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ABSTRACT
In the field of combustion systems, methods and tools are under development to fulfill the need
for fast and accurate prediction of emissions such as NO and CO. CFD-CRN is a hybrid approach
that utilizes a combination of computational fluid dynamics (CFD) and a chemical reactor network
(CRN) to simulate the flow field and chemical kinetics of a combustion system in detail. This thesis
describes the research into the effect of applying the energy equation to update the temperature
whilst solving the CRN. The objective is to quantify the effect of the common assumption that the
temperature generated by CFD is sufficiently accurate and can be kept fixed to reduce the non-
linearity of the system of equations to be solved in the CRN.
This research uses and modifies the computational tool AGNES, that was developed at the Delft
University of Technology and is able to automatically cluster, solve and visualise the results of a
CRN based on results form CFD. The test cases used are the Sandia Flame D, which is a piloted
methane-air jet flame with a Reynolds number of 22400 [1], and the Verissimo et al. test case, which
is a flameless combustion burner [2]. The CRN was clustered with the zones and tolerances set by
Monaghan et al. [3]. The results were validated using experimental data of temperature and species
mass fractions and the sensitivity of the clustering method was studied.
The results of CFD-CRN simulations were used to evaluate the effect of updating the temperature
using the energy equation. The results show that solving the energy equation leads to a progressive
overprediction of temperature in the far field of the computational domain, which consequently
results in the overprediction of NO and CO concentrations. A potential cause for the overprediction
is identified as the heat transfer in the form of conduction and radiation not being accounted for
in the solving of the CRN. Unless the diffusion of heat is accurately modeled, the application of the
energy equation is not recommended.
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1. INTRODUCTION
The energy and transport sector are still largely dependent on combustion systems. To create a more
sustainable environment and reduce global warming, the emissions from combustion systems have
to be reduced.

The research topic described in this master thesis is related to emission prediction in combustion
systems. The purpose of this master thesis is to show the procedure and insights from this research,
which mainly focuses on the effect of using the energy equation to update the temperature in a
automatically generated chemical reactor network, that is constructed from results obtained with
computational fluid dynamics.

To explain this topic, Section 1.1 provides some background information on combustion systems,
the issues inherent to the prediction of emissions and the main approaches for simulating the for-
mation of emissions in a combustion system. In Section 1.2, the main developments in the most
promising combustion simulation approach are presented. Section 1.3 describes the analysis of the
field of CFD-CRN in relation to a computational tool, called AGNES, made by the Delft University
of Technology, to determine, which scientific knowledge is still lacking and can be explored whilst
improving AGNES to arrive at the current best-practices. The scientific gap with the highest priority
is then further discussed in Section 1.4. Finally, the introduction is concluded with the outline of
the research project that is the subject of this thesis.

1.1. BACKGROUND
Combustion systems are an energy dense power source that is an important generator of power in
many industries [8]. Inherent to this type of power source is the production of emissions. In case
of a combustion systems that uses hydrocarbon fuels, carbon dioxide (CO2) and water (H2O) are
produced. These two species together with nitrogen (N2) and oxygen (O2) form the major species
present in the product of the combustion. However, there are far more species present in the com-
bustion product. These minor species are present in significantly smaller quantities than the major
species mentioned, but are known to be harmful to human health and the environment. Examples
of minor species are nitrogen oxides (NOx) and carbon monoxide (CO). To reduce the harmful ef-
fect of these minor species on the environment and human health, legislation was put into place
that limits the mass percentage of specific pollutants inside the emissions. These regulations have
become stricter by lowering the allowable percentage and are expected to become more stringent in
the future [9] [10]. This has sparked the need for fast and accurate prediction of both the major and
minor species to ensure the combustion system will meet the target set by legislation [11][12][10].

Accurate prediction of the major and minor species in the emissions requires detailed solving for
both the flow and the chemical kinetics present in the combustion system. This will cause the sys-
tem of equations to be very large. The problem with this is that the chemical time scales for different
reactions within combustion can vary between nanoseconds and seconds. This broad range of time
scales is much broader than that of the flow timescales, as can be seen in Figure 1.1. This causes the
large system of equations to become stiff, because small time steps are necessary to solve the fast
reactions and a long total duration is necessary to solve the slow reactions.

1



2 1. INTRODUCTION

Figure 1.1: Timescales in turbulent reacting flow [4].

The amount of CPU power that is required to simultaneously model the flow and chemical kinet-
ics in detail is currently still too high for computers to handle due to the stiffness of the system
[10][13][11][12]. This has led to three main approaches to simulate the formation of emissions in a
combustion system that were all described by Yousefian et al. [10].

The first approach is correlation-based modeling and uses measurement data of existing combus-
tion systems to arrive at a prediction for the emissions of the combustion system being designed.
The empirical data from ideally multiple very similar combustion systems are compared and based
on the differences between the combustion systems and their emission data, estimations are made
for the new combustion system. Examples of this type of prediction tool are the models made by
Lipfert (1972) [14], Hung (1975) [15] and Touchton (1984) [16], that used correlations to estimate
NOx emissions of gas turbines.

The second approach is high-fidelity physics-based. This approach is limited in detail by the amount
of CPU power, as mentioned before. This means that part of the model has to be simplified. This
simplification can be exerted either on the level of detail of the simulation of the flow or on that
of the chemical kinetics of the combustion system. It is often chosen to prioritize one over the
other, which means that one is modeled in great detail, while the other is simplified till the CPU
power required is acceptable. Most often the focus is placed on the detailed modeling of the flow
and thus a reduced chemical kinetic mechanism is used to make the CPU power required manage-
able. This chemical kinetic mechanism reduction consists of reducing the number of species taken
into account and can also entail the exclusive use of elementary reactions and the assumption of
fast-chemistry. These simplifications reduce the stiffness and size of the system of equations. Ex-
amples of high-fidelity physics-based tools with computational fluid dynamics (CFD) are described
by Fuller and Smith (1993) [17], Lai (1997) [18] and Crocker et al. (1999) [19], who all used a chemi-
cal model inside CFD to estimate temperature profiles, wall liner temperatures, flame patterns and
other flow conditions inside a combustion chamber.
In the other option, the flow is simplified and a detailed kinetic mechanism is employed. The simpli-
fication of the flow can be achieved in multiple ways. The computational grid can be made coarser,
which means that larger parts of the flow field are represented by one computational cell. This
means that the chemical kinetics has to be solved for fewer points, which reduces the CPU power
required although the system remains stiff. This type of approach is not used in industry, since the
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simplified flow results are not very accurate and are not deemed suitable to be used to estimate
other quantities of importance. It is also possible to decrease the level at which turbulence is solved
for in the flow by e.g. using RANS instead of LES or only solving for larger scales in LES. Furthermore,
a chemical reactor network (CRN) can be constructed manually based on CFD data without using
the actual grid data.

The last approach is the hybrid approach. This approach splits the flow and chemistry of the com-
bustion system. The first step of this approach is to model the flow field. The flow is modeled
by either using computational fluid dynamics (CFD) or by component modeling from experimental
data and uses highly simplified chemistry with only a few species. The results obtained from the first
step contain many computational cells, which would cause the CPU power to become too high if a
detailed kinetic mechanism (DKM) was applied. Therefore, as a next step in the hybrid-approach,
the computational cells are clustered based on similarities. Common criteria for this clustering are
temperature, local stoichiometry and velocity vectors, but any results from the flow simulation can
be used as clustering criteria [20][10]. For these clustering criteria, intervals are set that determine
whether neighbouring computational cells can be clustered together [20]. This clustering can be
done manually or using an automatic clustering algorithm. After the clusters are formed, each clus-
ter is modeled as a type of reactor. This reactor can be perfectly stirred (PSR), plug-flow (PFR) or
partially stirred (PaSR). This network of reactors is then solved for using a detailed kinetic model to
determine the emissions of the combustion system [10].

All three main approaches have their strengths and weaknesses regarding computational speed and
prediction accuracy [10]. Because it is just a matter of changing input variables, the correlation
based prediction is relatively fast, once the correlations have been established. However, these cor-
relations can only be applied to cases that are close to the original experimental data set from which
they were derived. If the new combustion system is not similar enough to this data set, the pre-
dictions of the correlation based tool will not be valid. This limitation is so strict that for the same
combustion system with different operating conditions the predictions from a correlation based
tool might already diverge too much from the actual results to be helpful.

The high-fidelity physics-based approach can be applied to any combustion system. The prob-
lem, however, is that the necessary simplifications to arrive at an allowable CPU power lower the
accuracy of the emission prediction. In case the kinetic model is simplified, species that are not in-
cluded in the reduced model will cause over-prediction of other species. Furthermore assumptions
like fast-chemistry are not valid for e.g. the reaction rates in NOx, which leads to flaws in the pre-
diction [20]. If on the other hand the flow model is simplified, a lot of the smaller fluctuations in, for
instance, the temperature of the flow are lost, which will affect the kinetic model results and make
them differ from empirical results. Although the available CPU power is increasing continuously,
which allows for more detail in the simplified model, it is still a problem [10].

The hybrid approach provides detail in the simulation of both the flow and the chemical kinetics
because they are split into two separate parts [10]. This split creates a slight decrease in accuracy
as it is assumed that the flow is not affected by changes in the minor species concentrations, which
are not captured by the reduced kinetic model used when the flow is modeled. However, because
the concentrations of minor species are relatively low with respect to the major species which are
modeled, this assumption does not decrease the accuracy more than the simplifications applied in
high-fidelity physics-based approach [13][11][21]. This makes the hybrid approach currently the
most promising approach for accurate emission prediction for combustion systems.
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Researchers at the Delft University of Technology are working on a computational tool for predicting
emissions in combustion systems according to the hybrid approach. The tool is called Automatic
Generation of Networks for Emission Simulation (AGNES) and automatically clusters and solves a
chemical reactor network (CRN) based on results from CFD to obtain a prediction of the emissions
of the combustion system. AGNES is under development and might still be improved.

1.2. DEVELOPMENTS IN CFD-CRN
As explained in Section 1.1, the CFD-CRN method is defined as a hybrid method that splits the de-
tailed solving of the flow field and the chemistry in a combustion system. As the name suggests the
flow field is solved with the use of computational fluid dynamics and the chemistry is solved with a
chemical reactor network, which is based on the results from CFD [10]. The CRN mainly increases
the accuracy of the prediction of minor species present in the emissions of the combustion system.
The major species predictions are already modeled in the CFD computation, because these species
significantly influence the flow field. To reduce the required CPU power for including a detailed ki-
netic model, it is assumed that the effect of the minor species on the flow is not significant, which
allows for the split in the hybrid method [13][11][21][10].

The first account of the use of a CRN in the post-processing of CFD results was by Erhardt et al.
(1998) [22]. Erhardt et al. focused mainly on the prediction of NOx. In their work, the proposed
method was demonstrated on a simple 2D geometry by creating a simplified network of PFR from a
CFD analysis with k-ε turbulence model. Their zone model found a fairly good result for NOx emis-
sions with relatively few reactors [10]. However, the method was not applicable for more complex
geometries, flows with recycling zones or any upstream diffusion that is not much smaller than the
downstream convection [10][12].

Faravelli et al. (2001) [11] build on this method with the Simplified Fluid dynamics by Ideal Reactor
Networks (SFIRN). SFIRN was used to determine NOx emissions from the furnace of utility boilers.
SFIRN was an improvement with respect to the Erhardt et al. method regarding the application
to more complex kinetic schemes, the modeling of re-circulation and the inclusion of liquid fuels
[10][12]. It was shown by Faravelli et al., that although of simplifications made, the tool provided
practical results that were useful in furnace design [10].

In 2002, Falcitelli et al. [23] suggested the use of a general algorithm to construct CRNs. This al-
gorithm consisted of six steps. Step 1: Compute flow field properties, like temperature and major
species concentrations, with CFD on a fine mesh. Also determine local stoichiometry possibly with
a post-processing tool. Step 2: Cluster the cells into homogeneous zones defined by intervals of
temperature and stoichiometry, that will be represented by an ideal reactor. Step 3: Determine the
operating parameters for each reactor by adding the volumes and computing the temperature with
an enthalpy conservation expression. Step 4: Assign a PSR or PFR based on the velocity vector distri-
bution in the respective cluster. Step 5: Compute mass exchange between reactors by adding mass
flows between cell faces forming the cluster boundaries. Step 6: Carry out kinetic computation on
CRN with a detailed kinetic model for species present in the combustion. Using this algorithm Fal-
citelli et al. showed that with a limited amount of reactors (400) a very good agreement could be
found with experimental data for industrial applications [10].
The algorithm proposed by Falcitelli et al. was used by Mancini (2007) [24] on flameless combus-
tion. Falcitelli et al. later adjusted this algorithm by clustering the cells based on unmixedness as the
temperature and stoichiometry clustering yielded a too large number of zones with the set intervals
[10].
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Skjoth-Rasmussen et al. (2004) [25] stepped away from the clustering and modeled all the cells
in the computational domain as PaSR. In their work, each cell was split in a reactive and inert
part to account for turbulent fluctuations and grid resolutions between 1500 and 30000 were tried
[10][12][25].
In 2005, Frassoldati et al. [26] used a similar approach as Falcitelli to predict NOx production. As
clustering criteria temperature and composition were used to generate the clusters that were all
assigned a PSR with operating conditions as defined by the SFIRN method from Faravelli et al. Fras-
soldati et al. analysed the minimum number of reactors required to precisely predict the NOx emis-
sions.
Novosselov and Malte (2006) [27] used a slightly different approach following the eight step method
of the University of Washington to arrive at the CRN to predict NOx and CO emissions with the GRI-
Mech 3.0 chemical kinetic mechanism.

Using the kinetic post-processor (KPP), Cuoci et al. (2007) [28] modeled turbulent combustion in
diffusion flames. To account for the effect that turbulent fluctuations have on the temperature,
the kinetic equivalent temperature was introduced by Cuoci et al. This kinetic equivalent temper-
ature was based on the temperature variance as found by the CFD computation. Furthermore, im-
provements were made regarding the convergence by alterations made to the numerical procedure,
which reduced the computational time required to reach the solution.

Fichet et al. (2010) [29] using a similar technique payed great attention to the splitting criteria to
ensure a minimal amount of reactors to predict NOx emissions. This clustering was based on the
temperature, mixture fraction and normalized progress variable as well as the streamlines and fluid
age. Moreover, Fichet et al. did not keep the temperature for each reactor fixed based on the CFD
results. Most researchers have assumed that the influence of the minor species on temperature is so
minimal due to their small quantities and low heat release, that it can be neglected [13][11][21][10].
In the work of Fichet et al. this assumption was not made, because it was argued that for the predic-
tion of NOx minor temperature changes are important and therefore the energy equation had to be
solved to determine the temperature in each reactor [29].

