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Waveguide Bends 
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Abstract-This article presents a normalized approach for 
optimal design of abrupt junctions between straight and curved 
waveguides operating in the Whispering Gallery Mode regime. 
The optimalization includes the widths of both the straight and 
the curved waveguide, the lateral offset between them, and the 
bending radius of the curved waveguide. With this approach 
optimum bend design is possible from a simple set of formulas 
or normalized graphs. Predicted transmission losses for opti- 
mally designed junctions are well below 0.1 dB. 

I. INTRODUCTION 
HE first theoretical paper on bends in optical dielec- T tric guides was published in 1969 by Marcatili [l]. 

Since then a large number of methods have been devel- 
oped to analyze propagation through waveguide bends. A 
powerful technique is the conformal transformation 
method as described by Heiblum and Harris [2] in which 
the curved waveguide is translated into an equivalent 
straight one with a transformed index profile. A suitable 
method for solving the transformed problem is the Trans- 
fer-Matrix Method [3]. This method, which is well known 
in optics, was applied to the transformed index profile 
of curved waveguides by Thyagarajan et al. [4] and by 
Pennings [5]. 

The analysis shows that in curved waveguides the mode 
profile shifts to the outer edge of the bend, which causes a 
field mismatch at the junction between a straight and a 
curved waveguide. Neumann [61 proposed to apply an 
offset between both waveguides in order to correct for the 
field mismatch. Pennings [51 showed that an even better 
match is possible if not only the position of the straight 
waveguide, but also its width, is optimized. He provided 
normalized graphs for the computation of bending loss 
and optimal offset between straight and curved wave- 
guides. In this paper the normalized analysis is extended 
so as to include all relevant parameters for optimal bend 
design, i.e., bending and coupling (field mismatch) loss, 
optimal offset, and optimal waveguide widths. Our method 
applies to low-contrast slab waveguides. Three-dimen- 
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sional waveguides can be analyzed by combining our 
method and the well-known effective-index method. 

11. ANALYSIS AND DESIGN OF WAVEGUIDE BENDS 
Modes in circularly curved waveguides, as depicted in 

Fig. 1, can be described as U,,(r)e * y++. They resemble the 
modes of straight waveguides, the main difference being 
that the phase fronts coincide with planes of constant 4 
instead of constant z. The constant y+ can be looked 
upon as a complex angular propagation constant 

where a+ is the angular attenuation coefficient and p+ is 
the real angular propagation constant with dimension 
rad-'. The admitted values of y+ and the corresponding 
mode profiles U$-) follow by solving the well-known 
Helmholtz equation in a cylindrical coordinate system in 
combination with the appropriate boundary conditions 
(being the finiteness of the field at the origin and the 
outward radiation condition). With the following transfor- 
mation [2]: 

(2) U = R, ln(r/R,), 
in which R, is an arbitrary reference radius, the equation 
for U(r)  is brought into the form 

Y+ = a+ + j P + ,  (1) 

in which 
n,(u) = n { r ( u ) } e U / R t ,  (4) 

Yt = Y+/R,, ( 5 )  
r ( u )  = RteU/Rt, (6) 

and k ,  is the wave number in the free space. From (3) it 
is seen that the mode profile of a mode in a curved 
waveguide with index profile n(r)  can be computed as the 
mode profile of the corresponding mode in an equivalent 
straight waveguide with a transformed index profile n,(u) 
as shown in Fig. 1. The transformed index profile and the 
corresponding amplitude distribution of the fundamental 
mode are illustrated in Fig. 2 for different values of the 
bending radius. 

Once the wave equation has been solved in the trans- 
formed domain the angular propagation and attenuation 
constants P4 and a+ follow from (5) as 

P+ = PtR,, (7a) 
a+ = a tR t .  (7%) 
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Fig. 1. Curved waveguide geometry in a cylindrical coordinate system 
(left) and in the corresponding transformed coordinate system (right). 

Tranetormcd index profile ,,.,. .. 4 
. . .  ,...' /-3 

Fig. 2. Transformed index profile and the corresponding mode profile 
for a straight waveguide (1) and curved waveguides with decreasing 
bending radius (2-4). 

The radiation loss A, in db/9Oo follows from ad as 

A ,  = - 20 log,,, {exp ( - ag7r/2)} = 107ra, log,, e .  (7c) 

The mode profile U(r)  follows from the transformed mode 
profile U,(u> as 

U(r> = U,{u(r) l ,  (8) 

in which u(r)  is described by (2).  
If R, is chosen equal to the outer edge of the wave- 

guide, as illustrated in Fig. 1, and u / R ,  < 1 in the vicinity 
of the waveguide (is., R ,  is much greater than the wave- 
guide width), then it follows from (2) that r approximately 
equals R ,  + U and the transformed index profile reduces 
to 

(9) n,(u) = n ( R ,  + u ) ( l  + u / R , ) .  

