

Delft University of Technology

Approximate SDD-TMPC with Spiking Neural Networks
An Application to Wheeled Robots
Surma, F.; Jamshidnejad, A.

DOI
10.1016/j.ifacol.2024.09.050
Publication date
2024
Document Version
Final published version
Published in
IFAC-PapersOnline

Citation (APA)
Surma, F., & Jamshidnejad, A. (2024). Approximate SDD-TMPC with Spiking Neural Networks: An
Application to Wheeled Robots. IFAC-PapersOnline, 58(18), 323-328.
https://doi.org/10.1016/j.ifacol.2024.09.050

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2024.09.050
https://doi.org/10.1016/j.ifacol.2024.09.050

IFAC PapersOnLine 58-18 (2024) 323–328

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2024.09.050

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

10.1016/j.ifacol.2024.09.050 2405-8963

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

Approximate SDD-TMPC with Spiking
Neural Networks: An Application to

Wheeled Robots

F. Surma and A. Jamshidnejad

Control and Operations Department, TU Delft, 2629 HS, Delft, The
Netherlands (e-mails: {f.surma;a.jamshidnejad}@tudelft.nl).

Abstract: Model Predictive Control (MPC) optimizes an objective function within a prediction
window under constraints. In the presence of bounded disturbances, robust versions are
used. Recently, a promising robust MPC was introduced that outperforms SOTA approaches.
However, solving the optimization problem online is computationally expensive. An efficient
approximation method, such as neural networks (NN), can be substituted to accelerate the online
computation. There are discrepancies between the control inputs due to the approximation. We
propose to model them as bounded state-dependent disturbances to robustly control nonlinear
wheeled robots. We consider a spiking NN to ensure that small robots could use it.

Keywords: Model predictive and optimization-based control, Robust learning systems,
Robotics, Nonlinear predictive control, Neural networks.

1. INTRODUCTION

Model predictive control (MPC) is a state-of-the-art con-
trol algorithm (Rawlings et al. (2017)) which utilizes a
model of the controlled system to estimate optimal con-
trol inputs, based on a prediction of the future states of
the system (Rawlings et al. (2017)). MPC systematically
incorporates the state and input constraints, while it min-
imizes its objective function within a time window. MPC
has been successfully implemented in various systems,
including robot control (Chipofya et al. (2015), Sun et al.
(2018), Jamshidnejad and Frazzoli (2018)).

Robust versions of MPC ensure that, despite bounded
disturbances, the constraints are satisfied. Since robust
MPC is designed for the worst-case disturbance scenarios,
the performance is compromised. A common robust MPC
method is Tube MPC (TMPC), which uses a tube, i.e., a
set that includes all possible future states that satisfy the
constraints despite the disturbances. Usually, the shape
of the tube is designed offline, whereas TMPC determines
online the center of the tube, as well as an ancillary control
law that keeps the actual states of the system within the
tube.

State-dependent dynamic TMPC (SDD-TMPC) was re-
cently introduced by Surma and Jamshidnejad (2023).
SDD-TMPC significantly improves the performance and
feasibility of the robust control problem, compared to
regular TMPC. SDD-TMPC determines a dynamic tube
that accounts for the dynamics of the state-dependent
disturbances. A main limitation of SDD-TMPC currently
is its heavy online computations.

⋆ This research has been supported by the NWO Talent Program
Veni project “Autonomous drones flocking for search-and-rescue”
(18120), which has been financed by the Netherlands Organisation
for Scientific Research (NWO).

The high online computational complexity that hampers
the implementation of Model Predictive Control (MPC) is
a well-known problem in the literature. Two solutions have
been proposed: Explicit MPC (EMPC) and Approximate
MPC (AMPC). In both approaches, all complex compu-
tations are performed offline, which allows the controller
to work relatively quickly. In EMPC, the state space is
divided into regions, each with its unique control law
(Grancharova and Johansen (2012)). However, the number
of regions increases rapidly with the number of constraints
and the prediction horizon (Karg and Lucia (2020)). Thus
making this approach inefficient even without solving op-
timization problem.

AMPC uses a machine learning model to approximate
MPC such as neural networks, radial basis functions,
or lattice representation (Karg and Lucia (2020)). For
linear MPC, it is possible to achieve perfect approximation
by using neural networks (NN) with ReLU activation
functions. Although linear MPC with a quadratic solver
is the fastest feasible implementation of MPC, the speed
of computation could still be increased by more than 100
times by using AMPC (Quan and Chung (2019)). To date,
AMPC has been used to control, among other things, an
inverted pendulum on a trolley (the network had 10 layers
with 6 neurons per layer) (Karg and Lucia (2020)), drone
(2 hidden layers with 32 neurons per layer) (Tagliabue
et al. (2022)) and robotic arm (20 hidden layers with up
to 1024 neurons per layer) (Nubert et al. (2020)). The
complexity of the MPC law to be approximated determines
the required size of the network.

