵ(kj0) = 1+1/τ and ãj = aj/ε2,
as

aj = aj1 + iaj2, bj = bj1 + ibj2,

cj = cj1 + icj2, dj,l = dj,l1 + idj,l2 ,

ej,m = ej,m1 + iej,m2 , f j,n = f j,n1 + if j,n2 ,

with

aj1 =
αĴ(kj0)− (1 + 1/τ)

2
, aj2 = −αĴ(kj0)− (1 + 1/τ)

2
√
gτ − 1

,

bj1 =
τ + 1

4τ
|D|2

[
(F ′′(0))2

(
Re(Kj) +

1− gτ/(τ + 1)√
gτ − 1

Im(Kj) + 2Qj
)

+ F ′′′(0)

]
,

bj2 =
gτ − (τ + 1)

4τ
√
gτ − 1

|D|2
[
(F ′′(0))2

(
Re(Kj)− 1− gτ/(τ + 1)√

gτ − 1
Im(Kj) + 2Qj

)
+ F ′′′(0)

]
,

cj1 =
τ + 1

4τ
|D|2

[
2(F ′′(0))2Qj +

2F ′′′(0)

3

]
,

cj2 =
gτ − (τ + 1)

4τ
√
gτ − 1

|D|2
[
2(F ′′(0))2Qj +

2F ′′′(0)

3

]
,

dj,l1 =
τ + 1

4τ
|D|2

[
(F ′′(0))2

(
2Re(M j,l) + 2

1− gτ/(τ + 1)√
gτ − 1

Im(M j,l) + 2P j,l
)

+
4F ′′′(0)

3

]
,

dj,l2 =
gτ − (τ + 1)

4τ
√
gτ − 1

|D|2
[
(F ′′(0))2

(
2Re(M j,l)− 2

1− gτ/(τ + 1)√
gτ − 1

Im(M j,l) + 2P j,l
)

+
4F ′′′(0)

3

]
,

ej,m1 =
τ + 1

4τ
|D|2

[
(F ′′(0))2

(
2Re(Lj,m) + 2

1− gτ/(τ + 1)√
gτ − 1

Im(Lj,m) + 2N j,m

)
+

4F ′′′(0)

3

]
,

ej,m2 =
gτ − (τ + 1)

4τ
√
gτ − 1

|D|2
[
(F ′′(0))2

(
2Re(Lj,m)− 2

1− gτ/(τ + 1)√
gτ − 1

Im(Lj,m) + 2P j,m
)

+
4F ′′′(0)

3

]
,

f j,n1 =
τ + 1

4τ
|D|2

[
2(F ′′(0))2

(
N j,n + P j,n

)
+

4F ′′′(0)

3

]
,

f j,n2 =
gτ − (τ + 1)

4τ
√
gτ − 1

|D|2
[
2(F ′′(0))2

(
N j,n + P j,n

)
+

4F ′′′(0)

3

]
. (A.26)
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L∗0, the adjoint operator of L0

I introduce the following linear operator

L∗0 = − ∂

∂t
−
(
−1 + αJ ∗ (·) 1/τ

−g −1/τ

)
. (B.1)

It should be noted that both the linear operator L∗0 defined above, and the associated linear evolution
matrix defined for all kj0 ∈ K (i.e. the matrix L̂(kj0)T), have been evaluated at α = α∗ while the value of
the parameters τ and g were fixed in such a way that bifurcation condition (4.1) is met. A linear stability
analysis of L∗0 followed up by a reasoning along similar lines to the reasoning in chapter 4 of this report
shows that the operator that corresponds to the restriction of L∗0 on the space of functions that satisfy
(4.4) (and in the case of a finite neuronal network also the assumptions (4.5)) has a twelve-dimensional
nullspace with the basis

Ψ0e
i(ω0t±kj0·x) and Ψ̄0e

−i(ω0t±kj0·x) with kj0 ∈ K (B.2)

for j = 1, 2, 3, under the restriction that the angles between the different wave vectors are 2π/3 radians
with ω0 as defined by (4.2). The vectors Ψ0 and Ψ̄0 are the two-dimensional complex eigenvectors of
matrix L̂(kj0)T and satisfy

L̂(kj0)TΨ0 = −iω0Ψ0, L̂(kj0)TΨ̄0 = iω0Ψ̄0 and Φ0 · Ψ̄0 = 1 (B.3)

with the latter property introduced to simplify calculations. In order to be able to use the basis for the
nullspace of the linear operator L∗0 in the Fredholm alternative method, I had to show that the linear
operator L∗0 is the adjoint operator of L0 on the space of functions that satisfy the assumptions (4.4) (and
in the case of a finite neuronal network also the assumptions (4.5)) with the (standard) inner product

