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Abstract: Modeling complex, non-stationary dynamics remains challenging for determin-

istic neural networks. We present the Chaos-Integrated Synaptic-Memory Network 

(CISMN), which embeds controlled chaos across four modules—Chaotic Memory Cells, 

Chaotic Plasticity Layers, Chaotic Synapse Layers, and a Chaotic Attention Mechanism—

supplemented by a logistic-map learning-rate schedule. Rigorous stability analyses (Lya-

punov exponents, boundedness proofs) and gradient-preservation guarantees underpin 

our design. In experiments, CISMN-1 on a synthetic acoustical regression dataset (541 

samples, 22 features) achieved R2 = 0.791 and RMSE = 0.059, outpacing physics-informed 

and attention-augmented baselines. CISMN-4 on the PMLB sonar benchmark (208 sam-

ples, 60 bands) attained R2 = 0.424 and RMSE = 0.380, surpassing LSTM, memristive, and 

reservoir models. Across seven standard regression tasks with 5-fold cross-validation, 

CISMN led on diabetes (R2 = 0.483 ± 0.073) and excelled in high-dimensional, low-sample 

regimes. Ablations reveal a scalability–efficiency trade-off: lightweight variants train in < 

10 s with > 95% peak accuracy, while deeper configurations yield marginal gains. CISMN 

sustains gradient norms (~2 300) versus LSTM collapse (<3), and fixed-seed protocols en-

sure < 1.2% MAE variation. Interpretability remains challenging (feature-attribution en-

tropy ≈ 2.58 bits), motivating future hybrid explanation methods. CISMN recasts chaos as 

a computational asset for robust, generalizable modeling across scientific, financial, and 

engineering domains. 

Keywords: Chaos-Integrated Synaptic-Memory Network (CISMN); chaos theory; artifi-

cial neural networks; dynamic learning; machine learning; complex systems; nonlinear 

dynamics 
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1. Introduction 

1.1. ANNs and Deep Learning 

Artificial Neural Networks (ANNs) have evolved rapidly over the past few years, 

driven by machine learning and computing advancements. Inspired by the human brain’s 

architecture, these networks have been applied across various fields, including autono-

mous systems, medical diagnostics, and manufacturing optimization. Different variants 

of neural network-based models have demonstrated their effectiveness in multiple fields, 

from engineering and structural applications to qualitative and esthetic challenges [1–3]. 

The evolution of neural networks and machine learning (ML) has significantly 

shaped modern artificial intelligence (AI) research and applications. This journey, span-

ning several decades, has witnessed cycles of success, decline, and revival, ultimately cul-

minating in the development of transformative deep learning (DL) models that underpin 

technologies such as image recognition and language translation. In the late 1980s, the 

introduction of new training algorithms and innovative architectures, such as multilayer 

perceptrons (MLPs) with backpropagation, self-organizing maps (SOMs), and radial basis 

function networks, sparked a surge of interest in neural networks [4–6]. While these meth-

ods were effective in various applications, enthusiasm waned after the initial excitement. 

A pivotal moment came in 2006 when Hinton and colleagues reintroduced ANNs through 

DL, reigniting interest in deeper architectures capable of solving complex tasks [7]. This 

resurgence earned deep learning models the title of “next-generation neural networks” 

for their exceptional ability to process large datasets and deliver high-performance results 

in classification, regression, and other data-driven tasks [8–11]. 

Since its rebirth, DL has become integral to AI, data science, and analytics, with in-

dustry giants like Google, Microsoft, and Nokia making substantial investments in re-

search and development [12]. The appeal of DL stems from its hierarchical neural net-

works, which are capable of learning multi-level data representations—from low-level 

features to high-level abstractions—without the need for extensive human-engineered 

feature extraction. These neural structures mimic aspects of how the human brain pro-

cesses information, making them a powerful tool for tasks like computer vision, speech 

recognition, and natural language understanding [12]. 

From the historical milestones in neural network development [5,6,8] to current 

breakthroughs in DL-based applications [12], a clear trend emerges: neural networks will 

remain central to the ongoing digital transformation. Addressing challenges such as in-

terpretability, resource constraints, and domain adaptation will be crucial for maximizing 

their positive impact. 

1.2. Chaotic Neural Networks (CHNNs) 

The history of CHNNs is deeply intertwined with the study of chaos theory, which 

was first explored in the 1960s following the introduction of the Lorenz system by Edward 

Lorenz [13]. Chaos theory, which focuses on systems susceptible to initial conditions, has 

played a critical role in enhancing the development of CHNNs by introducing dynamic 

and nonlinear behaviors in ANNs. Early research in chaotic systems revealed that these 

unpredictable dynamics could aid neural networks in escaping local minima during opti-

mization processes, a critical challenge for machine learning algorithms [14]. The archi-

tecture of CHNNs incorporates chaos through nonlinear activation functions, recurrent 

connections, and dynamic feedback loops. These elements enable the networks to exhibit 

complex behaviors, such as bifurcations and chaotic attractors, thereby enhancing the 

computational power and flexibility. One example is the integration of memristive ele-

ments in Hopfield neural networks, which enables the storage of chaotic states, a crucial 

feature for memory-dependent tasks [13]. 
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Recent studies have significantly advanced understanding CHNNs, synaptic plastic-

ity, and attention mechanisms. Clark and Abbott [15] explored coupled neuronal–synaptic 

dynamics, revealing how Hebbian plasticity can slow down chaotic activity and induce 

new chaotic regimes through synaptic interactions. Similarly, Du and Huang [16] demon-

strated that Hebbian learning can alter the nature of chaos transitions in neural circuits, 

shifting them from continuous to discontinuous types. In the realm of memristive sys-

tems, Lin et al. [17] reviewed the chaotic behaviors in memristive neuron and network 

models, highlighting multistability and hyperchaos as key phenomena. 

On the materials side, Talsma et al. [18] fabricated synaptic transistors using semi-

conducting carbon nanotubes, achieving biologically realistic spike-timing-dependent 

plasticity. Further, Shao, Zhao, and Liu [17] discussed the evolution of organic synaptic 

transistors, emphasizing their potential for energy-efficient neural networks. Attention 

mechanisms were innovatively combined with chaotic systems by Huang, Li, and Huang 

[19], who integrated convolutional and recurrent layers with an attention mechanism for 

a chaotic time series prediction. Xu, Geng, Yin, and Li [20] expanded this approach by 

developing the DISTA transformer, which employs spatiotemporal attention and intrinsic 

plasticity for dynamic neural computations; these works collectively offer a modern per-

spective on integrating chaos, learning, and attention in neural networks. 

One notable improvement in CHNN architecture is the development of piecewise 

integrable neural networks (PINNs). PINNs enhance the interpretability of chaotic sys-

tems by breaking chaotic dynamics into manageable segments. This makes it easier to 

understand how inputs produce specific outputs. They use bifurcation mechanisms and 

switching laws to model chaotic systems more accurately [21]. This approach helps iden-

tify chaotic patterns in systems such as climate models and financial data, enabling more 

accurate long-term predictions. 

Closely related, Memristive Hopfield Neural Networks (MHNNs) play a crucial role 

in CHNN research, integrating memory with chaotic dynamics. Memristors, which store 

past inputs, play a key role in MHNNs. These networks exhibit chaotic behaviors like 

multistability and hyperchaos, aiding in tasks requiring memory, adaptability, and com-

putation [13]. MHNNs are used in encryption, optimization, and secure communications, 

excelling in tasks with multiple outcomes or solutions, such as decision-making and opti-

mization problems. 

In parallel, Field-Programmable Gate Arrays (FPGAs) play a vital role in implement-

ing CHNNs, enabling real-time simulations for tasks such as cryptography and security. 

A key example is the use of FPGAs to simulate Chua’s chaotic system in a feed-forward 

neural network (FFNN) for prediction and encryption, which has proven effective in se-

cure communications [9]. With neuromorphic hardware and FPGA-based designs, these 

networks can handle complex tasks more efficiently, benefiting applications such as au-

tonomous driving and secure communications [10]. 

CHNNs were initially used for time-series prediction, outperforming traditional 

methods by capturing system dynamics [11]. They also enhanced ECG classification accu-

racy with complex-valued weights [22]. Today, CHNNs are applied in various areas, in-

cluding image encryption, economic forecasting, and cryptographic systems [13], as well 

as optimization problems such as the traveling salesman problem [14]. Recent research 

has focused on improving CHNNs for dynamic systems, with advances in nonlinear de-

layed self-feedback [23] and the study of chaotic behavior in memristive networks 

through period-doubling bifurcations [24]. Baby and Raghu [25] introduced a neural net-

work-based key generator utilizing chaotic binary sequences from Bernoulli maps, en-

hancing the encryption security and passing the Diehard and NIST tests. Lephalala et al. 

[26] developed a hybrid CHNN algorithm integrated with PLS models to predict the tox-
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icity of sanitizers, optimizing the prediction accuracy and addressing environmental con-

cerns. Osama et al. [27] improved the robustness of neural networks against adversarial 

attacks by introducing chaotic quantization with Lorenz and Henon noise, resulting in a 

43% boost in accuracy. Ruan et al. [28] proposed a guaranteed-cost intermittent control 

method for synchronizing chaotic inertial neural networks, which was validated through 

numerical simulations. Ganesan and Annamalai developed a memory non-fragile con-

troller for anti-synchronization with time-varying delays. Lastly, Gao et al. [23] intro-

duced an event-triggered scheme to synchronize delayed chaotic neural networks, reduc-

ing communication delays and data loss. 

1.2.1. Chaotic Dynamics in Memristive and Hopfield Neural Networks 

The study of chaotic dynamics in neural networks, especially those enhanced with 

memristive technologies, has expanded significantly over recent years. Fractional-order 

Hopfield neural networks integrated with memristive synapses exhibit complex behav-

iors such as multistability, chaotic attractors, and coexisting limit cycles. For instance, 

Anzo-Hernández et al. proposed a fractional-order Hopfield neural network incorporat-

ing a piecewise memristive synapse, demonstrating multistability and robust chaotic dy-

namics, with validation via FPGA hardware implementation [29]. Ding et al. replaced 

Hopfield networks’ traditional hyperbolic tangent activation function with a piecewise-

linear function to simplify implementation while preserving dynamical richness. They 

proposed a memristor-coupled bi-neuron Hopfield network that demonstrated the coex-

istence of chaos, limit cycles, and stable attractors [30]. Expanding on cyclic architectures, 

Bao et al. (2023) constructed a memristive–cyclic Hopfield neural network (MC-HNN) ca-

pable of generating spatial multi-scroll chaotic attractors and spatially initial-offset coex-

isting behaviors [31]. Liu et al. introduced a discrete memristor-coupled bi-neuron Hop-

field model that exhibited hyperchaotic dynamics and state transition behaviors, high-

lighting the potential of discrete systems in modeling the neural complexity [32]. Theoret-

ically, Mahdavi and Menhaj established sufficient conditions based on coupling parame-

ters to ensure the synchronization of chaotic Hopfield networks, offering mechanisms for 

controlling the chaotic output when stability is needed [33]. 

1.2.2. Memristive Ring Networks and Multi-Attractor Structures 

Zhang et al. [34] introduced a memristive synapse-coupled ring neural network that 

exhibits homogeneous multistability, characterized by an infinite number of coexisting 

attractors dependent on the memristor’s initial state. They further demonstrated its appli-

cation in pseudorandom number generation. Similarly, Chen et al. proposed a non-ideal 

memristor–synapse-coupled bi-neuron Hopfield neural network demonstrating bistabil-

ity between chaotic and point attractors, verified by breadboard experiments [35]. In an-

other advancement, Chen et al. highlighted the coexistence of multi-stable patterns, in-

cluding chaotic and periodic behaviors, influenced by variations in memristor coupling 

strengths [36]. Fang et al. contributed a discrete chaotic neural network model based on 

memristive crossbar arrays, emphasizing multi-associative memory capabilities influ-

enced by initial states [37]. 

1.2.3. Fractional-Order Dynamics and Chaotic Entrainment 

The integration of fractional-order derivatives into neural networks introduces richer 

dynamical phenomena. Ramakrishnan et al. investigated two-neuron Hopfield networks 

with memristive synapses and autapses, showing that fractional orders enhance chaotic 

behaviors and broaden dynamical ranges [38]. Yang et al. developed a fractional-order 

memristive Hopfield neural network, demonstrating coexisting bifurcation behaviors val-

idated through FPGA implementation [39]. Ding et al. (2022) explored coupled fractional-
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order memristive Hopfield models, revealing multistability and transient chaos, with 

practical applications demonstrated in image encryption [40]. Moreover, Dai and Wei 

(2024) demonstrated that pulsed currents applied to memristive Hopfield models could 

trigger transitions between chaotic and periodic behaviors, with the ability to tune multi-

scroll attractors [41]. 

1.2.4. Emerging Structures: Multi-Scroll and Hyperbolic-Type Memristors 

Lin et al. designed a memristor-based magnetized Hopfield neural network capable 

of generating an arbitrary number of scroll chaotic attractors through memristor control 

parameter tuning [42]. Li et al. (2023) further explored hyperbolic-type memristive Hop-

field neural networks, uncovering asymmetric attractor coexistence and applying the re-

sulting dynamics to robust color image encryption [43]. Finally, Min et al. (2025) analyzed 

coupled homogeneous Hopfield neural networks showing synchronization transitions 

dependent on initial conditions, supported by lightweight multiplierless circuit imple-

mentations [44], while Aghaei (2024) demonstrated how electromagnetic radiation can 

control chaotic dynamics within a two-neuron memristive Hopfield network [45]. 

1.3. Chaotic Integrative Synaptic Memory Network (CISMN) 

This paper introduces the CISMN, a new advancement in Chaotic Neural Network 

architecture that systematically embeds chaos theory into the core components of neural 

network design. Unlike traditional CHNNs, which apply chaotic dynamics in isolated or 

superficial ways, CISMN integrates chaos-driven mechanisms across four specialized lay-

ers—Chaotic Memory Cells, Chaotic Plasticity Layers, Chaotic Synapse Layers, and a Cha-

otic Attention Mechanism—to create a unified framework capable of modeling complex, 

non-linear, and non-stationary data with unprecedented adaptability. By treating chaos 

as a foundational design principle rather than an auxiliary tool, CISMN addresses critical 

limitations of conventional neural architectures, such as rigidity in memory retention, de-

terministic learning, and poor generalization in dynamic environments. 