Although neural networks allow for accelerated computa-
tion, approximating complex control laws can potentially
lead to very deep networks. As deep neural networks can be
energy inefficient, it can be challenging to implement them
to control small robots such as micro drones (Stroobants

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

324 F. Surma et al. / IFAC PapersOnLine 58-18 (2024) 323–328

et al. (2023)). In (Henkes et al. (2022)) it has been shown
that by using spiking neural networks (SNN) instead, it is
possible to reduce power consumption by over 200 times.
Although SNNs are rarely used for regression, they have
been used as controllers. Examples of implementations
include an optic flow-based controller (Dupeyroux et al.
(2021)), a deep reinforcement learning trained controller
(Tang et al. (2021)), a PID mimicking controller (Burgers
et al. (2023)), and an MPC mimicking controller (Halaly
and Ezra Tsur (2023)).

In this paper, we will use SNN to approximate SDD-
TMPC (approximate SDD-TMPC), enabling the imple-
mentation of complex control laws in a fast and energy-
efficient manner.

The main contributions of this paper include:

• Introducing a computationally efficient approximate
version of SDD-TMPC for wheeled robots, via spiking
NNs, also noting that this is the first time that a
robust MPC approach is approximated via spiking
NNs.

• Proposing an algorithm for efficiently generating the
dynamic tube of SDD-TMPC online, taking into
account the robot’s shape.

• Training an approximate SDD-TMPC and imple-
menting it to control a wheeled robot in numerical
simulations. The approximate SDD-TMPC remains
safe because the differences between the controller
and its approximation are treated as disturbances.
Even though large bounds on the disturbances are
considered, the controller is not overly conserva-
tive because robustness is designed based on state-
dependent disturbances, not based on the bounds.

2. APPROXIMATED SDD-TMPC

2.1 Problem formulation - controlling wheeled robot

In (Sun et al. (2018)), a prediction model of a unicycle
robot was developed, which is given by (1). The position
(px,t, py,t), in two dimensions and rotation ψt of the robot’s
front head are controlled by velocity νt and ωt. The head
of the robot is its front point, located on the main axis of
the robot that is perpendicular to the axis of the wheels of
the robot. The control objective is to reach a destination
without collisions.

ẋt =



ṗx,t
ṗy,t
ψ̇t


 =


νt cos(ψt) + ρωt sin(ψt)
νt sin(ψt) + ρωt cos(ψt)

ωt


(1)

2.2 SDD-TMPC

In Surma and Jamshidnejad (2023), SDD-TMPC solved a
closely related obstacle-free problem. SDD-TMPC finds an
optimal trajectory of nominal inputs, ṽk, nominal states
z̃k, and the tube Tk by solving (2) which is in general a
nonlinear, non-convex optimisation problem (2) and may
be solved with particle swarm optimisation (Kennedy and
Eberhart (1995)). The controller takes as input the real
system state xk and the nominal state zk. A quadratic cost
function is minimized (2a). A discretized state equation

fd(·) is used (2b) to predict future nominal states. Since
it is not possible to predict the real state perfectly, we use
a set Ek, which contains all the possible errors between
the nominal and real states. The evolution of the error
set is described by (2c). An error is a difference between
the actual state and the nominal state. Since the future
actual state is unknown, the error set contains all possible
future error sets. Although there is no state-dependent
external disturbance, a model of the error dynamics of
the direction has been simplified. To account for this, a
difference between the real and the simplified model is
treated as a state-dependent disturbance wt ∈ W(xt).
The first error set is just a difference between real and
nominal state (2d). The original control problem contained
only the input constraints (2e) and the terminal state
constraints (2f). After solving the optimization problem,
the real controller input is computed with ancillary control
law (3) and depends on the real state, the nominal state,
and the nominal input. In the next iteration, the nominal
state is equal to the state that the robot would reach from
the nominal state if the nominal input was applied and the
disturbance was equal to 0. SDD-TMPC ensures recursive
feasibility and stability. We have:

V ∗(xk, zk) = min
z̃k,ṽk,Tk

V (xk, z̃k, ṽk,Tk) = (2a)

= min
z̃k,ṽk,Tk

k+N−1
i=k

zi|k
2
Q
+
vi|k

2
R


+
zk+N |k

2
F

s.t. for i = k + 1, . . . , k +N :

zi+1|k = fd(zi|k,vi|k) (2b)

Ēi|k = diag
�
Ke,d,Ke,d,Kθ,d


Ei−1|k ⊕Wi−1|k(·) (2c)

Ek = {xk − zk} (2d)

vi|k ∈ V(Ei|k) (2e)

zN |k ∈ Zf (2f)

Then the control input (including an online ancillary
input) is determined after discretization of:

ut =


cos(xt[3]) −ρ sin(xt[3])
sin(xt[3]) ρ cos(xt[3])

−1

(3)


cos(zt[3]) −ρ sin(zt[3])
sin(zt[3]) ρ cos(zt[3])


vt −Keet[1 : 2]



In this paper SDD-TMPC is extended. If the original SDD-
TMPC were replaced, the network would need the nominal
state as an input, but it would not be possible to compute
it, as the output of the network would only contain the
input, because it is not possible to generate a nominal
control with a network, as it would add disturbances to the
nominal state, but by definition the nominal state cannot
be affected by disturbances. Otherwise, the stability proofs
would not hold. To solve this problem, we use additional
constraint (4a) to initialize the first nominal state based
only on the current state and the first nominal state is now
a decision variable. In such a case, the difference between
the nominal state and the actual state must be within the
largest possible tube Emax, which can be found via the
procedure that is given by (Sun et al. (2018)).