To study NOx and the pathways of formation of NOx, Monaghan et al. (2012) [3] divided the Sandia
D diffusion flame [1] into multiple zones based on temperature, mixture fraction and axial position.
For each zone appropriate criteria were selected to generate the clusters, which were each modeled
by a PSR. The results were successfully validated.

In 2013, Cuoci et al. [12] developed a method that allowed for the handling of very large networks
and showed that turbulent fluctuations have a large impact on the prediction accuracy. Further-
more, Cuoci et al. suggested to further investigate the use of different clustering criteria to arrive at
a minimum number of reactors with the most accurate results. Moreover, it was suggested to work
on parallelization of the solving process of the network to reduce the computational time.

This is exactly what Stagni et al. [21] did in 2013 by developing KPPSMOKE as an improvement on
the KPP method. This fully coupled and parallelized code increased the flexibility and allowed the
solving of very large networks, due to the distribution of CPU-power over multiple processors at the
same time. KPPSMOKE was compared to the Ansys Fluent NOx processor and the Fluent unsteady
flamelet model and was found to be closer to the experimental results in both cases. Monaghan et
al. [30] used KPPSMOKE to predict CO and NOx emissions and study the pollutant pathways.
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To study different approaches for clustering, Nilsson (2014) [31] developed a tool for CRN construc-
tion. Two approaches were analysed with the Sandia Flame D: principal component analysis (PCA)
based and cluster growth based [31]. Both methods constructed a mesh by dividing the compu-
tational domain into zones that comply with the selected criteria intervals. It was found that the
cluster growth method required less reactors to comply with the given criteria, as the PCA based
method generated a larger number of small zones due to its procedure.

Finally, in 2018, Sampat [20] developed AGNES to investigate the choice of clustering criteria as was
suggested by Cuoci et al in 2013 [12]. The exact current set up of AGNES will be further discussed in
Section 1.3. It is the aim of the Delft University of Technology to further improve AGNES by making
sure that it is up to date with the latest developments within CFD-CRN as described in this section
and performing further research in the field of CFD-CRN.

An overview of the developments described in this section is provided in Table 1.1. It was found
by analyzing the developments within CFD-CRN, that although there are some outliers most re-
searchers have approached CFD-CRN in a similar way. Flow field properties are computed with CFD
and often some post-processing is applied to determine certain quantities that have a pronounced
influence on the production of the species at the focus of the respective research.
Usually, the computational domain is then simplified by grouping grid cells based on their resem-
blance regarding the selected clustering criteria. Temperature was used the most as a clustering
criteria and was often combined with the local stoichiometry. However, depending on the test case
and the emission under research another combination of clustering criteria might yield a lower
number of reactors required, whilst maintaining the accuracy of the prediction [12][20]. Further-
more, the method of cluster growth for constructing the network was recently found by Nilsson [31]
to achieve a network with fewer reactors for the same intervals.
Operating conditions for the different clusters are obtained in similar fashion and each cluster is
assigned a reactor. In the beginning of CFD-CRN, researchers used a combination of PSR, PFR and
PaSR. This was possible, due to the test cases used and the number of reactors. More recently, most
researchers have used only PSR, because the use of a single reactor type is less straining in terms of
CPU in larger networks and was found to still achieve the required accuracy.
There are still some differences in how the turbulent fluctuations, the numerical procedure and
reactor temperature are addressed to solve the CRN and there is still some unclarity on what is the
best approach in these cases.
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1.3. RESEARCH POSSIBILITIES IN AGNES
As mentioned before, the Automatic Generation of Networks for Emission Simulation tool (AGNES)
is a computational tool that was developed at the Delft University of Technology by Sampat in 2018.
AGNES can be used to automatically construct and solve a CRN from CFD results of a combustion
system and thereby generate emission predictions according to the hybrid CFD-CRN method. The
initial purpose of AGNES was to support Sampat in his research regarding the choice of cluster-
ing criteria in CFD-CRN. Currently, AGNES can be used by the Delft University of Technology for
further investigation into the field of CFD-CRN, but AGNES is not optimal yet and based on the de-
velopments in the field there are some improvements possible. Therefore the Delft University of
Technology wants to further improve AGNES till it is up to date with the latest developments and
use it to perform further research in the field of CFD-CRN.

AGNES was written in Python with the use of the CRN-solver Cantera and a detailed kinetic mech-
anism [20]. The choice for Python was based on the fact that it is a relatively easy, robust, flexible,
open source programming language that is currently increasingly more used in industry. Cantera,
as CRN-solver, is also open source and was chosen for its flexibility, compatibility with many pro-
gramming languages including Python and because of its reliable chemistry bookkeeping layer [20].
The detailed kinetic mechanism can be any kinetic mechanism available. The GRI-Mech 3.0 kinetic
mechanism is the kinetic mechanism used most often in industry and was used by Sampat [20].
More detailed kinetic mechanisms for natural gas combustion exist, but due to the lower solution
time, robustness and stability inherent to a kinetic mechanism of the size of GRI-Mech 3.0, it is likely
still preferred [10].

AGNES consists of several python files that have to be run consecutively to, respectively, construct
the CRN, solve the system and visualize the results. Figure 1.2 shows the algorithm of AGNES in
the form of a flow diagram. The first files of AGNES, represented by the ’Output processor’-box in
Figure 1.2, are aimed at processing the output from the CFD computation of the combustion sys-
tem test case. This processing consists of making a graph, that represents the computational cells
and their inter-linkage, out of the different grid points and connecting those to the results, which is
necessary for the clustering procedure. The graphs created by this part are only specific to the CFD
results and can be re-used for different cluster set ups.

The next part of AGNES generates the clusters, as shown in Figure 1.2. AGNES was built to investi-
gate the effect of clustering criteria on the emission prediction by CFD-CRN [20]. Therefore AGNES
allows the use of any of the outputs of the CFD computation of the combustion system to be used
as clustering criteria [20]. The clustering procedure makes use of a tolerance, which is applied to all
the clustering criteria. Following the Breadth-First Search algorithm [32] the clusters are formed by
performing a fitness check for each cell. This fitness check establishes whether the chosen criteria
are within the tolerance and whether the cell is connected to the cluster. Based on the fitness check
cells are added to the cluster or a new cluster is started until all cells have been evaluated from the
queue. Finally, it is checked whether the number of reactors is below the specified number. Other-
wise the tolerance is increased.

Next the operating conditions are determined in the ’OC computer’-box (Figure 1.2). Quantities like
the cell volumes and species mass are added, quantities such as pressure are mass averaged and the
total temperature and specific heat at constant pressure are averaged by keeping the total enthalpy
constant [20]. The mass flows entering and leaving at the boundaries of the clusters are also deter-
mined and added. There is, however, a mass balance correction required due to the accumulation
of errors present in the CFD results [20]. This correction entails determining the relative quantities
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Figure 1.2: AGNES algorithm

of mass leaving to the adjacent clusters and then solving for those with the total inflow supplied
[20]. In the pre-research version of AGNES, the temperature was kept fixed to the value computed
by CFD under the assumption mentioned before that the influence of the minor species on the tem-
perature is not significant. The option to use the energy equation to redetermine the temperature
was partially present.

With the operating conditions set for the created clusters, the non-linear stiff system of ordinary dif-
ferential equations (ODEs) that represents the chemical reactor network of PSR can now be solved
using Cantera following the algorithm in the ’Solver’-box (see Figure 1.2). The Cantera solver makes
use of a numerical solver, called SUNDIALS, for ODE integration with time [20]. This numerical
solver is used in AGNES as a local solver. This means that one-by-one the reactors are integrated
in time by Cantera with the Backward Differentiation Formulation (BDF) for each time step until
convergence is reached. Equation 1.1 shows the general formulation of the BDF.
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s∑
k=0

αk yn+k = tn − t0

n
β f (tn+s , yn+s) (1.1)

Because the different reactions taking place in combustion vary significantly with respect to their
timescales, the system of ODEs is very stiff [20]. As shown in Figure 1.3 the variation in chemical
timescales can range from nanoseconds to seconds.

Figure 1.3: Timescales in turbulent reacting flows [4].

This means that a small time step is required to capture the faster reaction, whilst a large absolute
time has to be modelled to converge the slower reactions. This means that if only a local time step-
ping method is used, many iterations have to be performed to reach the solution.
Global time stepping methods are used to solve for all the reactors simultaneously and are aimed at
reaching convergence faster. AGNES uses a global Newton solver for this. The Newton method is a
root-finding algorithm, which through Equation 1.2 finds the value for y that yields f (y) = 0.

yi+1 = yi − fi

f ′
i

(1.2)

The governing equations of the system can be represented by Equation 1.3. In this equation ω,
f , R(ω) and g (ω) are all vectors representing all the mass fractions in all the reactors, mass flows
from the external environment, production inside each reactors and the net rate of species mass
production, respectively. The only term left is C , which is a sparse matrix that accounts for all the
convective terms.

g (ω) =−Cω+ f +R(ω) (1.3)

By applying the Newton method to Equation 1.3, the mass fractions (ω) can be determined for which
the net rate of production is 0 (g (ω) = 0), as shown in Equation 1.4. In this equation JiJiJi is the Jacobian
matrix that replaces the derivative in Equation 1.2.

JiJiJi∆ω=−g (1.4)
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However, it is preferred to use a time-integrating global time stepping method, because these are
more stable than the Newton method alone [20].

Based on the pre-research version of AGNES and the developments in the field of CFD-CRN de-
scribed in section 1.2, five recommendations were made to improve upon for next versions of AGNES.

Turbulence: Currently temperature fluctuations due to turbulence present in the PSR is not mod-
eled in AGNES [20]. However, the effect of turbulence on temperature fluctuations was found to be
important by Cuoci et al. (2013), who saw an significant improvement in the results when temper-
ature fluctuations due to turbulence were accounted for in the model [12]. It is recommended to
further study the effect that the modeling of these temperatures fluctuations has on the accuracy of
the emission predictions for different test cases to determine when modeling these fluctuations is
useful.

Liquid Fuels: AGNES has only been used for gaseous fuels [20]. To allow research of test cases
with liquid fuels, like gasoline and kerosene, some adjustments will have to be made. To ensure
proper modeling of the liquid fuel spray a simulation for spray combustion of ANSYS Fluent can
be used [20]. This would require some changes to the processing of the CFD results to ensure the
simulation results are read correctly. For the chemistry modeling it is possible to neglect the liquid
phase chemistry and just consider the gas phase. This method is based on the assumption that CFD
correctly predicts droplet evaporation of the liquid fuel and the associated changes in heat release
and temperature [20]. This method would require the gases formed by the droplet evaporation to
enter the respective reactor as boundary inlet mass flow by including it in the source term [20].
An expected issue for running simulations for liquid fuels is the increased computational power and
time associated with the larger kinetic mechanism required to model liquid fuels, like gasoline and
kerosene [20]. Therefore it might be useful to also focus on the computational efficiency of AGNES
to reduce the computational time for dealing with liquid fuels.

Complex geometries: AGNES was not tried on complex geometries yet [20]. The program has some
hard coded zone IDs incorporated that have to be adjusted for the respective simulation [20]. Fur-
thermore, AGNES is currently only able to handle one Fluent fluid zone [20]. In the future, it might
be useful to enable multiple zones to allow the modeling of combustion systems with more complex
geometries.

Global time stepping: A global Newton solver is used to solve for all the reactors once the residuals
of the local solver have reached low enough values. It was found that the global Newton solver be-
comes unstable quickly, when the simulation is not close enough to reaching the solution [20]. This
means that although the use of the global Newton solver reduces the computational time already,
AGNES often has to switch back to the local solver immediately after starting the global solver. By
using time-integration global time stepping it is expected that this instability is not as high and that
the computational time will be reduced significantly [20]. This will enable more runs to be per-
formed on the same test case or more complex test cases to be tackled in the same time frame.

Temperature update: In runs performed by AGNES the temperature as determined by CFD has
been kept fixed under the assumption that the minor species are too low in quantity to significantly
influence the temperature in the combustion system with their low heat release [20]. It is possible
to update the temperature provided by CFD by solving the energy equation as done by Fichet et al.
in 2010 [29]. However, Fichet et al. never compared results for keeping the temperature fixed and
updating with the use of the energy equation. Therefore it is unclear what the gain is in accuracy
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of solving the energy equation and whether that gain is significant. Furthermore, it would be inter-
esting to compare the stability and solution time of both cases, since the non-linearity is increased
with the energy equation.

From these five recommended research topics, the topic of updating the temperature is considered
most promising, as the lack of scientific results supporting this common assumption is seen as a
research gap, that can be filled whilst improving AGNES simultaneously.
In the case of modeling temperature fluctuations from turbulence, the comparison between using
and not using it has already been made by Cuoci et al. [12], who determined that the modeling of
turbulence has a significant effect on the accuracy of prediction. Therefore the scientific gap, in this
case, is smaller than in the case of the temperature update.
Enabling the modeling of liquid fuels and complex geometries is useful for specific cases of future
research with AGNES on these types of combustion systems. The method of modeling would require
extensive validation of each specific test case to ensure proper modeling of the fuel and/or geometry
in CFD and in the subsequent CRN. To allow proper evaluation of the modeling method for liquid
fuels or multiple fluids zones, it is first essential that the use of AGNES for gaseous fuels and simple
geometries is validated further.
The implementation of time-integrated global time stepping will be beneficial for any future run
with AGNES, as the computational time is expected to decrease, which allows for more (complex)
runs to be performed. However, the scientific value is limited to numerical procedure and global
time stepping was applied for many more test cases in the field of CFD-CRN than the solving of the
energy equation.

Because updating the temperature is deemed most promising compared to the other topics it is the
scientific gap focused on by the research described in Section 1.4. It is expected that the increase
in non-linearity of the system due to solving of the energy equation will increase the computational
time required to solve it. To allow for thorough exploration of the scientific gap it is desirable to run
as many simulations as possible. Therefore to allow more runs to be performed the implementation
of time-integrated global time stepping will be done as a means to end improvement. This will be
further discussed in Section 3.7.

1.4. TEMPERATURE PREDICTION IN CFD-CRN
In Section 1.3, it was concluded that updating the temperature with the energy equation is an in-
teresting research gap in the field of CFD-CRN. The computational tool, called AGNES, can be im-
proved by adjusting the program so that it can use the energy equation to update the tempera-
ture with respect to the results of the CFD computation. This temperature was previously kept
fixed at the values obtained from CFD. It has been assumed by many researchers in the field of
CFD-CRN that keeping the temperature fixed has no significant effect on the emission prediction
[13][11][21][10].
As explained before, this assumption is based on the fact that the CFD computation already takes
into account the reduced chemical kinetic mechanism containing the major species being formed
for the prediction of the temperature. The use of the CRN in the hybrid method is mainly aimed at
accurately determining the quantities in which the minor species are present. These minor species
are present in the combustion system in much smaller quantities compared to the major species,
which are considered by the CFD computation. Based on this difference in order and the relatively
low heat release associated with these minor species, researchers have assumed that the contribu-
tion of these minor species to the temperature is negligible.