1.4. Architectural Innovations and Novelty of CISMN 

1.4.1. Chaotic Memory Cells: A Paradigm Shift in State Retention 

Traditional recurrent architectures, such as Long Short-Term Memory (LSTM) net-

works, rely on fixed gating mechanisms to manage memory, often struggling with van-

ishing gradients or overly deterministic state updates. In contrast, CISMN’s Chaotic 

Memory Cells introduce a novel approach to memory retention by blending chaotic per-

turbations with historical states. Leveraging the logistic map, a cornerstone of chaos the-

ory, these cells dynamically update their internal states using a hybrid rule: 70% of the 

update is derived from chaotic dynamics, while 30% retains prior states. This “position 

memory” mode ensures that long-term dependencies are preserved while allowing con-

tinuous adaptation to new data patterns. 

The uniqueness of this mechanism lies in its ability to amplify minor differences in 

initial conditions, a hallmark of chaotic systems. For instance, in time-series forecasting, 

subtle variations in early data points propagate through the network’s memory states, 

enabling CISMN to model divergent outcomes accurately. Unlike LSTMs or GRUs, which 

use static sigmoid gates, Chaotic Memory Cells operate without rigid thresholds, fostering 

a fluid balance between stability and exploration. This design is particularly effective in 

applications such as financial market prediction, where small initial fluctuations in asset 

prices can lead to significantly different long-term trends. 
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1.4.2. Chaotic Plasticity and Synapse Layers: Dynamic Weight Exploration 

Conventional neural networks rely on backpropagation-driven weight updates, which 

follow deterministic gradients and often converge to suboptimal local minima. CISMN dis-

rupts this paradigm through its Chaotic Plasticity Layers, which inject controlled stochasticity 

into synaptic updates. These layers apply logistic map-driven chaos to dynamically perturb 

weights, enabling the network to escape local minima and explore a broader solution space. 

Similarly, Chaotic Synapse Layers modulate connection strengths in real time using chaotic 

feedback, mimicking the variability of biological synapses. 

These innovations have no direct precedent in prior architectures. While synaptic 

plasticity models, such as Spike-Timing-Dependent Plasticity (STDP), exist, they lack the 

integration of chaos theory. CISMN’s plasticity and synapse layers uniquely balance ex-

ploration and exploitation, making the network robust to noisy or shifting data distribu-

tions—a critical advantage in fields like biomedical signal processing, where sensor noise 

and non-stationary patterns are common. 

1.4.3. Chaotic Attention Mechanism: Context-Aware Feature Prioritization 

Attention mechanisms in models like Transformers assign static or rule-based im-

portance to input features. CISMN’s Chaotic Attention Mechanism revolutionizes this 

concept by dynamically modulating focus through high-resolution chaotic oscillations. A 

fixed chaotic seed generates non-repeating patterns that adjust attention weights in re-

sponse to the complexity of the input. For example, this mechanism amplifies critical fre-

quency bands while suppressing noise in acoustic signal analysis, outperforming tradi-

tional attention models that struggle with context-dependent relevance. 

This approach is distinct in its use of resolution scaling, where the chaotic intensity 

(“high” or “low”) dictates the granularity of feature prioritization. No existing architec-

ture combines chaotic dynamics with attention mechanisms, making this a unique inno-

vation for tasks that require adaptive focus, such as real-time anomaly detection in indus-

trial systems. 

1.4.4. Chaotic Learning Rate Schedule: Stability Through Bounded Chaos 

CISMN introduces the first implementation of a Chaotic Learning Rate Schedule, 

governed by a logistmap with a lower bound (eta, greater than or equal to 10 to the lower 

bound (η ≥  10−6) to prevent divergence). Unlike traditional schedules (e.g., step decay 

or cosine annealing), this mechanism introduces controlled randomness into optimiza-

tion, allowing the network to explore diverse solutions without destabilizing training. 

This innovation has no counterpart in prior work. While chaotic optimization algo-

rithms, such as Particle Swarm Optimization (PSO), exist, they are metaheuristics, not in-

tegrated into neural learning rates. 

1.4.5. Mitigating Sensitivity to Initial Conditions 

A hallmark of chaotic systems is their sensitivity to initial conditions—the butterfly 

effect. While CISMN leverages this property to enhance exploration and adaptability, it 

incorporates deliberate design safeguards to ensure stability and reproducibility. First, 

chaotic components (e.g., memory cells, plasticity layers) are initialized within con-

strained value ranges (e.g. [0.4, 0.6]) and fixed random seeds to anchor initial states. Sec-

ond, the architecture blends chaotic dynamics with deterministic retention mechanisms. 

For instance, Chaotic Memory Cells (Section 1.4.1) combine 70% logistic map-driven up-

dates with 30% historical state persistence (Equation (6)), ensuring bounded trajectories 

while preserving sensitivity to input perturbations. Similarly, the Chaotic Learning Rate 

Schedule (Section 1.4.4) imposes a lower bound (𝜂 ≥ 10−6) to prevent divergence. Hy-
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perparameters such as the logistic map’s bifurcation parameter (𝑟 = 3.7– 3.9) were empir-

ically tuned to balance chaotic exploration with stable convergence, avoiding regimes of 

excessive instability (e.g., 𝑟 > 4.0). These strategies and deterministic training protocols 

(Section 2.2.10) ensure that CISMN harnesses chaos as a structured exploration tool rather 

than an uncontrolled perturbation, achieving a reproducible performance across runs. 

1.5. Limitations of Traditional Machine Learning Architectures 

Traditional machine learning architectures, including feedforward neural networks 

(FNNs), recurrent neural networks (RNNs), and LSTM networks, have succeeded in struc-

tured or stationary data environments. However, their rigid, deterministic designs strug-

gle with complex, non-linear systems, particularly those sensitive to initial conditions or 

characterized by chaotic dynamics. Below, we dissect these limitations and contrast them 

with CISMN’s chaos-driven solutions. The key limitations of traditional machine learning 

architectures are as follows: 

1. Overfitting and Poor Generalization: Traditional networks rely on fixed-weight up-

dates driven by backpropagation, which often converge to local minima in non-con-

vex loss landscapes. For example, FNNs trained on noisy datasets (e.g., financial time 

series) tend to overfit spurious patterns, failing to generalize to unseen market re-

gimes [44]. While regularization techniques like dropout mitigate this, they introduce 

artificial noise rather than leveraging data-inherent stochasticity. In contrast, 

CISMN’s Chaotic Plasticity Layers inject structured chaos into weight updates, acting 

as dynamic regularizers that explore diverse solutions while preserving meaningful 

patterns. 

2. Vanishing and Exploding Gradients: RNNs and LSTMs are prone to gradient insta-

bility when modeling long sequences. For instance, in climate modeling, LSTMs often 

fail to retain early warning signals (e.g., minor temperature fluctuations) due to di-

minishing gradients over time [46]. While residual connections or gradient clipping 

offer partial fixes, they do not address the root cause: deterministic state transitions. 

CISMN’s Chaotic Memory Cells circumvent this by replacing gradient-based state 

updates with logistic map-driven chaos. By blending 70% chaotic perturbations with 

30% historical states, they preserve critical long-term dependencies without relying 

on error backpropagation. 

3. Deterministic Learning Dynamics: Traditional architectures employ fixed learning 

rates or rule-based schedules (e.g., Adam’s adaptive moments), which lack the flexi-

bility to adapt to non-stationary data. For example, CNNs trained on evolving image 

datasets (e.g., satellite imagery of deforestation) struggle to adjust to seasonal or ab-

rupt environmental changes [47] CISMN’s Chaotic Learning Rate Schedule, gov-

erned by bounded logistic maps (r = 3.9), introduces controlled stochasticity into op-

timization. This enables the adaptive exploration of solution spaces and ensures ro-

bustness to distribution shifts, which is essential in applications such as real-time 

sensor networks. 

4. Rigid Memory and Attention Mechanisms: LSTMs and transformers utilize static 

gates or attention weights, which limit their ability to prioritize contextually relevant 

features in chaotic systems. For instance, traditional attention layers often fail to am-

plify transient frequency bands dynamically masked by noise in acoustic signal pro-

cessing. CISMN’s Chaotic Attention Mechanism addresses this by modulating focus 

through high-resolution chaotic oscillations, enabling real-time adaptation to the 

complexity of the input. 
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1.6. How CISMN Overcomes These Limitations 

CISMN’s architecture directly targets these gaps, offering a framework where chaos 

is not a problem to suppress, but a feature to harness. By integrating chaotic dynamics 

into memory, learning, and attention, CISMN bridges the divide between theoretical 

chaos theory and practical machine learning, enabling the robust modeling of real-world 

complexity. 

The CISMN addresses these limitations by incorporating chaotic dynamics, which 

provide several key advantages: 

1. Improved Generalization through Chaotic Dynamics: The CISMN leverages chaotic 

plasticity and synapse layers to introduce non-deterministic updates, preventing the 

network from overfitting. Chaotic updates enable the model to escape local minima 

more effectively, improving its generalization ability for unseen data [13]. This fea-

ture ensures that the CISMN does not become stuck in suboptimal solutions and can 

explore a broader range of possible outcomes. 

2. Enhanced Long-Term Dependency Retention: The Chaotic Memory Cells in the 

CISMN enable the network to capture long-term dependencies more effectively than 

traditional RNNs. Unlike LSTMs, which can suffer from vanishing gradients, chaotic 

memory cells continuously update their internal states based on chaotic dynamics, 

ensuring that long-term information is preserved and influencing future states [48]. 

This makes the CISMN particularly effective for tasks such as time-series forecasting, 

where the system’s current state depends heavily on previous inputs. 

3. Non-Linear Adaptation with Chaotic Learning Rates: CISMN’s Chaotic Learning 

Rate Schedules dynamically adjust the learning rate based on chaotic patterns, allow-

ing the network to adapt to changes in the data distribution over time. Traditional 

architectures often employ fixed learning rates, which can result in slow convergence 

or overfitting. In contrast, chaotic learning rates provide a flexible mechanism that 

enables the CISMN to explore a broader solution space and adapt to new information 

as it becomes available [48]. 

4. Dynamic Attention Mechanisms: Traditional attention mechanisms focus on assign-

ing fixed relevance to input features; however, the CISMN’s Chaotic Attention Mech-

anism offers a more flexible approach. By dynamically adjusting attention weights 

based on chaotic dynamics, the CISMN can adapt to varying inputs more effectively, 

improving its performance in tasks requiring flexible focus, such as real-time data 

analysis and image processing [49]. 

The CISMN offers a powerful new approach to overcoming the limitations of tradi-

tional machine learning architectures, particularly in problems involving strong depend-

encies on initial conditions. The CISMN provides a flexible, adaptive solution that can 

better handle complex, non-linear, and dynamic data by integrating chaotic dynamics into 

memory, plasticity, synapse, and attention mechanisms. Its ability to continuously adapt 

and generalize across different tasks positions the CISMN as a valuable tool for advancing 

machine learning research and applications, particularly in fields requiring robust models 

for time-sensitive and evolving data. 

2. Materials and Methods 

This section outlines the methodology behind the CISMN. The code integrates chaotic 

dynamics into neural network components, including memory cells, plasticity, synapses, at-

tention, and learning rate schedules. Each component introduces mathematical and dynamic 

concepts rooted in chaos theory to enhance the network’s learning capabilities. Below is a de-

tailed explanation of each methodology part, including its mathematical foundation and con-

tribution to the overall architecture. Also, the flowchart of the developed CISMN is shown in 
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Figure 1. It illustrates the architecture, including input preprocessing, chaotic layers (Memory, 

Plasticity, Synapse, Attention), and the Chaotic Learning Rate Schedule linked to the Adam 

Optimizer. A decision block checks if training should continue based on the Loss Function 

(MAE), and the process ends when the criteria are met. 

 

Figure 1. The authors presented a flowchart of the developed CISMN architecture, featuring chaotic 

layers and a dynamic training process. 

2.1. Theoretical Foundations 

Integrating chaos theory into neural network architectures, such as the Chaotic Dy-

namic Neural Network, profoundly enhances the model’s ability to navigate complex, 

high-dimensional solution spaces. Chaos theory, characterized by its focus on systems 

that exhibit sensitive dependence on initial conditions, introduces non-linear and dynamic 

behaviors that can significantly improve the neural network performance. This subsection 

elucidates the theoretical underpinnings of chaos integration in multiple components of 
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the CISMN, highlighting how chaotic dynamics contribute to exploration in the solution 

space, enhance memory retention, and improve adaptability. 

2.1.1. Exploration in the Solution Space 

Traditional neural networks often rely on gradient-based optimization techniques 

that can become trapped in local minima, especially in non-convex loss landscapes typical 

of deep learning models. CISMN introduces stochasticity and non-linearity by incorpo-

rating chaotic dynamics into the network’s learning process. Chaotic systems, such as 

those governed by the logistic map, exhibit inherent unpredictability and periodicity, al-

lowing the network to explore a broader range of solutions during training. This enhanced 

exploration capability helps the model escape local minima, facilitating the discovery of 

more optimal and diverse solutions. The chaotic updates act as dynamic regularization, 

preventing the network from converging prematurely and promoting a more thorough 

search of the solution space [50]. 

2.1.2. Enhanced Memory Retention 

Memory retention is crucial for tasks involving long-term dependencies, such as 

time-series forecasting and sequential data analysis. Traditional RNNs, including LSTM 

networks, utilize gated mechanisms to manage information flow and retain relevant his-

torical data. However, these mechanisms can suffer from issues like vanishing gradients, 

limiting their effectiveness in capturing extended temporal dependencies [46]. 

CISMN addresses this limitation through its Chaotic Memory Cells, which leverage 

chaotic dynamics to maintain and update internal states. The sensitive dependence on 

initial conditions inherent in chaotic systems ensures that even minor variations in input 

data can lead to significant and diverse updates in the internal state. This property enables 

the network to retain and amplify critical information over longer sequences, enhancing 

its capacity to model complex temporal dependencies. The chaotic updates provide a rich, 

non-linear transformation of the internal state, allowing the memory cells to capture intri-

cate patterns that static or deterministic mechanisms might miss [49]. 

2.1.3. Improved Adaptability 

Adaptability refers to a model’s ability to adjust to new, unseen data distributions 

and evolving patterns without extensive retraining. Traditional neural networks often em-

ploy fixed learning rates and deterministic weight update rules, which can limit their flex-

ibility in dynamic environments. CISMN enhances adaptability by integrating chaotic dy-

namics into various layers, such as Chaotic Plasticity Layers and Chaotic Synapse Layers. 

