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Reinforcement Learning for the
Knapsack Problem

Jacopo Pierotti, Maximilian Kronmueller, Javier Alonso-Mora,
J. Theresia van Essen, and Wendelin Böhmer

Abstract Combinatorial optimization (CO) problems are at the heart of both
practical and theoretical research. Due to their complexity,many problems cannot be
solved via exact methods in reasonable time; hence, we resort to heuristic solution
methods. In recent years, machine learning (ML) has brought immense benefits
in many research areas, including heuristic solution methods for CO problems.
Among ML methods, reinforcement learning (RL) seems to be the most promising
method to find good solutions for CO problems. In this work, we investigate an
RL framework, whose agent is based on self-attention, to achieve solutions for the
knapsack problem, which is a CO problem. Our algorithm finds close to optimal
solutions for instances up to one hundred items, which leads to conjecture that RL
and self-attention may be major building blocks for future state-of-the-art heuristics
for other CO problems.

Keywords Reinforcement learning · Multi-task DQN · End-to-end · Knapsack
problem · Transformer · Self-attention

1 Introduction

In recent years, machine learning (ML) has shown super-human capabilities in
speech recognition, language translation, image classification, etc. [4, 12, 16].
Lately, more andmore combinatorial optimization (CO) problems have been studied
under the lens of machine learning [3]. Among these CO problems, NP-hard
problems are of interest because, so far, solving them to optimality (via so-called
exact methods) takes exponential time; thus, for many classes of CO problems,
obtaining good solutions for large or even medium sized instances in reasonable
time can only be achieved by exploiting handcrafted heuristics. Instead of creating
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a heuristic by hand, one can also use ML to train a neural network to predict an
almost optimal solution for given or randomly generated CO instances [3]. This
way heuristics can be learned without expert knowledge of the problem domain,
which is also called end-to-end training. Reinforcement learning (RL) seems to be
the most promising end-to-end method to solve combinatorial problems [2]. In fact,
in difference to supervised ML, RL does not need to know the solutions to given
training instances to learn a good heuristic. This way one can learn a heuristic
without any domain knowledge and, in principle, one could find a heuristic that
works better than any a human would be able to design. RL has been used to train the
neural networks used by heuristics designed to solve CO problems [9–11], including
the knapsack problem (KP) [2]. The aim of this paper is to develop an RL end-
to-end algorithm for the knapsack problem based on attention [16], in difference
to prior work that used either recurring neural networks (RNN) or convolutional
neural networks (CNN) [4, 12] (which are popular NN for end-to-end methods). By
developing such an algorithm for a relatively easy CO problem (the KP) [13], we
want to assess if RL with attention can be a fruitful method to tackle other, more
complex, CO problems, which will be the focus of future research.

The remainder of the paper is organized as follows. The formulation of the KP,
our motivations on how and why we use attention and not RNNs or CNNs, and
model architecture are presented in Sect. 2. The training distributions (i.e. bench-
marks of instances) used for testing and evaluating as well as the computational
results are detailed in Sect. 3. Finally, in Sect. 4, we illustrate our conclusions.

2 Problem Formulation and Background Information

The knapsack problem (KP) is one of the most studied CO problems [13]. As input,
we have a set of objects (denoted by set N) and a knapsack of capacity W . Each
object i ∈ N has a positive profit pi and a positive weight wi . The objective of
the problem is to maximize the sum of the profits of the collected objects without
violating the capacity constraint. Introducing binary variables xi , which assume
value one if object i ∈ N is selected and zero otherwise, we can write the problem
as follows:

max
∑

i∈N

xipi (1)

∑

i∈N

xiwi ≤ W (2)

xi ∈ {0, 1} ∀i ∈ N. (3)

The objective function (1) maximizes the total profit of the selected objects,
constraint (2) acts as the capacity constraint, and constraints (3) force the variables
to be binary. This integer linear program (ILP) belongs to the class of NP-hard



Reinforcement Learning for the Knapsack Problem 5

problems [13], which means that the computation time for obtaining optimal
solutions with known exact solution methods grows exponentially with the number
of objects. A simple yet very powerful heuristic is to sort the objects in non-

increasing order of their ratio, i.e., qi = pi

wi

for i ∈ N , and collect them in order as

long as constraint (2) is respected (collecting non-consecutive objects is allowed).
In the following, we refer to this as the simple heuristic.