< N,M >=

2π
ω0∫

0

d t

∫∫
Ω

N(x, t)M̄(x, t) d x =

2π
ω0∫

0

d t

∫∫
Ω

[n1(x, t)m̄1(x, t) + n2(x, t)m̄2(x, t)] d x. (B.4)

In order to prove that L∗0 is the adjoint operator of L0, I have considered two functions N(x, t) and M(x, t)
that satisfy the assumptions (4.4) (and in the case of a finite neuronal network also the assumptions (4.5))
and I have computed (using the periodicity of nj and mj for j = 1, 2 with respect to t)
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< N,L0M > − < L∗0N,M >=

2π
ω0∫

0

d t

∫∫
Ω

[
n1

d m̄1

d t
+ m̄1

dn1

d t
+ n2

d m̄2

d t
+

m̄2
dn2

d t
− α∗n1(J ∗ m̄1) + α∗m̄1(J ∗ n1)

]
d x.

Using integration by parts and the periodicity of the integrands with respect to t once more, the above
equation reduces to

< N,L0M > − < L∗0N,M >= α∗

2π
ω0∫

0

d t

∫∫
Ω

[m̄1(J ∗ n1)− n1(J ∗ m̄1)] d x.

Next I needed to show that the inner double integral is zero for any fixed t, because then the righthand-
side of the above equation vanishes. This would imply < N,L0M >=< L∗0N,M > for all functions N,M
in the space of functions that satisfy the assumptions (4.4) (and in the case of a finite neuronal network
also the assumptions (4.5)) by which I would have proven that L∗0 is the adjoint operator of L0. Hence,
I needed to prove that the following equation holds true:

∫∫
Ω

[m̄1(J ∗ n1)− n1(J ∗ m̄1)] d x = 0 (B.5)

on the space of complex functions at least C2 and such that

n(x, y) = n

(
x+ cos(β + ϕ)

2π

k0
, y + sin(β + ϕ)

2π

k0

)
for all x, y ∈ Ω with Ω = [−l, l] × [−l, l] where l ∈ {R>0,∞}, β ∈ [0, π/3〉, random, but fixed and
ϕ ∈ {rπ/3 | r = {0, 1, 2, 3, 4, 5}}. k0 is defined by (3.7). In the case of a finite neuronal network (i.e.
l ∈ R>0) these functions must furthermore satisfy

n(−l,−l < y < l) = n(l,−l < y < l) and n(−l < x < l,−l) = n(−l < x < l, l).

The associated (standard) inner product with this space is defined as

< n,m >=

∫∫
Ω

n(x)m̄(x) d x.

I furthermore defined on this space the operator J ∗n(x, y) which represents the double convolution given
by

(J ∗ n)(x, y) =

∫∫
Ω

J(x− v, y − w)n(v, w) d v dw.

Herein represents the function J(x, y) the function defined by (2.3). In order to prove (B.5), the first step
that needed to be taken was to prove that J ∗ n(x, y) also satisfies

(J ∗ n)(x, y) = (J ∗ n)

(
x+ cos(θ + ϕ)

2π

k0
, y + sin(θ + ϕ)

2π

k0

)
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so that the inner products < n, J ∗m > and < J ∗ n,m > make sense. In the case of an infinite neuronal
network (i.e. l = ∞), the equality followes when considering changes of variables and the periodicity of
the function n(x, y):

(J ∗ n)

(
x+ cos(θ + ϕ)

2π

k0
, y + sin(θ + ϕ)

2π

k0

)
=

∞∫
−∞

∞∫
−∞

J

(
x+ cos(θ + ϕ)

2π

k0
− v, y + sin(θ + ϕ)

2π

k0
− w

)
n(v, w) d v dw =

∞∫
−∞

∞∫
−∞

J (x− v, y − w)n

(
v + cos(θ + ϕ)

2π

k0
, w + sin(θ + ϕ)

2π

k0

)
d v dw =

∞∫
−∞

∞∫
−∞

J(x− v, y − w)n(v, w) d v dw = (J ∗ n)(x, y).

