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Short Papers 

Best Linear Unbiased Estimation of the Fourier 
Coefficients of Periodic Signals 

Adriaan van den Bos 

Abstrhct-Fourier coefficients of periodic signals are usually esti- 
mated by the discrete Fourier transform (DFT). Since DFT is equiva- 
lent to ordinary least squares, it might be expected to be best linear 
unbiased only if the errors in the observations are not covariant. For- 
tunately, for covariant errors, the DFT achieves this optimum prop- 
erty asymptotically. 

I. INTRODUCTION 

The subject of this paper is the estimation of complex Fourier 
coefficients of periodic, multiharmonic signals from additively er- 
ror-disturbed observations. For example, this problem is found in 
classical [ 11 and parametric [2]-[4] frequency response methods. 
In the latter methods, the parameters of the transfer function of a 
linear dynamic system are estimated from noise-disturbed re- 
sponses to periodic, multiharmonic test signals. This is done by 
first estimating the complex Fourier coefficients of the harmonics 
of the response, and subsequently using the results to estimate the 
system parameters. So, to fully exploit the available observations, 
the variance of the estimator of the Fourier coefficients should be 
as small as possible. 

If the discrete Fourier transform (DFT) is chosen as an estimator 
of the Fourier coefficients, this is equivalent to ordinary least- 
squares (OLS) estimation [SI. Generally, the OLS estimator is best 
linear unbiased (BLU) only if the errors in the observations are not 
covariant and have equal variance [6, p. 1901. Thus, if in the prob- 
lem considered in this paper the errors meet these conditions, the 
DFT is BLU. If, in addition, the errors are normally distributed, 
OLS estimators are known to be maximum likelihood estimators 
and to attain the Cram6r-Rao lower bound on the variance for any 
number of observations [6, p.4131. So, under these conditions, the 
DFT has the same optimal properties. On the other hand, if the 
errors are covariant, only the weighted least squares estimator with 
the inverse of the covariance matrix of the errors as a weighting 
matrix has the described optimal properties [6, p. 1901. Then the 
OLS estimator, and consecjuently the DFT, are no longer optimal. 

Compared with the DFT, the weighted least-squares estimator 
has two important disadvantages. First, it requires knowledge of 
the covariance matrix of the errors. This knowledge is not always 
available. Second, the numerical computation of the weighted least- 
squares estimator is much more time consuming. 

The purpose of this paper may now be described as follows. It 
will be shown that the covariance matrix of the OLS estimator of 
the Fourier coefficients, that is, the covariance matrix of the DFT, 
asymptotically approaches the covariance matrix of the weighted 
least-squares estimator. Therefore, for any probability density of 
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the errors, the DFT is asymptotically BLU. In addition, for nor- 
mally distributed errors, the DFT asymptotically attains the Cra- 
mer-Rao lower bound. 

Earlitr results conceming BLU and maximum likelihood esti- 
mation of Fourier coefficients are reported by Brillinger [7, p.  221 
and by Grenander and Szego [8, p. 2041. These concem the esti- 
mation of the complex amplitude of a monosinusoid. This paper 
addresses the joint estimation of the complex Fourier coefficients 
of a multiharmonic signal such as found in the above-mentioned 
applications. Grenander and Rosenblatt [9, p. 2461 address trigo- 
nometric regression, that is, joint estimation of the complex am- 
plitudes of a number of complex sinusoids of known but not nec- 
essarily harmonically related frequencies. The results of this paper 
agree with their results, but the specialization to harmonically re- 
lated frequencies drastically simplifies the proofs and the results. 

The outline of this paper is as follows. In Section 11, the problem 
is formally stated. Section I11 deals with the asymptotic covariance 
matrices of OLS and BLU estimators. In Section IV, conclusions 
are drawn. 