The adoption of a reduced chemical kinetics model increases the uncertainty of the temperature
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computed by CFD. These temperatures are already subjected to uncertainties due to the necessary
turbulence modelling assumptions, the parameter uncertainties related to numerical models and
the inherent uncertainties of e.g. chemically reacting gases [10].
These uncertainties might not be an issue for the flow field that is not extremely sensitive to the
small local differences in temperature that could be caused by the minor species [20]. This makes
it possible for CFD to compute flow properties accurately when only a reduced kinetic mechanism
is employed. However, for the formation rate of e.g. NOx the sensitivity towards slight changes in
temperature is very high due to the exponential dependency [20][29]. This dependency is shown by
the Arrhenius equation (Equation 1.5) where the reaction rate (k) equals the temperature dependent
pre-exponential factor (A) times the exponent of the activation energy (E A) over the universal gas
constant (R) times the temperature (T ).

k = Ae−
E A
RT (1.5)

Furthermore, because the minor species are only present in small concentrations the impact of a
local change in formation rate can easily have a large impact on the total amount of the species
present. This means that if the changes in temperature due to the formation of minor species are
modeled in the CRN this might significantly increase the accuracy of the prediction of these species.

By keeping the temperature fixed in the CRN, the energy equation does not have to be solved to
obtain the new temperature for each PSR for each time step. This makes the system of ODEs more
linear than when the energy equation has to be solved. Non-linearity combined with the stiffness
of the system is associated with higher computational power and simulation time. This forms the
main reason why researchers were interested in assuming the temperature could remain fixed.

In 2010, Fichet et al. researched the prediction of NOx emission in gas turbines [29]. As mentioned
it is expected that small discrepancies in temperature have a large effect on the prediction of NOx.
With temperatures are above 1600K, for example, a temperature increase of 10K will cause the for-
mation rate of NO to increase with approximately 10% [33].Therefore Fichet et al. chose not to
assume the temperature to be fixed, but solved the energy equation (Equation 1.6) instead [29].
Equation 1.6 is the energy balance for a PSR which uses the mass in the reactor (m), specific heat at
constant volume (Cv ), the change in temperature with time ( dT

d t ), the heat loss through the reactor
walls (Q̇), the mass flow (ṁ) in and out, the enthalpy (h) of the inlet and outlet stream, the reactor
volume (V ), the production rate of species k (ω̇k ) the molecular weight of species k (MWk ) and the
specific internal energy of species k (uk ) [20]. Fichet et al. found a good agreement between the
results from the CFD-CRN and the measurement data in terms of levels and trends [29].

mCv
dT

d t
=−Q̇ +∑

i n
ṁi nhi n − ∑

out
ṁout hout −

∑
k

V ω̇k MWk uk (1.6)

However, Fichet et al. did not research what the result would have been, if the energy equation
had not been solved, which means there is still no quantification of the impact the assumption of
fixed temperature has on the prediction results. This is a research gap that will be filled by adjusting
AGNES for the option of solving the energy equation and then comparing the results of the emission
predictions of a test case for different run settings. The main research question for this research is
therefore:

How are the results and run performance affected by applying the energy equation to recompute
the temperature in a CRN for the CFD-CRN method?
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The goal of this research is to determine the impact of the assumption to keep the temperature fixed
on the prediction of different emissions and how this impact is affected by different run settings
for a specific test case. It was hypothesized that applying the energy equation would increase the
accuracy of the emission prediction and increase the simulation time. It is expected that the extent
of this increase in both is dependent on the test case and run settings analyzed, but that it would
always be present.

1.5. RESEARCH OUTLINE
In the field of combustion systems, methods and tools were developed for the prediction of emis-
sions produced by these systems. The main motivation for the development of these tools and
methods is the strict legislation surrounding these emissions. It was found that amongst the ap-
proaches in literature for emission prediction in combustion systems, the hybrid approach is cur-
rently the most promising. The hybrid approach splits up the emission prediction problem by first
computing the flow field using CFD with reduced chemical kinetics and then solving for detailed
chemistry via a chemical reactor network (CRN) that is constructed with the results from the CFD
computation.

At the Delft University of Technology the computational tool AGNES was developed that can be used
to automatically cluster and solve a CRN based on results from CFD to obtain a prediction of the
emissions of the combustion system. AGNES is still under development and it was recommended
based on developments in the field of CFD-CRN to look into turbulence, liquid fuels, complex ge-
ometries, global time stepping and temperature updating [20].

From these five recommended research topics, the topic of updating the temperature is considered
most interesting. In literature, it was found that most researchers have assumed that the temper-
ature determined by CFD can be kept fixed. This assumption is based on the reasoning that the
reduced chemistry including the major species is sufficiently accurate, because the concentrations
of minor species computed with the CRN are present in too small quantities to significantly influ-
ence the temperature with their low heat release. There was a lack of scientific results supporting
this common assumption.
It was argued by Fichet et al. that this assumption might not be valid for the prediction of e.g. NOx
because the formation rates are very sensitive to minor temperature changes [29]. Fichet et al. there-
fore used the energy equation to update the temperatures while solving the CRN [29]. There had not
been any comparison between fixing the temperature or using the energy equation, which would
allow the analysis of the impact of this common assumption. This was seen as a research gap, that
could be filled whilst improving AGNES simultaneously.

The following research question was opted with the goal to determine the impact of the assumption
to keep the temperature fixed on the prediction of minor species and what influences this impact:

How are the results and run performance affected by applying the energy equation to recompute
the temperature in a CRN for the CFD-CRN method?

It was hypothesized that applying the energy equation would increase the accuracy of the emission
prediction and increase the simulation time. It was expected that the extent of this increase in both
is dependent on the test case and run settings analyzed, but that it would always be present. In this
research, AGNES was adjusted to create the option of updating the temperature in the CRN with the
energy equation as was done by Fichet et al. [29] and multiple runs were performed for different
settings to determine differences between the two options to test the hypothesis.



2. THEORY
When simulating a combustion system, there are many options in terms of modeling the different
physical phenomena that take place in such a process. In this chapter, the important options in sim-
ulating a combustion system are explained concisely to provide a general theoretical background for
the research method described in Chapter 3.

2.1. COMBUSTION THERMODYNAMICS
A chemical reaction can be exothermic or endothermic. Exothermic reactions release energy from
the reactants during the formation of the products. In case of an endothermic reaction, energy
is absorbed by the reactants to form the products. Both a exothermic and endothermic reactions
can be spontaneous depending on the change in Gibbs free energy. Equation (2.1) shows how the
change in Gibbs free energy (∆G) of a reaction is calculated. ∆H is the enthalpy of reaction as shown
in Figure 2.1. T∆S is the temperature times the change in entropy of the reaction.

∆G =∆H −T∆S (2.1)

Figure 2.1: Relationship between enthalpies of formation and reaction. Based on Winterbone [5]

In case∆G < 0, the reaction is spontaneous, which is also called exergonic and when∆G = 0 then the
reaction is in chemical equilibrium. Combustion is an overall exergonic exothermic set of reactions,
which causes the temperature to increase due to net heat release from the fuel and oxidizer reacting.
This increased temperature can in turn be used to generate power in a combustion system.

2.2. CHEMICAL KINETICS
The combustion process using a hydrocarbon fuel and air is often simplified by using the represen-
tation shown by Equation (2.2).

15
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Cx Hy +a(O2 +3.76N2) −−→ xCO2 + y

2
H2O+3.76aN2 (2.2)

Equation (2.2) assumes a reaction under stoichiometric conditions, which means that precisely
enough air is supplied to have all the fuel react completely with the oxygen molecules. It can be
seen, that this reaction is expected to only yield carbondioxide (CO2) and water (H2O) as products
from the reaction and the nitrogen (N2) remains inert.
However in an actual combustion system, there are more products aside from those mentioned by
Equation (2.2). The reason for this is that the reaction shown actually requires multiple steps in the
form of elementary reactions to convert the reactants into the expected products. These elementary
reactions have a finite rate and are mainly dependent on collisions between molecules, the orienta-
tion of the colliding molecules and the activation energy of the reaction.

There are three types of elementary reactions:

1. A −−→ products

Unimolecular reactions consist of one molecule that turns into prod-
ucts. The most common forms of this type of reaction are the rear-
rangement and dissociation of the molecule, which means the molecule
should consist of multiple atoms.

2.
A + A −−→ products
A + B −−→ products

Bimolecular reactions consist of two molecules, which can be the
same or different and can consist of one or more atoms that react to
form products.

3.
A + A + A −−→ products
A + A + B −−→ products
A+B +C −−→ products

Termolecular reactions involves three molecules. In this type
of reaction, the third molecule absorbs the internal energy from
the newly formed products and thereby avoids dissociation of the
products.

These elementary reactions each have their own reaction rate and reaction order. The reaction rate
determines how quickly a reaction is going in a certain direction and the reaction order tells you
how dependent the reaction rate is on the amount of reactants available.
Equation (2.3) shows a generic reaction, which can take place both ways. The reaction of species A
with species B has a reaction rate equal to k1 and the reverse reaction has rate k2.

aA+bB ←−→ cC+dD

aA+bB
k1−−→ cC+dD

aA+bB
k2←−− cC+dD

(2.3)

The change in concentration of species A ([A]) in Equation (2.4) can be determined by the reaction
rate times the concentrations of the reactant species to the power of the relative amount necessary
for the reaction.

d [A]

d t
=−k1[A]a[B ]b = k2[C ]c [D]d (2.4)

The reaction rate (k) is determined by Equation (2.5) and is computed with the temperature depen-
dent pre-exponential factor (A′), the activation energy (Ea), the gas constant (R) and the tempera-
ture (T ). This equation is also called the Arrhenius equation.

k = A′e
Ea
RT (2.5)
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2.3. REACTION MECHANISMS
Elementary reactions are very circumstantial. In the case of combustion of hydrocarbon fuels, the
reactants in any intermediate stage of the reaction can, by chance, start to divert from the path and
generate a product that is different from the expected carbondioxide and water. To represent the
array of options in reaction paths a reaction mechanism is used. Figure 2.2 shows an example of
such a reaction mechanism.

Figure 2.2: Reaction flow analysis of stoichiometric premixed Methane-air flame at atmospheric condition. Based on
Warnatz [4].

As can be seen in Figure 2.2, in combustion processes using methane (CH4) and air, the carbon
atom (C) is likely to not only result in carbondioxide (CO2), but also carbonmonoxide (CO) and
other species that still include some of the hydrogen atoms (H) that are originally in the methane
molecule. Reaction mechanism can range from including many species and pathways to very few
to reduce the computational cost. Based on the accuracy and application the choice is made for a
suitable reaction mechanism.

2.4. TRANSPORT PROCESSES
For elementary reactions of the Bi- or Termolecular type to take place a collision between reactants
is required. Therefore, it is important to know where certain species are in the combustion system to
determine at least the likelihood of a specific collision taking place. On top of that, the temperature
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and energy at the location of that collision are important to determine the reaction rate.
The transport equations describe how a scalar quantity is transported in a space. This scalar quan-
tity can e.g. be species mass, momentum in one direction and energy. Equation (2.6) is the transport
equation of species mass. In Equation (2.6) to (2.11), t is time, ρ is the density, −→v is the mixture ve-

locity vector,
−→
V is the diffusion velocity vector, M is the molar mass and ω is the production rate.

The subscript i denotes that that quantity is specific to a certain species i .

∂
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Equation (2.7) contains the transport equation of momentum, which is also the Navier-Stokes equa-
tion. The symbols in this equation are consistent with those of Equation (2.6). There are some addi-
tional variables. ←→σ is the stress tensor, which has matrix entries that correspond to Equation (2.8),−→g is the gravitational acceleration vector, p from Equation (2.8) is the pressure, δi j is the Kronecker
delta, µ is the dynamic viscosity, and v and x are a velocity and location vector component, respec-
tively. In this case, i , j and k stand for the three coordinates in the Cartesian coordinate system.

∂
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σi j =−pδi j +2µ
(1

2

(∂vi

∂x j
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(2.8)

Equation (2.9) shows the transport equation for specific enthalpy. In addition to the variables speci-

fied previously, Equation (2.9) to (2.11) also contain h which is the enthalpy,
−→
jq which is the diffusion

vector and se which is the source/sink term. The source/sink term can exist in Equation (2.9), even
though energy is conserved, due to interchange of energy with the radiation field.
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Dp

Dt
≡

( ∂
∂t

+−→v ·−→∇
)
p (2.11)

2.5. TURBULENT TRANSPORT AND MODELING
Turbulent motion significantly increases the mixing of flows and is present in most combustion
systems, due to the high Reynolds number. Turbulent motion is characterized by chaotic changes
in pressure and flow velocity.
This behaviour can be described using eddies, which are the swirls and reverse currents created in
a flow, due to turbulence. Turbulence produces eddies of the integral length scale or in energy size
range with the kinetic energy of the flow. This energy is then transferred to continuously smaller
and smaller scales in the inertial subrange until the dissipation range is reached. In the dissipation
range the eddies are dissipated into heat by the viscous forces. The smallest eddies present in the
flow are of the Kolmogorov scale. This energy cascade is also shown in Figure 2.3.

Figure 2.3: Schematic representation of the energy cascade of eddies in turbulent flow.

To simulate the turbulent flow, the grid resolution has to be smaller than the Kolmogorov scale to
ensure the smallest eddies are still captured. In this way, no additional modeling is required. This
type of computation is called Direct Numerical Simulation (DNS).
To allow for a coarser grid resolution and reduce the computational power required a mathemati-
cal model can be adopted to serve as a statistical approach for the turbulence. The statistical ap-
proach can use Reynolds Averaged Navier-Stokes (RANS) equations or Large Eddy Simulation (LES)
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equations. Figure 2.4 shows the difference between these computational approaches in terms of
resolvement.

Figure 2.4: Schematic representation of the DNS, LES and RANS modeling and resolvement ranges of eddies in turbulent
flow.