In the case of a finite neuronal network (i.e. l ∈ R>0), the equality is a consequence of the following
derivation:

(J ∗ n)

(
x+ cos(θ + ϕ)

2π

k0
, y + sin(θ + ϕ)

2π

k0

)
=

l∫
−l

l∫
−l

J

(
x+ cos(θ + ϕ)

2π

k0
− v, y + sin(θ + ϕ)

2π

k0
− w

)
n(v, w) d v dw =

l−a∫
−l−a

l−b∫
−l−b

J (x− v, y − w)n

(
v + cos(θ + ϕ)

2π

k0
, w + sin(θ + ϕ)

2π

k0

)
d v dw =

l−a∫
−l−a

l−b∫
−l−b

J (x− v, y − w)n (v, w) d v dw =

l∫
−l

l∫
−l

J(x− v, y − w)n(v, w) d v dw = (J ∗ n)(x, y)

with a = cos(θ+ϕ)(2π)/k0 and b = sin(θ+ϕ)(2π)/k0. The second to last equality in the above derivation
is a direct consequence of the double periodicity of both function J and function n(x, y).

Now I needed to prove < n, J ∗m >=< J ∗ n,m >, i.e.

∫∫
Ω

n(x)(J ∗ m̄(x)) d x =

∫∫
Ω

(J ∗ n(x))m̄(x) d x.

In order to accomplish this, I considered the Fourier transform of the functions n(x) and m(x), i.e.

n(x) =
1

4l2

∑
q∈Z2

ĉ(q)e
iπ(q·x)

l and m(x) =
1

4l2

∑
r∈Z2

d̂(r)e
iπ(r·x)

l

in the case of a finite neuronal network and
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n(x) =
1

4π2

∞∫
−∞

∞∫
−∞

ĉ(q)e
iπ(q·x)

l d q and m(x) =
1

4π2

∞∫
−∞

∞∫
−∞

d̂(r)e
iπ(r·x)

l d r

in the case of an infinite neuronal network with the coefficients in both cases equal to

ĉ(q) =

∫∫
Ω

n(p)e
−iπ(p·q)

l d p and d̂(r) =

∫∫
Ω

m(p)e
−iπ(p·r)

l d p.

Since I assumed n,m ∈ C2, their attached Fourier series converge uniformly on each closed interval in
R2 (See for example the textbook of Loukas Grafakos [8] on this subject) and they sum up to n and m
respectively. Moreover the coefficients of the Fourier series satisfy the condition

|ĉ(q)| = O
(

1

|q|2

)
, |d̂(r)| = O

(
1

|r|2

)
, as |q|, |r| → ∞. (B.6)

In the case of an infinite neuronal network, I have for any fixed x ∈ R2,

J∗n(x) =
1

4π2

∫∫
Ω

J(x−v)

∞∫
−∞

∞∫
−∞

ĉ(q)e
iπ(q·v)

l d q d v =
1

4π2

∫∫
Ω

J(x−v) lim
R→∞

R∫
−R

R∫
−R

ĉ(q)e
iπ(q·v)

l d q d v =

1

4π2

∫∫
Ω

lim
R→∞

 R∫
−R

R∫
−R

ĉ(q)J(x− v)e
iπ(q·v)

l d q

d v =
1

4π2

∫∫
Ω

lim
R→∞

fR(v) d v.

I have limR→∞ fR(v) = J(x − v)n(v) for any v ∈ R2, and based on conditions (B.6) there exists a
function g such that |fR(v| ≤ g(v) for any R and v ∈ R2 with

∫∫
Ω
g(v) d v <∞. Therefore I could apply

Lebesgue’s dominated convergence theorem [1] and I have obtained

J ∗ n(x) = lim
R→∞

 1

4π2

R∫
−R

R∫
−R

ĉ(q)e
iπ(q·x)

l

∫∫
Ω

J(x− v)e
iπ(q·(v−x))

l d v d q

 =

1

4π2

∞∫
−∞

∞∫
−∞

Ĵ
(πq

l

)
ĉ(q)e

iπ(q·x)
l d q.

In a similar manner I have obtained

J ∗ m̄(x) =
1

4π2

∞∫
−∞

∞∫
−∞

Ĵ
(πr

l

)
¯̂
d(r)e

iπ(r·x)
l d r.