The Chaotic Plasticity Layer modulates weight updates based on chaotic patterns, 

introducing non-linear and fluctuating adjustments that allow the network to adapt more 

fluidly to changes in data distributions. This dynamic adjustment process prevents the 

network from becoming rigid, allowing it to respond more effectively to new information. 

Similarly, the Chaotic Synapse Layer introduces variability in synaptic weights through 

chaotic fluctuations, which can enhance the network’s ability to generalize across diverse 

data inputs and prevent overfitting by maintaining stochasticity in the weight configura-

tions [13]. 

2.1.4. Facilitating Robust Generalization 

Generalization is the ability of a neural network to perform well on unseen data. By 

embedding chaotic dynamics into multiple components of the network, the CISMN pro-

motes robustness in generalization. The unpredictable chaos ensures the network does 

not rely solely on deterministic pathways, reducing the risk of overfitting training data. 
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Instead, the network learns to recognize and adapt to consistent patterns across different 

data samples, enhancing its performance on diverse and complex datasets [48]. 

2.1.5. Synergistic Effects of Multi-Component Integration 

The integration of chaos across multiple layers and components in the CISMN creates 

synergistic effects that amplify the benefits of chaotic dynamics. For instance, the combi-

nation of Chaotic Memory Cells and Chaotic Attention Mechanisms allows the network 

to selectively focus on and retain important information while dynamically adjusting its 

focus based on chaotic modulation. This multi-faceted approach ensures that chaos con-

tributes not just in isolated parts of the network, but throughout the learning and pro-

cessing pipeline, resulting in a more cohesive and powerful architecture [49]. 

2.2. Mathematical Foundations and Stability Considerations 

Mathematically, the incorporation of chaotic maps like the logistic map introduces 

non-linear transformations that enhance the expressiveness of the network. The logistic 

map is defined as in Equation (1): 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) (1) 

where 𝑟 is a control parameter that exhibits chaotic behavior for certain values of 𝑟 (typ-

ically between 3.57 and 4.0). This non-linearity allows the network to model complex, non-

stationary data patterns that linear models cannot capture effectively. 

However, the sensitive dependence on initial conditions in chaotic systems also in-

troduces challenges related to stability and predictability. To mitigate potential instability 

during training, the CISMN employs mechanisms such as blending chaotic updates with 

previous states (e.g., 𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 = 0.7 × 𝑐ℎ𝑎𝑜𝑡𝑖𝑐_𝑢𝑝𝑑𝑎𝑡𝑒 + 0.3 × 𝑠𝑒𝑙𝑓. 𝑠𝑡𝑎𝑡𝑒  in cha-

otic Memory Cells) and applying constraints to chaotic factors (e.g., limiting the learning 

rate). These strategies ensure that while the network benefits from chaotic exploration and 

adaptability, it maintains a level of control that prevents divergence and ensures stable 

convergence during training [13]. 

2.2.1. Data Preprocessing and Feature Scaling 

Data preprocessing is a critical first step in preparing the dataset for training. The 

features are scaled using StandardScaler, which transforms the input data to have zero 

mean and unit variance. This is crucial for ensuring that the inputs to the neural network 

are normalized, thereby improving the network’s performance and convergence rate. The 

equation for normalization is given below in Equation (2). 

𝑥′ =
𝑥 − 𝜇

𝜎
 (2) 

where 𝑥 is a feature, 𝜇 is the mean, and 𝜎 is the standard deviation of the feature. This 

ensures that all features are on a comparable scale, preventing any single feature from 

dominating the learning process due to differences in [51]. 

2.2.2. Chaotic Activation Function 

The proposed chaotic activation function is implemented using the logistic map, a 

well-known dynamical system that exhibits deterministic chaos. The function is defined 

in Equation (3): 

𝑓(𝑥)  =  𝑟  𝑥 (1 −  𝑥) (3) 

where x is the input and 𝑟 = 3.9 is a control parameter that ensures chaotic dynamics [1]. 

This corresponds to the chaotic_pattern() function in the code: 

def chaotic_pattern(x, r = 3.9): 
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return r  x  (1 − x) 

• For normalized inputs 𝑥 ∈ [0,1], the output is bounded to 

𝑓(𝑥) ∈ [0,
𝑟

4
] (4) 

At 𝑟 = 3.9, the maximum output is 0.975, ensuring stable numerical behavior in neu-

ral networks. Unnormalized inputs (𝑥 ∉ [0,1]) can lead to divergence, necessitating pre-

processing (e.g., sigmoid or min–max scaling). 

• Derivative for Backpropagation: the derivative of 𝑓(𝑥) , critical for gradient-based 

optimization, is 

𝑑𝑓

𝑑𝑥
 =  𝑟 (1 − 2𝑥) (5) 

This non-monotonic derivative allows positive and negative gradients, contrasting 

with traditional activations like ReLU or sigmoid. 

• Chaotic Regime: The parameter 𝑟 = 3.9 places the system in the chaotic regime of the 

logistic map(𝑟 ∈ [3.57, 4]) , where trajectories are aperiodic and sensitive to initial 

conditions [52,53]. This choice is deliberate, as smaller r values (e.g., 𝑟 < 3.57) yield 

periodic or stable fixed-point behavior that is unsuitable for chaotic activation. 

• Advantages Over Traditional Activations 

Unlike saturating functions such as the sigmoid, the chaotic activation preserves gra-

dient magnitude across a broader input range (|𝑑𝑓/𝑑𝑥|  ≤  3.9) and introduces determin-

istic yet stochastic-like variability through chaos, potentially avoiding local minima dur-

ing training. 

2.2.3. Chaotic Memory Cells 

Chaotic Memory Cells (CMCs) introduce non-linear dynamical systems theory into 

neural network architecture through a biologically inspired memory mechanism. Unlike 

conventional recurrent units that employ gated temporal filtering (e.g., LSTMs [46] or 

GRUs) [54] CMCs leverage chaotic dynamics to maintain long-term dependencies while 

preserving sensitivity to input perturbations. The core innovation lies in using chaotic at-

tractors as a mechanism for state transitions, enabling the network to retain information 

through metastable states in the chaotic regime. A convex combination of chaotic dynam-

ics and exponential decay governs the CMC state update: 

𝑠𝑡+1 = 𝛼 ⋅ 𝑐ℎ𝑎𝑜𝑡𝑖𝑐_𝑝𝑎𝑡𝑡𝑒𝑟𝑛(𝑠𝑡) + (1 − 𝛼) ⋅ 𝑠𝑡 (6) 

where 𝐶(𝑠𝑡) = 𝑟 ⋅ 𝑠𝑡 ⋅ (1 − 𝑠𝑡) represents the logistic map [53] with chaos parameter 𝑟 ∈

 (3.57, 4], and 𝛼 ∈  [0, 1] controls memory retention. This formulation emerges from the 

discretization of coupled chaotic oscillators [55], where the second term introduces 

memory persistence through linear decay. 

• Lyapunov Stability Analysis: The Lyapunov exponent λ, which quantifies system 

sensitivity to initial conditions, is derived from the Jacobian of Equation (4): 

𝜆 =  lim
𝑇→∞

(
1

𝑇
) ∑ ln | 𝛼𝑟 (1 −  2𝑇−1

𝑡 = 0 𝑠𝑡)  + (1 −  𝛼)|   (7) 

For r = 3.9 and α = 0.7, as implemented, numerical simulations yield λ > 0, confirming 

chaotic behavior. The positive Lyapunov exponent ensures both sensitivity to input vari-

ations (through the C(𝑠𝑡) term) and structural stability (via the decay term) [52]. 

• Boundedness Proof: if 𝑠𝑡  ∈  [0 , 1] ∀𝑡, then: 

1. Base case: 𝑠0  ∈  [0 , 1] by initialization 

2. Inductive step: 
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𝑠𝑡+1 =  𝛼𝑟𝑠𝑡 (1 − 𝑠𝑡)  + (1 −  𝛼) 𝑠𝑡  =  𝑠𝑡 [1 −   𝛼 +   𝛼𝑟 (1 − 𝑠𝑡)] (8) 

Since 𝑚𝑎𝑥𝑠𝑡 𝑟𝑠𝑡(1 − 𝑠𝑡 )  =  
𝑟

4
 ≤  0.975 𝑓𝑜𝑟 𝑟 =  3.9, 𝑠𝑡 + 1 ≤  𝑠𝑡 [1 − 𝛼 +

 0.975𝛼]  ≤  𝑠𝑡  ≤ 1. 

The lower bound follows similarly. Thus, by induction, 𝑠𝑡  ∈  [0 , 1] ∀𝑡. 

• Theoretical Advantages: ergodic memory is achieved as the chaotic attractor pro-

vides dense coverage of phase space [56], enabling finite states to approximate infi-

nite trajectories; controllable chaos is introduced through the α parameter, which per-

mits tuning between chaotic exploration (α→1) and linear exploitation (α→0); and 

structural stability is maintained by the decay term, which ensures bounded outputs 

despite positive Lyapunov exponents (Theorem 2.1). 

• Mathematical Proof of Gradient Preservation: 

1. Non-Chain Rule Updates: Traditional RNNs compute gradients via 
𝜕𝑠𝑡

𝜕𝑠𝑡−1
, lead-

ing to exponential decay when ∣
𝜕𝑠𝑡

𝜕𝑠𝑡−1
∣< 1. CMCs bypass this by using chaotic 

updates where 
𝜕𝑠𝑡+1

𝜕𝑠𝑡
= 𝛼𝑟(1 − 2𝑠𝑡) + (1 − 𝛼). 

2. Bounded Gradient Magnitude: 

For 𝛼 = 0.7, 𝑟 = 3.8, and 𝑠𝑡 ∈ [0,1]: 

∣
𝜕𝑠𝑡 + 1

𝜕𝑠𝑡
∣< 0.7 ×  3.8 ×  1 +  0.3 =  2.96 (9) 

This upper bound prevents gradient vanishing while chaotic oscillations avoid ex-

plosion. 

• Experimental Validation and Parameter Sensitivity Analysis 

To validate the theoretically derived blending parameter (α = 0.7), we conducted a 

systematic sensitivity analysis across α values ranging from 0.1 to 1.0 in increments of 

0.05. This investigation sought to evaluate the interplay between chaotic exploration and 

memory retention, align the empirical performance with theoretical stability guarantees, 

and reconcile the parameter choice with neurobiological principles (Table 1 and Figure 

2). 

Table 1. Performance metrics across α values (0.1–1.0, Δα = 0.05) for the chaotic memory cell. 

Alpha R2 RMSE Final Loss 

0.1 −1.79297 0.196774 0.653525 

0.15 −8.34314 0.350046 0.651268 

0.2 −1.51825 0.208668 0.623779 

0.25 −5.33892 0.297703 0.656328 

0.3 −5.25213 0.293758 0.64253 

0.35 −1.97984 0.202356 0.642393 

0.4 0.622074 0.075471 0.490023 

0.45 0.687232 0.06866 0.506099 

0.5 −1.00124 0.17634 0.659775 

0.55 −2.11896 0.242429 0.670918 

0.6 0.742164 0.062655 0.444268 

0.65 0.739874 0.06353 0.477549 

0.7 0.73187 0.064402 0.468328 

0.75 0.760107 0.061338 0.44072 

0.8 0.728616 0.064099 0.46311 

0.85 0.751888 0.062691 0.449238 

0.9 0.721277 0.065154 0.503681 

0.95 0.709328 0.06582 0.464276 
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Figure 2. Sensitivity of R2 and RMSE to the chaotic memory blending ratio (α). 

The analysis revealed a nonlinear relationship between α and the model perfor-

mance. For α < 0.4, the model exhibited unstable behavior and negative R2 values, reflect-

ing insufficient chaotic dynamics to escape local minima. Performance improved mark-

edly as α increased, peaking at α = 0.75 (R2 = 0.76, RMSE = 0.061). However, our theoreti-

cally guided choice of α = 0.7 achieved near-optimal results (R2 = 0.73, RMSE = 0.064)—

96% of the peak performance—while adhering to Lyapunov stability constraints (λ ≈ 0.31 

> 0) and bounded state trajectories (Equation (8)). 

The retained α = 0.7 balances two critical requirements: 

1. Chaotic exploration (70% weight) to perturb memory states and avoid gradient stag-

nation. 

2. Memory retention (30% weight) to preserve long-term dependencies, mirroring syn-

aptic update ratios observed in biological neural systems, where ~30% of prior syn-

aptic efficacy persists during plasticity updates. 

This hybrid mechanism outperformed traditional recurrent architectures (Section 

3.3) by maintaining sensitivity to input perturbations while preventing runaway chaos. 

The robustness of the design is further evidenced by a stable performance across α = 0.6–

0.85 (ΔR2 < 0.04), demonstrating resilience to parameter variations. 

2.2.4. Chaotic Plasticity Layer 

The Chaotic Plasticity Layer (CPL) operationalizes neurobiological principles of syn-

aptic plasticity through chaotic dynamics, creating a continuum between Hebbian learn-

ing [57] and chaotic exploration. Unlike conventional weight updates driven solely by 

gradient descent, the CPL introduces autonomous weight modulation governed by the 

logistic map, enabling the stochastic exploration of the parameter space without compro-

mising the deterministic differentiability. 

In a mathematical representation, if 𝑊 ∈  𝑅𝑛×𝑚 denote the weight matrix and 𝑐 ∈

 𝑅𝑚  a chaotic carrier signal, the synaptic update rule combines gradient-based learning 

with chaotic modulation: 

𝑤𝑡+1  =  𝑤𝑡  +  𝜂 ⊙ 𝐶(𝑐𝑡) (10) 

where 𝐶 (𝑐𝑡)  =  𝑟. 𝑐𝑡  ⊙ (1 − 𝑐𝑡) implements the logistic map applied element-wise, η = 

0.01η = 0.01 is the chaotic learning rate, and ⊙ denotes the Hadamard product. The chaotic 
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carrier 𝑐𝑡 is initialized from 𝑁(0,1) and remains phase-locked to the weight matrix di-

mensions. 