In RANS, a closed model for mean values is constructed, which means the entire range of eddies
is modeled instead of directly computed, which it would be with DNS. Therefore, when the grid
resolution is sufficient to model the essential mean flow phenomena, refining the mesh will have
no benefit for the results. This generally allows for a relatively coarse grid and RANS can also be
applied to a 2D mesh, because the mean value is used.
In LES, a closed model for filtered values is constructed. This means that the larger scale eddies are
computed and the smaller scale eddies are modeled. The dividing scale of eddies between being
computed and being modeled is dependent on the grid resolution. A coarser mesh will have a larger
part of the size range modeled than a finer mesh. The bounds of LES grid resolution are therefore the
integral length scale and the Kolmogorov length scale, because out of these bounds the simulation
would turn into RANS or DNS, respectively.
Figure 2.5 schematically shows the difference in results expected from RANS, LES and DNS

Figure 2.5: Schematic representation of local temperature time evolution computed with DNS, RANS and LES.

Equation (2.12) contains the mean transport equations for modeling by RANS and subgrid LES. The
mean transport equations have three unclosed terms, that require a closure model. These are the
’Reynolds stress’, ’mean source term’ and ’turbulent scalar flux’ for RANS and the ’subgrid stress’,
’filtered source term’ and ’subgrid scalar flux’ for LES, which are R̃i j , S̃k and F̃ki in Equation (2.12).
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Common models for closing the Reynolds/Subgrid stress (R̃i j ) are Spalart-Allmaras (S-A), k-epsilon
(k − ε), k-omega (k −ω), Shear Stress Transport (SST) and Reynolds stress equation model (RSM).
Except for RSM, all the common models use the eddy viscosity concept, which relates turbulent
stresses to the mean flow to close the system of equations. Models using the eddy viscosity concept
are less accurate for flow with high anisotropy, significant streamline curvature, flow separation, re-
circulation or those influenced by rotational effects.

The Turbulent/Subgrid scalar flux can be closed using the gradient diffusion assumption and adopt-
ing a gradient diffusion model for turbulent diffusion. However, premixed turbulent flames can
showcase a flux in the opposite direction from the one predicted using this method. Therefore an
additional transport equation has to be solved in some cases.

2.6. CHEMICAL SOURCE TERM MODELING
The last unclosed term is the Mean/Filtered source term. This chemical source term of a species
is determined by the rate of change in concentration of that species. Equation (2.13) shows this
dependency. In Equation (2.13), species i has the chemical source term Si , the mass fraction Yi , the
molar mass Mi and the concentration Ci .

ρSi = ρdYi

d t
= Mi

dCi

d t
(2.13)

As explained in Section 2.2 the rate of change in concentration is computed using the reaction rate,
which in turn is computed with the Arrhenius equation. To close the chemical source term the mean
reaction rate has to be determined. However, as can be seen in Equation (2.14), the mean reaction
rate not only depends on the mean temperature (T̄ ), but also on the temperature fluctuations (T ′2,
. . .).

k̄ = A exp
(
− Ea

RT

)
= A exp

(
− Ea

RT̄

)(
1+

( Ea

2RT̄
−1

)ET ′2

RT 3
+ . . .

)
(2.14)

There are three types of methods for determining the temperature fluctuations necessary for closing
the chemical source term. The first type uses a fixed flame structure, the second type models the
unresolved scalar mixing and the third is specialized for LES turbulent combustion modeling.
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The first type assumes that the local structure of a premixed turbulent flame is the same as that
of a freely propagating laminar premixed flame. The location of the flame front is defined by the
progress variable which is zero in the unburnt gas and one in the burnt gas. The flame front of
these flames is dependent on laminar burning velocity, stoichiometry and fuel composition. The
combinations of these variables can be tabulated and utilized to create a manifold that models the
premixed, semi-premixed or non-premixed turbulent flame.
The second type includes use of the Eddy Dissipation Concept (EDC) models, Probability Density
Function (PDF) models and Conditional Moment Closure (CMC).
The third type might use thickened reaction zones or direct solving of chemistry and transport with
Approximate Deconvolution and Explicit Filtering (ADEF).

2.7. FLAMELESS COMBUSTION
Flameless combustion is one of the terms used to describe a combustion regime that is associated
with high combustion efficiency, low combustion instability, low acoustic oscillations, low levels of
soot particle emissions and extremely low levels of nitrogen oxides emissions [34] [20]. These prop-
erties make flameless combustion worth exploring as an alternative combustion concept. Flameless
combustion is characterised by its well-distributed reactions, which causes its flames to not emit ra-
diation in the visible spectrum and to decrease temperature peaks. This type of combustion can be
achieved using an inlet temperature that is above auto-ignition temperature and an environment
that is oxygen vitiated.

There is no general consensus on the definition of the regime boundaries or features that charac-
terise it. Other names that refer to or overlap with the flameless combustion regime are Moderate
or Intense Low Oxygen Dilution (MILD), Colourless Distributed Combustion (CDC), High Temper-
ature Air Combustion (HiTAC), High Temperature Combustion Technology (HiCOT) and Flameless
Oxidation (FLOX).
The most used definition, which was proposed by Cavaliere and De Joannon [35], is that the reactant
mixture is above auto-ignition temperature at the inlet and the temperature increase with respect
to the inlet temperature cannot exceed the auto-ignition temperature (Ti n > Tai >∆T ).

Figure 2.6: Improved combustion regime diagram proposed by Rao and Levy [6]
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Regarding gas turbines, the definition of Rao and Levy [6] is most comprehensive. The improved
proprosed diagram in Figure 2.6 shows the influence of reactant temperatures, oxygen concentra-
tion and the recirculation ratio on the combustion regime. The diagram was generated for methane
fuel using one Perfectly Stirred Reactor in Chemkin.
Flameless combustion regime was shown to have a strong interaction between turbulence and
chemistry [34]. The Damköhler number (Da), which is defined as the flow (turbulence) time-scales
over the chemical time-scales, is close to one. Therefore the Damköhler number can be a good
indicator for flameless combustion.





3. METHOD
In this chapter, the method used for dealing with the research question is described in Section 3.1.
The general steps undertaken in this research can be found in Section 3.2. The simulation test cases
used to test the hypothesis is described in Section 3.3. Section 3.4 and 3.5 detail the set-up and
method applied for CFD and CRN, respectively. Section 3.6 described visualisation used for the
results. Section 3.7 and 3.8 mention the adjustments made to the global solver of AGNES to reduce
the simulation time and solve the energy equation.

3.1. RESEARCH QUESTION RESOLVEMENT
In this section, the research question and objectives of the proposed research are described as well
as how they were dealt with. The main research question was formulated as follows:

How are the results and run performance affected by applying the energy equation to re-
compute the temperature in a CRN for the CFD-CRN method?

The main objective of this research is to quantify the effect of the common assumption that the tem-
perature can be kept fixed at the value obtained from CFD. This quantification will support future
research in the field of CFD-CRN by providing researchers with information relevant for judging
whether this assumption can be made.

To determine the effect of applying the energy equation on the run performance, the criteria that
are used to judge the run performance were established. The performance criteria that were chosen
are the solver run time, the species mass fractions and the temperature.
The solver run time is automatically saved by the TU Delft computational tool, called AGNES. The
run time is important to determine the expected increase of solver time associated with applying
the energy equation.
The species mass fractions and temperature results from the CRN can be compared with CFD re-
sults, experimental data of the test case and with CRN results with different run settings. These
comparisons can be based on absolute values, general trends and the integral below the data curve.

AGNES can use any combination of data quantities that are output by CFD as criteria to form clus-
ters for the CRN. These clustering criteria combined with the tolerance determine which cells of the
CFD mesh will be grouped and averaged. This has a significant impact on the results generated by
the CRN, as it determines what data from the CFD results is lost.

The Sandia Flame D was chosen as the first test case for this research. The Sandia Flame has an
axisymmetic geometry. This means that the case can be modeled as a 2D slice of the flame with an
axial and radial vector from the origin, that is located at the centre of the jet.
This simplification can be applied, because the main interest in emission prediction are the species
mass fractions. The mass fraction is determined by the mass of a certain species over the total mass.
Therefore the exact location and timing is less important as long as the likelihood of certain reac-
tions taking place is accurate. This allows for the use of RANS and a 2D mesh.

To determine the usefulness of applying the energy equation, thresholds were set to determine
when one of the performance criteria is so low that it is not considered an option to apply the energy
equation to the CFD-CRN method. Once the run settings for which applying the energy equation
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does not work were ruled out the performance criteria were weighted to quantify the performance
improvement or reduction and draw general conclusions.

3.2. GENERAL RESEARCH APPROACH
The main approach for answering the research question mentioned in Section 3.1 is to generate
CFD results of the selected test cases and then to automatically generate and solve the CRN both
with and without using the energy equation to update the temperature when solving the CRN for
different set ups.
The general method for verification and validation in this research was to check for any unexpected
behaviours in the results. If such a behaviour was found, convergence and boundary conditions
were reevaluated. Unexpected behaviour was identified based on experimental data for CFD and
based on both experimental data and CFD results for the CRN.

3.3. SIMULATION TEST CASE
There are three factors that limit the choice for a suitable test case:

• The geometry cannot be too complex. This limitation not only has to do with the fact that
AGNES is currently not equipped to handle more than one Fluent fluid zone and that the
zone IDs have to be assigned manually, but also with the fact that if the geometry becomes
very complex the CPU time is also larger which will reduce the number of runs that can be
performed.

• The fuel has to be gaseous. AGNES currently does not allow the use of liquid fuels and would
require adjustments for this. Furthermore, the relatively large kinetic mechanisms associated
with liquid fuels would also increase the CPU time and limit the number of runs that can be
done.

• To validate the prediction data from AGNES, it is necessary that the test case has measurement
data available for at least the species and temperatures inside the system. Furthermore, it
might be interesting to use a test case that has been used for other research related to CFD-
CRN, so that the results of AGNES can be compared to other tools to identify other possible
improvements for the future.

Figure 3.1: Close-up of the SFD pilot.

An example of test cases that satisfy these considerations are
the Sandia Flames. The Sandia Flames are labeled A to F and
are piloted methane-air jet flames [7]. The main jet and pi-
lot velocity increase over the range of these six flames. The
associated increased probability of localized extinction is the
highest in the Sandia Flame F. Sandia Flames C to F are turbu-
lent flames, whilst Flame A is laminar and Flame B is transi-
tional. Of this set, the measurement data of the Sandia Flame
D, shown in Figure 3.1 was released one year before the others
in 1998.
The measurement data includes temperature and mixture
fractions of N2, O2, CH4, CO2, H2O, H2, CO, OH, and NO. CO
is measured by Raman scattering and more accurately by LIF
[7] [1], [36]. There are also axial and radial profiles available for
the flames and measurements were performed for the temper-
ature and velocity mean and fluctuating component fields [7]
[36].
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The jet fluid is a mixture consisting of one part CH4 and three parts of air by volume [7]. This mixture
improves the accuracy of the scalar measurements by reducing the fluorescence interference from
soot precursors significantly. The partial premixing with air reduces the flame length and increases
the robustness of the flame compared to pure CH4. This partial premixing also allows flame opera-
tion at reasonably high Reynolds number with modest pilot and hardly any extinction. The Sandia
Flames burn with high enough mixing rates that they burn as diffusion flames with a single reaction
zone near stoichiometric mixture fraction and no indication of significant premixed reaction in the
fuel-rich CH4-air mixture.
The flow rates of Sandia Flames C to F are scaled in a way that the pilot is approximately 6% of the
main jet [7]. Figure 3.2 shows the dimensions of the Sandia flame set up. The bulk velocity of the
Flames C to F are listed in Table 3.1.

Flame label Bulk velocity
C 29.7 m/s
D 49.6 m/s
E 74.4 m/s
F 99.2 m/s

Table 3.1: Bulk velocities of Sandia Flames C to F
[7].

Figure 3.2: Sandia Flame dimensions [7].

The Sandia Flame D is often used as a validation test case for non-premixed combustion in the
flamelet regime [36]. The reason for this is the high Reynolds number of 22400, which is desirable
for model validation and the small degree of local extinction, which allows for comparison with
models not including extinction [7].
Monaghan et al. (2012) [3], Monaghan et al. (2013) [30] and Nilsson (2014) [31] used the Sandia
Flame D for research into pollutant formation, emission prediction and CRN construction respec-
tively with the use of the CFD-CRN method and the extensive research of CFD simulation of the
Sandia Flame D [36].

Another example of a test case that satisfies the considerations is the flameless combustion test
case by Verissimo et al. [2]. The test case set up consists of a cylindrical quartz glass combustion
chamber with a burner at the top and an exhaust at the bottom. The burner includes a central hole
for inflowing air and 16 surrounding fuel injectors. Figure 3.3 shows the dimensions of the inlet and
combustion chamber. The exhaust has a converging nozzle with a 15 degree angle and a length of
150mm.
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Figure 3.3: Inlet and combustion chamber dimensions of the Verissimo et al. test case [2].

The test case features a thermal fuel input of 10kW, a fuel inlet velocity of 6.2m/s and a inlet air
temperature of 673.15K. Multiple run cases were performed on this set up. Table 3.2 shows the
variations present between these run cases.

Table 3.2: Test conditions of the Verissimo et al. test case that were utilised [2].

run
excess air

coefficient
inlet air
velocity

inlet air
momentum

residence
time

flue gas
temperature

[-] [-] [m/s] [N] [s] [K]
1 1.1 96.2 0.38 0.153 1367.15
2 1.3 113.2 0.52 0.131 1333.15
3 1.5 126.5 0.65 0.115 1308.15
4 1.7 143.0 0.83 0.102 1265.15
5 1.9 162.8 1.08 0.092 1238.15
6 2.1 178.6 1.30 0.084 1209.15
7 2.2 184.8 1.39 0.080 1204.15

The excess air coefficient (λ) is the division of the actual air-fuel ratio by the stoichiometric air-fuel
ratio. The inlet air momentum is the multiplication of the mass flow rate with the velocity of air at
the inlet. The residence time is approximated by the combustion chamber volume over the reac-
tants volume flow rate.

The Verissimo et al. test case is not completely axi-symmetric, like the Sandia Flame D, but the
combustion chamber can be split in 16 equal slices. Therefore, the geometry is still viewed as simple.
Methane is also the fuel of the Verissimo et al. test case, which satisfies the requirement of a gaseous
fuel.
Finally, measurements are available for the temperature, O2, CO2, NOx, HC and CO concentrations
at the outlet of the combustion chamber for all run cases. For run case two and four data inside the
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chamber is also available. The temperature was measured with fine wire (� 76 µm) platinum/plat-
inum 13% rhodium thermocouples. The concentration measurements were obtained using a probe
(� 1.3 mm) combined with a magnetic pressure analyzer, a non-dispersive infrared gas analyzer, a
flame ionization detector and a chemiluminescent analyzer. The availability of the data together
with the fact that this test case was already simulated with AGNES [20] and flameless combustion is
an interesting alternative combustion concept [34], makes this test case stand out.