11. LEAST-SQUARES ESTIMATION OF FOURIER COEFFICIENTS 

Suppose that a number of J N  complex observations w,, are avail- 

(1) 

able, described by 

w, = yn + U, n = 0, . . . , J N  - I 

where the complex periodic sequence yn is defined as 

yn = f; cI exp (j27rkln/N) 

with 1 = 1, . . . , L and n = 0, * . -., J N  - 1. The integers k,, 
1 = 1, . . . , L are the harmonic numbers and the c, are the corre- 
sponding complex Fourier coefficients, respectively. Furthermore, 
in the expressions (1) and (2), the U", n = 0, . . , J N  - 1, are a 
realization of a stationary stochastic process with expectation zero 
and covariance sequence Rz,,,(m), m = 0, k l ,  +2,  . - ; the in- 
teger N is the period of y , ,  and the integer J is the number of pe- 
riods observed. Then (1) and (2) may be summarized as follows: 

w = x c + v  (3) 

where w and z, are the J N  X 1 vectors of the observations w,, and 
the errors U,, respectively, the J N  X L matrix X is defined by its 
( p ,  q)th element exp ( j 2 a k q ( p  - l)/N), and c is the L x 1 vector 
of c,. 

The OLS estimator of c in (3) is described by 

P = ( X H X ) - ' X H w  (4) 

where the superscript H denotes complex conjugate transposition. 
Since differently numbered rows of X" and columns of X are or- 
thogonal, E is equal to [SI 

1 
J N  

e = - x " w .  

Thus, the elements of P are described by 

1 e, = - w,, exp (-j27rkln/N) 
JN  n 
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and are, therefore, seen to be identical with the DFT of w,,  n = 
0 ,  . . . , JN - 1. It also follows from (6) that t is unbiased for c 
since E[w, , ]  = yn because, by assumption, E[u,] = 0 for all n .  
From this and from (3, it follows that the covariance matrix of i. 
is equal to 

(7) 

where the JN X JN matrix Vis the covariance matrix of the process 
U, defined as the matrix whose (p, q)th element is E[up  U,*] = R,,,,(p 

The properties of the OLS estimator are well known [6, p. 1901. 
It is BLU if the errors in the observations are not covariant. It is 
the maximum likelihood estimator if, in addition, the errors are 
normally distributed. Then its covariance matrix is equal to the 
Cramer-Rao lower bound for any number of observations [6, p. 
4131. Thus, if in an experiment these conditions are met, the DFT 
being the OLS estimator is the best choice. 

In principle, the OLS estimator loses these optimal properties if 
the errors are covariant. Then the weighted least-squares estimator 
with V-’ as a weighting matrix is known to be optimal in the above 
sense [6, p. 1901. So, if in the problem considered in this paper 
the stochastic process un is covariant, the BLU estimator of the 
Fourier coefficients is 

- 9) .  

E = (XHV-IX)-IXHV-Iw. (8) 

It is easily shown that the covariance matrix of this estimator is 
equal to 

(9) 

It is clear that the BLU estimator (8) is computationally much more 
demanding than the OLS estimator. It requires the computation of 
the inverse of the JN X JN matrix V, the computation of the con- 
stants in the set of linear equations (8), and the subsequent solution 
of this set for E. The OLS estimator, on the other hand, only re- 
quires the evaluation of a number of L DFT’s such as described by 
(6). This is why in the next section the covariance matrix (7) of 
the OLS estimator and the covariance matrix (9) of the BLU esti- 
mator will be compared. 

(XH v-1 X) - I. 