2.1 Reinforcement Learning Framework

In this section, we give an overview of how we implemented our algorithm. For
more details on RL, we refer the reader to [14]. Our algorithm belongs to the area
of multi-task RL [17], where a task is an instance of the knapsack problem. The
difference between single and multi-tasks is that: in single-task, we want to learn a
policy to always solve the same (instance of a) problem; in multi-task, we want to
learn a policy to solve a family of different instances of a problem (or even different
problems). Moreover, while in single-task the initial state is always the same, this
does not hold in multi-tasks. In order to describe a state in our case, we first define
how we embed the objects into vectors. At any given time step, each object i ∈ N

is uniquely associated to a vector. Each vector is of the form ti = [pi,wi, qi, x̄i , u],
where x̄i is a binary parameter assuming value zero when object i has already been
selected or cannot be selected due to the capacity constraint (2) and one otherwise,
and u is the residual capacity of the knapsack (i.e., W minus the weights of the
already selected objects).

We name the selection of an object an action. Actions (A) are chosen based on
the Q-value of each object (see Sect. 2.1.1). The algorithm that determines the Q-
values is called the agent (see Sect. 2.2). In RL, a state represents the available
information about the process at a given moment. We represent the observation of
a state by the matrix obtained stacking all the |N | object vectors together. Given
a non-final state, the agent has to select an action; however, not all objects can
be chosen in any state. While choosing an action, the non-selectable objects are
momentarily removed, which is called masking. In our case, generic action (object)
i is masked when x̄i equals zero. The initial state has u = W and x̄i = 1 for all
i ∈ N , while we define a state as final if x̄i = 0 for all i ∈ N . Our algorithm
sequentially selects objects until no additional object can be selected, in which case
the algorithm terminates.

Given a state, each action leads to a new state and a reward. In our case, the
reward r of choosing object i ∈ N is the profit of the chosen object (i.e. r = pi

when choosing object i ∈ N). The series of states in between an initial and a final
state is called an episode. The final objective of an RL algorithm is to maximize the
(discounted) cumulative reward observed in an episode. In general, we discount the
future reward to avoid problems arising with very long or non-finishing episodes.
In our case, episodes are relatively short and they always terminate (worst case
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Table 1 Summary of the definitions needed for our reinforcement learning framework

Name Definition

Task An instance of the KP

Multi-task RL RL algorithm to solve a family of tasks (virtually any

KP problem in our case)

Action The selection of an object

State The available information (profits, weights, which objects have

been selected and which have not,..) at a given time moment

Initial state State where no objects have been selected yet

Final state State where no more objects can been selected

Episode Series of visited states from the initial state to the final state

Masking The removal of the unselectable actions

Reward The profit of the selected object

Transition A sequence of an old state, a chosen action, an observed

reward, and a new state

Minibatch A set of non-consecutive1 transitions

Training distribution Distribution from which we draw the instances to train

the algorithm

scenario, they terminate in |N | steps); so, there is no need to discount the future
rewards. We call the sequence of old state s, chosen action a, observed reward r ,
and new state s′ a transition. A set (of fixed size, in our case) of non-consecutive1

transitions is called a minibatch. The transitions in the minibatches are used to
compute the loss (which is needed in order to learn) in the learning step (Sect. 2.1.2).
Finally, we train and evaluate the algorithm by solving randomly drawn tasks from
the so called training distribution. Table 1 summarizes the introduced definitions.

2.1.1 Double Q-Learning

Our RL algorithm falls under the general umbrella of Q-learning [18]. Given a
state s, and a set of possible actions A, the idea of Q-learning is to estimate
the expected future cumulative rewards for each possible action (called Q-values
Q(s, a),∀a ∈ A) and select one action based on an exploration/exploitation
strategy. On one hand, exploration is fundamental to search the state-action space.
In fact, in (non-deep) Q-learning, if one could explore for an infinite amount of
time, the optimal Q-values would be retrieved. On the other hand, the agent should
concentratemore on promising actions to improve convergence to an optimal policy.
As exploration/exploitation strategy, we use ε-greedy, which greedily chooses the
best action (i.e. the action with the highest Q-value) with probability 1-ε or a random
action with probability ε. Often the Q-learning algorithm can be too optimistic while