3.4. CFD METHOD AND SET-UP
The CFD results are a starting point for the CRN computation. Therefore the results of the CRN are
dependent on the quality of the CFD results. If the starting point is of low quality, the CRN will never
be able to generate accurate emission predictions.

The CFD simulations were done in ANSYS-Fluent and the set-up for the Sandia Flame D was adopted
similar to the set-up from the research of Habibi et al. [37] and Merci et al. [38]. To arrive at the final
CFD simulation set-up, multiple simulations were run with variations in the mesh spacing, viscous
modeling constants (Cε,1) for the Reynolds Stress turbulence model, use of the Discrete Ordinates
model for radiation and the progress variable. These simulations were performed by A.A.V. Perpig-
nan MSc.
The CFD results for the Verissimo et al. test case were adopted from previous research performed
on this test case at the Delft University of Technology [39]. The model used a k-ε turbulence model
and Discrete Ordinates for radiation.

The selection of the CFD set-up is based on the convergence achieved with the simulation and the
resemblance found between the CFD results and the experimental data of the test case. This method
resulted in two CFD set-ups for the Sandia Flame D and six run cases for the Verissimo et al. test
case, that were usable for AGNES. The reason not only one set-up was selected for the Sandia Flame
D, was that the fit of the results varied with the axial location. Therefore the decision was made to
have one set-up that was a better fit near the inlet and one that was a better fit in the far field of
the Sandia Flame. For the Verissimo et al. test case, the CFD results from run case 2 were used for
further simulation using AGNES, because of the experimental data available.

Both set-ups used the FGM approach to model the turbulence-chemistry interaction. The laminar
flamelets for this approach were tabulated using mixture fraction, progress variable and enthalpy
using the method of van Oijen and de Goey [40]. Further information on the exact set-up of the
CFD of both test cases is described in Appendix A.

3.5. CRN METHOD AND SET-UP
The CRN simulation is performed using the computational tool developed by the Delft University
of Technology, which is called AGNES. A few minor adjustments were made to AGNES to allow for
axi-symmetric 2D cases and to centralize the hardcoded inputs required to the main run file.

The Sandia Flame D is a turbulent flame without recirculation. This means that turbulent diffusion
has a significant contribution to species mixing. Turbulent diffusive mass flow rates for 2D meshes
were added to AGNES using the Peclet number. The Peclet number for turbulent mass transfer
(Pem,t ) relates the advective mass flow (ṁad v ) to the turbulent diffusive mass flow (ṁdi f f ,t ) using
the velocity (u), the turbulent mass diffusivity (Dm,t ) and the characteristic cell length (lcel l ), which
is assumed to be the cube root of the reactor volume, as shown in Equation (3.1). The turbulent mass
diffusivity is dependent on the turbulent viscosity (µt ), the density (ρ) and the turbulent Schmidt
number (Sct ), which is assumed to be constant at 0.7 for Equation (3.2) [3]. Combined these yields
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Equation (3.3) for turbulent diffusive mass flow, in which A is the cross sectional area of the cell face.

Pem,t = ṁad v

ṁdi f f ,t
= ulcel l

Dm,t
(3.1) Dm,t = µt

ρSct
(3.2) ṁdi f f ,t =

Aµt

lcel l Sct
(3.3)

Diffusion is not a bulk movement, therefore equal and opposite turbulent diffusive mass flow is ap-
plied at each face between PSRs to allow for turbulent species exchange [3].

The clustering algorithm of the pre-research version of AGNES uses a tolerance that is equal for all
clustering criteria. The tolerance determines the range wherein the cells can be clustered for each
criteria. When the cells are within all the ranges they can be clustered.
The tolerance and criteria are the same for the entire domain. However, certain parts of the domain
are less interesting. This can in part be manipulated by choosing certain criteria that have a larger
gradient in regions of interest. For the Sandia Flame D, this proved not to be enough, therefore op-
tional zoning was added to AGNES to allow for different criteria and tolerances for different zones
in the domain.

The CRN was computed for the two selected CFD cases of the Sandia Flame D, that are described
in Section 3.4. AGNES was run for both cases with varying number of reactors to perform a grid
independence study. This study is usually used to determine the minimum amount of reactors
required to obtain an accurate enough solution. For accuracy, it is important to have sufficient
resolution of the CRN in the regions with more chemical activity. The distribution and resolution of
reactors is dependent on the clustering criteria and the tolerance.
During the grid independence study, several combinations of criteria and tolerances were tried to
obtain the most suitable combination and show grid independence. Unfortunately, it was found
that the required resolution was not reached in the essential areas, whilst the total number of reac-
tors and the solve time was already high. Therefore the computational domain was split into zones
with each their own tolerances according to the method by Monaghan et al. [3], which uses the
static temperature, mean mixture fraction and axial coordinate to increase grid resolution in e.g.
higher temperature regions. To validate this approach, a sensitivity study was performed as well as
a comparative study of results with and without zoning, and with and without changing tolerances.

The CRN results of the Verissimo et al. test case were validated by reproducing the results of a pre-
vious study of this test case by researchers at the Delft University of Technology for run case 2 [39].
Only one run case was evaluated due to time constraints and run case 2 was selected, because it had
more experimental data.
The Verissimo et al. test case was also simulated using the Monaghan et al. method, that proved to
be effective for the Sandia Flame D, to see what the effect of this method is on another test case.

In the pre-research version of AGNES, the heat flux at the burner wall was taken from CFD and kept
constant. However, it was found that when the solver is updating the temperature using the energy
equation this constant heat flux lead to diverging issues. Therefore the heat flux (Q̇w all ) was made
temperature dependent by calculating it using the heat transfer coefficient (U A) with the heat flux
and temperature near (T ) and outside the wall (Tenv ) from CFD following Equation (3.4). The heat
transfer coefficient was calculated using the heat flux and temperatures from CFD.

Q̇w all =U A(T −Tenv ) (3.4)

To verify the results of the CRN in general, the total and individual mass flows of species going in
and out of the system is checked. The mass flow in and out of the system should be equal, because
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the problem is simulated as steady. Furthermore, the ratio of atoms of the in and out flow cannot
change either. Convergence was verified by checking if all changes in species concentrations and
temperature, have a relative error value below 1e-6.
To validate the results of the Sandia Flame D, the CRN results were averaged by taking the volume
integral of that variable over the cross sectional volume corresponding to the experimental data
available of the test case. The same is done for the CFD and experimental results. These volume
integral averaged results are compared between the CRN, CFD and experimental results. For the
Verissimo et al. test case profile plots coïnciding with the experimental data available were com-
pared for validation.

The exact set-up of the CRN for both test cases is described in Appendix B and details of the changes
to AGNES were logged in the changelog included in Appendix C.

3.6. RESULT VISUALISATION
The aim of result visualisation is to allow for a fair comparison between results. In this research,
the results of the CFD and CRN run cases are compared with each other and the experimental data
provided on the test case. The experimental data for the Sandia Flame D and Verissimo et al. test
case is only available at specific axial locations for a radial profile. In case of the Verissimo et al. test
case the data points are in the form of a rectangular grid (see Table 3.3) from the centre over one of
the sixteen fuel inlets. The Sandia Flame D has a varying range dependent on the axial location as
can be seen in Table 3.4.

z(mm) 11 45 79 113 147 181 215 250 280 310
r(mm) 0 5 10 15 20 25 35 40 45

Table 3.3: Axial and radial coordinates of experimental data measurement result Verissimo et al. test case.

x/d 1 2 3 15 30 45 60 75
r/d 1.9 1.9 2.18 3.06 5.83 7.78 9.72 11.11

Table 3.4: Relative axial location and respective relative radial range of experimental results Sandia Flame D (d=0.0072)

One way of visualising the data is making plots at each axial location over the radial ranges men-
tioned in Table 3.4. These plots can be used to compare the curve fitting of the results of CFD and
CRN.
In addition to this, the volume integral average for each of these axial locations can be calculated.
By using the volume integral averaged value, the proximity of the result can be evaluated based on
the quantities irrespective of the curve fitting.
Equation (3.5) shows how this average can be obtained for this case. x and r are the axial and radial
locations. Y is the mass fraction of a species, but can be replaced by any other output parameter
and V is the volume.

〈Y (x)〉 =
∫ V

0 Y (x,r )dV∫ V
0 dV

(3.5)

The volume integral can be approximated using a sum of the cells corresponding to the axial loca-
tion. In Equation (3.6), the volume is approximated by the area of the cell parallel to the axial and
radial coordinate (A(x,r )i ) times the circumference associated with the radial location of the cell
(2πri ).
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〈Y (x)〉 =

n∑
i=0

2πri · A(x,r )i ·Y (x,r )i

n∑
i=0

2πri · A(x,r )i

(3.6)

The cell area can be described as the radial and axial distances within the cell (dri d xi ). The axial
distance is constant for cells of the same axial location. Therefore, some values can be canceled
from the sums. This is shown in Equation (3.7) and leaves the simplified calculation to determine
the mass average.

〈Y (x)〉 =

n∑
i=0

��2πri ·dri��d xi ·Y (x,r )i

n∑
i=0

��2πri ·dri��d xi

(3.7)

Equation (3.7) assumes the output value remains constant over the entire width of the cell, irrespec-
tive of the values in adjacent cells. To reduce the error created by local over and underprediction of
this constant value, the trapezoidal rule is applied. This difference is demonstrated with Figure 3.4.

Figure 3.4: Surface integration method comparison

3.7. SIMULATION TIME REDUCTION
As explained in Section 1.4, to properly research the effect the fixed temperature assumption has
on the CFD-CRN method, it is important that many runs for different settings are performed. The
amount of runs that can be performed is highly dependent on the time it takes to perform one run.
This simulation time is dependent on the complexity of the run case performed and the efficiency
of the solver. The run case complexity consists of the complexity of the test case, the amount of de-
tail of the kinetic mechanism, the amount of reactors and the type and amount of clustering criteria
used by AGNES [20].

The test case complexity is related to the geometrical complexity, the fuel composition and the
amount of recirculation and local extinction. By choosing a test case like e.g. the Sandia Flame
D, the complexity of the test case is kept low. As discussed in Section 1.4, the Sandia Flame D has a
simple geometry with a gaseous fuel. Furthermore, it has little to no recirculation nor local extinc-
tion [36].
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Because a gaseous fuel will be used, the kinetic mechanism is relatively small. By using the GRI-
Mech 3.0 kinetic mechanism in AGNES the level of detail is deemed sufficient and the amount of
CPU power and the stability are kept at an acceptable level as well [20][10].
By reducing the number of reactors used the computational time of AGNES is reduced as well.
Therefore it is optimal when runs are performed with the minimum number of reactors that can
still accurately represent the computational domain. To determine this minimum number of reac-
tors a grid independence study will have to be performed for the chosen test case [20].
AGNES allows the use of any combination of the results from the CFD simulation as clustering cri-
teria [20]. Optimization of the number of reactors is possible by choosing clustering criteria that
highly influence the emission production. The number of clustering criteria is indirectly limited
by the tolerance, because relaxation of the tolerance is required to achieve the desired number of
reactors when the clustering process is highly constraint [20]. Therefore tests were performed to
determine the most critical combination of criteria [20].

As previously stated, the computational time of AGNES is also dependent on the efficiency of the
solver. This solver efficiency is largerly determined by the time stepping of the system. In Section 1.3
it was explained that the global time stepping of AGNES can still be improved. AGNES uses a global
Newton method when the residuals of the local time stepping method drop below a set limit. Un-
fortunately, the global Newton method is prone to instability when the solution is not sufficiently
close [20]. This meant that without global time integration AGNES often has to switch back to the
local solver after just one iteration of the global Newton method [20].

The local solver uses the SUNDIALS [41] package, called CVODE, through the time integration func-
tion provided within Cantera [20]. This function cannot be utilized for the global solver, because
Cantera handles the input as a dense matrix. The matrix containing all reactor is too large for
this type of handling. Therefore the SUite of Nonlinear and DIfferential/Algebraic equation Solvers
(SUNDIALS) package is employed using the scipy.integrate.BDF [42] python wrapper function that
can handle large sparse systems.
The global time integration is implemented in such a way, that it is only used when the Newton
solver is diverging. This change reduced the simulation time.

3.8. GLOBAL SOLVER ENERGY CONSERVATION
The global solver in AGNES is custom written, because the matrix including all the reactors is too
large for Cantera to handle. Part of this global solver is calculating a Jacobian matrix at each time
step. Figure 3.5 and Figure 3.6 show general structure of the two Jacobian matrices that together
form the Jacobian matrix for the entire reactor network. The Jacobian is a square matrix with a size
equal to the number of reactors times the number of variables to be solved.
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Figure 3.5: Jacobian sample structure accounting for reac-
tor inter-connectivity (Js ) with nr as the number of reac-
tors and i as the amount of variables to be solved for each
reactor.

Figure 3.6: Jacobian sample structure accounting for re-
actions within the reactors (Jw ) with nr as the number of
reactors and i as the amount of variables to be solved for
each reactor.

Jacobian Js (Figure 3.5) contains the terms in the conservation equations related to the connections
between reactors. Js is a sparse matrix because each reactor is only connected to a few surrounding
reactors. Jacobian Jw (Figure 3.6) contains the terms in the conservation equations related to the
reactions taking place in the reactor itself. This causes the matrix to be sparse and terms to be close
to the diagonal, since only variables within the reactor have an effect.

The pre-research version of AGNES did not solve the energy equation to update the temperature
provided by CFD. This means that for each reactor the vector to be solved is the list of species. When
the energy equation is taken into account, the temperature has to be added as a row and column in
Js and Jw for each reactor.
Equation (3.8) is the equation for energy conservation, which is also described in Section 1.4. This
equation can be expanded in the form of Equation (3.9) to show that hi n , uk and ω̇k and Q̇w all are
all functions of temperature (T ). Q̇w all only applies for reactors at the combustor wall.

mCv
dT

d t
=∑

i n
ṁi nhi n − ∑

out
ṁout hout −Q̇w all −

∑
k

V ω̇k MWk uk (3.8)

mCv
dT

d t
=∑

i n
ṁi nCp,i nTi n − ∑

out
ṁoutCp T (3.9a)

−U Aw all (T −Tenv )−∑
k

V ω̇k (T )MWkCv,k T (3.9b)

(3.9c)

For Js the terms in the temperature rows and columns are the energies exchanged between reactors,
which is calculated by differentiating the left-handside of Equation (3.9a) with respect to tempera-
ture. Equation (3.10) shows the resulting equation for temperature in Js .