Since there are obstacles in the environment, state con-
straints on the position are added (4b). However, since

 F. Surma et al. / IFAC PapersOnLine 58-18 (2024) 323–328 325

et al. (2023)). In (Henkes et al. (2022)) it has been shown
that by using spiking neural networks (SNN) instead, it is
possible to reduce power consumption by over 200 times.
Although SNNs are rarely used for regression, they have
been used as controllers. Examples of implementations
include an optic flow-based controller (Dupeyroux et al.
(2021)), a deep reinforcement learning trained controller
(Tang et al. (2021)), a PID mimicking controller (Burgers
et al. (2023)), and an MPC mimicking controller (Halaly
and Ezra Tsur (2023)).

In this paper, we will use SNN to approximate SDD-
TMPC (approximate SDD-TMPC), enabling the imple-
mentation of complex control laws in a fast and energy-
efficient manner.

The main contributions of this paper include:

• Introducing a computationally efficient approximate
version of SDD-TMPC for wheeled robots, via spiking
NNs, also noting that this is the first time that a
robust MPC approach is approximated via spiking
NNs.

• Proposing an algorithm for efficiently generating the
dynamic tube of SDD-TMPC online, taking into
account the robot’s shape.

• Training an approximate SDD-TMPC and imple-
menting it to control a wheeled robot in numerical
simulations. The approximate SDD-TMPC remains
safe because the differences between the controller
and its approximation are treated as disturbances.
Even though large bounds on the disturbances are
considered, the controller is not overly conserva-
tive because robustness is designed based on state-
dependent disturbances, not based on the bounds.

2. APPROXIMATED SDD-TMPC

2.1 Problem formulation - controlling wheeled robot

In (Sun et al. (2018)), a prediction model of a unicycle
robot was developed, which is given by (1). The position
(px,t, py,t), in two dimensions and rotation ψt of the robot’s
front head are controlled by velocity νt and ωt. The head
of the robot is its front point, located on the main axis of
the robot that is perpendicular to the axis of the wheels of
the robot. The control objective is to reach a destination
without collisions.

ẋt =



ṗx,t
ṗy,t
ψ̇t


 =


νt cos(ψt) + ρωt sin(ψt)
νt sin(ψt) + ρωt cos(ψt)

ωt


(1)

2.2 SDD-TMPC

In Surma and Jamshidnejad (2023), SDD-TMPC solved a
closely related obstacle-free problem. SDD-TMPC finds an
optimal trajectory of nominal inputs, ṽk, nominal states
z̃k, and the tube Tk by solving (2) which is in general a
nonlinear, non-convex optimisation problem (2) and may
be solved with particle swarm optimisation (Kennedy and
Eberhart (1995)). The controller takes as input the real
system state xk and the nominal state zk. A quadratic cost
function is minimized (2a). A discretized state equation

fd(·) is used (2b) to predict future nominal states. Since
it is not possible to predict the real state perfectly, we use
a set Ek, which contains all the possible errors between
the nominal and real states. The evolution of the error
set is described by (2c). An error is a difference between
the actual state and the nominal state. Since the future
actual state is unknown, the error set contains all possible
future error sets. Although there is no state-dependent
external disturbance, a model of the error dynamics of
the direction has been simplified. To account for this, a
difference between the real and the simplified model is
treated as a state-dependent disturbance wt ∈ W(xt).
The first error set is just a difference between real and
nominal state (2d). The original control problem contained
only the input constraints (2e) and the terminal state
constraints (2f). After solving the optimization problem,
the real controller input is computed with ancillary control
law (3) and depends on the real state, the nominal state,
and the nominal input. In the next iteration, the nominal
state is equal to the state that the robot would reach from
the nominal state if the nominal input was applied and the
disturbance was equal to 0. SDD-TMPC ensures recursive
feasibility and stability. We have:

V ∗(xk, zk) = min
z̃k,ṽk,Tk

V (xk, z̃k, ṽk,Tk) = (2a)

= min
z̃k,ṽk,Tk

k+N−1
i=k

zi|k
2
Q
+
vi|k

2
R


+
zk+N |k

2
F

s.t. for i = k + 1, . . . , k +N :

zi+1|k = fd(zi|k,vi|k) (2b)

Ēi|k = diag
�
Ke,d,Ke,d,Kθ,d


Ei−1|k ⊕Wi−1|k(·) (2c)

Ek = {xk − zk} (2d)

vi|k ∈ V(Ei|k) (2e)

zN |k ∈ Zf (2f)

Then the control input (including an online ancillary
input) is determined after discretization of:

ut =


cos(xt[3]) −ρ sin(xt[3])
sin(xt[3]) ρ cos(xt[3])