1 Transitions do not have to be consecutive, but, by chance, they could be.



Reinforcement Learning for the Knapsack Problem 7

estimating the Q-values. One common solution to this problem is to adopt double
Q-learning [7]. In deep RL, double Q-learning is enforced by having two identically
structured neural networks. The current network is used to select the best action at
the next state while the other one (called the target network) is used to compute
the Q-value of the next state. In this work, we use a similar method which helps
stabilizing our results. The difference being that the Q-values are always computed
via the current network and the target network is used to determine the action.
NamingQ′ the function to compute the Q-values associated with the target network,
our revised Bellman equation becomes (see also Sect. 2.1.2):

Q(s, a) = r(s, a) + Q(s′, argmax
a

(Q′(s′, a))). (4)

Equation (4) is needed in the learning step (see Sect. 2.1.2), where the parameters
of the Q function are tuned in such a way that the distance between Q(s, a) and
r(s, a) + Q′(s′, argmaxa(Q(s′, a))) is minimized.

2.1.2 Learning Strategy

Our algorithm works by generating and solving new tasks of different dimensions
(i.e. |N | is not a constant between two different tasks). Let us assume that we train
our algorithm to solve instances of k different sizes. Every time a new instance
is generated and solved, all the transitions are stored in a replay buffer [20]. Our
algorithm has k different fixed-size replay buffers (one for each possible dimension
of |N |) where transitions are stored with a FIFO (first in first out) strategy. A FIFO
policy guarantees that the algorithm always keeps in memory the newest generated
information. Transitions of instances with the same dimensions are stored in the
same buffer. When a minibatch is needed, we randomly choose one of the k replay
buffers and extract a minibatch from there. Given the multiple replay buffers, each
state in the minibatch has the same dimension and, thus, can be stack together,
easing the computation. It is important to note that different tasks have different
gradient magnitude: a task with 100 objects is likely to have a different gradient
than a task with 2 objects. In fact, we are using a NN to approximate the Q-values
and, reasonably, the approximation becomes more and more difficult (thus less
and less accurate) with an increasing number of objects. A less accurate Q-value
approximation would likely lead to greater gradient magnitudes; thus, different
tasks present different gradient magnitude. However, since each time we choose the
replay buffer uniformly at random, we are averaging the gradients; thus, we are not
introducing any bias. When the algorithm has accumulated enough transitions in the
replay buffers, it begins to learn. We do so by selecting, uniformly at random, from
one random replay buffer, t transitions (or all the transitions if less than t transitions
are present in that replay buffer). Transitions which have never been selected before
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have priority over transitions that were. We call these t transitions a minibatch. For
generic transition i (si, ai, ri , s

′
i ) in the minibatch, we compute the loss as:

lossi =
(
Q(si, ai) − (

ri + Q(s′
i , argmax

a
(Q′(s′

i , a))
))2

(5)

Then, we backpropagate the average of the t losses. Sometimes, the loss function
is so steep that blindly following its gradient would lead outside of the region where
the gradient is meaningful. To prevent this, we clip the gradient [19] to a maximum
length of 0.1. The parameters of the agent are updated via the RMSprop method2

[5]. Finally, the target network is updated via a soft-update [6], i.e., naming p any
generic parameter of the agent, pt its corresponding one in the target network and τ

(constant equal to 0.05 in our case) the soft-update parameter: pt ← (1−τ )pt +τp.

2.2 The Agent

The agent receives the observations of the states and outputs the Q-values. It is
composed by three main blocks, all using ReLU as activation function. The first
and last block are composed of two fully connected linear layers of dimension 512
each. The first block enlarges the feature space of each object vector from five to
512 and the last block reduces the features to one (the Q-value). The second block
is a transformer (Sect. 2.2.1). In most CO problems, there is no clear ordered object
structure. Even if we introduce an arbitrary order, the problemwould be permutation
invariant. In the KP, a permutation of the elements would neither change the optimal
solution of the problem nor its structure. For this reason, we decide to base our
agent on self-attention, which is permutation invariant (unlike CNNs or RNNs).
While most agents for end-to-end approaches involve CNNs and/or RNNs [11], we
conjecture that, for the KP and other CO problems, the effectiveness of an algorithm
does not lie within those structures. In fact, CNNs are an excellent tool to extract
local features [12], but they are only useful when there is a clear ordered object
structure (such as pixels in an image). RNNs sequentially embed a sequence of
inputs, where each output depends also on the sequence of previous inputs. This
is very useful when states are partially observable [4]; however, the KP satisfies
the Markov property, i.e., the distribution of future states depends only on the
current state. This memoryless property makes the problemMarkovian. Thus, given
the Markovian property of our problem and the absence of an underlying ordered
structure, we decide to base our implementation on a variation of the transformer
[16] without CNNs or RNNs. The transformer accepts as input a variable-length
(dt ) tuple of objects (where all objects have the same dimension do) and returns
a tuple of same length and dimension (do for each single output, dt for the whole