• Stability-Convergence Duality: The update rule induces a stochastic process describ-

able through the Fokker–Planck equation [58]: 

𝜕𝑃(𝑊, 𝑡)

𝜕𝑡
 =  −𝛻. [ −𝜂𝐶(𝑐𝑡)⏟    

𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝐷𝑟𝑖𝑓𝑡

 𝑃(𝑊, 𝑡)]  + 𝐷⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

 ∇2  𝑃 (𝑊, 𝑡) (11) 

where 𝑃(𝑊, 𝑡)  is the weight distribution and 𝐷  the diffusion coefficient from gradient 

updates. The chaotic drift term provides 

1. An Exploration–Exploitation Balance: the attractor basin [0,1]𝑚 bounds weight per-

turbations while allowing transient chaos. 

2. Ergodicity: chaotic trajectories densely cover the invariant measure 𝜇(𝑐), ensuring 

probabilistic weight exploration [59]. 

• Fixed-Point Analysis: an equilibrium occurs when 𝐶(𝑐𝑡)  =  0, solved by: 

1. A trivial solution: 𝑐𝑡  =  0. 

2. A chaotic solution: 𝑐𝑡  =  1 − 
1

𝑟
. 

For 𝑟 = 3.85 , the non-trivial fixed point 𝑐∗ ≈  0.74  creates persistent oscillations, 

preventing premature convergence. The Jacobian spectral radius 𝜌(𝐽) 𝑎𝑡 𝑐∗: 

𝜌(𝐽) =  max
𝑖
|𝑟 (1 −  2𝑐∗|  =  3.85 ×  0.48 ≈  1.85 > 1 (12) 

confirms instability, ensuring continuous non-periodic updates. 

• Theoretical Advantages: local minima escape is facilitated by the Lyapunov time 𝜏 ≈

 
1

𝜆
 𝑙𝑛 (𝛿−1) [50], which sets the timescale for perturbation-driven transitions out of 

suboptimal basins; spectral richness is achieved through the chaotic power spectrum 

𝑆(𝜔) ∝  𝜔−𝛽 with  𝛽 ∈ (1,2) [60], offering noise robustness via pink-noise scaling; 

and metaplasticity emerges as chaotic traces in 𝑐 emulate short-term synaptic facili-

tation, modulating future weight updates. 

2.2.5. Chaotic Synapse Layer 

The Chaotic Synapse Layer (CSL) implements autonomous weight volatility inspired 

by stochastic resonance phenomena in biological neural systems. By coupling synaptic 

transmission with chaotic dynamics, the layer achieves noise-enhanced signal processing 

while maintaining end-to-end differentiability, resolving the classical tradeoff between 

exploratory noise injection and gradient stability. The Chaotic Synapse Layer (CSL) intro-

duces weight volatility through autonomous chaotic dynamics. If 𝑊 ∈  𝑅𝑑 𝑖𝑛 ×𝑑 𝑜𝑢𝑡  de-

note the synaptic weight matrix and 𝜉 ∈  𝑅𝑑 𝑜𝑢𝑡 a chaotic modulator vector initialized uni-

formly in [0,1], the layer implements 

𝑧𝑡  =  𝑥𝑡 𝑊𝑡    (Forward pass) (13) 

𝑊𝑡+1  =  𝑊𝑡  +  𝛾 . 𝐶 (𝜉𝑡)    (Chaotic update) (14) 

where 𝐶 (𝜉𝑡)  =  𝑟 𝜉𝑡 (1 − 𝜉𝑡) (logistic map) with 𝑟 = 3.9, and γ = 0.001. 

• Stochastic Resonance Analysis: The signal-to-noise ratio (SNR) for input 𝑥𝑡: 

𝑆𝑁𝑅 ∝  
||𝑤𝑥𝑡||

2

𝛾2𝑉𝑎𝑟(𝐶(𝜉))
 (15) 

For 𝑟 = 3.9, numerical integration gives 𝑉𝑎𝑟(𝐶(𝜉))  ≈  0.042. With γ = 0.001, chaotic 

noise is suppressed by ~ 10−6, preserving signal fidelity while enabling exploration [52]. 

• Lyapunov Exponent: The maximal Lyapunov exponent for ξ: 
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𝜆 =  lim
𝑇→∞

(
1

𝑇
) ∑ ln | 𝑟(1 −  2 𝜉𝑡) 

𝑇−1
𝑡 = 0 |  (16) 

For r = 3.9, λ ≈ 0.49 > 0, confirming chaotic behavior. 

• Theoretical Advantages: persistent exploration is maintained as positive 𝜆 ensures 

continuous weight perturbations to escape local minima; controlled volatility is 

achieved through a small 𝛾, which bounds cumulative weight changes to approxi-

mately 0.1% per step; input–output decoupling is preserved by applying chaotic up-

dates solely to the output dimensions (shape = (units,)), thereby avoiding input cor-

ruption. 

2.2.6. Chaotic Attention Mechanism 

The Chaotic Attention Mechanism (CAM) introduces nonlinear dynamical control 

over feature saliency, combining chaotic modulation with sigmoidal gating to enable met-

astable attention states. Unlike conventional attention mechanisms that rely on learned 

query–key correlations [47], the CAM generates attention weights through autonomous 

chaotic dynamics, providing noise-robust feature selection aligned with the input’s spec-

tral characteristics. In a mathematical representation, if 𝜉 ∈  𝑅𝑑 is a chaotic seed vector 

initialized from 𝑈(0,1)  and 𝑊 ∈  𝑅𝑑 𝑖𝑛 × 𝑑 𝑜𝑢𝑡 , 𝑏 ∈  𝑅𝑑 𝑜𝑢𝑡  are learnable parameters, the 

attention weights are derived from: 

𝜉𝑡+1  =  𝑟. 𝜉𝑡 ⊙ (1 − 𝜉𝑡)      (Logistic map) (17) 

𝑎𝑡  =  𝜎 (𝑠 . 𝜉𝑡+1 )      (Sigmoidal gating) (18) 

where 𝜎(⋅) is the sigmoid function and resolution scaling 𝑠 ∈ {0.5,2.0}. The attended out-

put becomes 

𝑧𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑  =  𝑎𝑡  ⊙ (𝑊𝑥 +  𝑏) (19) 

For dynamical system analysis: 

1. Boundedness: For 𝜉0  ∈  [0,1]
𝑑: 

• Chaotic bounds: ξt ∈ [0,1] ∀t (invariant under the logistic map). 

• Sigmoid bounds: at ∈ (0,1)
d ∀s (via σ(⋅)). 

2. Spectral Sensitivity: The resolution parameter modulates the power distribution: 

• Low-res (𝑠 = 0.5): attenuates high-frequency chaotic fluctuations. 

• High-res (𝑠 = 2.0): amplifies transient chaos for fine feature selection. 

3. Jacobian Spectrum: The attention gradient 𝐽 =  
𝜕𝑎𝑡

𝜕𝜉0
 

𝐽𝑖𝑖  =  𝑠. 𝜎 (𝑠𝜉𝑖)). 𝑟 (1 −  2𝜉𝑖) (20) 

The eigenvalues 𝜆𝑖 ∈ [−𝑠𝑟/4, 𝑠𝑟/4], ensuring a bounded gradient explosion. 

• Theoretical Advantages: noise robustness arises as chaotic fluctuations mask adver-

sarial perturbations while preserving the accurate signal through 𝜎(⋅) -bounded 

weights; adaptive timescales emerge from the Lyapunov time 𝜏 ∝ 1/𝜆, enabling in-

termittent attention focusing [61]; and the entropic capacity is enhanced, with maxi-

mum entropy 𝐻(𝑎𝑡) ≈ 0.94 bits per dimension (at 𝑠 = 1.0), surpassing that of soft-

max-based attention [54]. 

2.2.7. Chaotic Learning Rate Schedule 

The Chaotic Learning Rate Schedule (CLRS) dynamically modulates the learning rate 

𝜂𝑡 during training using the logistic map, introducing controlled stochasticity to balance 
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exploration and exploitation in a parameter space. Unlike conventional schedules, CLRS 

leverages iterative chaotic dynamics governed by: 

𝜂𝑡  =  𝑚𝑎𝑥 (𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . 𝐶𝑡 , 𝜂𝑚𝑖𝑛 ) 𝑤ℎ𝑒𝑟𝑒 𝐶𝑡+1  =  𝑟. 𝐶𝑡 . (1 −  𝐶𝑡) (21) 

• Chaotic Dynamics: The logistic map (𝑟 =  3.9) iteratively updates  𝐶𝑡 at each train-

ing step, starting from  𝐶0 =  0.5. This generates bounded, non-periodic trajectories 

 𝐶𝑡  ∈  [0,1] while maintaining sensitivity to initial conditions. 

• Stability Constraints: 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  0.0003  and 𝜂𝑚𝑖𝑛 = 10
−6  prevent divergence by 

imposing lower/upper bounds. 

• Theoretical and Empirical Validation 

1. Lyapunov Exponent: for 𝑟 =  3.9, the maximal Lyapunov exponent is 

𝜆 =  lim
𝑇→∞

(
1

𝑇
) ∑ ln | 𝑟(1 −  2 𝑐𝑡) 

𝑇−1
𝑡 = 0 |  ≈  0.49 >  0   (22) 

confirming chaotic behavior. 

2. Bounded Exploration: the learning rate fluctuates chaotically within 𝜂𝑡 ∈

 [ 10−6, 0.000975], enabling escape from local minima while ensuring numerical stability. 

3. Reproducibility: fixed initialization (𝑐0  =  0.5 ) and TensorFlow’s deterministic 

training protocols ensure consistent chaotic trajectories across runs. 

• Implementation in CISMN 

1. Dynamic Updates: at each training step, 𝑐𝑡 evolves via the logistic map, ensur-

ing non-repeating and the chaotic modulation of 𝜂𝑡 . 

2. Empirical Impact: post-revision experiments show that chaotic 𝜂𝑡  improves ex-

ploration, boosting R2 by ~1.2% on synthetic acoustics data compared to fixed-

rate baselines. 

2.2.8. Neural Network Architecture 

The complete architecture combines these chaotic components into a deep feedfor-

ward network. Several hidden layers follow the input layer, each incorporating one or 

more chaotic elements. These hidden layers consist of dense, chaotic memory cells, chaotic 

plasticity layers, and chaotic synapse layers. The final output layer is dense and features 

a linear activation function suitable for regression tasks. 

The architecture uses LeakyReLU as an activation function after each chaotic layer to 

introduce non-linearity and Batch Normalization to stabilize training by normalizing the 

output of each layer. Dropout layers are added to prevent overfitting by randomly disa-

bling a fraction of neurons during training [62]. 

2.2.9. Hyperparameter Selection 

The chaotic parameter r in the logistic map, which controls the chaotic dynamics, 

plays a crucial role in determining the performance of each layer. Typically, r values be-

tween 3.7 and 4.0 induce chaos [63]. In this model, different r values were chosen for dif-

ferent layers to balance chaos and stability. For example, chaotic memory cells use r = 3.8, 

which ensures moderate chaos, while the chaotic synapse layers use r = 3.7 to maintain 

more controlled variability. 

Choosing the right r values is essential, as too much chaos can lead to instability, 

while too little can reduce the network’s adaptability. These values were selected through 

empirical testing and hyperparameter tuning. 
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2.2.10. Reproducibility Assurance in CISMN 

Due to their nonlinear dynamics, CISMN architectures inherently face reproducibil-

ity challenges. To address this, we developed a systematic framework that ensures repro-

ducibility while preserving the model’s core chaotic behavior. Our methodology com-

bines three strategies: controlled chaotic initialization, deterministic training protocols, 

and the mathematical stabilization of chaotic patterns. 

1. Controlled Initialization: All chaotic components (memory cells, plasticity modules, 

and attention mechanisms) were initialized with fixed random seeds (seed = 42) and 

constrained value ranges. Chaotic factors were initialized between 0.4 and 0.6 using 

TensorFlow’s RandomUniform to maintain the logistic map’s chaotic regime (r = 3.7–

3.9). Weight matrices employed Glorot initialization with identical seeds to stabilize 

early training dynamics. 

2. Deterministic Training: We enforced reproducibility through TensorFlow’s global 

random seed (tf.keras.utils.set_random_seed(42)) and GPU operation determinism 

(tf.config.experimental.enable_op_determinism()). This controlled randomness in 

dropout layers and weight updates while retaining chaotic signal propagation. The 

learning rate schedule used fixed initial chaotic factors (0.5) with documented mod-

ulation (r = 3.9) to ensure consistent training trajectories. 

3. Chaotic Stabilization: Mathematical constraints prevented divergence: memory cells 

blended a 30% historical state with 70% chaotic updates, while synaptic layers lim-

ited weight perturbations to 0.1% of their values. These mechanisms preserved cha-

otic dynamics essential for modeling acoustic relationships while ensuring numerical 

stability. 

4. Experimental Validation: Across 20 independent runs, the framework demonstrated 

strong reproducibility: 

• Validation MAE: 0.330 ± 0.004 (mean ± SD, 1.2% relative variation). 

• Performance Range: 0.324–0.338 MAE (maximum Δ = 0.0146). 

• Convergence Consistency: all runs stabilized within 120–140 epochs (Figure 3). 

 

Figure 3. Validation MAE trajectories across 20 runs show consistent convergence over 140 epochs, 

demonstrating reproducible chaotic dynamics. 

Validation Mean Absolute Error (MAE) trajectories across 20 independent training 

runs were plotted over 140 epochs. The tightly clustered curves demonstrate consistent 
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convergence behavior, stabilizing MAE between 1.5 and 14.0. This low inter-run variabil-

ity highlights the effectiveness of the implemented reproducibility framework in main-

taining stable chaotic dynamics while minimizing uncontrolled stochasticity. A final eval-

uation on held-out test data confirmed the robust performance: 

• Test MAE: 0.368. 

• R2: 0.769. 

• RMSE: 0.061. 

This approach resolves the reproducibility challenge in chaotic networks by distin-

guishing beneficial chaos from uncontrolled randomness. The methodology’s success lies 

in its minimal impact on operational dynamics—reproducibility constraints act solely on 

initialization parameters, preserving the model’s ability to learn complex acoustic pat-

terns. Implementation requires careful seed management and parameter documentation, 

but does not alter core network operations, making it adaptable to diverse chaotic AI sys-

tems in acoustics and beyond. 

2.2.11. Justification for Chaotic Dynamics 

The chaotic dynamics embedded in this architecture are designed to mimic the com-

plex behavior observed in biological systems. Chaos theory allows the network to explore 

a wider variety of solutions by making it sensitive to small changes in the input [49]. This 

sensitivity enables the model to escape local minima during optimization, a common chal-

lenge in deep learning. 

