

Contents

- 1. Introduction
- 2. Analysis
- 3 Site visit & stakeholder input
- 4. Design Goal: Runoff-based spatial
- 5. Design Vision
- 6. Design Zoom-ins
- 7. Conclusion & Reflection

Location

Image by author

Rift valley

Nakuru design area

How the biosphere can guide a sustainable urban growth

Problem statement

Nakuru's urban challenges

Crop failure caused by flooding

Rapid urbanization

Polluted Njoro river

Seasonal flows Menegai crater

Illegal logging Menegai forest

Purity Kinuthia/Mtaa Wangu

By author

Nation.africa, 2020

By author

By author

Research question

What regenerative urban landscape framework can guide rapidly growing Nakuru to balance water management and biodiversity restoration?

What regenerative urban landscape framework can guide rapidly growing Nakuru to balance water management and biodiversity restoration?

REGENERATIVE LANDSCAPE

Restores, renews and enhances natural and urban systems to create more vibrant, inclusive, and ecologically functional cities.

WATER MANAGEMENT

Water retention
Stormwater management
(slow drainage)

ECOLOGY

Connected green-blue
Biodiversity restoration
Ecosystem services:
cooling urban microclimates,
providing food, improve air
quality

What regenerative urban landscape framework can guide rapidly growing Nakuru to balance water management and biodiversity restoration?

s-RQ1

What are the social and environmental impacts of rapid urban growth, particularly on water management, biodiversity?

s-RO2

What regenerative design principles can enhance water resilience and biodiversity restoration?

s-RQ3

Which spatial-ecological interventions are appropriate to restore ecological balance in this specific social-economic and environmental conditions/problem?

s-RQ4

How can the proposed regenerative urban framework translate into spatial strategies and design interventions for Nakuru, fostering ecological balance and sustainable urban expansion?

Research for design

Research about design

Research by design

Design strategy

Image by author, inspired by Manolakelli, 2023

Analysis

Occupation layer

Green-blue network layer

Soil layer

The layer model Image by author, inspired by (Frieling et al., 1998)

Ecotypes

- Evergreen Moist Montane Forest
- Moist combination Woodland & Savanna
- Moist Acacia Woodland & Savanna
- Eastern African Acacia Woodland
- african Eastern acacia - commiphora woodland

Ecotype zoning

Vegetation

- Open shrubs (45-40%)
- Open low shrubs (65-40%)
- Very open trees (40-45%)
- Open trees (65-40%)
- Closed trees

Rangeland

- Trees and shrubs savannah
- Open to closed herbaceous
- Shrub savannah

Other

- Forest plantation
- Wetland

Nature

Landuse

- Irrigated herbaceous crops
- Rainfed herbaceous crops
- Rainfed shrub crops
- /// Scattered rainfed herbaceous
- /// Scattered rainfed shrub crops
- **////** Scattered tree crops
- Isolated rainfed herbaceous

Vegetation

- Open shrubs (45-40%)
- Open low shrubs (65-40%)
- Very open trees (40-45%)
- Open trees (65-40%)
- Closed trees

Rangeland

- Trees and shrubs savannah
- Open to closed herbaceous
- Shrub savannah

Other

- Forest plantation
- Wetland

Agriculture

Aerial view of maize farm with harvester in Ngata,

Private crop field

Njoro district in the Rift Valley Province, Kenya

Nakuru county, Kenya.

Maize during dry season

Cropfield near main road

Site visit

Methods

- o Workshops (Water as Leverage and Egerton University).
- o Interviews
- o Observations and field notes

Interview with city planner

Workshop Water as Leverage

Workshop with Egerton students organized by TU Delft students

Xuejing He, 2025

Nakuru city, 2025 Water as Leverage

Municipality Government

Overseeing implementation

Ecological Stakeholders

Conservation and protection

of ecosystems

Educator Community

Support environmental education

Kenya Wildlife Service

Community
End-users and source of local
knowledge

Resident

Nawassco Water managem

Water management Sustainable drainage, water reuse and infrastructure maintenance.

Urban planner Government

Integration of regenerative design into spatial planning

Farmers
Economic Stakeholders
Could use agroforestry, water
retention and re-use practices.

CivilPublicPrivate

Civil (Community Stakeholders):

Residents bring local knowledge, educators and schoolchildren help in the future with shaping green spaces through schools and gardens.

Municipality

Government
Overseeing implementation

Ecological Stakeholders

Conservation and protection

of ecosystems

Educator Community

Support environmental education

Kenya Wildlife Service

Community
End-users and source of local knowledge

Resident

Nawassco

Water management
Sustainable drainage, water
reuse and infrastructure
maintenance

Urban planner

Government
Integration of regenerative design into spatial planning

Farmers

Economic Stakeholders Could use agroforestry, water retention and re-use practices.

CivilPublicPrivate

• Civil (Community Stakeholders): Residents bring local knowledge, educators and schoolchildren help in the future with shaping green spaces through schools and gardens.

Public (Government Stakeholders): Municipality and Nawassco are critical for implementation and water management, while urban planners integrate ecological principles into city plans.

Municipality Government Overseeing implementation Educator Community Water management Support environmental Sustainable drainage, water Resident education reuse and infrastructure Kenya Wildlife Service Community **Ecological Stakeholders** End-users and source of local

Conservation and protection

of ecosystems

Urban planner Government

knowledge

Integration of regenerative design into spatial planning

Farmers

Nawassco

maintenance.