2 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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tuple). It is composed by a series of multi-head attention mechanisms in a layer
structure (see Sect. 2.2.1). Attention is a powerful mechanism that allows to look at
the input and generate a context vector based on how much each part of the input
is relevant for the output. Doing so, the algorithm learns to isolate from a set of
features the one(s) relevant for that particular state.

2.2.1 Self-Attention, Multi-Head, and Multi-Layer Transformer

Self-attention is a powerful ML technique that takes a set of objects and returns
an equally sized set of vectors. In our case, the objects taken as input are
matrices, called queries Q, keys K , and values V , which are three different linear
transformations of the object vectors of size dq , dn, and dn, respectively. Self-
attention is a function that measures the similarity of queries and keys with a dot
product; then, a softmax of that similarity is used to weight the values in a linear
combination. So, naming WQ,WK , and WV the matrices of learnable parameters
for the linear transformations and S̄ ∈ R

n×dn the embedded state observation (i.e.,
the matrix obtained by stacking the object vectors of dimension 512), we obtain:

Attention(Q,K,V ) = softmax
(

QK�
√

dn

)
V = softmax

(
(S̄WQ)(S̄WK)�√

dn

)
(S̄WV ).

Instead of a single self-attention mechanism on vectors of dimension dn, [16]
discovered that it was beneficial to linearly project the queries, keys, and values h

times (called a head; hence, multi-head) with different, learned linear projections

on a smaller dimension of size dv = dn

h
. The outputs are computed in parallel,

concatenated, and reprojected once again (via a learnable matrix W 0). Formally,
this becomes:

MultiHead(S̄) = [head1, · · · , headh]W 0,

where headi = Attention(S̄W
Q
i , S̄WK

i , S̄WV
i ) and W

Q
i ,WK

i ,WV
i are all learnable

matrices for all i ∈ [1, . . . , h]. This multi-head self-attention mechanism is repeated
for L layers. Each layer is composed of two units which both produce outputs of the
same dimension as their input, i.e., dn. The first unit is indeed the multi-head self-
attentionmechanism, the second unit is a fully connected feed-forward networkwith
ReLUs. Both these units adopt also a residual connection and a layer normalization
[1]. The residual connection was proven to facilitate learning [8].
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2.3 Model Architecture

In each instance, all objects are normalized such that the maximum profit and weight
is one. The agent has a two layer fully connected neural network to expand the 5
features of a vector into 512 features. The resulting vector is fed to a transformer
encoder3 with six layers and eight heads per layer. Normalization is applied after
each layer. After the transformer, another two fully connected neural network layers
are used to reduce the 512 features to a single one (the Q-value associated with
the action of selecting the corresponding object). The learning rate of the optimizer
is set to 10−6 and ε linearly decreases with the episode number from one to 0.05.
Each replay buffer can store up to a maximum of 105 transitions, the minibatch size
is set to 512, and the soft update parameter τ is set to 0.05. The overall structure
of the algorithm is given in Algorithm 1. For a total of 105 times, the algorithm
generates and solves one instance. Its transitions are saved in the replay buffer and
the algorithm takes a learning step. In order to partially fill the replay buffers,
the algorithm starts to learn only after the 512th iteration. During the training,
ten equally spaced greedy test evaluations over one hundred randomly generated
instances are conducted in order to assess the algorithm progress.