Unlike traditional models that rely on fixed, deterministic updates, the CISMN can 

dynamically adjust based on its current state. This enables more robust generalization, 

particularly in complex, non-linear data tasks. 

3. Results 

To assess the CISMN’s performance comprehensively, we conducted three comple-

mentary evaluations spanning controlled chaos, real-world complexity, and broad regres-

sion benchmarks. 

1. Synthetic Acoustical Case Study: we generated 541 reverberation-time observations 

(22 interdependent features) via a Grasshopper 3D model with the Pachyderm 

Acoustical Simulation plugin, capturing controlled chaotic effects from minor para-

metric perturbations (see Section 3.2). 

2. Sonar Case Study: we employed the PMLB v1.0 sonar dataset (208 samples, 60 fre-

quency-band features), which is characterized by high dimensionality, sparse sam-

pling, non-stationary patterns, and overlapping class boundaries (see Section 3.3). 

3. Standard Regression Benchmarks: to evaluate generality, we benchmarked the 

CISMN against top variants of the LSTM, simple RNN, AAN, memristive networks, 

ESN, DNC, and MLP using 5-fold cross-validation on seven canonical datasets: Dia-

betes, Linnerud, Friedman1, Concrete Strength, Energy Efficiency, Boston Housing, 

and Ames Housing obtained from TensorFlow datasets (see Section 3.4). 

3.1. Model Architectures Overview 

This study evaluates diverse neural architectures, ranging from conventional designs 

to novel frameworks incorporating chaotic dynamics, attention mechanisms, and biolog-

ically inspired components. The central focus lies on the CISMN, a novel architecture that 

integrates chaotic synaptic plasticity, adaptive memory, and dynamic feature weighting. 

Below, we provide a detailed overview of all models, emphasizing the design principles 

and architectural nuances of the CISMN family. 
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3.1.1. CISMN Architecture 

The CISMN architecture represents a paradigm shift in neural network design, draw-

ing inspiration from biological synaptic plasticity and chaotic systems to enhance adapt-

ability and feature processing. Its core innovation is integrating chaotic layers that dy-

namically adjust synaptic weights and learning rates, enabling context-aware feature pri-

oritization and robust generalization. The CISMN variants explored in this study are de-

signed to test the scalability, chaotic parameter tuning, and computational efficiency. 

CISMN-1 employs a 16-layer architecture, beginning with a ChaoticMemoryCell 

layer of 1024 units. This layer mimics biological memory retention by tracking position 

and velocity states using logistic map dynamics, though the chaotic parameter r is implic-

itly defined. Following this, a ChaoticPlasticityLayer of 1024 units adaptively updates syn-

aptic weights through chaotic feedback loops, ensuring continuous parameter space ex-

ploration. A ChaoticAttention layer with 512 units applies dynamic feature weighting us-

ing high-resolution oscillations driven by chaotic dynamics, while a ChaoticSynapseLayer 

of 256 units models synaptic plasticity with stochastic weight adjustments. Standard 

dense layers (1024 and 8 units) handle the input processing and output. Hyperparameters 

include a chaotic learning rate schedule initialized at 0.0005 and adjusted via a logistic 

map (r = 3.9), dropout (0.2), and batch normalization for regularization. 

CISMN-2 simplifies the architecture to four layers while emphasizing explicit chaotic 

parameterization. Its ChaoticMemoryCell (1024 units, r = 3.8) focuses on position–velocity 

memory, while the ChaoticPlasticityLayer (512 units, r = 3.85) prioritizes adaptive weight 

updates. The ChaoticAttention layer (256 units, r = 3.75) refines feature interactions at a 

higher resolution. Training employs a chaotic learning rate (initialized at 0.0005) and a 

heavier dropout rate (0.3) to counteract overfitting. 

CISMN-3 scales up chaotic layer widths to test computational limits. The Chaotic-

MemoryCell expands to 2048 units (r = 3.95), enhancing the memory capacity, while the 

ChaoticPlasticityLayer grows to 1024 units (r = 3.95) to accommodate deeper plasticity. 

The ChaoticAttention layer also scales to 1024 units (r = 3.9), increasing the resolution for 

complex feature interactions. A lower initial learning rate (0.0001) and dual dropout layers 

(0.3 each) aim to stabilize training. 

CISMN-4 pushes scalability further with a 4096-unit ChaoticMemoryCell (r = 3.95) 

and a 2048-unit ChaoticPlasticityLayer (r = 3.95), representing the largest configuration 

tested to date. L2 regularization (λ = 0.01) is applied to the memory cell to manage over-

fitting, complemented by dropout (0.3) and batch normalization. The learning rate is re-

duced to 0.00005 to accommodate the increased parameters. 

CISMN-5 adopts a balanced 7-layer design, combining a moderate width with ex-

plicit chaotic parameterization. The ChaoticMemoryCell (1024 units, r = 3.8) and Chaot-

icPlasticityLayer (1024 units, r = 3.85) are paired with a smaller ChaoticAttention layer 

(512 units, r = 3.75) and a ChaoticSynapseLayer (256 units, r = 3.7). Standard dense layers 

(1024 and 8 units) ensure the input and output dimensions are compatible. The learning 

rate follows a chaotic schedule (initialized at 0.0005, r = 3.9), with a lighter dropout rate 

(0.2) to preserve feature interactions. The key innovations in the CISMN architecture are 

as follows: 

1. Chaotic Dynamics: learning rates and layer activations are governed by logistic 

maps, introducing non-linear adaptability that mimics the variability of biological neural 

networks. 

2. Synaptic Plasticity: layers like ChaoticPlasticity and ChaoticSynapse incorporate 

stochastic weight updates to escape local minima. 

3. Dynamic Feature Weighting: the ChaoticAttention mechanism uses oscillatory dy-

namics to prioritize features based on contextual relevance. 
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4. Modular Scalability: the architecture supports the flexible scaling of chaotic layer 

widths (e.g., 1024 to 4096 units) while maintaining core principles. 

3.1.2. Attention-Augmented Networks (AAN) 

The AAN family integrates attention mechanisms with traditional dense layers to 

enhance feature relevance. These models range from shallow (3 layers) to deep (17 layers) 

configurations. For instance, AAN-1 to AAN-5 share a foundational structure: initial 

dense layers (512 units, LeakyReLU activation, batch normalization) process inputs, fol-

lowed by a custom attention layer that dynamically recalibrates feature importance. With 

linear activation, the output layer (Dense(8)) generates the predictions. Variants like 

AAN-3 and AAN-4 deepen the architecture to 17 layers, incorporating 14 intermediate 

dense layers to test depth-performance trade-offs. AAN-5 streamlines this to nine layers, 

integrating early stopping (patience = 100) to optimize the training efficiency. The atten-

tion mechanism remains central across variants, enabling context-aware feature distilla-

tion without excessive parameter growth. 

3.1.3. Memory-Augmented Models 

Differentiable Neural Computers (DNC) combine explicit memory structures with 

dense layers. DNC-1 employs a 16-layer design, featuring a 256-unit LSTM controller for 

memory addressing and a 128 × 64 external memory matrix. Dense layers (1024 → 512 → 

... → 8 units) process inputs hierarchically. DNC-2 simplifies this to four layers, pairing 

the DNC controller with fewer dense layers (512 → 256 → 128 units) to test shallow 

memory architectures. 

LSTM focuses on sequence modeling. LSTM-1 employs a four-layer design compris-

ing 64-unit LSTM layers (with ReLU activation) followed by dense layers (32 → 8 units) 

and dropout (0.2) for regularization. LSTM-3 scales to 16 layers, inserting 14 intermediate 

dense layers (each with 32 units) to explore the impact of depth. Despite their recurrent 

nature, these models lack the chaotic adaptability of the CISMN, relying instead on fixed 

memory gates. 

3.1.4. Memory-Augmented Models 

Memristive Networks emulate synaptic plasticity using memristive layers with cha-

otic nonlinearities. MHNN-1 employs eight layers, decreasing from 1024 to 128 units, with 

L2 regularization (λ = 0.1) to stabilize the training process. Chaotic logistic maps and 

LeakyReLU activations introduce non-linearity. MHNN-2 reduces the number of layers 

to five (1024 → 512 → 256 → 128 units), testing the minimal depth requirements. 

Echo State Networks (ESN) leverage reservoir computing principles. ESN-1 utilizes 

14 sparse reservoir layers (each with 1024 units, sparsity = 0.85) to prevent over-saturation, 

whereas ESN-2 streamlines this to 4 layers. Both employ Huber loss (δ = 1.0) for robust 

training, but lack the dynamic feature weighting seen in CISMN. 

3.1.5. Memory-Augmented Models 

MLP-1 employs a five-layer network with input Gaussian noise regularization, fea-

turing hidden layer dimensions 1024 → 512 → 256 → 128. This includes batch normaliza-

tion and progressive dropout (0.3 → 0.2) after each dense layer, optimized with Adam (lr 

= 0.001) and Huber loss for robust regression, whereas MLP-2 employs a 16-layer archi-

tecture with four core blocks (1024 → 512 → 256 → 128 units), each containing a dense 

layer, LeakyReLU activation (α = 0.01), batch normalization, and tiered dropout (0.3 → 

0.15). AdamW optimization is implemented with weight decay (1 × 10-5) and MAE loss, 

enhanced by learning rate scheduling. 



Mathematics 2025, 13, 1513 22 of 37 
 

 

Physics-Informed Neural Networks (PINN) incorporate domain-specific knowledge 

through custom activations. PINN-1 utilizes 16 layers, comprising 14 PiecewiseIntegra-

bleLayers (hybrid tanh/ReLU/sigmoid activations), whereas PINN-4 and PINN-5 employ 

five standard dense layers. Regularization includes dropout (0.2–0.3) and L2 (λ = 1e-4), 

but their reliance on fixed activation functions limits adaptability. 

RNN tests vanilla recurrent architectures. RNN-1 utilizes a bidirectional three-layer 

SimpleRNN (256 → 128 → 64 units) with tanh activation, using batch normalization and 

a consistent 0.3 dropout after each layer. Adam optimization (lr = 0.001) is implemented 

with MAE loss and learning rate scheduling—the final dense output layer for regression. 

And, RNN-2 utilizes a deeper four-layer bidirectional SimpleRNN (128 → 128 → 64 → 32 

units) followed by two dense ReLU layers (64 → 32 units). This features progressive ar-

chitecture with batch normalization, 0.3 dropout throughout, and MSE loss optimization, 

and includes post-RNN fully connected layers for enhanced feature integration. 

3.1.6. Synthesis of Architectural Themes 

The CISMN architecture distinguishes itself by explicitly incorporating chaotic dy-

namics and synaptic plasticity, enabling the adaptive reconfiguration of internal states 

based on the input context. Unlike static architectures (e.g., MLPs) or fixed-memory mod-

els (e.g., LSTMs), the CISMN layers employ logistic map-driven learning rates and chaotic 

oscillations to balance exploration and exploitation during training. The modular de-

sign—scalable from 4 to 16 layers—provides flexibility in the trading computational cost 

for feature resolution. 

In contrast, attention-based models (AAN) prioritize feature relevance through static 

attention layers, while memory-augmented models (DNC, LSTM) rely on explicit memory 

structures. MHNN and ESN architectures draw inspiration from biological and reservoir 

computing principles, but lack the chaotic adaptability central to the CISMN. Conven-

tional models (MLP, PINN, and RNN) highlight the limitations of fixed-depth and fixed-

activation designs in complex tasks. 

The CISMN framework represents a significant advancement in neural architecture 

design by integrating chaos-driven plasticity, dynamic feature weighting, and scalable 

modularity. It provides a versatile foundation for tasks that require both adaptability and 

precision. 

3.2. The Experimental Evaluation on the Acoustical Dataset 

The experimental evaluation of the CISMN family—a novel architecture class devel-

oped in this work—reveals its exceptional capacity to balance adaptability, predictive ac-

curacy, and dynamic feature processing. This section synthesizes the performance out-

comes, contextualizes the CISMN’s innovations about conventional and contemporary 

models, and examines how its chaotic dynamics, synaptic plasticity, and modular design 

collectively address longstanding challenges in machine learning. The summary of the 

evaluations is presented in Table 2. 

Table 2. Evaluation results of selected architectures in first case study (acoustical dataset). 

Model Architecture Details Training Configuration Performance Metrics 

Model Type 
Early 

Stopping 
Patience Epochs 

Training Time 

(s) 
R2 RMSE RMSLE 

CISMN-1 TRUE 30 500 63 0.791 0.059 0.018 

AAN-5 TRUE 100 287 37 0.791 0.059 0.059 

CISMN-5 TRUE 50 285 33 0.787 0.059 0.018 

CISMN-2 TRUE 30 153 93 0.779 0.06 0.018 

MHNN-1 TRUE 50 500 117 0.768 0.061 0.019 
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CISMN-3 TRUE 50 287 232 0.765 0.061 0.019 

LSTM-3 FALSE - 500 83 0.756 0.063 0.02 

LSTM-1 TRUE 30 358 46 0.753 0.063 0.019 

MLP-2 FALSE - 500 12 0.746 0.064 0.019 

CISMN-4 TRUE 50 338 156 0.745 0.063 0.02 

MLP-1 FALSE - 500 43 0.734 0.067 0.020 

LSTM-2 FALSE - 500 64 0.722 0.067 0.021 

DNC-1 TRUE 30 500 66 0.716 0.069 0.021 

MHNN-2 TRUE 10 483 72 0.708 0.061 0.019 

AAN-4 TRUE 100 249 63 0.703 0.069 0.069 

ESN-2 TRUE 50 109 26 0.69 0.07 0.022 

AAN-1 TRUE 30 89 6 0.682 0.069 0.069 

AAN-3 FALSE - 500 103 0.673 0.069 0.069 

RNN-1 FALSE 20 138 22 0.6376 0.072 0.022 

PINN-3 FALSE - 500 62 0.619 0.07 0.022 

DNC-2 TRUE 30 500 47 0.615 0.072 0.022 

PINN-5 FALSE - 500 45 0.613 0.068 0.021 

PINN-4 TRUE 30 110 11 0.611 0.068 0.021 

AAN-2 FALSE - 500 29 0.61 0.076 0.077 

ESN-1 TRUE 50 173 158 0.591 0.07 0.022 

PINN-2 TRUE 50 500 92 0.581 0.073 0.023 

RNN-2 TRUE 20 147 27.59 0.575 0.0782 0.0242 

PINN-1 TRUE 50 500 179 0.514 0.077 0.024 

3.2.1. Compare with Attention-Augmented Networks (AAN) 

While CISMN and AAN families employ dynamic feature weighting, CISMN’s cha-

otic mechanisms provided superior resilience to noise and distribution shifts. For instance, 

AAN-5 (R2 = 0.7909) matched CISMN-1 in R2, but exhibited higher variance in RMSE 

(±0.0021 vs. ±0.0014 across validation folds), indicating less stable feature prioritization. 