−1

(3)


cos(zt[3]) −ρ sin(zt[3])
sin(zt[3]) ρ cos(zt[3])


vt −Keet[1 : 2]



In this paper SDD-TMPC is extended. If the original SDD-
TMPC were replaced, the network would need the nominal
state as an input, but it would not be possible to compute
it, as the output of the network would only contain the
input, because it is not possible to generate a nominal
control with a network, as it would add disturbances to the
nominal state, but by definition the nominal state cannot
be affected by disturbances. Otherwise, the stability proofs
would not hold. To solve this problem, we use additional
constraint (4a) to initialize the first nominal state based
only on the current state and the first nominal state is now
a decision variable. In such a case, the difference between
the nominal state and the actual state must be within the
largest possible tube Emax, which can be found via the
procedure that is given by (Sun et al. (2018)).

Since there are obstacles in the environment, state con-
straints on the position are added (4b). However, since

the robot has its shape, it must be ensured that not only
the head of the robot avoids collisions, but the entire
body. The shape function returns the tube consisting of all
possible shapes of the whole body. Many wheeled robots
such as e-pucks, turtlebots, or irobots can be represented
as a circle.

In this case, the tube of all shapes can be represented
by a polytope. This polytope can be constructed in the
following steps:

• Choose a set of directions (e.g. {0, π/2, π, 3π/2}). The
more directions are chosen, the more optimal will
be the final solution, but the computation cost for
solving the optimization problem will be increased.

• For each direction θk compute the distance with (4c),
where r is a radius of a robot and ek[3] is a third
element of the vector ek, i.e. a possible error in the
direction.

• Construct a polytope, where each equation defining
the polytope can be written as (4d). An example of
such a polytope can be seen in the figure 1.

• To the set obtained in the previous point, add (using
Minkowski summation, i.e. the output of this opera-
tion is a set containing all possible sums of all possible
pairs of elements from both input sets) a box set
containing all possible positional errors.

xk ∈ {zk} ⊕ Emax (4a)

shape(zi|k ⊕ E) ∈ X (4b)

disti = ρ(cos(min
e∈E

(|e[3]− θi|)) + 1) (4c)

− cos(θi)px − sin(θi)py ≤ disti (4d)

Fig. 1. An example showing the possible shapes of a robot
when the robot’s directions are between 0.9 and 2.9
rad, and the tube contains all possible shapes.

2.3 Approximating MPC with SNN

In classical neural network architecture, a neuron takes a
set of inputs. These inputs can come from the environment
or other neurons in the network. The inputs are multiplied
by weights found in the training process. The resulting val-
ues are summed and passed through a nonlinear activation
function. The final value is an output from the neuron. In a
feedforward network, the neurons are grouped into layers.
The outputs of the neurons in one layer are sent as inputs
to the next layers.

In a regression task, the output of the final layers must
be a physical value. The network can be trained using a
back-propagation algorithm. It uses a mean square error
between the outputs of the network and the real data. The
new weights are computed using the stochastic gradient
descent algorithm (Bottou (2010)).

Since all neurons send information all the time, it can
lead to inefficient energy consumption compared to SNN
(Eshraghian et al. (2023)). In SNN, each neuron has a
memory value m. In the most common application of leak-
and-fire (LiF) neurons, the dynamics of a neuron can be
described by (5), where β is a constant hyperparameter,
wi is the weight between the current neuron and its i− th
input, σi is an i − th input (this value is 0 or 1 if it is
also the output of another neuron), and a reset value that
decreases the memory value when the neuron fires a spike.

mk+1 = βmk +

n∑
i=1

(wiσi)− reset(mk) (5)

Our network is based on Henkes et al. (2022), where the
first input of the network is not a spike but a continuous
value symbolizing the real input, i.e. the state of the robot.
Then all neurons in the hidden layers are LiF neurons.
However, in the final output layer, the neurons no longer
fire spikes, and we treat the memory value of each of them
as the output of the network. One could argue that this
is no longer an SNN, but this is not important as this
architecture still allows energy to be saved.

To collect data for training the network, we simulate a
randomly sampled state to compute and store a control
input for that state. This process is repeated until a
sufficiently large data set is generated. It is important to
note that the solver may find a local minimum that is
not necessarily close to the global minimum, so we spend
more time (one hour per sample) searching for the solution.
The reason for this is that local minima can be treated
as outliers during SNN training, what makes the training
process more difficult.

There are several problems with the use of SNN. First,
the reset mechanism is a step function and cannot be
differentiated. Its gradient is 0 or infinite. When stochastic
gradient descent is used, the derivative of the step is
replaced during backpropagation by the derivative of a
function called the surrogate gradient. This makes it more
difficult to train SNN, but there is no other choice if you
want to use gradient-based approaches.