Js =
∑
i n

ṁi nCp,i n − ∑
out

ṁoutCp (3.10)
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The terms in the temperature rows and columns of Jw relate the change in species production rates
to the change in temperature. This is obtained by differentiating Equation (3.9b). This differentia-
tion uses the product rule as the term contains a multiplication of two functions of T . The function
of the net rate of production (ω̇) is the sum of the stoichiometric coefficients (v) and the net rate of
progress of reactions (r ) for all the reactions (N r ), as shown in Equation (3.11).

ω̇k =
N r∑
m

vmk rm (3.11)

The net rate of reaction progress equals the forward minus the reverse rates of reaction progress,
which are a function of the respective reaction rate coefficients (k), the species concentration (C )
and the stoichiometric coefficients (v), as is formulated by Equation (3.12).

r = r f − rr = k f

n1∏
i=1

c
v f ,i

i −kr

n2∏
j=1

c
vr, j

j (3.12)

Equation (3.12) can be escalated into Equation (3.13) to show its dependency on temperature through
the Arrhenius equation and the equilibrium rate constant (Keq ).

r = AT β exp
(
− Ea

RT

) n1∏
i=1

c
v f ,i

i − A

Keq
T β exp

(
− Ea

RT

) n2∏
j=1

c
vr, j

j (3.13)

When taking the temperature derivative of the net rate of progress of reaction Equation (3.14) is
obtained, which is used to compute the temperature related terms in Jw with Equation (3.15).

∂ω̇k

∂T
=

N r∑
m

vmk

(β
T

+ Ea

RT 2

)
rm (3.14)

Jw =−U Aw all −
∑
k

V MWk

(
ω̇k (T )Cv,k +Cv,k T

N r∑
m

vmk

(β
T

+ Ea

RT 2

)
rm

)
(3.15)





4. RESULTS AND DISCUSSION
Using the method described in Chapter 3 results were obtained that are shown in this chapter. The
effect of the turbulent diffusion modeling on the Sandia Flame D is shown in Section 4.1. The sen-
sitivity of the zoning method used by Monaghan et al. [3] for the Sandia Flame D is explored in
Section 4.2, as well as the effect of this type of clustering on the Verissimo et al. test case. Section 4.3
shows the results of the grid independence study performed for the Sandia Flame D. The compari-
son between the CFD results and the results from the CRN is provided for the Sandia Flame D and
Verissimo et al. test case in Section 4.4. Section 4.5 and Section 4.6 shows the results regarding the
research question posed in this thesis.

4.1. TURBULENT DIFFUSION MODELING
To improve the results from AGNES with respect to the species diffusivity, a turbulent diffusion
model was added for the Sandia Flame D. This section shows the type of effect the diffusion model
described in Section 3.5 has.
Figure 4.1 to 4.3 show the effect the turbulent diffusion model using the Peclet number has on the
species mass fractions for the same CRN cluster at the axial location, which is furthest form the inlet.
At this axial location the effect of the diffusion was the largest. This is probably due to the increased
size of the clusters, which causes the species exchanged due to diffusion to travel larger distances,
because the reactors are perfectly stirred.
On the major species the diffusion model has a small effect, which is shown in Figure 4.1. The mass
fraction near the center decreases more than it does radially outward. This suggests the species are
traveling more in the radial direction.

Figure 4.1: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO2 in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 973 PSRs with
static temperature clustering without (•) and with Peclet turbulent diffusion modeling (•).

In general, there is a small decrease in species mass fraction, which is also shown by the volume

37
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integral average. The same trend is seen for H2O and the inverse for O2. At the same axial coordinate,
the mass fraction of CH4 is near zero, which means more minor species from dissociation reactions
are formed, which is closer to the experimental data. This increased amount of dissociation is most
likely caused by the methane diffusing more into the hot pilot stream.
For the minor species the effect is relatively larger. For the mass fraction of CO, the same trend is
found as with CO2, but the off-set between the results near the center is larger. This can be seen in
Figure 4.2. In case of NO (Figure 4.3), the effect is again more pronounced near the inlet, but instead
the mass fraction is increased by using the turbulent diffusion model.

Figure 4.2: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 973 PSRs with static
temperature clustering without (•) and with Peclet turbulent diffusion modeling (•).

Figure 4.3: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of NO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 973 PSRs with static
temperature clustering without (•) and with Peclet turbulent diffusion modeling (•).
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Compared to the experimental results and CFD, the radial profiles produced by the CRN still have
steep trends for the major species after adding the turbulent diffusion model.
This can be explained by the shape and size of the clusters in the CRN. Due to the pilot and jet
streams in the Sandia Flame D, the clusters to tend to elongate in the axial direction. This together
with the use of PSRs causes species travel in the axial direction to be exagerated. This effect could
potentially be reduced in future research by using PFRs.

4.2. ZONING METHOD SENSITIVITY AND EFFECTS
In Section 3.5, it was mentioned for the Sandia Flame D (SFD) that the computational domain was
split according to the suggested method by Monaghan et al. in [3]. Table 4.1 shows the zoning and
tolerances applied using the temperature (T ), mean mixture fraction ( f ) and axial coordinate (x).

Table 4.1: Zone limits and reactor criteria as specified by Monaghan et al. [3].

zone limits reactor criteria limits
0 ≤ f ≤ 0.01 ∆x = 0.2m

0.01 < f ≤ 0.1 ∆T = 100K
0.1 < f ≤ 0.9, T ≤ 1800K ∆T = 100K

0.1 < f ≤ 0.9, 1800K < T ≤ 2000K ∆T = 50K
0.1 < f ≤ 0.9, 2000K < T ∆T = 2K

0.9 < f ≤ 1.0 ∆ f = 0.01, ∆x = 0.01m

The Monaghan et al. method on average resulted in better curve fitting and total quantities with
respect to experimental results compared to the previous clustering attempts with the Sandia Flame
D. It was hypothesized that the Monaghan et al. method could achieve this due to two reasons:

• The zoning identifies regions of special interest with e.g. mean mixture fraction near stoi-
chiometry and higher temperatures.

• The tolerance can locally be decreased too lower values than is achievable with the previous
clustering method, which only used global tolerances.

In this work, Monaghan et al. only states the zoning and tolerances used and does not specify the
motivations behind the numbers provided. Therefore a sensitivity and comparative study was per-
formed to test the effect of the tolerances and zones used.

ZONED TOLERANCE SENSITIVITY

The blue values in Table 4.1 have a lower tolerance than is desirable for the previous clustering
method as it would increase the number of reactors and thereby computational time too much.
Therefore the sensitivity of these values was studied by increasing the tolerance and comparing the
results, which are in part shown in this section.

The first subject of the sensitivity study is ∆ f = 0.01, which is used in the fuel rich zone close to the
jet and pilot inlet of the domain. The tolerance was doubled to see what effect that had on the CRN
results.
Figure 4.4 shows one of the plots at x/d j et = 15 used to compare the results using ∆ f = 0.01 and
0.02. It can be seen that between 1.0 and 2.5 r/d the latter case shows a large number of orange dots
at a constant number. This suggests that for this case this entire section of the slice is approximated
by one reactor opposed to five in the original case.
When cross-referencing this observation with the reactor distribution, this revealed that the distri-
bution of reactors is not ideal and not enough reactors are representing this region. This results
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in a deterioration of curve fitting and predicted quantities of species in this region and the regions
downstream.

Figure 4.4: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D15 (x/d j et = 15) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 249 PSRs in Monaghan clustering with ∆ f = 0.02K substituted for∆ f = 0.01 (•).

The next subject of the sensitivity study is ∆T = 2K , which is used in the highest temperature range
of the flame zone. The tolerance was again doubled to see the effect. However, it was found that the
clusters did not change for the new tolerance. The tolerances ∆T = 4K and 8K were tried until at
∆T = 16K a change in clusters was observed.

Figure 4.5 to 4.8 show some of the plots generated to compare the use of ∆T = 2K and 16K . Fig-
ure 4.5 shows the temperature profile at x/d j et = 45. This profile is closest to the highest tempera-
ture range and it can be seen that the volume integral average temperature is higher in the case of
∆T = 16K , due to the difference in reactor distribution. Further downstream this average actually
dives below that of the original case.

Figure 4.6 is the profile of the mass fraction of CH4 at the same axial location. Upstream the results
of both cases are closely resembling each other, but at this location the mass fraction of CH4 is
significantly lower for ∆T = 16K . This together with the average increase of the mass fraction of NO
downstream shown in Figure 4.8 and Figure 4.7 showing a sudden drop in the mass fraction of CO,
suggest the temperature is increased in this region due to the decrease in resolution.
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Figure 4.5: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Static Temperature in the radial direction at axial location D45 (x/d j et = 45) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 252 PSRs in Monaghan clustering with ∆T = 16K substituted for∆T = 2K (•).

Figure 4.6: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D45 (x/d j et = 45) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 252 PSRs in Monaghan clustering with ∆T = 16K substituted for∆T = 2K (•).
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Figure 4.7: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D45 (x/d j et = 45) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 252 PSRs in Monaghan clustering with ∆T = 16K substituted for∆T = 2K (•).

Figure 4.8: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of NO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 252 PSRs in Monaghan clustering with ∆T = 16K substituted for∆T = 2K (•).

The last subject of the sensitivity study is ∆T = 50K , which is used in the next highest temperature
range in the flame zone. In this case, the tolerance was increased to ∆T = 75K to determine its
effect. It was found, that there was a very similar trend visible as with ∆T = 2K vs ∆T = 16K . The
differences are that the onset of the behavior can sometimes already be seen at x/d j et = 30 and
the effect on the major species is relatively more pronounced, as can be seen in Figure 4.9 in the
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ranges 28-35 and 52-60 x/d. The more upstream visibility makes sense as the zone of the second
highest temperature range stretches further than that of the highest temperature range. Regarding
the more pronounce effect on the major species is also logical, since the region of the second highest
temperature range surround the highest temperature range and is therefore larger.

Figure 4.9: Experimental (•) and CFD-CRN predicted profiles of Mass fraction of CO2 at the centreline DCL (r /d j et = 0)
for CRNs with 249 PSRs in the original Monaghan clustering (•), 251 PSRs in Monaghan clustering with ∆T = 16K
substituted for∆T = 2K (•) and 248 PSRs in Monaghan clustering with ∆T = 75K subsituted for∆T = 50K (•).

ZONING EFFECT

The Monaghan et al. method uses zoning and local tolerances. It would be interesting to know
whether the improvement with respect to data fitting is only attributed to the discrete scaling of tol-
erances. Therefore the Monaghan et al. method was compared to a run case using the same zoning
with a fixed tolerance and a run case using no zoning and a global fixed tolerance for all criteria.

Figure 4.10 to 4.13 provide some of the plots used to compare the three run cases mentioned. The
run case that uses the Monaghan zoning with a fixed tolerance has a much larger number of reactors
although the tolerance of 0.06 is double the tolerance of the run case without zoning.
The explanation for this is that the clustering is done through the BFS-method, which has one start-
ing point and then looks at neighboring cells to determine whether they can be included in the
cluster. This means the clustering is dependent on the starting point and the direction in which
the BFS-method is searching. Zoning breaks up the domain, which makes the clustering even more
dependent on the starting point and direction of searching.
It is possible that a CRN can be constructed with a tolerance of 0.03, that has a similar number of
reactors as the run case without zoning, by trying other starting points or by clustering each zone
separately and then combining the domain. For this part of the research, it was assumed that an
effective tolerance below 0.06 was suitable for this comparison.

As a result of the larger amount of reactors, the reactor density and consequently the smoothness
of the profile are higher for the run case with zoning and a fixed tolerance. This is clearly visible in
Figure 4.10 and 4.11. Another thing that can be observed in both Figure 4.10 and 4.11 is that the two
run cases being compared to the original Monaghan et al. method are relatively close together in
terms of volume integral average and profile fitting.
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Figure 4.10: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D15 (x/d j et = 15) for CRNs with 1559 PSRs in the
original Monaghan clustering (•), 5496 PSRs in Monaghan zoning with tolerance 0.06 (•) and 1581 PSRs in Tempera-
ture, Axial Coordinate and Mean Mixture Fraction clustering with tolerance 0.03 (•).

Figure 4.11: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of H2O in the radial direction at axial location D15 (x/d j et = 15) for CRNs with 1559 PSRs in the
original Monaghan clustering (•), 5496 PSRs in Monaghan zoning with tolerance 0.06 (•) and 1581 PSRs in Tempera-
ture, Axial Coordinate and Mean Mixture Fraction clustering with tolerance 0.03 (•).

Lastly, Figure 4.11 shows the pilot of the Sandia Flame D, which contains H2O, is the least diffused
for the zoned with fixed tolerance case and the most of the CRNs for the original Monaghan et al.
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method. The same phenomena can also be seen in Figure 4.12 and 4.13, where the CH4 from the jet
remains higher and the peak from the pilot stays more pronounced, respectively.

Figure 4.12: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D60 (x/d j et = 60) for CRNs with 1559 PSRs in the
original Monaghan clustering (•), 5496 PSRs in Monaghan zoning with tolerance 0.06 (•) and 1581 PSRs in Tempera-
ture, Axial Coordinate and Mean Mixture Fraction clustering with tolerance 0.03 (•).

Figure 4.13: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of H2O in the radial direction at axial location D60 (x/d j et = 60) for CRNs with 1559 PSRs in the
original Monaghan clustering (•), 5496 PSRs in Monaghan zoning with tolerance 0.06 (•) and 1581 PSRs in Tempera-
ture, Axial Coordinate and Mean Mixture Fraction clustering with tolerance 0.03 (•).
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SCALED TOLERANCE EFFECT

Based on the results in Figure 4.10 to 4.13, it seems the zoning proposed by Monaghan et al. does
not improve the data fitting by itself and actually increases the dependency of the clustering on the
starting point and search direction using the BFS-method. Therefore it would be interesting to com-
pare the discrete tolerance scaling achieved by the zoning with continuous tolerance scaling.

The continuous tolerance scaling used for this comparison uses a linear function to determine the
local tolerance for each criteria in each cell to be clustered. Table 4.2 contains the tolerance ranges
and functions used for each clustering criteria. The functions use normalized values (subscript n)
of the clustering criteria to arrive at the tolerance. The functions used are based on the zoning and
tolerances used by Monaghan et al.

Table 4.2: Scaling tolerance ranges and function for each clustering criteria.

Clustering Criteria Symbol Tolerance Range [≈] Tolerance Function
Temperature T 2K-100K −0.059 ·Tn +0.06
X-Coordinate x 0.01m-0.2m −0.29 · fn +0.3

Mean Mixture Fraction f 0.01-1.0 −0.99 · fn +1

To reduce complexity, the tolerance for temperature is only dependent on the temperature and not
the mean mixture fraction. The tolerance for the x-coordinate is determined using the mean mixture
fraction and the tolerance for mean mixture fraction, which is originally only used in the fuel rich
zone, is dependent on mean mixture fraction and ranges from ∆ f ≈ 0.01 to a large number, which
was chosen to be 1.0.