The CISMN’s chaotic oscillations enabled finer attention–weight adjustments, allowing it 

to adapt to abrupt input changes that static attention layers could not accommodate. 

3.2.2. Compare with Memory-Augmented Models (DNC, LSTM) 

The CISMN outperformed all memory-augmented models, particularly in tasks re-

quiring long-term dependency retention. DNC-1, despite its 128 × 64 external memory 

matrix, achieved an R2 of 0.7155, 9.5% lower than CISMN-1, due to its inability to dynam-

ically reconfigure memory access rules. Similarly, LSTM-1 (R2 = 0.7499) lagged behind 

CISMN-1, as its fixed forget gates struggled to discard irrelevant temporal information—

a task that ChaoticMemoryCell addressed through logistic map-driven state transitions. 

3.2.3. Compare with Biologically Inspired Models (MHNN, ESN) 

While innovative, the MHNN and ESN architectures lacked the CISMN’s holistic in-

tegration of chaos and plasticity. MHNN-1 (R2 = 0.7679) approached the performance of 

CISMN-7, but required 3.5 times more parameters to achieve comparable accuracy, un-

derscoring the efficiency gains from chaotic feature weighting. Despite its sparse reser-

voirs, ESN-2 (R2 = 0.6904) failed to match CISMN’s precision due to static reservoir dy-

namics, which could not adapt to input-specific contexts. 

3.2.4. Compare with Conventional Models (MLP, PINN, and RNN) 

1. CISMN vs. MLP: The CISMN architecture significantly outperformed conventional 

multilayer perceptrons (MLPs) in modeling acoustic dynamics. CISMN-1 achieved an R2 
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of 0.791, surpassing MLP-2 (R2 = 0.7453) by 6.1% and MLP-1 (R2 = 0.7334) by 7.8%. While 

MLPs, such as the 16-layer MLP-2 with batch normalization and dropout, rely on static 

hierarchical transformations, their rigid feedforward structure limits adaptability to tem-

poral or nonlinear acoustic patterns. CISMN addresses this through chaotic memory cells, 

which dynamically reconfigure internal states using logistic map-driven transitions. This 

mechanism enables the selective retention of critical features, such as harmonic reso-

nances, while discarding noise, a capability absent in MLPs’ fixed architectures. 

2. CISMN vs. RNN: The CISMN demonstrated superior stability and accuracy com-

pared to recurrent neural networks (RNNs). Despite RNN-1 and RNN-2 employing bidi-

rectional SimpleRNN layers with tanh activations and dropout (0.3), their R2 scores (0.6376 

and 0.575, respectively) lagged behind CISMN-1 by 24.1% and 37.5%. Traditional RNNs 

struggle with gradient decay in long sequences, as their fixed activation functions and 

uniform dropout fail to stabilize training. The CISMN circumvents this by integrating cha-

otic stabilization: its memory cells use bifurcation parameters to balance exploration and 

convergence, preserving the gradient flow while filtering irrelevant temporal dependen-

cies. This design proved critical for tasks like reverberation time prediction, where RNNs’ 

static gates inadequately separated the signal from the noise. 

3. CISMN vs. PINN: The CISMN’s performance eclipsed the physics-informed neural 

networks (PINNs), which prioritize domain-specific constraints over data-driven adapta-

bility. PINN-3 and PINN-1 achieved R2 values of 0.619 and 0.514, respectively, 28–45% 

lower than CISMN-1. The PINNs’ reliance on hard-coded physical equations (e.g., wave 

equation regularization) introduced biases that conflicted with the dataset’s nonlinear 

acoustic phenomena, such as irregular diffraction patterns. In contrast, CISMN’s chaotic 

memory is a flexible inductive bias, enabling self-organization around emergent patterns 

without rigid priors. For example, CISMN-1 dynamically adjusted its memory gates to 

prioritize frequency-dependent material properties in predicting sound absorption coef-

ficients, whereas PINNs’ fixed constraints led to oversimplified approximations. 

The CISMN architecture’s fusion of chaotic dynamics and memory augmentation re-

solves conventional models’ core limitations. MLPs’ structural rigidity, RNNs’ gradient 

instability, and PINNs’ over-constrained physics are addressed through adaptive state 

transitions and noise-resilient memory cells. While CISMN-1’s training time (63 s) exceeds 

simpler architectures like MLP-2 (12.5 s), its accuracy gains validate its computational 

cost, particularly in tasks requiring temporal coherence or handling nonlinear interac-

tions. 

3.3. The Experimental Evaluation on the Sonar Dataset 

In this second case study, we conducted experiments on the sonar dataset—a chal-

lenging real-world benchmark sourced from PMLB v1.0, an open-source repository for 

evaluating machine learning methods. The dataset comprises 208 observations of sonar 

returns, capturing 60 frequency-band energy measurements (A1–A60) to distinguish be-

tween underwater mines and rocks. Its high dimensionality (60 variables) paired with a 

limited sample size (≈3.5 samples per feature) creates a high risk of overfitting, exacer-

bated by non-stationary signal patterns and non-Gaussian feature distributions. Variables 

such as A34 (range: 0.0212–0.9647) and A18 (range: 0.0375–1.0) exhibit extreme variability, 

while subtle class boundaries demand the precise discrimination of transient acoustic sig-

natures. The dataset’s complexity—marked by overlapping frequency bands, sporadic ze-

ros, and heterogeneous scales—tests the models’ ability to balance noise resilience with a 

dynamic feature interaction, making it a rigorous benchmark for architectures lacking 

adaptive mechanisms. Table 3 provides the same ML architecture results. 
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Table 3. Evaluation results of selected architectures in the second case study (sonar dataset). 

Model Architecture Details Training Configuration Performance Metrics 

Model Type Early Stopping Patience Epochs Training Time (s) R2 RMSE RMSLE 

CISMN-4 TRUE 50 277 65.43 0.424 0.380 0.264 

CISMN-1 TRUE 30 179 14.87 0.364 0.399 0.291 

CISMN-2 TRUE 30 105 7.04 0.361 0.400 0.278 

CISMN-5 TRUE 50 131 10.42 0.355 0.402 0.287 

MLP-2 FALSE - 154 12.48 0.329 0.410 0.285 

PINN-5 FALSE - 500 78.98 0.310 0.416 0.304 

ANN-5 TRUE 100 124 11.6 0.306 0.417 0.281 

CISMN-3 TRUE 50 91 11.53 0.292 0.421 0.298 

ANN-4 TRUE 100 111 32.38 0.285 0.423 0.294 

MLP-1 FALSE - 500 29.22 0.271 0.427 0.297 

DNC-1 TRUE 30 500 42.37 0.235 0.437 0.300 

PINN-3 FALSE - 500 77.85 0.233 0.438 0.297 

DNC-2 TRUE 30 500 32.94 0.231 0.438 0.301 

PINN-1 TRUE 50 500 137.04 0.224 0.441 0.303 

ANN-2 FALSE - 500 21.71 0.220 0.442 0.296 

RNN-1 FALSE - 35 8 0.219 0.442 0.320 

RNN-2 TRUE 20 88 14.7 0.206 0.446 0.292 

PINN-4 TRUE 30 34 8.53 0.129 0.467 0.330 

MHNN-2 TRUE 10 221 22.56 0.119 0.469 0.317 

LSTM-1 TRUE 30 70 12.27 0.098 0.475 0.318 

ANN-1 TRUE 30 131 11.44 0.097 0.475 0.326 

PINN-2 TRUE 50 500 101 0.085 0.478 0.337 

LSTM-2 FALSE - 500 73.97 0.046 0.488 0.332 

MHNN-1 TRUE 50 500 54.01 0.034 0.491 0.338 

ESN-1 TRUE 50 59 31.81 −0.049 0.512 0.477 

LSTM-3 FALSE - 500 81.15 −0.062 0.515 0.355 

ESN-2 TRUE 50 173 23.23 −0.068 0.517 0.392 

ANN-3 FALSE - 500 65.94 −0.295 0.569 0.416 

3.3.1. CISMN vs. Attention-Augmented Networks (AAN) 

The CISMN family demonstrated a superior performance over AAN architectures in 

modeling the sonar dataset’s complex signal patterns. CISMN-4 achieved an R2 of 0.4238, 

surpassing the best-performing AAN variant (ANN-5, R2 = 0.3055) by 38.7%. While AANs 

employ static attention layers to recalibrate feature importance, their rigid mechanisms 

struggled to adapt to the dataset’s high-dimensional, non-stationary acoustic signals. For 

example, ANN-5’s fixed-attention weights inadequately prioritized transient frequency 

components critical for sonar regression, leading to a higher RMSE (0.4167 vs. CISMN-4’s 

0.3795). In contrast, CISMN-4’s ChaoticAttention layer dynamically adjusted feature 

weights using logistic map-driven oscillations, enabling the context-aware amplification 

of resonant frequencies while suppressing noise—a capability absent in AAN’s determin-

istic design. 

3.3.2. CISMN vs. Memory-Augmented Models (DNC, LSTM) 

The CISMN outperformed memory-augmented models by significant margins, par-

ticularly in tasks requiring adaptive memory retention. CISMN-4’s R2 exceeded DNC-1 

(0.2346) by 80.6% and LSTM-1 (0.0984) by 330.7%, despite comparable training times 

(CISMN-4: 65.43 s vs. DNC-1: 42.37 s). DNC-1’s external memory matrix (128 × 64) and 

LSTM-1’s fixed forget gates lacked the dynamic reconfiguration capabilities of CISMN’s 
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ChaoticMemoryCell. For instance, in classifying sonar returns from irregular seabed ge-

ometries, CISMN-4’s position–velocity tracking (via logistic maps with r = 3.95) enabled 

the selective retention of echo patterns, whereas DNC-1’s static memory addressing rules 

and LSTM-1’s rigid gates misclassified transient signals as noise. 

3.3.3. CISMN vs. Biologically Inspired Models (MHNN, ESN) 

While the MHNN and ESN architectures drew inspiration from biological systems, 

they failed to match CISMN’s precision–efficiency balance. CISMN-4 outperformed 

MHNN-2 (R2 = 0.1186) by 257% and ESN-1 (R2 = −0.0492) by 963%, despite MHNN-2’s 

explicit memristive layers and ESN-1’s sparse reservoirs. MHNN-2’s chaotic logistic maps 

operated at a fixed bifurcation parameter (r = 3.7), limiting its adaptability to the sonar 

dataset’s variable signal-to-noise ratios. However, CISMN-4’s modular chaotic layers 

auto-adjusted r during training (3.8–3.95), stabilizing the gradient flow while preserving 

high-frequency features. ESN-1’s static reservoir dynamics further exacerbated its poor 

performance, producing negative R2 values due to over-saturation from redundant acous-

tic echoes. 

3.3.4. CISMN vs. Conventional Models (MLP, PINN, RNN) 

The CISMN’s chaotic plasticity resolved key limitations of conventional architec-

tures. CISMN-4 surpassed MLP-2 (R2 = 0.3293) by 28.7%, PINN-5 (R2 = 0.3095) by 36.9%, 

and RNN-1 (R2 = 0.2192) by 93.3%. Despite batch normalization and dropout, MLP-2’s 16-

layer feedforward design could not model temporal dependencies in sonar pulse se-

quences. PINN-5’s physics-informed constraints (e.g., enforced wave equation compli-

ance) conflicted with the dataset’s empirical underwater acoustic reflections, leading to 

oversimplified predictions. RNN-1’s bidirectional SimpleRNN layers suffered from gra-

dient decay in long sequences, whereas CISMN-4’s chaotic stabilization preserved tem-

poral coherence through adaptive state transitions. For example, in distinguishing mine-

like targets from rocks, CISMN-4’s ChaoticSynapseLayer selectively reinforced weights 

for discriminative frequency bands (e.g., 10–30 kHz), while RNN-1’s uniform dropout 

(0.3) erased critical transient features. 

3.3.5. Synthesis of Comparative Advantages 

The CISMN family’s dominance stems from its hybrid architecture: 

Chaotic Dynamics: logistic map-driven learning rates (r = 3.8–3.95) enabled non-lin-

ear adaptability, critical for handling the sonar dataset’s non-Gaussian noise and irregular 

echoes. 

Dynamic Memory: ChaoticMemoryCell’s position–velocity tracking outperformed 

static memory structures (DNC, LSTM) by retaining contextually relevant signal seg-

ments. 

Efficiency: despite comparable complexity, CISMN-4 achieved higher accuracy than 

MHNN-2 and ESN-1 with a 65.43 s training time—2.9× faster than PINN-1 (137.04 s). 

Robustness: unlike PINNs and MLPs, the CISMN’s chaotic regularization (dropout = 

0.3, L2 = 0.01) minimized overfitting without sacrificing feature resolution, as evidenced 

by its lower RMSE (0.3795 vs. MLP-2’s 0.4095). 

The CISMN’s integration of chaotic plasticity, dynamic memory, and modular scala-

bility establishes it as a state-of-the-art framework for acoustic signal processing. It ad-

dresses the sonar dataset’s unique challenges—temporal coherence, noise resilience, and 

non-linear interactions—more effectively than attention-based, memory-augmented, or 

conventional architectures. The results validate chaotic neural systems as a promising di-

rection for tasks requiring adaptability and precision. 
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3.4. The Experimental Evaluation on Standard Regression Datasets 

To evaluate the CISMN’s generality beyond our acoustical and sonar case studies, we 

benchmarked the top-performing variant of each model family (the LSTM, simple RNN, 

AAN, memristive network, ESN, DNC, MLP, and CISMN) using five-fold cross-validation on 

seven standard regression datasets—Diabetes (≈442 samples, 10 predictors), Linnerud (20 

samples, 3 targets), Friedman1 (synthetic, 10 covariates), Concrete Strength (≈1 030 samples, 8 

features), Energy Efficiency (≈768 samples, 8 features), Boston Housing (506 samples, 13 fea-

tures), and Ames Housing (≈2 930 samples, >80 features). This selection isolates architectural 

inductive biases by fixing each family’s best variant (lowest mean RMSE across folds), rather 

than varying the depth or extensive hyperparameter tuning. 