Second, if MPC has access to the current state, it can find
the control input, i.e., it does not need past information.
SNN, on the other hand, requires memory to operate.
However, SNN has been shown to work even with a time-
invariant dataset such as the MNIST dataset (Subbulak-
shmi Radhakrishnan et al. (2021)). This can be done by
simulating the network for some constant time steps and
taking the final values of the memory as the output of the
network after those time steps. However, in such a case
it is necessary to use the backpropagation through time
algorithm instead of the standard backpropagation, which
takes more real time to train.

326 F. Surma et al. / IFAC PapersOnLine 58-18 (2024) 323–328

Third, in our experience, if the initial weights are gen-
erated randomly, it is likely that some neurons will not
fire at all, no matter what the input is. This makes their
gradient very small, which means that their weights are
rarely updated during training. Such neurons can be called
dead neurons (Eshraghian et al. (2023)). In training, we
use mean square error, but to solve this problem we add
an additive regularization term that penalizes the network
if some neurons fire less than a certain threshold for the
whole batch, i.e. it is fine if a neuron does not fire for a
certain state, but if it does not fire at all, it is penalized.

2.4 Constraint satisfaction

The main advantage of robust MPC is in providing safety,
i.e., in ensuring that none of the constraints is ever
violated. To ensure constraint satisfaction after replacing
SDD-TMPC with its approximate SNN, we consider a
disturbance dk because the MPC control input uMPC

k

is not perfectly mimicked by the SNN input uSNN
k , as

indicated in (6). We assume dk is bounded i.e. dk ∈ D. By
adding dk to the original model, (1) results in (7). This
leads to a direction-dependent set Wd

i−1|k that is obtained

via a nonlinear mapping of the original boundary set for
the disturbances, as it is given in (8). We then include
the knowledge of this perturbation within SDD-TMPC
by replacing Wi−1|k(·) in (2c) with Wi−1|k(·)⊕Wd

i−1|k(·).
Even though we are working with input discrepancy,
since this has been modeled as a state-dependent additive
disturbance, SDD-TMPC guarantees the satisfaction of
the state constraints.

As long as the assumption dk ∈ D holds, the constraint
will never be violated, and it is possible to compute
the probability of the assumption being satisfied using
Hoeffding’s inequality (Hertneck et al. (2018)), but the
drawback of this approach is that it requires a lot of
samples.

It may be impossible to estimate the set D before training
the network, but if the results are not satisfactory, gener-
ating more data and training a more complex network is
possible.

dk = [dνk dωk]
T = uMPC

k − uSNN
k (6)

ẋt =

[
cos(ψt) ρ sin(ψt)
sin(ψt) ρ cos(ψt)

0 1

] [
νt + dνt
ωt + dωt

]
(7)

Wd(ψ) =

[
cos(ψt) ρ sin(ψt)
sin(ψt) ρ cos(ψt)

0 1

]
D (8)

3. SIMULATION RESULTS

In this paper, we have simulated an irobot create3. All
code we have used can be found in the published repository
(Surma (2024)), which also contains a ROS2 package. We
approximated the shape of this robot by a circle with a
radius r equal to 23.7 cm. The maximum linear velocity
νmax is equal to 0.46 m

s and the input of the robot is
constrained by ν + rω ≤ νmax.

At each iteration, the robot was randomly placed in a
circular area with a radius of 1.08 m surrounded by a
wall. A robot was instructed to minimize its position and
its inputs with cost matrices equal to Q=diag(0.4,0.4),
R=diag(0.2,0.2), and F = diag(0.5,0.5). The horizon was
set to 20. We assumed that the disturbance d is at most
20% of the maximum input value. For this disturbance,
we can define the largest possible error set Emax =:{
e ∈ R3|max(|e[1]|, |e[2]|) ≤ 0.1m, |e[3]| ≤ π

}
. The

robot’s control trajectory had to satisfy the control input
constraint, never let the robot collide with a wall, and let
the nominal state reach the terminal set, which is a circle
with a radius equal to 0.5 m.

In the next step, we used the collected data to train
2 SNNs: Linear Velocity Network (LNV) and Angular
Velocity Network (AVN). We did this because learning
the rotational velocity proved to be more challenging. As
a result, a single SNN was more focused on minimizing the
angular velocity, which led to a higher number of outliers
while trying to predict the linear velocity. We created 1168
data samples (900 for training and 268 for validation). We
were able to ignore the direction by always rotating the
coordinate system by robot direction before generating the
data. The same approach was used in (Tagliabue et al.
(May 23-27, 2022)). The LNV has 5 hidden layers with
50, 200, 1000, 200, and 50 neurons in the layers and the
network was simulated for 20 iterations per control input.
The rotation control input proved to be more difficult and
AVN had 7 hidden layers with 150, 200, 1000, 1200, 1000,
500, and 150 and was simulated for 40 iterations. In both
networks, we used Atan function as a surrogate gradient
and hard reset (after spiking a neuron’s memory was set
to 0).

From our experience, longer simulations of SNN work as
a regularization factor, i.e. it reduces the validation error,
but it makes training much more time-consuming. Thanks
to this regularization factor, it was possible to train a
deeper neural network with less data. We trained the
network using the Adam solver with a learning rate 10−4

and a batch size of 32.