111. ASYMPTOTIC COVARIANCE MATRICES 

In this section, the asymptotic behavior of the covariance matrix 
(7) of the OLS estimator and the covariance matrix (9) of the BLU 
estimator will be analyzed. To simplify this analysis, use will be 
made of the fact that the covariance matrices of a general class of 
stochastic processes converge in norm to certain circulant matrices 
associated with them [IO,  p. 361, [ I l ,  p. 741. Specifically, Bril- 
linger [ l  l ,  p. 741 shows that for square summable R,,,,(m), the ma- 
trix V converges in norm to the JN X JN circulant matrix U whose 
kth element of the first row is described by 

R,,,,(l - k)  + R,,,,(I - k + J N )  k = 1, . . * , JN (IO) 

where R,,,, (JN) is taken equal to zero. 
Generally, it can be shown that the eigenvalues of a circulant 

matrix are proportional to the DFT of the first row [ I I ,  p. 731. 
Specifically, the eigenvalues of U are described by 

I N -  I 

= {R , , , , ( -  k )  + I?,,,,(- k + J N ) }  exp ( - j 2 7 r / k / J N )  
k = O  

J N -  I 

= m = - ( I N  - I )  R,,,,(-m) exp ( - j 2 d m / J N )  (11) 

with 1 = 0, * * . , JN - 1 .  It can also be shown [ I  1, p. 731 that 
the eigenvectors of U are the columns of the JN X JN matrix F 
having ( J N ) - 1 ’ 2  exp ( - j 2 x ( p  - l ) ( q  - I ) / J N )  as its ( p ,  q)th 
element. Then it is easily shown that 

U = F A F ~  ( 1 2 )  

where A = diag (A,, . . . A,, . ,). Hence, since F is unitary, 

U - 1  = FA-~FH.  (13) 

Now, substituting this expression for V-’ in (9) yields 

( X H F K 1  FHX)-’.  414) 

By definition, the ( p ,  q)th element of the JN x L matrix X is exp 
{ j 2 r k q ( p  - l ) /N}  = exp ( j 2 7 r ( k q J ) ( p  - l ) / J N } .  Therefore, 
the columns of X are a subset of those of F. Hence, the elements 
of X H F i n  (16) with indexes (1, NJ - k l J  + l ) ,  ( 2 ,  NJ - k2J + 
l ) ,  . , (L ,  NJ - kLJ + 1) are all equal to (JN)’12 ,  and all other 
elements are equal to zero. Analogous considerations apply to the 
matrix FHX. This leads to the conclusion that (14) is equal to 

(15) 
1 
- diag (X(N - k l ) J ,  . . * , X(N - k , ) J ) .  
JN 

On the other hand, the covariance matrix (7) of the ordinary least- 
squares estimator converges to 

1 .  XHFAFHX = - diag (A(N - k l ) J ,  . . . , X(N - k, )J) .  (JW2 JN 

(16) 

From (15) and (16), it is concluded that the asymptotic covari- 
ance matrix of the OLS estimator, that is, the DFT estimator, and 
the asymptotic covariance matrix of the BLU estimator are equal. 
So, the DFT estimator asymptotically has the same optimal prop- 
erties as the BLU estimator. 

IV. CONCLUSIONS 

It has been shown that the discrete Fourier transform as an es- 
timator of Fourier coefficients of periodic signals from observa- 
tions disturbed by covariant noise is asymptotically best linear un- 
biased. This also implies that the discrete Fourier transform 
asymptotically attains the Cram&-Rao lower bound on the vari- 
ance if the errors are normally distributed. 
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A Method to Measure the Aperture Field and IpEiqJJ HP8511A T a  I 
Experimentally Determine the Near-Field Phase 

Center of a Horn Antenna 

Johann W. Odendaal and Carl W. I. Pistorius 

Fig. 1. The setup to measure the field in the aperture of a hom antenna. 

E-plane 

Abstract-A method whereby the aperture field distribution of a horn 
antenna can be measured is proposed. The method is based on the mea- 
surement of the scattered field of a small conducting sphere in the ap- 
erture. The position of the phase center of the aperture field is calcu- 
lated using the measured phase distribution of the field in the aperture 
via a simple type of convolution. In principle, the method is suited to 
determine the field distribution of other types of apertures illuminated 
by an electromagnetic field. 