Algorithm 1: RL algorithm overview

1: for i = 0, · · · , 105 do
2: task ← generate new task
3: transitions ← solve the task with an ε-greedy policy
4: store transitions in replay buffer
5: if i ≥ 512 then
6: learning step
7: if i mod 104 = 0 then
8: evaluate the algorithm with a greedy policy

3 Computational Results

Two different training distributions are used to generate the tasks. In the first
distribution, |N | is chosen uniformly at random between 2 and 100 every time
a new instance is generated. Moreover, the profit and weight of each object are
also chosen uniformly at random in the closed interval [10−6, 1]. A lower bound
of 10−6 is enforced to avoid numerical errors. We call this distribution random.

3 For details see https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html.
Many optional parameters were set to the default values, such as the feedforward dimension was
set to 512 and the probability of dropout to 0.1.

https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
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The second distribution (named Pisinger) are some of the small, large, and hard
instances taken from [13]. These Pisinger instances were generated in order to be
difficult to be solved via a MILP solver. These small, large, and hard instances are
further subdivided in six, six, and five groups, respectively. From these groups, we
select instances with 20, 50, and 100 objects. Each pair group-number of objects
contains one hundred instances, for a total of 3200 instances (because not all groups
have the 20 objects instances).

We train our algorithm twice from scratch, thus obtaining two different versions
of the same model. We train the first version exclusively on the random instances
while we train the second one exclusively on the Pisinger instances. We evaluate the
trained algorithms both on random instances and on Pisinger’s. When evaluating
and testing, we compare our results with the simple heuristic (see Sect. 2) which
achieves, on average, 99% of the optimal solution’s value (hence, it is a good
measure for comparison). In Figs. 1 and 2, every result is normalized with respect to
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Fig. 1 During training evaluation on 100 random instances. On the x-axis, the number of iterations
and on the y-axis, the averaged normalized cumulative reward are shown. The blue dots indicate
the average cumulative reward, the vertical lines indicate the standard deviation. (a) Training on
the random distribution. (b) Training on the Pisinger distribution
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to optimality are displayed. Please note the different scale of the y-axis. (a) Training on random
distribution. (b) Training on Pisinger distribution
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the optimal solutions (in the Pisinger distribution) or with respect to the heuristic
solution. Figure 1 displays the evaluations of the algorithm during training on
one hundred random instances. For the sake of brevity, we report only the most
meaningful results, i.e., the hard Pisinger instances with one hundred objects.
Figure 2a shows the boxplot of the gap to the optimal solution for the hard Pisinger
instances of the algorithm trained on the random distribution. Although the results
are overall satisfactory, the algorithm trained on random instances performs badly
on some types of Pisinger instances. The most likely reason is that the algorithm
trained on random instances has an extremely small probability of seeing some
Pisinger instances (which have been handcrafted), thus it does not generalize over
those particularly complex instances. On the other hand, when the algorithm is
evaluated on randomly generated instances (Fig. 1a), results are very close to
the heuristic solution, thus, to the optimal solution. Figure 2b displays the same
gap for the algorithm trained on the Pisinger distribution. In this case, results are
very satisfactory since the algorithm consistently achieves near-optimal solutions.
Also while evaluating on randomly generated instances (Fig. 1b), results are very
close to the heuristic solution, thus to the optimal solution; however, results are
slightly worse than the results obtained by the algorithm trained on the random
distribution. As expected, we conclude that training the algorithm on randomly
generated instances boosts performance in the average case, but it is less effective
to complex instances, while training the algorithm on the Pisinger distribution
performs (slightly) worse on the average case, but is much more robust (both on
the random and on the complex Pisinger instances).

4 Conclusion

In this work, we introduced a deep Q-learning framework with a transformer as
the main deep architecture for the KP problem. The algorithm achieves results very
close to optimality within a split second on instances up to one hundred objects.
These results are promising; however, in the KP, also a simple conventional heuristic
returns very solid results. Nonetheless, our results suggests that “attention is all you
need” may also hold in end-to-end methods for CO problems. Future research will
explore a transformer-based RL method on other CO problems where conventional
heuristics fail to give good solutions in a short amount of time. Moreover, our
algorithm computes the Q-values which are difficult quantities to estimate. Instead,
one could aim to learn directly the policy with whom to take actions (i.e. the
probability distribution of the actions for a given state). This policy could be learned
by firstly using behavioural cloning [15] (to imitate the heuristic), and secondly RL,
to explore more possible state-action combinations.
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