In this case the mode profile U(r)  is found from &(U) by 
simply shifting it over a distance R I .  

Fig. 2 illustrates the mode profile in a curve waveguide 
for different values of the bending radius. From the figure 
it can be seen that the mode profile will shift to the outer 
edge of the waveguide if the bending radius is decreased. 
If a sufficiently small bending radius is chosen the field 
strength at the inner edge vanishes and the mode will be 
fully guided by the outer edge (curves 3 and 4), so that the 
location of the inner edge becomes irrelevant. Such a 
mode is called a Whispering Gallery Mode (WG mode) 
after Lord Rayleigh [7], who explained this phenomenon 
in relation to the propagation of sound waves along a 
curved gallery. 

Because the profile of a whispering gallery differs from 
that of a straight waveguide, coupling loss will occur at the 
junctions between curved and straight waveguides. It can 
be minimized by matching the two mode profiles as closely 

Fig. 3. A curved and a straight waveguide section, which are optimally 
dimensioned and aligned for small transition loss. 

as possible. This can be achieved through a proper choice 
of the width and the location of the straight waveguide 
relative to the curved one, as illustrated in Fig. 3, such 
that the overlap between the straight and the curved 
waveguide mode is optimal. The application of an offset 
between the straight and the curved waveguide in order to 
reduce transition loss was first proposed by Neumann [6]. 
Sheem and Whinnery [8] were the first to apply Whisper- 
ing Gallery Modes to integrated optical circuits. Pennings 
[5 ]  showed that the lowest total bending loss is obtained 
by employing curved waveguides which operate in the 
Whispering Gallery Mode regime. 

The optimalization of the bending loss, as described 
above, is straightforward, but too complicated to be per- 
formed without dedicated software. The analysis can be 
simplified, however, by a proper normalization of the 
problem. 

111. NORMALIZED APPROACH TO O m =  BEND 
DESIGN 

A normalized approach to the analysis of Curved wave- 
guides has been applied by Marcatili [l] and Pennings [5]. 
In this section that approach will be extended to provide 
normalized solutions to all relevant parameters for opti- 
mal design of waveguide bends, operating in the Whisper- 
ing Gallery Mode regime, including the junctions with 
straight waveguides. 

We normalize all spatial dimensions with respect to the 
wavelength A, = A,/n ,  in the background medium (A,, = 

27r/k,,): U 
U =  - (10) 

A2 

In terms of the normalized coordinate U and the relative 
index contrast profiles: 

n ( u )  - n2 n , ( v )  - n2 
A(u) = and A , ( v )  = 3 

n2 112 

(11) 
the wave equation in the transformed domain (Eq. (3)) is 
transformed into 

(12)  
where Ae, is the effective relative index contrast, which is 
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related to the effective index N, (= -yt/ko) through that, if we compute the radiation loss or the coupling loss 
at the junction between a straight and a curved waveguide 
as a function of the bending radius R for a given contrast 
A,, then the properties for other contrasts A can be 
directly i&med (as 10% as both A and Ao are small). 

It should be noted that the normalization introduced 
above is restricted to small index contrasts (up to lo%, as 
will be shown in the sequel to this paper), and that the 
curved waveguides should operate in the Whispering 
Gallery Mode regime. 

(13) 

Using (9)-(11) the transformed relative index contrast 
A,(v) can be approximated for 4 1 (i.e., a low index 
contrast) and u / R ,  1 (i.e., in the vicinity of the wave- 
guide) as 

A , ( v )  = A(v)  + (v/p,> = A(v)  + v/p,. (14) 

4 - n 2  
Aef = -. 

n2 

n(v  + p,) 

122 

With these approximations (12) reduces to IV. NUMERICAL RESULTS AND EMPIRICAL 
CORRECTIONS 

d 2  To design a waveguide bend with low loss and optimal 
junctions to the straight waveguides, the following five 
quantities have to be determined: 

The angular radiation loss. 
0 The minimal width of the curved waveguide. 
0 The optimal width of the straight waveguide. 

(16) The optimal offset between the curved and the 

-'(') dv2 + 8.rr2{A(v + ") + v/pt - A e f l v ( v )  E O7 

(15) 

in which pr = R,/A2,  and the transformed index profile 
has been substituted according to (9). If we introduce a 
new variable 5: 

v =  v /a ,  
Eq. (15) appears to keep exactly the same form if the 
following substitutions are made (the transformed quanti- 
ties are indicated with a bar): 

E(?)  = a2A(av),  (17) 

V ( V )  = V ( a v ) ,  (19) 

From this result it follows that if { M v ) ,  Apt} is a solution 
of (15) for the index profile A(v) and radius p,, then 
{V(uv), a2Aer) is a solution for the index profile a2A(av) 
and radius pf/a3, i.e., if the relative contrast profile is 
compressed by a factor a, its height is multiplied by a 
factor a', and its radius is divided by a factor a3, then the 
mode profile is compressed by a factor a, but otherwise 
retains the same shape. 