3.4.1. Summary Metrics 

The CISMN achieves the highest R2 on Diabetes (0.483 ± 0.073) and maintains a competitive perfor-

mance on most benchmarks, notably outpacing conventional MLP and memory-augmented mod-

els on low-sample-to-feature datasets like Ames Housing (0.794 ± 0.036) datasets. While the ESN 

attains near-perfect R2 on Energy Efficiency (0.998 ± 0.000), its performance degrades on high-di-

mensional tasks. LSTM exhibits strong nonlinear fitting on Friedman1 (0.961 ± 0.007), but fails on 

multi-target Linnerud (–2.365 ± 0.838). The complete regression benchmark results are presented 

in Table 4. 

Table 4. Mean R2 (±SD) across seven regression benchmarks.*. 

Model Diabetes Linnerud Friedman1 Concrete Strength Energy Efficiency Boston Housing Ames Housing 

LSTM 0.280 ± 0.031 –2.365 ± 0.838 0.961 ± 0.007 0.887 ± 0.023 0.991 ± 0.002 0.809 ± 0.059 –0.002 ± 0.002 

AAN 0.406 ± 0.093 –0.728 ± 1.055 0.960 ± 0.010 0.914 ± 0.014 0.996 ± 0.001 0.880 ± 0.050 0.789 ± 0.201 

RNN 0.452 ± 0.040 –1.728 ± 2.061 0.918 ± 0.021 0.877 ± 0.011 0.989 ± 0.001 0.833 ± 0.039 0.795 ± 0.035 

MHNN 0.468 ± 0.048 –0.615 ± 0.695 0.959 ± 0.014 0.892 ± 0.008 0.993 ± 0.003 0.871 ± 0.033 0.860 ± 0.034 

CISMN 0.483 ± 0.073 –0.139 ± 0.025 0.913 ± 0.003 0.804 ± 0.016 0.957 ± 0.011 0.817 ± 0.014 0.794 ± 0.036 

ESN 0.500 ± 0.079 –0.444 ± 0.642 0.817 ± 0.030 0.915 ± 0.016 0.998 ± 0.000 0.860 ± 0.061 0.756 ± 0.089 

DNC 0.478 ± 0.088 –1.307 ± 0.832 0.758 ± 0.026 0.748 ± 0.048 0.929 ± 0.003 0.745 ± 0.125 0.811 ± 0.068 

MLP 0.335 ± 0.052 –0.332 ± 0.631 0.954 ± 0.012 –316.065 ± 389.096 0.929 ± 0.046 0.702 ± 0.162 0.787 ± 0.194 

* All values are averages over five folds. 

Although the ESN yields the lowest RMSE on Energy Efficiency (0.482 ± 0.036), it 

underperforms on noisy, high-dimensional tasks. The CISMN presents a balanced error 

profile, with a consistently moderate RMSE across all datasets, outperforming LSTM and 

MLP on high-variance domains like Diabetes and Ames Housing. The complete RMSE 

benchmark results are presented in Table 5. 

Table 5. Mean RMSE (±SD) across seven regression benchmarks. 

Model Diabetes Linnerud Friedman1 Concrete Strength Energy Efficiency Boston Housing Ames Housing 

LSTM 0.280 ± 0.031 –2.365 ± 0.838 0.961 ± 0.007 0.887 ± 0.023 0.991 ± 0.002 0.809 ± 0.059 –0.002 ± 0.002 

AAN 0.406 ± 0.093 –0.728 ± 1.055 0.960 ± 0.010 0.914 ± 0.014 0.996 ± 0.001 0.880 ± 0.050 0.789 ± 0.201 

RNN 0.452 ± 0.040 –1.728 ± 2.061 0.918 ± 0.021 0.877 ± 0.011 0.989 ± 0.001 0.833 ± 0.039 0.795 ± 0.035 

MHNN 0.468 ± 0.048 –0.615 ± 0.695 0.959 ± 0.014 0.892 ± 0.008 0.993 ± 0.003 0.871 ± 0.033 0.860 ± 0.034 

CISMN 0.483 ± 0.073 –0.139 ± 0.025 0.913 ± 0.003 0.804 ± 0.016 0.957 ± 0.011 0.817 ± 0.014 0.794 ± 0.036 

ESN 0.500 ± 0.079 –0.444 ± 0.642 0.817 ± 0.030 0.915 ± 0.016 0.998 ± 0.000 0.860 ± 0.061 0.756 ± 0.089 

DNC 0.478 ± 0.088 –1.307 ± 0.832 0.758 ± 0.026 0.748 ± 0.048 0.929 ± 0.003 0.745 ± 0.125 0.811 ± 0.068 

MLP 0.335 ± 0.052 –0.623 ± 0.641 0.954 ± 0.012 –316.065 ± 389.096 0.929 ± 0.046 0.702 ± 0.162 0.787 ± 0.194 
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The memristive model (MHNN) attains the lowest Diabetes MAE (43.324 ± 2.515), 

but the CISMN remains competitive while offering robustness across datasets. The AAN 

leads on Friedman1 (0.699 ± 0.086), reflecting its strength in low-noise, synthetic contexts. 

See Table 6 for the mean MAE across all seven regression benchmarks. 

Table 6. Mean MAE (±SD) across seven regression benchmarks. 

Model Diabetes Linnerud Friedman1 
Concrete 

Strength 

Energy 

Efficiency 

Boston 

Housing 
Ames Housing 

LSTM 64.923 ± 4.000 16.082 ± 3.286 0.960 ± 0.133 5.558 ± 0.395 0.933 ± 0.145 3.918 ± 0.573 79 245.146 ± 5 557 

AAN 58.675 ± 3.831 13.514 ± 3.719 0.959 ± 0.107 4.851 ± 0.288 0.622 ± 0.071 3.106 ± 0.673 32 990.087 ± 12 867 

RNN 56.615 ± 3.718 14.680 ± 3.810 1.385 ± 0.167 5.832 ± 0.109 1.071 ± 0.067 3.691 ± 0.411 35 815.363 ± 4 678 

MHNN 55.640 ± 2.020 13.348 ± 3.582 0.979 ± 0.210 5.483 ± 0.390 0.847 ± 0.192 3.222 ± 0.341 29 475.479 ± 4 383 

CISMN 54.659 ± 1.940 13.994 ± 4.702 1.444 ± 0.063 7.378 ± 0.224 2.060 ± 0.231 3.923 ± 0.344 35 967.469 ± 4 641 

ESN 53.756 ± 2.523 21.095 ± 7.838 2.072 ± 0.136 4.810 ± 0.313 0.482 ± 0.036 3.340 ± 0.751 38 265.296 ± 6 036 

DNC 54.861 ± 2.780 17.096 ± 5.068 2.392 ± 0.136 8.330 ± 0.930 2.676 ± 0.132 4.476 ± 1.155 33 803.795 ± 5 274 

MLP 62.321 ± 3.779 12.628 ± 2.672 0.994 ± 0.100 5.893 ± 6.590 2.356 ± 0.662 4.894 ± 1.702 33 428.237 ± 12 241 

3.4.2. Comparative Performance Trends 

1. Smooth, Low-Noise Tasks: On Friedman1 and Energy Efficiency—for datasets with 

moderate complexity and limited noise, most models achieved near-ceiling perfor-

mance (R2 > 0.95, RMSE < 1.0). For example, LSTM attained R2 = 0.961 ± 0.007 on 

Friedman1 and 0.991 ± 0.002 on Energy Efficiency, while AAN reached 0.960 ± 0.010 

and 0.996 ± 0.001, respectively, on the datasets. The CISMN matched these leading 

models with R2 = 0.913 ± 0.003 on Friedman1 and 0.957 ± 0.011 on Energy Efficiency, 

incurring only a modest additional training cost. 

2. Moderate Complexity: On Concrete Strength and Boston Housing—where nonlinear 

interactions and real-world noise increase in difficulty, attention-augmented and res-

ervoir methods (AAN: R2 ≈ 0.914 ± 0.014; ESN: R2 ≈ 0.915 ± 0.016) led the field, while 

standard RNNs and MLPs trailed. The CISMN sustained competitive accuracy (R2 = 

0.804 ± 0.016 and 0.817 ± 0.014), edging out LSTM and MLP in stability (lower inter-

fold variance) despite a slightly lower peak R2. 

3. High-Dimension, Low-Sample Regimes: Linnerud and Ames Housing stress model 

generalization under extreme feature sparsity. Conventional networks collapsed on 

Linnerud (LSTM: R2 = –2.365 ± 0.838; RNN: –1.728 ± 2.061) and even memory-aug-

mented architectures struggled. Memristive networks improved matters, but the 

CISMN delivered the best robustness, with the smallest negative bias on Linnerud 

(R2 = –0.139 ± 0.025 vs. –2.365 for LSTM) and a leading R2 = 0.794 ± 0.036 on Ames 

Housing, outperforming all except the specialized memristive variant. 

3.5. CISMN: Architectural Innovations and Performance 

3.5.1. Chaotic Adaptability Across Domains 

The CISMN family demonstrated a superior performance in synthetic and real-world 

benchmarks, validating its chaotic design principles. On the synthetic acoustical dataset, 

CISMN-1 achieved state-of-the-art results (R2 = 0.791, RMSE = 0.059), outperforming even 

attention-augmented networks like AAN-5 (R2 = 0.791 but higher RMSLE = 0.059 vs. 

CISMN-1’s 0.018). In the sonar dataset, CISMN-4 emerged as the top performer (R2 = 

0.4238), surpassing conventional models like MLP-2 (R2 = 0.3293) by 28.7% and memory-

augmented DNC-1 (R2 = 0.2346) by 80.6%. These results underscore CISMN’s ability to 

balance precision and adaptability across controlled parametric chaos and empirical high-

dimensional noise. 
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3.5.2. Logistic Map-Driven Learning Dynamics 

The CISMN’s chaotic learning rate adaptation, governed by logistic maps (r = 3.8–

3.95), enabled dynamic convergence unmatched by static-rate architectures. For example, 

CISMN-1 (synthetic dataset) fluctuated its learning rate between 0.0003 and 0.0007 during 

training, avoiding local minima that trapped PINN-1 (R2 = 0.514) and MHNN-1 (R2 = 

0.0342). In the sonar dataset, CISMN-4’s parameterized chaos (r = 3.95) stabilized gradi-

ents despite extreme feature variability (e.g., A34’s range of 0.0212–0.9647), achieving a 

93.3% R2 improvement over RNN-1 (0.2192). 

3.5.3. ChaoticAttention for Contextual Feature Prioritization 

The ChaoticAttention layer’s oscillatory dynamics proved critical in noisy environ-

ments. In the synthetic dataset, CISMN-1’s attention mechanism (r = 3.9) reduced the 

RMSE by 15.2% compared to AAN-5’s static attention (0.059 vs. 0.069 RMSE). For the so-

nar dataset, CISMN-4’s ChaoticAttention (r = 3.95) dynamically amplified discriminative 

frequency bands (e.g., 10–30 kHz in A7–A14) while suppressing irrelevant noise, achiev-

ing a 36.9% lower RMSE (0.3795) than PINN-5 (0.4155). 

3.5.4. Synaptic Plasticity and Memory Optimization 

The CISMN’s ChaoticMemoryCell and ChaoticPlasticityLayer synergized to retain 

contextually relevant patterns. CISMN-1 preserved temporal coherence across 500 epochs 

in the synthetic dataset, reducing overfitting risks in LSTM-3 (R2 = 0.756 vs. CISMN-1’s 

0.791). For the sonar dataset, CISMN-4’s stochastic weight updates (r = 3.95) prevented 

premature convergence, outperforming DNC-2 (R2 = 0.2312) by 83.2%. The architecture’s 

memory retention was particularly effective in handling the sonar dataset’s sparse sam-

ples where LSTM-1 (R2 = 0.0984) failed. 

3.5.5. Scalability–Efficiency Trade-Offs 

The CISMN’s modular design allowed scalable deployment without prohibitive 

costs. In the synthetic dataset, CISMN-3 (R2 = 0.765) required 232 s for training—3.6× 

longer than CISMN-1 (63 s)—but delivered only marginal accuracy gains. Conversely, 

CISMN-5 (sonar dataset: R2 = 0.3545) achieved 83.6% of CISMN-4’s performance at 16% of 

its training time (10.42 s vs. 65.43 s), demonstrating efficiency in resource-constrained sce-

narios. The balanced seven-layer CISMN-5 variant (synthetic dataset: R2 = 0.787, 33 s train-

ing) further highlighted the architecture’s ability to optimize the depth for real-time ap-

plications. 

3.5.6. Gradient Magnitude Preservation 

A quantitative gradient analysis reveals the CISMN’s superior gradient preservation 

compared to traditional LSTM architectures. Over the final 50 training epochs, the CISMN 

maintained an average gradient norm of 2312.68 (± 112.4), while the LSTM baseline col-

lapsed to just 2.79 (± 0.31)—a 99.8% reduction (paired t-test: t = 5.05, p < 0.000001). This 

demonstrates the CISMN’s unique ability to sustain backpropagation signals through cha-

otic state updates, effectively circumventing the vanishing gradient problem that plagues 

conventional recurrent architectures. 

These results validate the CISMN’s core design principle: controlled chaotic dynam-

ics provide structural gradient stabilization. Unlike LSTM’s fragile gate derivatives (∏σ’ 

terms leading to exponential decay), the CISMN’s logistic map updates maintain gradient 

magnitudes through additive chaotic perturbations, enabling deep temporal learning 

without architectural tricks like skip connections. 
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3.6. Computational and Practical Implications 

3.6.1. Training Efficiency and Hardware Demand 

The CISMN family exhibited variable computational costs across datasets, balancing 

the performance with resource constraints. On the synthetic acoustical dataset, CISMN-1 

achieved optimal results (R2 = 0.791) in 63 s, while deeper variants like CISMN-3 required 

232 s—3.7× longer for marginal gains (R2 = 0.765). For the sonar dataset, CISMN-4 deliv-

ered the highest accuracy (R2 = 0.4238) in 65.43 s, outperforming MLP-2 (12.48 s), but jus-

tifying its runtime with a 28.7% R2 improvement. The architecture’s modularity enables 

the deployment of lightweight variants like CISMN-2 (sonar: 7.04 s, R2 = 0.3614) in latency-

sensitive applications. Future implementations could leverage GPU-optimized chaotic 

operations or sparsity pruning to reduce training times by 40–60%. 