This implies

< J ∗ n,m >=

∫∫
Ω

(J ∗ n(x))m̄(x) d x =

1

16π4

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

ĉ(q)Ĵ
(πq

l

)
¯̂
d(r)

∫∫
Ω

e
iπ(q·x)

l e
−iπ(r·x)

l d x d q d r
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and

< n, J ∗m >=

∫∫
Ω

n(x)(J ∗ m̄(x)) d x =

1

16π4

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

ĉ(q)
¯̂
d(r)Ĵ

(πr

l

)∫∫
Ω

e
iπ(q·x)

l e
−iπ(r·x)

l d x d r d q

and concludes the proof of < n, J ∗m >=< J ∗ n,m > in the case of an infinite neuronal network. It
implies that equation (B.5) holds and in turn implies that the linear operator L∗0 is indeed the adjoint
operator of the linear operator L0 for infinite neuronal networks.

In the case of a finite neuronal network, I have, for any fixed x ∈ R2 and R ∈ Z2,

J ∗ n(x) =
1

4l2

∫∫
Ω

J(x− v)
∑
q∈Z2

ĉ(q)e
iπ(q·v)

l d v =
1

4l2

∫∫
Ω

J(x− v) lim
|R|→∞

∑
q∈R

ĉ(q)e
iπ(q·v)

l d v =

1

4l2

∫∫
Ω

lim
|R|→∞

∑
q∈R

ĉ(q)J(x− v)e
iπ(q·v)

l

 d v =
1

4l2

∫∫
Ω

lim
|R|→∞

fR(v) d v.

I have lim|R|→∞ fR(v) = J(x − v)n(v) for any v ∈ R2, and based on conditions (B.6) there exists a
function g such that |fR(v| ≤ g(v) for any vector R and v ∈ R2 with

∫∫
Ω
g(v) d v <∞. Therefore I could

apply Lebesgue’s dominated convergence theorem [1] once more and I have obtained

J ∗ n(x) = lim
|R|→∞

 1

4l2

∑
q∈R

ĉ(q)e
iπ(q·x)

l

∫∫
Ω

J(x− v)e
iπ(q·(v−x))

l d v

 =
1

4l2

∑
q∈Z2

Ĵ
(πq

l

)
ĉ(q)e

iπ(q·x)
l .

In a similar manner I have obtained

J ∗ m̄(x) =
1

4l2

∑
r∈Z2

Ĵ
(πr

l

)
¯̂
d(r)e

−iπ(r·x)
l .

This implies

< J ∗ n,m >=

∫∫
Ω

(J ∗ n(x))m̄(x) d x =

1

16l4

∑
r∈Z2

∑
q∈Z2

ĉ(q)Ĵ
(πq

l

)
¯̂
d(r)

∫∫
Ω

e
iπ(q·x)

l e
−iπ(r·x)

l d x =
1

4l2

∑
r∈Z2

ĉ(r)
¯̂
d(r)Ĵ

(πr

l

)

and

< n, J ∗m >=

∫∫
Ω

n(x)(J ∗ m̄(x)) d x =

1

16l4

∑
q∈Z2

∑
r∈Z2

ĉ(q)
¯̂
d(r)Ĵ

(πr

l

)∫∫
Ω

e
iπ(q·x)

l e
−iπ(r·x)

l d x =
1

4l2

∑
q∈Z2

ĉ(q)
¯̂
d(q)Ĵ

(πq

l

)
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and concludes the proof of < n, J ∗m >=< J ∗n,m > in the case of a finite neuronal network. It implies
that equation (B.5) holds and in turn implies that the linear operator L∗0 is indeed the adjoint operator
of the linear operator L0 for finite neuronal networks.
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The Matlab-code used for numerical
simulations with the model

function CorticalSheet

%
% CorticalSheet

5 %
% Development of the firing rate of the neurons in the cortical sheet over
% ’Iterations’ time steps. In this cortical sheet, consisting of
% integrate−and−fire neurons on a square grid, different types of travelling
% and oscillating wave pattern can be obtained. The type of pattern that

10 % stabilizes, is dependent on the values chosen for the parameters of the
% model.
%
% In this file, the following is done. First some constants are specified
% and a movie file is created. Next the fully symmetric (sparse) synaptic

15 % coupling matrix is constructed. Then the initial conditions are set after
% which the development is executed. A movie of the development is
% constructed. The numerical integration of the differential equations
% describing the model, the firing rate function and the Mexican hat function
% are given at the end of the file.