According to our training for LVN, the average training
and validation errors are 0.0326 and 0.0413 respectively.
All training errors shown are relative to the maximum
control input value. The highest error is equal to 0.156,
which means that our initial assumption is very likely
to be satisfied. According to our training for AVN, the
average training and validation errors are 0.0373 and
0.0431 respectively. The highest error is 0.233 and the
assumption dk ∈ D was not satisfied 4 times (3 times in
training and 1 time in the validation dataset). It is possible
to solve this problem by creating a larger set of possible
disturbances, generating new data, and retraining the
network. However, even though the initial assumption is
not always satisfied, we learned during simulations that if
it happens sporadically it does not affect the performance
too much, but increasing the disturbance set would occur
in a more overly conservative controller.

In the last step, we compared both ASDD-TMPC and
SDDTMPC. In figure 2 we can see the consistent behavior
of the controller when the robot has to move from position
[0.5,0.5] and orientation 0.5π to the origin. It shows the

 F. Surma et al. / IFAC PapersOnLine 58-18 (2024) 323–328 327

Third, in our experience, if the initial weights are gen-
erated randomly, it is likely that some neurons will not
fire at all, no matter what the input is. This makes their
gradient very small, which means that their weights are
rarely updated during training. Such neurons can be called
dead neurons (Eshraghian et al. (2023)). In training, we
use mean square error, but to solve this problem we add
an additive regularization term that penalizes the network
if some neurons fire less than a certain threshold for the
whole batch, i.e. it is fine if a neuron does not fire for a
certain state, but if it does not fire at all, it is penalized.

2.4 Constraint satisfaction

The main advantage of robust MPC is in providing safety,
i.e., in ensuring that none of the constraints is ever
violated. To ensure constraint satisfaction after replacing
SDD-TMPC with its approximate SNN, we consider a
disturbance dk because the MPC control input uMPC

k

is not perfectly mimicked by the SNN input uSNN
k , as

indicated in (6). We assume dk is bounded i.e. dk ∈ D. By
adding dk to the original model, (1) results in (7). This
leads to a direction-dependent set Wd

i−1|k that is obtained

via a nonlinear mapping of the original boundary set for
the disturbances, as it is given in (8). We then include
the knowledge of this perturbation within SDD-TMPC
by replacing Wi−1|k(·) in (2c) with Wi−1|k(·)⊕Wd

i−1|k(·).
Even though we are working with input discrepancy,
since this has been modeled as a state-dependent additive
disturbance, SDD-TMPC guarantees the satisfaction of
the state constraints.

As long as the assumption dk ∈ D holds, the constraint
will never be violated, and it is possible to compute
the probability of the assumption being satisfied using
Hoeffding’s inequality (Hertneck et al. (2018)), but the
drawback of this approach is that it requires a lot of
samples.

It may be impossible to estimate the set D before training
the network, but if the results are not satisfactory, gener-
ating more data and training a more complex network is
possible.

dk = [dνk dωk]
T = uMPC

k − uSNN
k (6)

ẋt =

[
cos(ψt) ρ sin(ψt)
sin(ψt) ρ cos(ψt)

0 1

] [
νt + dνt
ωt + dωt

]
(7)

Wd(ψ) =

[
cos(ψt) ρ sin(ψt)
sin(ψt) ρ cos(ψt)

0 1

]
D (8)

3. SIMULATION RESULTS

In this paper, we have simulated an irobot create3. All
code we have used can be found in the published repository
(Surma (2024)), which also contains a ROS2 package. We
approximated the shape of this robot by a circle with a
radius r equal to 23.7 cm. The maximum linear velocity
νmax is equal to 0.46 m

s and the input of the robot is
constrained by ν + rω ≤ νmax.

At each iteration, the robot was randomly placed in a
circular area with a radius of 1.08 m surrounded by a
wall. A robot was instructed to minimize its position and
its inputs with cost matrices equal to Q=diag(0.4,0.4),
R=diag(0.2,0.2), and F = diag(0.5,0.5). The horizon was
set to 20. We assumed that the disturbance d is at most
20% of the maximum input value. For this disturbance,
we can define the largest possible error set Emax =:{
e ∈ R3|max(|e[1]|, |e[2]|) ≤ 0.1m, |e[3]| ≤ π

}
. The

robot’s control trajectory had to satisfy the control input
constraint, never let the robot collide with a wall, and let
the nominal state reach the terminal set, which is a circle
with a radius equal to 0.5 m.

In the next step, we used the collected data to train
2 SNNs: Linear Velocity Network (LNV) and Angular
Velocity Network (AVN). We did this because learning
the rotational velocity proved to be more challenging. As
a result, a single SNN was more focused on minimizing the
angular velocity, which led to a higher number of outliers
while trying to predict the linear velocity. We created 1168
data samples (900 for training and 268 for validation). We
were able to ignore the direction by always rotating the
coordinate system by robot direction before generating the
data. The same approach was used in (Tagliabue et al.
(May 23-27, 2022)). The LNV has 5 hidden layers with
50, 200, 1000, 200, and 50 neurons in the layers and the
network was simulated for 20 iterations per control input.
The rotation control input proved to be more difficult and
AVN had 7 hidden layers with 150, 200, 1000, 1200, 1000,
500, and 150 and was simulated for 40 iterations. In both
networks, we used Atan function as a surrogate gradient
and hard reset (after spiking a neuron’s memory was set
to 0).