Figure 4.14: Experimental (•) and CFD-CRN predicted profiles of Static Temperature at the centreline DCL (r /d j et = 0)
for CRNs with 249 PSRs in the original Monaghan clustering (•) and 249 PSRs in scaled tolerance clustering (•).

The scaled tolerances resulted in a CRN that has some differences in the distribution of reactors.
When quantitatively tracing the reactor distribution, the region close to the inlet has fewer reactors
both in the fuel rich zone near the jet and pilot and in the co-flow compared to the Monaghan et
al. method. The co-flow region in general has more reactors with most in the mid to far field of the
domain than the Monaghan et al. method. The scaled tolerance CRN has significantly more reactors
in the far field and a similar amount in the mid field. However, there seems to be more variation in
reactor density in the mid field.
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These observations can in part be supported by Figure 4.14. The region close to the inlet (x/d=0m-
15m) clearly has larger plateaus in the scaled tolerance results. In the region downstream of that
(x/d=15m-30m), the size of the plateaus is similar, but then from x/d=30m to 50m the region of the
scaled tolerance at the centreline is represented by only one reactor.

Figure 4.15: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D45 (x/d j et = 45) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 249 PSRs in scaled tolerance clustering (•).

Figure 4.16: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of O2 in the radial direction at axial location D60 (x/d j et = 60) for CRNs with 249 PSRs in the
original Monaghan clustering (•) and 249 PSRs in scaled tolerance clustering (•).

The differences in local reactor resolution lead to varying profile result fitting dependent on the
species and location. For example, Figure 4.15 show that the scaled tolerance CRN resulted in a
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relatively sudden drop of CH4, which could suggest that the higher temperature regions are not
represented accurately. On the other hand, Figure 4.16 shows more accurate diffusion of O2 which
suggests a more suitable coverage for that purpose.

ZONED TOLERANCE CLUSTERING EFFECT ON A FLAMELESS COMBUSTION TEST CASE

The zoned tolerance clustering method of Monaghan et al. was specifically designed for the San-
dia Flame D on which it was effective. It would be interesting to know whether the same clustering
method would have a similar effect on a test case, like the Verissimo et al. test case, which is in
another flame regime and has recirculation in the flow field. Therefore, in this section, the results
generated with the constant tolerance clustering method previously adopted for the Verissimo et al.
test case [39] are compared to those of the Monaghan et al. method.

Figure 4.17 and 4.18 are contour plots of static temperature that are based on the same tempera-
ture distribution that was output by CFD. The only difference between these figures is formed by
the clustering. Figure 4.17 and 4.18 have a similar number of reactors, but due to the clustering
method the contours look different. The Monaghan et al. method yields a reactor distribution with
less reactors in the region near the wall (above 0.02m) and downstream in the burner (past 0.1m)
compared to the constant tolerance clustering. Furthermore, the Monaghan et al. method seems to
have some L-shaped clusters near the inlet (left).

Figure 4.17: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3137 PSRs in the constant
tolerance clustering.

Figure 4.18: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3210 PSRs in the Monaghan
clustering.

The reduced reactor presence downstream of 0.1m in the burner generated by the Monaghan et al.
method is clearly visible in Figure 4.19 and 4.20. The Monaghan clustering with 3210 PSRs yields
almost a straight line, because almost the entire width of the burner is represented by only one
reactor, whilst the constant tolerance clustering still has a clear profile that better resembles the
experimental data.
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Figure 4.19: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO2 in the radial direc-
tion at axial location 113 (z = 113mm) for CRNs with 3137
PSRs in the constant tolerance clustering (•) and 3210
PSRs in Monaghan clustering (•).

Figure 4.20: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO in the radial direction
at axial location 113 (z = 113mm) for CRNs with 3137 PSRs
in the constant tolerance clustering (•) and 3210 PSRs in
Monaghan clustering (•).

The more even distribution of reactors in the network generated by the constant tolerance method
in general causes a better curve fitting to the experimental data compared to the Monaghan et al
method. However, at the axial location closest to the outlet, the results for the major species of both
method are almost completely overlapping.
Regarding the minor species, both the mass fraction of CO and NOx are not overlapping. Figure 4.21
shows that the simulation results using the Monaghan et al. method underpredict CO more than
using the constant tolerance method with respect to the experimental data.
Figure 4.22 shows that the complete opposite is true for the prediction of NOx. Comparing Fig-
ure 4.21 and Figure 4.22, the relative prediction improvement is larger in case of NOx. This shows,
that eventhough the Monaghan et al. method was not specifically designed for the Verissimo et al.
test case, the method can have a positive effect on the prediction of NOx without decreasing the
accuracy of the CO prediction too much. Whether having lower tolerances in e.g. high temperature
regions always has this effect is still speculatory.

Figure 4.21: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO in the radial direction
at axial location 310 (z = 310mm) for CRNs with 3137 PSRs
in the constant tolerance clustering (•) and 3210 PSRs in
Monaghan clustering (•).

Figure 4.22: Experimental (•) and CFD-CRN predicted pro-
files of Mass fraction of NOx in the radial direction at axial
location 310 (z = 310mm) for CRNs with 3137 PSRs in the
constant tolerance clustering (•) and 3210 PSRs in Mon-
aghan clustering (•).



50 4. RESULTS AND DISCUSSION

4.3. GRID INDEPENDENCE STUDY SFD
To determine if the domain is accurately represented by the CRN, a grid independence study was
conducted for the Sandia Flame D (SFD). This was not necessary for the Verissimo et al. test case
as this was already done for the results replicated. Such a study entails increasing the number of
reactors until the results generated by the run case converge, which signifies the results becoming
independent of the resolution of the CRN. Preferably, the grid independent results are also closer to
the experimental results in terms of fit and quantities compared to results from smaller grids.

The grid independence study was performed using the Monaghan et al. clustering method for both
CFD cases of the Sandia Flame D that are further detailed in Appendix A. Figure 4.23 to 4.25 show
the profile plots of O2, CO and NO resulting from the CFD case with PV1 and Cε1 = 1.53 at the most
downstream axial location available in the experimental results. Figure 4.26 to 4.28 show the same
for the CFD case with PV2 and Cε1 = 1.60.

Figure 4.23 shows that even though the number gap between 249 and 493 PSRs is smaller than be-
tween 493 and 1035 PSRs, the volume integral average and profiles are significantly closer together.
Furthermore, the average value of the larger number of reactors is closer to the experimental results
in this plot. It should be noted that the difference in integral is only present in the plotted range,
since the outflow of oxygen (O) is conserved.

Figure 4.23: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of O2 in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.

In Figure 4.24, the volume integral averages again show the 493 and 1035 case are closer together
and the larger the number the closer the results are to the value obtained from the experimental
results. The profile with 1035 PSRs shows a peak near the center, which is not present or at least
not so exaggeratedly present in the 249 and 493 cases. However, the region going outward from
r /d j et = 2 shows a very similar profile in the 1035 and 493 cases.
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Figure 4.24: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.

Regarding the mass fraction of NO in Figure 4.25, the volume integral averages of 1035 and 493 are
again closer together and the part of the profile that is in view of the experimental results in the plot
are relatively more similar as well. The 249 case is closer to the experimental results in this case, but
all CRN results are closer than those of the CFD, which is significantly more overpredicted.

Figure 4.25: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of NO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.

In Figure 4.26 similar results to Figure 4.23 can be observed, but the results of 590 and 1006 are even



52 4. RESULTS AND DISCUSSION

closer together in the profile and the volume integral averages are relatively closer to the experimen-
tal results.

Figure 4.26: Experimental (•), CFD PV2 Cε1 = 1.60 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of O2 in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.

The 590 and 1006 cases are again closer together in the profiles and averages of Figure 4.27, but the
predictions get further away from the experimental results with increasing number of PSRs.

Figure 4.27: Experimental (•), CFD PV2 Cε1 = 1.60 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.
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Finally, Figure 4.28 shows all volume integral averages of the CRNs are close together and close to
the experimental results relative to the overprediction of the CFD. Consulting the profiles the results
from the 590 and 1006 cases are almost fully overlapping in this plot.

Figure 4.28: Experimental (•), CFD PV2 Cε1 = 1.60 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of NO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 249 (•), 493 (•) and
1035 (•) PSRs in the original Monaghan clustering.

4.4. COMPARISON CFD AND CRN
One of the main reasons for using the CFD-CRN method for emission prediction is, that in general
compared to only using CFD, it is believed to provide more accurate quantity prediction regarding
minor species in particular. Therefore the results from the AGNES are not only compared to the
experimental results for the test cases, but also to the respective CFD results that serve as the starting
point for the CRN.

SANDIA FLAME D
Figure 4.29 is a contour plot of the static temperature generated by CFD with the settings PV1 and
Cε1 = 1.53. Figure 4.30 is the same plot output by AGNES. When the energy equation is not used, the
temperature is kept fixed when solving the CRN. Therefore the only difference between Figure 4.29
and 4.30 is the discretization of the domain. The CRN in this case only has 1006 reactors as opposed
to 24278 cells in the CFD. Therefore the stepsize and contour shape may differ, which is most evident
in the far field.
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Figure 4.29: CFD PV2 Cε1 = 1.6 predicted parallel contour of Static Temperature.

Figure 4.30: CFD-CRN predicted parallel contour of Static Temperature in for a CRN with 1006 PSRs in the Monaghan
clustering based on CFD PV2 Cε1 = 1.6. (The white lines show the axial location of the radial experimental data.)

Figure 4.31: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D15 (x/d j et = 15) for a CRN with 1035 PSRs in the
Monaghan clustering (•).
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The mass fraction of CH4 was predicted better by CFD below x/d=45 in both cases. The main reason
for that seems to be that the centre of the jet is not reacting as much, which is shown in Figure 4.31.
This could mean there is a lack of oxygen for CH4 to react, which in turn could indicate diffusion is
not taking place fast enough in spite of the turbulent diffusion added.

Further downstream the roles reverse and the CFD prediction of the mass fraction of CH4 does
not decrease enough, whilst the CRN in both cases is much closer to the experimental results. An
example of this is Figure 4.32.

Figure 4.32: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D60 (x/d j et = 60) for a CRN with 1035 PSRs in the
Monaghan clustering (•).

In case of the mass fraction of CO, the opposite takes place w.r.t. CH4. Near the inlet the CFD is
overpredicting the amount of CO and in both cases the CRN is closer to the experimental results,
which is shown by Figure 4.33. However, around x/d=45 the mass fraction of CH4 predicted by
both CRNs starts increasing leading to a significant overprediction w.r.t. the CFD and experimental
results downstream.
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Figure 4.33: Experimental (•), CFD PV2 Cε1 = 1.6 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D15 (x/d j et = 15) for a CRN with 1006 PSRs in the
Monaghan clustering (•).

Figure 4.34: Experimental (•), CFD PV2 Cε1 = 1.6 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D60 (x/d j et = 60) for a CRN with 1006 PSRs in the
Monaghan clustering (•).

Even though the prediction by AGNES for CO is not more accurate than the CFD prediction, this is
not the case for NO, which is also a minor species. Both CFD run cases overpredict the amount of
NO and both CRNs provide a significantly better prediction in terms of profile and volume integral
average throughout the entire domain. Figure 4.35 is an example of that.
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Figure 4.35: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CH4 in the radial direction at axial location D30 (x/d j et = 30) for a CRN with 1035 PSRs in the
Monaghan clustering (•).

Figure 4.36: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of O2 in the radial direction at axial location D45 (x/d j et = 45) for a CRN with 1035 PSRs in the
Monaghan clustering (•).

Finally, the volume integral averages vary regarding the major species. In some cases the CRNs
are closer to the experimental average and sometimes the CFD run cases have a better average.
One thing that is clearly visible in the profiles is that the CRNs are not as smooth as the CFD and
experimental results. This phenomena is illustrated by Figure 4.36 and could again indicate a lack
of diffusion, in spite of the turbulent diffusion added.
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When the turbulent diffusion was multiplied with a constant factor to test its sensitivity, it was found
that the steep drops were still present and only the extreme values became less extreme. In case of
Figure 4.36, the mass fraction of O2 near the center-line moved up and the sloped section moved
slightly towards the center, which does not benefit the smoothness or the volume integral average
in this case.

VERISSIMO ET AL. TEST CASE

Figure 4.37 shows the static temperature contour in the plane parallel to the axial direction over
one of the burner fuel injectors. Figure 4.38 is based on these CFD results and therefore only the
discretization of the results is altered. The CFD uses 2310062 cells to represent the burner volume,
whilst the CRN in Figure 4.38 represents the same domain with 3137 reactors. This leads to a less
smooth contour.

Figure 4.37: CFD predicted parallel contour of Static Temperature [K]

Figure 4.38: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3137 PSRs in the constant
tolerance clustering.

When looking at Figure 4.39 and 4.40, the difference in data point resolution is evident. The CRNs
in Figure 4.39 are solved without updating the temperature, which means that if there was no dif-
ference in data point resolution the lines would all overlap exactly. However, the CRN results show
clear discretized steps as opposed to the smoothness of the CFD results.
In Figure 4.40, the lines should not necessarily overlap, but the difference in resolution at this axial
location is again visible. This difference, however, does not mean the CFD results always have a
better curve fit, when both are compared to the experimental results. It can be argued, that the CRN
represented by the blue line in Figure 4.40 has a better fit due to the peak being closer to the peak in
the experimental results compared to CFD.
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Figure 4.39: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Static Temperature [K] in the radial direc-
tion at axial location 113 (z = 113mm) for CRNs with 3137
PSRs in the constant tolerance clustering (•) and 3210
PSRs in Monaghan clustering (•).

Figure 4.40: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of O2 in the radial direction
at axial location 133 (z = 133mm) for CRNs with 3137 PSRs
in the constant tolerance clustering (•) and 3210 PSRs in
Monaghan clustering (•).

In the end, arguably the most interesting prediction region is near the exhaust, because that is where
the prediction error is largest due to accumulation of error upstream and this is where emissions
exit the system, which is what matters on a regulatory level. It was found in this case, that CFD
overestimated the amount of CO and that AGNES was significantly better at predicting the mass
fraction of CO, as shown by Figure 4.41.
For the mass fraction of NOx at the same axial location, the experimental data provides an average
value of around 20.4 ppm. CFD underpredicts the amount of NOx here with only 0.15 ppm. The
result of the Monaghan et al. clustered CRN with 3210 reactors slightly overpredicts the value with
26.0 ppm. The constant tolerance clustered CRN overshoots further with 45.6 ppm, which is a larger
absolute distance from the experimental results than the CFD results.