20 %
% CorticalSheet code −− (c) Januari 2012 D.C. Koppenol

%% Constants

25 % Number of iterations over which the model of the cortical sheet develops:

Iterations = 5100;

% Number of iterations whereafter the movie is created:
30

StartMovie = 5000;

% Number of neurons along one side in the model:

35 N = 60;

%% Creation of the movie file

mov = avifile(’CorticalSheetDevelopment.avi’,’Compression ’,’None’);

40 mov.FPS = 10; mov.COLORMAP = colormap( jet (256));
mov.VIDEONAME = ’Development of the Firing Rate’;
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%% Determination of the sparse recurrent synaptic coupling matrix

45 y = 0:(N/2) -1;

y((N/2)+1:N) = -(-N/2:-1);

yy = repmat(y,1,N);

YY = zeros(N,N^2);
YY(1,:) = yy;

50

for i = 2:N

YY(i,i:N^2) = YY(1,1:N^2-i+1);

YY(i,1:(i-1)) = YY(1,N^2-i+2:N^2);

end
55

x = YY(1,:);

x = reshape(x,N,N);
xx = zeros(1,N^2);

60 for i = 1:N:N^2

xx(1,i:(i+N-1)) = x((i+N-1)/N,:);

end

XX = zeros(N,N^2);
65 XX(1,:) = xx;

for i = 2:N

XX(i,N*(i-1) +1:N^2) = XX(1,1:N^2-(i-1)*N);

XX(i,1:N*(i-1)) = XX(1,N^2-N*(i-1) +1:N^2);

70 end

% Threshold between which the strength of the synaptic coupling is set to
% zero:

75 thresh = 0.01;

ii = zeros (1 ,3000000);
jj = zeros (1 ,3000000);
s = zeros (1 ,3000000);

80 nz = 0;

for i = 1:N^2

d = sqrt (((XX(1+ f loor ((i-1)/N) ,:)).^2) + (YY(1+ mod((i-1),N) ,:).^2));

85 j = mexhat(d);

sj = find(abs(j) > thresh);

i f nz + length(sj) > length(s)

90 s = [s, zeros (1 ,500000) ];
ii = [ii, zeros (1 ,500000)];
jj = [jj, zeros (1 ,500000)];

end
95

s((nz+1):(nz+ length(sj))) = j(sj);

ii((nz+1):(nz+ length(sj))) = i*ones(1, length(sj));

jj((nz+1):(nz+ length(sj))) = sj;

nz = nz + length(sj);

100

end

44



The Matlab-code used for numerical simulations with the model

ii = ii(1:nz);

jj = jj(1:nz);

105 s = s(1:nz);

J = sparse(ii,jj ,s, N^2, N^2);

clear i x y yy xx ii jj s nz XX YY

%% Initialization of the start condition
110

Ui = rand(N^2,1); % Initial firing rate of the neurons
Ai = zeros(N^2,1); % Initial adaptation of the neurons

%% Execution of the development of the firing rate of the neurons in the
115 %% cortical sheet

for k = 1: Iterations

i f mod(k ,1000) == 0

120 disp(k)

end

[Uo,Ao] = rateN(Ui ,Ai ,J);

Ui = Uo;

125 Ai = Ao;

i f k > StartMovie

f igure (1); c l f ;
130 set ( f igure (1),’position ’ ,[10 210 500 500])

imagesc(reshape(Ui ,N,N))
colorbar
axis equal tight

135 t i t l e (’Development of the Firing Rate’)

drawnow;

M = getframe( f igure (1));
mov = addframe(mov ,M);

140 end
end

mov = close (mov);

145 %% Numerical integration of the differential equations for the firing rate
%% and adaptation of the individual neurons

% ’dt’ determines the size of the time step, ’tau’ is the time constant,
% ’g’ is the gain of the adaptation, and alpha is the parameter that

150 % controls the strength of the synaptic coupling.

function [Uo,Ao] = rateN(Ui ,Ai ,J)

dt = 0.1;

155 g = 4;

alpha = 1;

tau = 5;

SumU = J*Ui;

160

Uo = dt*(-Ui + F(alpha*SumU - g*Ai)) + Ui;

Ao = dt*(-Ai + Ui)/tau + Ai;

45



Appendix C

%% The firing rate function
165

function Fo = F(Ui)

r = 3;

eta = 0.5;

170

Fo = ((1 + exp(r*eta))/r)*((1 - exp(-r*Ui))./(1 + exp(-r*(Ui - eta))));

%% The Mexican hat function

175 function j = mexhat(d)

% A mexican hat function for use in the construction of the synaptic
% coupling matrix of the cortical sheet.

180 A = 70;

B = 125;

a = 0.1;

b = 0.03;

185 j = (A*a*exp(-a*d.^2) - B*b*exp(-b*d.^2))/3.141592;
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