Economic Stakeholders Could use agroforestry, water retention and re-use practices.

- Civil (Community Stakeholders): Residents bring local knowledge, educators and schoolchildren help in the future with shaping green spaces through schools and gardens.
- **Public (Government Stakeholders):** Municipality and Nawassco are critical for implementation and water management, while urban planners integrate ecological principles into city plans.
- Private (Economic Stakeholders): Farmers and businesses benefit directly from interventions like agroforestry, retention parks and improved public space. They have a smaller role in implementation.

Municipality Government Overseeing implementation Educator Nawassco Community Water management Support environmental Sustainable drainage, water Resident education reuse and infrastructure Kenya Wildlife Service Community maintenance. **Ecological Stakeholders** End-users and source of local Conservation and protection knowledge of ecosystems

Urban planner Government Integration of regenerative

Economic Stakeholders Could use agroforestry, water design into spatial planning retention and re-use practices.

Farmers

Urban Expansion

How research translates into regenerative design

Design principles

Ecological regeneration

Restore green areas using native vegetation to enhance biodiversity and water infiltration.

Systemic design approach

The framework follows a systemic approach based on the natural watercourses of run-off water.

Multifunctional design

Create multifunctional water retention areas for flood mitigation with public use

Water as structuring element

Green-blue networks to enhance water retention, improve urban resilience and cool the city

Purpose-driven protection

Protect natural areas by assigning a purpose. This is good protecting nature from urban expansion.

Community and care

Engage local institutions for long-term greening and care

Design goal

Design goal

Regenerative runoff spatial strategy

Regenerative runoff spatial strategy

Building Blocks of Regenerative Design

Socioproductive

Ecological

Community garden

Indigenous trees

Water retention and park

School garden

Water inclusive corridor

Retention pond

Building and public space

Water filtration ponds

Agroforestry

Slow delay

Concept

1. Control / Capture (Upland – Steep & Vegetated)

To slow and capture runoff before it enters the urban core.

2. Store (Midstream – Urban & Dense)
Zones of temporary

storage and urban greening.

3. Use (Downstream – Flat & Flood-Prone)

Use the water more

Vision

Vision

Agriculture

Water retention lakes

Existing nature (Control)

CBD (Store)

Langa Langa (Use)

Water retention area

Potential (store) area

Potential (use) area

Green blue connection (store)

Green blue connection (use)

Blue-green connection

Control Menegai crater

Menegai Crater
Forest | High elevated areas | Steep hills

Control Menegai crater Fishing pond New indigenous trees Channel to Nakuru centre Control Menegai crater Fishing pond Indigenous trees Retention pond New indigenous trees Nature inclusive corridor Channel to Nakuru centre

Section Menegai crater

Store & Regreen CBD

CBD

Dense | urban | high rise

Store & Regreen CBD

Weirs in the drainage channels

Green corridors

Mixed uses

New building mixed with green

garbage filtration

Store & Regreen CBD

Store & Regreen

CBD

Store & Regreen

CBD

Use Langa Langa

Langa Langa 👛 🚳 Flood risk | lower | flatter

Water retention and park

Agroforestry

School garden

Existing nature (Control)Slow delay

Langa Langa (Use)

Green connection

Urban agriculture

Blue connection

• Water retention area

Grey water

0 100 200 300 400

Community garden

Water retention park Water retention park Food forest Water retention park Entrance to Lake Nakuru

Inlet of filtered water from CBD

55

Use Section Langa Langa

Stakeholder engagement

Succes stories

International Tree Foundation, Nakuru

Images from Globe Gone Green's past school projects (International Tree Foundation, 2023)

African Wood Grow

0-4 years young trees and diverse crops

4+ years two options (multiple crop layers or trees and cattle)

(Africa Wood grow, 2024)

Species manual

Timeline

Phase 1 0-3 years

Phase 2 3-7 years

Phase 3 7-12

Phase 4 12-20 years

Future of Nakuru 20-50 years

What regenerative urban landscape framework can guide rapidly growing Nakuru to balance water management and biodiversity restoration?

Control, Store, and Use. Each one reflects not just topography, but also local needs, ecotypes, and governance capacity.

The framework is rooted in water, driven by ecology, and shaped by people.

This design shows that regenerative urbanism is more than reducing harm, it's about actively repairing systems. It's not a one-time fix, but a continuous process of co-creation, stewardship, and adaptation.

Reflection

This project changed how I see my role as a landscape architect. I've learned that we don't just design space, we design systems of care, participation and resilience. Especially in places with fragile governance, the role becomes even more essential: to connect people, systems, and landscapes in a way that is resilient and regenerative.

Downstream

Midstream
Upstream

0 0,5 1 1,5 2 km

Water management

Water retention and park

Slow delay

Water filtration ponds

Retention pond

Socioproductive

School garden

Building and public space

Community garden

Ecological

Indigenous trees

Agroforestry

Design principles

Connect through local potential

Urban agriculture

Co-evolution for humans and species

Combining functions water retention and social gathering

Green-blue connections

Approach based on the natural course

Create habitats within the system

Engage local institutions for greening efforts and longterm care

Native vegetation

Knowledge sharing

Protection through direct purpose

Downstream

Midstream

Upstream

Problems