H-plane 

Fig. 2. A small conducting sphere at a position Q in the aperture of the 
hom antenna. 

I. INTRODUCTION 

Knowledge of the field distribution in the aperture of a hom an- 
tenna is essential when analyzing the characteristics of the antenna, 
especially if the far-field pattem or phase center of the far-zone 
radiated fields is important. 

Assumptions regarding the amplitude distributions are often 
based on the dominant mode of the waveguide feeding the antenna. 
In the case of a rectangular hom, the dominant mode of the wave- 
guide is TEIo, resulting in a cosine distribution in the E-plane and 
a constant distribution in the H-plane [ l ] .  Quadratic models are 
used for the phase distribution in the aperture. 

In this paper, a method is discussed whereby the amplitude and 
phase distribution of the field in the aperture of a hom antenna can 
be measured. As an example, results are presented for a rectangular 
X-band hom antenna. The results are then used to empirically de- 
termine the position of the phase center of the field in the aperture. 

The phase center of the fields in the aperture of a hom antenna 
can be defined by considering the feed of the hom antenna as an 
equivalent point source within a certain angular region. This is valid 
only if equiphase surfaces of the aperture field are concentric 
spheres in this region. The phase center of these equiphase spheres 
is defined as the phase center for the radiating source. However, 
in nature, no true point source exists; therefore, a phase center is 
uniquely defined only in a particular plane and over a specific an- 
gular sector. Thus, a phase center does not result in a point in space, 
but rather in a line. It is therefore possible to define two phase 
centers for the field in the aperture of a hom antenna: one that 
corresponds to a line source in the E-plane, and one in the H-plane. 
The location of the aperture fields' phase center is required when 
using the UTD to calculate the far-zone radiated field, for example 
121. 

In principle, the method is suited to, or can be adopted to, de- 
termine the aperture field distribution of other types of apertures 
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illuminated by an electromagnetic field, e.g., a parabolic antenna. 
The method is especially useful in cases where it is difficult to de- 
termine the aperture distribution analytically [3]. 

11. MEASURING THE APERTURE DISTRIBUTION 

The measurement of the amplitude and phase of the field in the 
aperture is based on the measurement of the scattered field of a 
small conducting sphere that is introduced into the aperture for the 
purpose of the measurement. The measurements were performed 
in an anechoic chamber using an HP851OB vector network ana- 
lyzer, as shown in Fig. l. The powerful mathematical capabilities 
of the network analyzer were found to be very useful. Instead of 
an S-parameter test set, a frequency converter and two directional 
couplers were used to measure the S-parameters of the antenna un- 
der test in the anechoic chamber. 

The measurement is performed by measuring the scattering pa- 
rameter SI l with the network analyzer while the antenna under test 
is transmitting. This measurement of the amplitude and phase of 
the background is stored in the network analyzer's memory. A small 
conducting sphere is then positioned in the aperture of the hom at 
a known point Q, as shown in Fig. 2.  Since one does not want the 
presence of the sphere in the aperture to distort the value of the 
field, a small sphere is desired. The scattering parameter SII is 
measured again, this time with the sphere in the aperture. The 
background data are then subtracted with the vector math capability 
of the network analyzer. The result is then the scattered field (am- 
plitude and phase) from the sphere at a known point Q in the ap- 
erture of the hom antenna. This field is, in effect, proportional to 
the field at Q in the aperture. 

111. EXAMPLE-X-BAND HORN ANTENNA 

The field in the aperture of a hom antenna with dimensions 1, = 
272 mm, Be = 14.04", I,, = 316 mm, and Oh = 12.3" was mea- 
sured. The parameters l<, Be and l,,, Oh are the flare length and half 
flare angle in the E- and H-plane, respectively. 

Three conducting spheres with different radii (6.35, 4.75, and 
3.85 mm diameter) were used to measure the field. One would ex- 

0018-9456/93$03.00 0 1993 IEEE 

1 