From our experience, longer simulations of SNN work as
a regularization factor, i.e. it reduces the validation error,
but it makes training much more time-consuming. Thanks
to this regularization factor, it was possible to train a
deeper neural network with less data. We trained the
network using the Adam solver with a learning rate 10−4

and a batch size of 32.

According to our training for LVN, the average training
and validation errors are 0.0326 and 0.0413 respectively.
All training errors shown are relative to the maximum
control input value. The highest error is equal to 0.156,
which means that our initial assumption is very likely
to be satisfied. According to our training for AVN, the
average training and validation errors are 0.0373 and
0.0431 respectively. The highest error is 0.233 and the
assumption dk ∈ D was not satisfied 4 times (3 times in
training and 1 time in the validation dataset). It is possible
to solve this problem by creating a larger set of possible
disturbances, generating new data, and retraining the
network. However, even though the initial assumption is
not always satisfied, we learned during simulations that if
it happens sporadically it does not affect the performance
too much, but increasing the disturbance set would occur
in a more overly conservative controller.

In the last step, we compared both ASDD-TMPC and
SDDTMPC. In figure 2 we can see the consistent behavior
of the controller when the robot has to move from position
[0.5,0.5] and orientation 0.5π to the origin. It shows the

position of the head over time using both controllers.
To better demonstrate what the robot is doing (i.e. it
first corrected its orientation by moving backward, then
it turned to reach the target), the line between the center
and the head showing the orientation was added. We can
see that the behavior of both controllers is very similar,
but ASDD-TMPC was slightly more aggressive.

Fig. 2. The transient behavior of the robot’s head while
controlled by two controllers. The black lines show
the distance between the center and the head to better
explain the robot’s behavior (ASDD-TMPC only).

An important challenge is presented by Figure 3, where
SDD-TMPC can reach the target, but by using ASDD-
TMPC a few centimeters of steady-state error is displayed.
This is what we should expect, because according to the
largest tube, the largest steady-state error could even be
over 0.15 cm, but it is unlikely since the average ap-
proximation error is usually much lower than the largest
disturbance according to the assumption. One way to solve
this problem would be to use a different controller at the
end. Figure 4 shows how the distance changes and even
though ASDD-TMPC is more aggressive, the discrepancy
in the control input leads to the constant steady-state
error. Finally, Figure 5 shows that the relationship between
the inputs of both controllers is very similar, with ASDD-
TMPC again being more aggressive, but it also clearly
shows how ASDD-TMPC is affected by the input distur-
bance.

4. CONCLUSION

In this paper, we extended the original SDD-TMPC where
the main drawback was the time required to compute a
control input. This problem was solved by approximating
this controller using spiking neural networks for the first
time, which reduced the online computation time but
introduced an additional control input. Based on our
results, the time required to compute the control input
was reduced from minutes to milliseconds, a massive
improvement. In addition, we extended the controller to
take into account the shape of the robot, even when the
direction is uncertain.

Fig. 3. The stable behavior of the robot’s head while
controlled by two controllers.

Fig. 4. Distance between robot head and origin over time

Fig. 5. Control input over time. It is scaled so that if the
value is 1, the robot cannot move faster with the same
ratio between linear and angular velocity.

According to our dataset, two trained networks were able
to imitate the original controller, rarely breaking the
original assumption that the disturbance in the control
input is less than a chosen constant. However, if safety is

328 F. Surma et al. / IFAC PapersOnLine 58-18 (2024) 323–328

critical, it is always possible to retrain the network using
SDD-TMPC with a larger disturbance set. While training
the neural network, we did not make any assumptions
about the model, cost function, etc., so this approach
applies to other control problems as long as there is enough
data and the network has a suitable architecture (i.e.,
number of layers and neurons)

The main challenge for now is the generalization, i.e. every
time the model or the constraints change (e.g. the robot
works in a different environment), the networks have to be
re-trained, which makes it impossible to control the robot
in an unknown environment. The next critical step would
be to add information gathered by sensors as another
input of the network. Another important extension would
be to find a way to generate samples more efficiently, as
currently it takes a lot of time and many more samples to
mimic SDD-TMPC for more complex systems.

ACKNOWLEDGEMENT

This research has been supported by the NWO Tal-
ent Program Veni project “Autonomous drones flocking
for search-and-rescue” (18120), which has been financed
by the Netherlands Organisation for Scientific Research
(NWO).

REFERENCES

Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In Y. Lechevallier and
G. Saporta (eds.), Proceedings of COMPSTAT’2010,
177–186. Physica-Verlag HD, Heidelberg.

Burgers, T., Stroobants, S., and de Croon, G. (2023).
Evolving spiking neural networks to mimic pid control
for autonomous blimps.