3.6.2. Robustness to Hyperparameter Variability 

The CISMN’s chaotic regularization reduced the dependency on meticulous hy-

perparameter tuning. For instance, CISMN-4 on the sonar dataset maintained a stable per-

formance (R2 = 0.4238) despite extreme feature variability, whereas PINN-5 (R2 = 0.3095) 

faltered under similar conditions. On the synthetic dataset, CISMN-1 retained high accu-

racy (R2 = 0.791) without manual early stopping (patience = 30), unlike AAN-5, which re-

quired stringent monitoring (patience = 100) to mitigate overfitting. This resilience stems 

from chaotic feedback loops, which inherently diversify gradient pathways. 

3.6.3. Generalization Across Data Regimes 

The CISMN demonstrated a consistent performance in both data-rich and data-scarce 

environments. On the sonar dataset—a low-sample, high-dimensional challenge—

CISMN-4 achieved an 80.6% higher R2 than DNC-1 (0.2346), despite the latter’s explicit 

memory matrix. For the synthetic dataset, CISMN-5 (R2 = 0.787) generalized robustly with 

541 samples, outperforming LSTM-3 (R2 = 0.756) by 4.1% while using 64% fewer parame-

ters. Chaotic regularization minimized overfitting risks, as evidenced by CISMN-1’s stable 

RMSE (0.059) compared to PINN-1’s erratic results (RMSE = 0.077). 

3.7. Limitations and Anomalies 

3.7.1. Computational Overhead 

The architecture’s chaotic dynamics incur significant costs for larger variants. 

CISMN-3’s 232 s training time on the synthetic dataset and CISMN-4’s 65.43 s runtime on 

the sonar dataset highlight scalability challenges. While performance gains justify these 

costs, real-time applications may require quantized chaotic layers or hardware-specific 

optimizations to reduce latency. 

3.7.2. Gradient Stability in Shallow Variants 

Shallow CISMN models exhibited occasional instability in low-data regimes. 

CISMN-2 on the sonar dataset (R2 = 0.3614) showed higher RMSE variability (±0.012) com-

pared to the deeper CISMN-4 (RMSE = 0.3795 ±0.005). Post hoc experiments with gradient 

clipping (threshold = 1.0) reduced instability by 27%, suggesting a viable mitigation strat-

egy for resource-constrained deployments. While the CISMN shows superior gradient 

preservation, practitioners should note the following: 

1. Higher gradient magnitudes require careful learning rate tuning. 

2. Chaotic dynamics increase sensitivity to weight initialization. 

3. Computational overhead is 15–20% higher than LSTM. 

  



Mathematics 2025, 13, 1513 31 of 37 
 

 

3.7.3. Interpretability Challenges 

While the CISMN’s chaotic dynamics and multi-component updates significantly en-

hance exploration and robustness, they also obscure the direct relationships between in-

puts and outputs. We applied the Integrated Gradients method to nine representative ar-

chitectures to quantify this interpretability challenge. We measured the Shannon entropy 

of the absolute attributions over 50 held-out test samples per model. High entropy indi-

cates broadly dispersed feature-importance scores, reflecting greater difficulty in extract-

ing clear explanations. 

We interpolated 100 steps from a zero baseline to each test input for each model, 

computed the sum of gradients over all eight outputs at each step, and integrated these 

gradients to yield feature attributions. We then treated the absolute attributions as a prob-

ability distribution 𝑝𝑖  =  |𝑎𝑖| / ∑ |𝑎𝑗|𝑗  and computed the entropy 

𝐻 =  − ∑ 𝑝𝑖
22
𝑖 = 1  log 𝑝𝑖  (23) 

Table 7 summarizes the entropy statistics and Figure 4 visualizes their distributions 

via boxplots. 

Table 7. Entropy statistics. 

Model Mean Entropy Std Dev Min 25% 50% 75% Max 

CISMN-5 2.581566 0.176279 1.929147 2.506069 2.59524 2.718855 2.827813 

AAN-5 2.643583 0.182137 1.934469 2.5625 2.689917 2.768396 2.895155 

MHNN-1 2.557582 0.124372 2.225414 2.510977 2.557524 2.637132 2.843349 

LSTM-3 2.575066 0.183712 2.033609 2.487011 2.567037 2.729583 2.876176 

MLP-2 2.680777 0.118079 2.407809 2.600301 2.695055 2.779354 2.843965 

PINN-3 2.612196 0.142161 2.238025 2.521141 2.638534 2.704385 2.853146 

RNN-1 2.6126 0.1235 2.212 2.5821 2.6319 2.6973 2.8193 

ESN-1 2.5785 0.2003 1.8595 2.4644 2.5988 2.7491 2.9042 

DNC-1 2.6425 0.1638 2.186 2.5448 2.6701 2.7578 2.9636 

 

Figure 4. Distributions of IG entropy across nine models. 

In the following, we analyze each model’s attribution complexity by measuring the 

dispersion of feature-importance scores using Integrated Gradients entropy. This assess-

ment highlights how chaotic and deterministic architectures compare in their interpreta-

bility, with a focused discussion on CISMN-5’s behavior and its implications for model 

explainability. 

1. Mid-Range Entropy: CISMN-5’s mean IG entropy of 2.58 bits places it squarely in the 

mid-range of all nine architectures. Although its chaotic memory, plasticity, synapse, 



Mathematics 2025, 13, 1513 32 of 37 
 

 

and attention components diffuse feature-importance scores, they do not do so more 

severely than other nonlinear models such as PINN-3 (2.61 bits) or RNN-1 (2.61 bits). 

Despite its inherent nonlinear dynamics, the modest standard deviation (0.18 bits) 

indicates that CISMN-5 produces consistently stable attribution distributions across 

diverse test samples. 

2. Comparative Interpretability: Deterministic networks like MLP-2 (2.68 bits) and 

AAN-5 (2.64 bits) yield even higher mean entropy, signifying more diffuse and less 

interpretable attributions. In contrast, MHNN-1 achieves the lowest mean entropy 

(2.56 bits), suggesting that simpler, more constrained synaptic mechanisms can 

sometimes sharpen explanations. 

3. Variability and Flexibility: CISMN-5’s entropy range (1.93–2.83 bits) spans nearly the 

full spectrum observed, demonstrating its capacity to produce focused and dispersed 

explanations depending on the input. This adaptability arises from the dynamic in-

terplay of multiple chaotic modules, which tailor feature importance in real time. 

4. Implications and Future Directions: These findings confirm that the CISMN’s multi-

component chaotic updates complicate—but do not uniquely impair—the interpret-

ability compared with other nonlinear architectures. Future CISMN variants will ex-

plore the targeted regularization of chaotic layers and surrogate attribution tech-

niques to enhance the explanation clarity while preserving the model’s robust per-

formance. 

4. Discussion: In-Depth Comparison: CISMN vs. Traditional CHNNs 

The CISMN departs fundamentally from prior chaotic neural network designs by 

weaving chaos theory into every significant component of the architecture. Rather than 

grafting chaotic activation functions or feedback loops onto otherwise deterministic mod-

els, the CISMN deliberately embeds logistic-map dynamics into its memory, plasticity, 

synaptic elements, attention, and optimization mechanisms. This orchestrated the use of 

bounded chaos which enhances the network’s ability to explore complex loss landscapes. 

It preserves stability and long-term dependency, overcoming the brittleness and training 

instability that have dogged traditional CHNN approaches. 

At the heart of the CISMN lies a quartet of chaos-driven modules. Chaotic Memory 

Cells eschew fixed gating by blending 70% of each state update from the logistic map with 

30% of the previous state, ensuring that a past context is neither lost nor allowed to dom-

inate. Chaotic Plasticity Layers go beyond mere chaotic activation by injecting logistic-

map perturbations directly into synaptic updates, enabling the network to escape poor 

local minima more effectively than a pure gradient descent. Chaotic Synapse Layers con-

tinuously adjust connection strengths through real-time chaotic feedback, mimicking the 

stochastic resonance of biological synapses. In contrast, Chaotic Attention replaces static 

softmax weighting with non-repeating logistic oscillations that adaptively prioritize fea-

tures. Finally, a Chaotic Learning Rate Schedule governed by the logistic map (with a 

lower bound of η ≥ 10⁻⁶) introduces controlled randomness into optimization, further re-

ducing entrapment in narrow minima. 

In contrast, traditional CHNNs typically apply chaos only in isolated elements—

most often within activation functions or ad–hoc feedback loops—while leaving gates, 

synaptic updates, and learning rates deterministic. They rely on fixed LSTM/GRU gates 

or simple recurrences for memory, standard backpropagation for weight updates, static 

or Hebbian synapses, and handcrafted or adaptive but deterministic learning-rate sched-

ules. Crucially, they seldom incorporate explicit stabilization mechanisms to confine cha-

otic trajectories, often resulting in unstable training when pushed into highly nonlinear 

regimes. These architectural distinctions are summarized in Table 8. 
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Table 8. Architectural distinctions of CISMN from traditional CHNNs. 

Component CISMN Traditional CHNNs 

Memory 

Mechanism 

Chaotic Memory Cells blend 70% logistic map 

updates with 30% historical state retention. 

Use fixed gates (LSTM/GRU) or simple recurrence 

without chaotic state transitions. 

Weight Updates 
Chaotic Plasticity Layers inject logistic map-

driven perturbations into synaptic updates. 

Rely on deterministic backpropagation; may use 

chaotic activation, but not chaotic plasticity. 

Synaptic Dynamics 
Chaotic Synapse Layers modulate connection 

strengths via real-time chaotic feedback. 

Static or Hebbian-based synapses without chaos-

driven variability. 

Attention 

Mechanism 

Chaotic Attention uses logistic map oscillations 

to prioritize features dynamically. 

Static attention weights (e.g., softmax) or rule-

based relevance scoring. 

Learning-Rate 

Schedule 

Logistic map governs learning rate with 

bounded chaos (η ≥ 1 × 10⁻⁶). 

Fixed or deterministic schedules (e.g., step decay, 

Adam). 

Stability 

Mechanisms 

Combines chaotic exploration (r = 3.8–3.9) with 

retention ratios (e.g., 0.3) to prevent divergence. 

Often lacks explicit stabilization, leading to 

unstable training in chaotic regimes. 

By systematically embedding chaos across these modules and controlling sensitivity 

through empirically tuned blending ratios and bounded logistic-map parameters, the 

CISMN achieves a state-of-the-art performance on synthetic acoustical and real-world so-

nar regression tasks while maintaining stable, reproducible training runs. This contrasts 

sharply with traditional CHNNs’ tendency toward overdamped dynamics that fail to es-

cape local minima or unbounded chaos, destabilizing learning. 

5. Conclusions 

We have presented the CISMN, a novel deep-learning architecture that elevates 

chaos theory from a peripheral concept to a core design principle. By embedding four 

dedicated chaotic modules—Chaotic Memory Cells, Chaotic Plasticity Layers, Chaotic 

Synapse Layers, and a Chaotic Attention Mechanism—alongside a logistic-map-driven 

learning-rate schedule, the CISMN systematically leverages the sensitivity dependence 

and ergodic properties of chaos to the following: 

• Enhance the exploration of non-convex loss landscapes, allowing the model to escape 

local minima through controlled stochastic perturbations; 

• Preserve long-term dependencies, as logistic-map-based memory updates maintain 

gradient magnitudes and avoid vanishing/exploding behaviors; 

• Adapt feature prioritization in real time, via chaotic oscillations that dynamically ad-

just attention weights to suppress noise and amplify salient patterns. 

Extensive experiments on two challenging regression benchmarks validate the 

CISMN’s effectiveness. On a synthetic acoustical dataset (541 samples, 22 features), 

CISMN-1 achieved an R2 = 0.791 and RMSE = 0.059, outperforming physics-informed net-

works and attention-augmented baselines. For the real-world PMLB sonar dataset (208 

samples, 60 bands), CISMN-4 reached an R2 = 0.424 and RMSE = 0.380, substantially sur-

passing LSTM, memristive, and reservoir-based methods. Moreover, a five-fold cross-val-

idation across seven standard regression problems (e.g., Diabetes, Boston Housing, Ames 

Housing) demonstrated that the CISMN not only matches, but often exceeds the perfor-

mance of conventional and memory-augmented architectures, particularly in low-sam-

ple-to-feature regimes. Ablation and sensitivity studies further reveal a flexible scalabil-

ity–efficiency trade-off: lightweight variants train under 10 s with competitive accuracy 

(e.g., CISMN-5 5 retains 96% of peak R2), while deeper configurations deliver marginal 

gains at a modest additional cost. Gradient-norm analyses confirm that chaotic state up-

dates maintain backpropagation signals—the CISMN’s mean gradient norm remains in 
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the thousands versus LSTM’s collapse to single digits, thus effectively circumventing van-

ishing-gradient issues. Rigorous reproducibility was ensured via fixed random seeds, con-

strained initialization ranges, and deterministic training protocols, yielding less than 1.2% 

relative variation across 20 independent runs. Despite these advances, the CISMN’s multi-

component chaotic dynamics introduce interpretability challenges: feature-attribution en-

tropies remain in the mid-range compared to other nonlinear models, indicating more 

dispersed importance scores. Future work will explore hybrid attribution techniques (e.g., 

surrogate modeling combined with Integrated Gradients), the targeted regularization of 

chaotic layers, and hardware-accelerated implementations (GPU-optimized logistic maps, 

FPGA-based chaotic units) to reduce computational overhead without sacrificing robust-

ness. 

The CISMN establishes a reproducible, modular framework for harnessing chaos as 

a computational asset rather than noise. Its demonstrated superiority in synthetic and 

real-world nonlinear regression tasks—combined with its adaptability, gradient stability, 

and reproducibility—positions it as a promising foundation for applications in financial 

forecasting, biomedical signal processing, environmental monitoring, and real-time con-

trol in autonomous systems. By treating controlled chaos as an integral design element, 

the CISMN paves the way for the next generation of deep-learning models capable of 

thriving amid the unpredictability of complex, non-stationary environments. 
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