The propagation constant P, and the attenuation co- 
efficient a, are related to the effective-index contrast Aef 
of the mode as 

- 
A,, = a2Ae1 , (18) 

P, = pt/a3. (20) 

P, = k0n2{1 + Re(A,,)}, (21a) 
a, = -kon2{Im(Aef)l. (21b) 

From (21b), in combination with (181, it follows that the 
attenuation coefficient a, transforms according to 

(22) 

The angular attenuation coefficient a+ follows from the 
transformed constant a, through multiplication by p,  (Eq. 
( 5 ) )  so that we find, for a+, 

ab = at P, = a2a, pJa3 = a, ~ , / a  = a + / ~ .  (23) 

Obviously, both the mode profile in curved (and straight) 
waveguides, and the radiation loss in curved waveguides 
transform in a very simple manner by introducing the 
variable V (Eq. (16)). This is an important result. It means 

- a, = a%,. 

- -  

straight waveguide. 
0 The corresponding coupling loss. 

On the basis of the normalization described in the previ- 
ous section (Eqs. (16)-(20)), the analysis of a waveguide 
with arbitrary contrast A and bending radius R can be 
reduced to the analysis of a waveguide with a normalized 
index contrast A,. The choice of the normalized contrast 
A, fixes the value of the transformation constant a 
through (17): a = (A/Ao)'/2. The transformed waveguide 
has an (outer) bending radius a3(R, /A2)  according to 
(20). 

For our analysis we chose A, = 0.01. Fig. 4(a)-4(d) 
show the results of the analysis as a function of the 
(normalized) radius. The radiation loss (Fig. 4(b)) is com- 
puted for a Whispering Gallery Mode, i.e., the width was 
chosen so large that it no longer affects the propagation 
properties of the mode. The optimal offset and width of 
the straight waveguide (Fig. 4(c) and 4(d)) were found by 
optimizing the overlap between the straight-waveguide 
mode and the WG mode. The ultimate coupling loss (Fig. 
4(a)) follows as the logarithm of the optimum overlap. It 
was empirically determined that for w, > 1 . 5 ~ ~  (w, being 
the optimal straight-waveguide width as determined from 
the graphs), the results do not significantly depend on w,. 
From this it follows that w, = 1 . 5 ~ ~  is a good choice for 
the curved waveguide to operate virtually in the WG 
mode regime. 

For small contrasts the normalized solutions apply to 
TE-polarized as well as 734-polarized modes. For the 
maximal relative contrast analyzed in the present chapter 
(A = 0.161, the TM-radiation loss was found to be greater 
by 30% than the TE-polarized loss. The normalized opti- 
mal offset for TM polarization was found to be smaller 
than the TE-polarized value by approximately 0.2 pm. 
The difference in optimal waveguide width is within 1%. 
Differences between the normalized solutions for both 
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Fig. 4. (a) Normalized transition loss for a single junction. (b) Normalized radiation loss. (c) Normalized optimal offset 
between the outer edge of the curved waveguide and the center of the straight one. (d) Normalized optimal width of the 
straight waveguide. 

polarizations are thus negligible for most practical pur- 
poses. It is stressed that in three-dimensional waveguides 
the polarization dependence may be greater because the 
effective indices of the transverse slab modes which form 
the starting point for the lateral computations may differ 
considerably. This effect can be analyzed, however, using 
the normalized approach. 

Fig. 4(a)-4(d) are employed as follows. The normalized 
radius R, is computed according to 

R,  = a 3 R / h ,  * 1.137A-Ao, a = (A/AO)”’, (24) 

in which R and A are the actual radius and refractive 
index contrast of the waveguide, and A. = 0.01 is the 
value of A for which the graphs were computed. The 
origin of the correction factor 1.137A-Ao will be discussed 
in the sequel to this paper. The required properties can 
then be read from the relevant graph. The coupling loss is 
independent of the normalization and can be read di- 
rectly. The other properties are determined on the basis 
of the normalized values, as read from the figure, through 
division by the product of a (= A/A0)*/* and the correc- 
tion factor as listed along the vertical axis. A polynomial 
description of the curves is provided in the Appendix. 