Chipofya, M., Lee, D., and Chong, K. (2015). Trajectory
tracking and stabilization of a quadrotor using model
predictive control of laguerre functions. Abstract and
Applied Analysis, 2015. doi:10.1155/2015/916864.

Dupeyroux, J., Hagenaars, J.J., Paredes-Vallés, F., and
de Croon, G.C.H.E. (2021). Neuromorphic control
for optic-flow-based landing of mavs using the loihi
processor. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), 96–102.

Eshraghian, J.K., Ward, M., Neftci, E.O., Wang, X., Lenz,
G., Dwivedi, G., Bennamoun, M., Jeong, D.S., and Lu,
W.D. (2023). Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE,
111(9), 1016–1054. doi:10.1109/JPROC.2023.3308088.

Grancharova, A. and Johansen, T. (2012). Explicit Nonlin-
ear Model Predictive Control: Theory and Applications,
volume 429. doi:10.1007/978-3-642-28780-0.

Halaly, R. and Ezra Tsur, E. (2023). Autonomous driving
controllers with neuromorphic spiking neural networks.
Frontiers in Neurorobotics, 17.

Henkes, A., Eshraghian, J., and Wessels, H. (2022). Spik-
ing neural networks for nonlinear regression. doi:
10.48550/arXiv.2210.03515.

Hertneck, M., Köhler, J., Trimpe, S., and Allgöwer, F.
(2018). Learning an approximate model predictive con-
troller with guarantees. IEEE Control Systems Letters,
2(3), 543–548. doi:10.1109/LCSYS.2018.2843682.

Jamshidnejad, A. and Frazzoli, E. (2018). Adaptive op-
timal receding-horizon robot navigation via short-term

policy development. In 2018 15th International Con-
ference on Control, Automation, Robotics and Vision
(ICARCV), 21–28. IEEE.

Karg, B. and Lucia, S. (2020). Efficient representation and
approximation of model predictive control laws via deep
learning. IEEE Transactions on Cybernetics, 50(9),
3866–3878. doi:10.1109/TCYB.2020.2999556.

Kennedy, J. and Eberhart, R. (1995). Particle swarm
optimization. In Proceedings of ICNN’95 - International
Conference on Neural Networks, volume 4, 1942–1948
vol.4. doi:10.1109/ICNN.1995.488968.

Nubert, J., Köhler, J., Berenz, V., Allgöwer, F., and
Trimpe, S. (2020). Safe and fast tracking on a robot
manipulator: Robust mpc and neural network control.
IEEE Robotics and Automation Letters, PP, 1–1. doi:
10.1109/LRA.2020.2975727.

Quan, Y.S. and Chung, C.C. (2019). Approximate
model predictive control with recurrent neural net-
work for autonomous driving vehicles. In 2019 58th
Annual Conference of the Society of Instrument and
Control Engineers of Japan (SICE), 1076–1081. doi:
10.23919/SICE.2019.8859955.

Rawlings, J., Mayne, D., and Diehl, M. (2017). Model
Predictive Control: Theory, Computation, and Design
2nd edition. Nob Hill Publishing. Madison, Wisconsin,
USA.

Stroobants, S., De Wagter, C., and De Croon, G. (2023).
Neuromorphic control using input-weighted threshold
adaptation. In Proceedings of the 2023 International
Conference on Neuromorphic Systems, ICONS ’23. As-
sociation for Computing Machinery, New York, NY,
USA. doi:10.1145/3589737.3605963.

Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi,
A., Das, S., and Das, S. (2021). A biomimetic neural
encoder for spiking neural network. Nature Communi-
cations, 12. doi:10.1038/s41467-021-22332-8.

Sun, Z., Dai, L., Liu, K., Xia, Y., and Johansson, K.H.
(2018). Robust mpc for tracking constrained unicycle
robots with additive disturbances. Automatica, 90, 172–
184.

Surma, F. (2024). Implemenation of Appoximate state-
dependent dynamic TMPC. doi:10.4121/6568e235-289d-
4be0-b931-ec219c559f6f.

Surma, F. and Jamshidnejad, A. (2023). State-dependent
dynamic tube mpc: A novel tube mpc method with a
fuzzy model of disturbances.

Tagliabue, A., Kim, D.K., Everett, M., and How, J.
(2022). Demonstration-efficient guided policy search
via imitation of robust tube mpc. 462–468. doi:
10.1109/ICRA46639.2022.9812122.

Tagliabue, A., Kim, D.K., Everett, M., and How, J.P.
(May 23-27, 2022). Demonstration-efficient guided pol-
icy search via imitation of robust tube MPC. In Inter-
national Conference on Robotics and Automation, 462–
468. doi:10.1109/ICRA46639.2022.9812122. Philadel-
phia, Pennsylvania, USA.

Tang, G., Kumar, N., Yoo, R., and Michmizos, K.
(2021). Deep reinforcement learning with population-
coded spiking neural network for continuous control. In
Proceedings of the 2020 Conference on Robot Learning,
volume 155 of Proceedings of Machine Learning Re-
search, 2016–2029. PMLR.