To analyze the accuracy of the normalization, we have 
computed the radiation loss, the normalized width, and 

the normalized offset for a series of contrasts, ranging 
from 0.0025 to 0.16, which cover a practical range from 
very low to rather high index contrasts. The relative error 
has been determined by dividing these results by those 
computed using the normalized solutions. Fig. 5(a), 5(c), 
and 5(e) show the results. From Fig. 5(a) we see that the 
relative error in A ,  is linear in both R and A. Because 
the dependence of the logarithm of A ,  on R is approxi- 
mately linear, the error can be compensated with a cor- 
rection term of the form cA-’o. Calculation yields c = 
1.137 as a good fit. Fig. 5(b) shows the resulting error after 
correction. Its magnitude appears to be linear with A, 
from which we conclude that the normalization error will 
be within 20% for contrasts up to 0.2. 

The errors in the normalized offset and width (of the 
straight waveguide) appear to be independent of R and 
linear in A. This again suggests a correction factor of the 
form For the offset a good fit is found with c = 2, 
for the optimal width with c = 1.75. Fig. 5(d) and 5(f) 
show the relative error after correction, which appears to 
be within 6% for the offset (within 2% for R, > 1000) 
and within 2% for the width. The markers in Fig. 4(a) 
show the effects of the residual errors for the least and 
the greatest contrast (0.0025 and 0.16, respectively), at the 
extreme ends of the computation range. From these data 
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Fig. 5. Relative errors in the normalized solutions for (a) the radiation loss, (c) the optimal offset, and (e) the optimal 
width, for different index contrast, without (a), (c), (e) and with empirical corrections as described in the text (b), (d), (f). 

it is evident that the errors will be negligible for almost all 
practical purposes. 

V. DISCUSSION AND CONCLUSIONS 
Employing the normalized graphs of Figs. 4 or the 

regression formulas of the Appendix, optimal bend design 
can be performed with a pocket calculator for a broad 
variety of planar optical waveguides with low or medium 
optical contrast. Two different design strategies will be 
briefly discussed. 

If the lowest possible loss is required, a normalized 
radius should be selected for which the sum of the radia- 
tion loss (over the relevant sector angle) plus twice the 
coupling loss is minimal. Except for very low contrasts, the 

total loss will be dominated by the coupling loss and a 
normalized radius between 1000 and 1500 will be optimal, 
corresponding to a normalized radiation loss between 0.4 
and 0.005 dB/90". The corresponding optimal widths and 
the offset between the straight and the curved waveguides 
then follow from Fig. 4(c) and 4(d). 

If the choice of the straight-waveguide width is not free, 
the radius of the bend has to be chosen such that the 
mode width matches that of the straight waveguide. This 
is done by reading the normalized radius corresponding to 
the prescribed (normalized) width of the straight wave- 
guides from Fig. 4(d). The other parameters are fixed by 
this choice, and follow from the graphs. 

The normalized approach as outlined above is particu- 
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larly suited for computer-aided design and simulation of 
planar optical circuits. We confined ourselves to the exci- 
tation of the fundamental modes which cover most of the 
practical applications. Radiation loss and coupling effi- 
ciencies for higher-order modes can be normalized equally 
well. For the method to be applicable, index contrasts 
should be low and the curved waveguide should be suffi- 
ciently wide (Whispering Gallery Mode regime). 

APPENDIX 
The normalized curves of Figs. 4(a)-4(d) are easily 

quantified with polynomial regression. The results are 
given below in terms of the real (i.e., not normalized) 
entities, for A. = 0.01: 
~ ~ = ( 1 0 0 ~ ) - l / 2 1 0 2 . 2 9 - ~ . l 7 R ‘ , - 0 . 5 8 ( R ’ , ) ’  (dj31900) 

= radiation loss per 90” in dB. (Al) 

A0 

.1.750.0’ - A  (A2) 

wS = -(100A)-1/2{4.56 + 2.45RL - 0.18(Rn)2} 
112 

=optimal width of the straight waveguide. 

= minimal width of the curved waveguide. 

Ar= -(100A)-1’2{-0.9 + 4.7Rn - 2.0(R1,)2 

wc = 1 . 5 ~ ~  

A0 

n2 + 0.35(R’,J3)20.0’-A 
=optimal offset between the outer edge of the ( 

waveguide and the center of the straight one. 

(dB) 77 = 101.63-5.97R‘,+3.92(R’,)*-0.82(R’,)~ 

=coupling loss in dB at a (single) junction between a 
straight and a curved waveguide, optimized according 
to the above parameters. (A5) 
n2R 
A” 

R, = -( 100A)3/21.137A - o.ol/lOOO 

=normalized bending radius (at the outer edge). Note 
the factor 1000 in the denominator, which is included 
to avoid repetition of factors 0.001 in the regression 
formulas. (A61 

These formulas apply in the range 0.5 < Rn < 2, i.e., 
500 < R ,  < 2000. 
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