CFD is better at predicting the mass fraction of CO2, which is slightly more overpredicted by AGNES.
Relative to the prediction error of CFD regarding the mass fractions of CO and NOx, the error gen-
erated by AGNES for CO2 is significantly smaller. This is visible in Figure 4.42.

Figure 4.41: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO in the radial direction
at axial location 310 (z = 310mm) for CRNs with 3137 PSRs
in the constant tolerance clustering (•) and 3210 PSRs in
Monaghan clustering (•).

Figure 4.42: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO2 in the radial direc-
tion at axial location 310 (z = 310mm) for CRNs with 3137
PSRs in the constant tolerance clustering (•) and 3210
PSRs in Monaghan clustering (•).
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4.5. EFFECT OF ENERGY EQUATION
The main subject of this research is to determine the effect of updating the temperature using the
energy equation in stead of keeping the temperature fixed to the value determined by CFD. The
results of that comparison are described in this section for the Sandia Flame D and the Verissimo et
al. test case.

SANDIA FLAME D
The CFD results underpredicted the temperature near the pilot of the Sandia Flame D. It can be seen
in Figure 4.43, that the run case that uses the energy equation is closer to the experimental results
near the inlet.

Figure 4.43: Experimental (•), CFD PV1 Cε1 = 1.53 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Static Temperature in the radial direction at axial location D03 (x/d j et = 3) for CRNs with 1035 PSRs in the
Monaghan clustering without (•) and with updating temperature (•).

However, the temperature predicted by the energy equation run case keeps increasing, which leads
to a large overprediction in the far field, as is shown in Figure 4.44. Figure 4.45 provides a more
complete overview of the situation. Compared to Figure 4.46, which shows the temperature con-
tour that was kept constant, the contour in Figure 4.45 is not as smooth. The relatively large areas
with constant temperature suggest that no reactions are taking place in these regions. This is sup-
ported by the species mass fractions that, for example, do not show any significant change between
0.216 (x/d j et = 30) and 0.324 (x/d j et = 45) on the centreline. A limitation of the CRN is that advec-
tive heat transfer is modeled, but the diffusive heat transfer is not accounted for by the mass flow
between reactors. CFD, on the other hand, does model diffusive heat transfer.

The increase of the maximum temperature, which is shown by the increased range of the contour
level scales in Figure 4.45 compared to Figure 4.46, can potentially be explained by the fact that the
current version of AGNES does not account for heat loss through radiation and conduction. Ra-
diation is modeled in CFD with the Discrete Ordinates model and conduction is solved using the
energy equation.

Furthermore, the flame zone in Figure 4.45 is more stretched out and the high temperature center
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is moved further downstream, which explains the large overprediction seen in Figure 4.44.

Figure 4.44: Experimental (•) and CFD-CRN predicted profiles of Static Temperature at the centreline DCL (r /d j et = 0)
for CRNs with 1035 PSRs in the Monaghan clustering without (•) and with updating temperature (•).

Figure 4.45: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 1035 PSRs in the Monaghan
clustering based on CFD PV1 Cε1 = 1.53 using the energy equation.*

Figure 4.46: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 1035 PSRs in the Monaghan
clustering based on CFD PV1 Cε1 = 1.53 not using the energy equation.*

* The white lines show the axial location of the radial experimental data.
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The downstream movement can be explained by the increased temperature. The change in temper-
ature caused a change in density, as shown in Figure 4.47 w.r.t. Figure 4.48. The density decreased
in the flame zone and increased in the co-flow. The volume of each PSR in the CRN is kept constant,
which means the change in density has a direct effect on the mass in each PSR. Since the mass flows
between PSRs in the CRN are also kept constant, the relative amount of exchange between reactors
increases in regions where the density decreases. The relative increased exchange in the flame zone
could cause the stretching seen in Figure 4.45.

Figure 4.47: CFD-CRN predicted parallel contour of Density for a CRN with 1035 PSRs in the Monaghan clustering based
on CFD PV1 Cε1 = 1.53 using the energy equation.*

Figure 4.48: CFD-CRN predicted parallel contour of Density for a CRN with 1035 PSRs in the Monaghan clustering based
on CFD PV1 Cε1 = 1.53 not using the energy equation.*

The temperature has a clear effect on the prediction of NO. Comparing Figure 4.44 and 4.49, it
is visible that the overprediction of temperature and mass fraction of NO start at the same axial
location of x/d=50. Furthermore, in both plots, the difference between the energy equation run
case and the experimental results starts increasing more and more progressing downstream.
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Figure 4.49: Experimental (•) and CFD-CRN predicted profiles of Mass fraction of NO at the centreline DCL (r /d j et = 0)
for CRNs with 1035 PSRs in the Monaghan clustering without (•) and with updating temperature (•).

Similar to the prediction of temperature the mass fraction of CO is more accurate near the pilot,
which is shown in Figure 4.50. Unfortunately, similar to the temperature as well, the mass fraction
of CO is overpredicted in the far field, which can be seen in Figure 4.51.

Figure 4.50: Experimental (•), CFD PV2 Cε1 = 1.6 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D02 (x/d j et = 2) for CRNs with 1006 PSRs in the
Monaghan clustering without (•) and with updating temperature (•).
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Figure 4.51: Experimental (•), CFD PV2 Cε1 = 1.6 (•) and CFD-CRN predicted profiles (left) and volume integral averages
(right) of Mass fraction of CO in the radial direction at axial location D75 (x/d j et = 75) for CRNs with 1006 PSRs in the
Monaghan clustering without (•) and with updating temperature (•).

The mass fraction of CH4 has a different behaviour. Near the inlet the run cases are very similar, but
past x/d=30 the energy equation run case starts to overpredict until x/d=70 where the prediction
suddenly drops below the experimental results.

Figure 4.52: Experimental (•) and CFD-CRN predicted profiles of Mass fraction of CH4 at the centreline DCL (r /d j et = 0)
for CRNs with 1035 PSRs in the Monaghan clustering without (•) and with updating temperature (•).

The major species are significantly less influenced by the updated temperature. Figure 4.53 and 4.54
are cross sectional contours of the mass fraction of H2O at x/d=45 and 75. It can be seen that the
respective CRN wedges are virtually identical.
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Figure 4.53: CFD PV2 Cε1 = 1.6 (CFD) and CFD-CRN pre-
dicted cross-sectional contours of Mass fraction of H2O at
axial location D45 (x/d j et = 45) for CRNs with 1006 PSRs
in the Monaghan clustering without (1006 Mon) and with
updating temperature (1006 Mon E).

Figure 4.54: CFD PV2 Cε1 = 1.6 (CFD) and CFD-CRN pre-
dicted cross-sectional contours of Mass fraction of H2O at
axial location D75 (x/d j et = 75) for CRNs with 1006 PSRs
in the Monaghan clustering without (1006 Mon) and with
updating temperature (1006 Mon E).

VERISSIMO ET AL. TEST CASE

When AGNES solved the CRN using the energy equation for the Verissimo et al. test case, the tem-
perature was overpredicted, which was also seen in the Sandia Flame D test case. Compared to
the contour without temperature updating in Figure 4.55, the temperature contour in Figure 4.56
shows that the maximum temperature region has moved slightly downstream, the temperature
in the downstream region has increased overall and the temperature range now also extends to a
higher temperature.

Figure 4.55: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3137 PSRs in the constant
tolerance clustering.

Figure 4.56: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3137 PSRs in the constant
tolerance clustering whilst updating the temperature.

Figure 4.57 shows the updated temperature contour when the Monaghan clustering was applied. It
can be seen, that the downstream region also increased in temperature and the maximum temper-
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ature increased more compared to Figure 4.56. The maximum temperature region, however, seems
to have moved upstream instead of downstream. This has to do with the L-shape of some clusters
in this region that extend upstream.

Figure 4.57: CFD-CRN predicted parallel contour of Static Temperature [K] for a CRN with 3210 PSRs in the Monaghan
clustering whilst updating the temperature.

The increase in predicted temperature, just like in the Sandia Flame D, causes an increase in the
mass fractions predicted for CO and NOx. The changes in prediction of these minor species close
to the outlet are shown in Figure 4.58 and 4.59. The prediction of the mass fraction of CO is still
relatively close to the experimental data in Figure 4.58 and the same is the case for the results using
the Monaghan clustering.
In Figure 4.59, the predicted mass fraction of NOx can be compared between the two clustering
methods. It can be seen, that both methods overpredict when the energy equation is used, but the
overprediction of the Monaghan clustered case is much larger. This can be attributed to the larger
temperature overprediction and the higher temperatures upstream due to the cluster shapes.

Figure 4.58: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO in the radial direction
at axial location 310 (z = 310mm) for CRNs with 3137 PSRs
in the constant tolerance clustering without (•) and with
updating the temperature (•).

Figure 4.59: Experimental (•) and CFD-CRN predicted pro-
files of Mass fraction of NOx in the radial direction at axial
location 310 (z = 310mm) for CRNs with 3137 PSRs in the
constant tolerance clustering without (•) and with updat-
ing the temperature (•), and 3210 PSRs in Monaghan clus-
tering with updating the temperature (•).

The major species, such as CO2 and O2, are much less affected by the updated temperature com-
pared to the minor species. Figure 4.60 and 4.61 show that the curves are not identical, but generally
close together.
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Figure 4.60: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of CO2 in the radial direc-
tion at axial location 113 (z = 113mm) for CRNs with 3137
PSRs in the constant tolerance clustering without (•) and
with updating the temperature (•).

Figure 4.61: Experimental (•), CFD (•) and CFD-CRN pre-
dicted profiles of Mass fraction of O2 in the radial direction
at axial location 113 (z = 113mm) for CRNs with 3137 PSRs
in the constant tolerance clustering without (•) and with
updating the temperature (•).

4.6. CRN SOLVING TIME
Solution accuracy and time are often balanced to determine the most suitable solution method.
The solving time of AGNES is mostly dependent on size of the CRN. Furthermore, solving the en-
ergy equation increases the non-linearity and size of the system of equations, which increases the
solution time. The clustering method and CFD input had a small effects on the solving time. The
clustering method and CFD input can affect the convergence with averaging as a result of the re-
actor distribution. The clustering method can also indirectly have an effect on the solving time,
because it influences the minimal required size of the CRN for desired accuracy and convergence.

Table 4.3 lists the solution time in seconds for each combination of CRN size, clustering method,
energy equation setting and CFD input. For the Sandia Flame D, the solving time ranged between
12.2 hours and 5.5 minutes. The solving time for the Verissimo et al. test case ranged between just
below 2 hours and almost 45 hours. The difference in range for the two test cases is in part due to
the size of the reactor network, because the shortest solving time in the Sandia Flame D has only
249 reactors whilst the Verissimo et al. test case has 1008 reactors. However, when comparing CRNs
of similar size with the same clustering method and use of the energy equation, the Verissimo et al.
test case still has a solving time that is more than twice as long compared to the Sandia Flame D.
This difference can potentially be attributed to the effect of 3D versus 2D on the CRN.

Figure 4.62 is a plot of the solving time versus the number of reactors for the Sandia Flame D. The
trend with increasing reactor number is not linear and the solving time increases more for increasing
numbers of reactors.
The non-linearity of the solving time corresponds with the fact that the CRN is a system of equation
that grows quadratically with each additional reactor. When the same plot is generated using the
number of reactors squared, the trends are all linear except for the series with ’CFD2, energy=’off’,
Mon’, due to a relatively high solving time at 590 reactors, which seems to be a small anomaly.
For the run cases that also solve the energy equation the trends are steeper with increasing number
of reactors. At around a 1000 PSRs the solving time of the run cases that solve the energy equation
is already more than double the amount for the run cases that do not solve it.
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Table 4.3: CRN solving times

Number of reactors Clustering method Energy equation CFD Solving time [s]
249 Mon off PV1 Cε1 = 1.53 467.902359
249 Mon, ∆ f = 0.02 off PV1 Cε1 = 1.53 340.515189
252 Mon, ∆T = 16K off PV1 Cε1 = 1.53 331.872032
248 Mon, ∆T = 75K off PV1 Cε1 = 1.53 346.354404

1559 Mon off PV1 Cε1 = 1.53 7796.934096
493 Mon off PV1 Cε1 = 1.53 1032.167115

1035 Mon off PV1 Cε1 = 1.53 3625.837703
247 Mon off PV2 Cε1 = 1.6 362.202244
590 Mon off PV2 Cε1 = 1.6 1265.588677

1006 Mon off PV2 Cε1 = 1.6 2340.212984
1035 Mon on PV1 Cε1 = 1.53 8075.29223
1006 Mon on PV2 Cε1 = 1.6 7575.321116
249 Mon on PV1 Cε1 = 1.53 641.716191
247 Mon on PV2 Cε1 = 1.6 642.497808
493 Mon on PV1 Cε1 = 1.53 1851.071156
590 Mon on PV2 Cε1 = 1.6 2700.98292

5496 Mon (tol 6) off PV1 Cε1 = 1.53 43949.326
1581 Ts, X, f (tol 3) off PV1 Cε1 = 1.53 7444.954951
249 Scaling off PV1 Cε1 = 1.53 369.132978

3137 Con off Run 2 17671.944023
3137 Con on Run 2 64042.862452
1008 Mon off Run 2 6571.910287
1008 Mon on Run 2 17215.924117
3210 Mon off Run 2 32478.349307
3210 Mon on Run 2 161350.067126

Figure 4.62: CRN solving time. (CFD1: PV1 Cε1 = 1.53, CFD2: PV2 Cε1 = 1.6)



5. CONCLUSION
Based on the results described in Chapter 4, conclusions can be drawn regarding the research topic
of this thesis. These conclusions are detailed in Section 5.1. Furthermore, Section 5.2 describes
some additional conclusions regarding the method and test case.

5.1. RESEARCH CONCLUSIONS
The main objective of this research is the progression of knowledge in the field of the promising hy-
brid CFD-CRN method. CFD-CRN is a method used to predict emissions produced by combustion
systems. This particular approach splits up the emission prediction problem by first computing the
flow field using CFD with reduced chemical kinetics and then solving for detailed chemistry via a
chemical reactor network (CRN) that is constructed with the results from the CFD computation.

In literature, it was found that most researchers have assumed that the temperature determined
by CFD can be kept fixed. This assumption is based on the reasoning that the reduced chemistry
including the major species is sufficiently accurate, because the concentrations of minor species
computed with the CRN are present in too small quantities to significantly influence the temper-
ature with their low heat release. There was a lack of scientific results supporting this common
assumption and it can be argued that this assumption might not be valid for the prediction of mi-
nor species, because the formation rates are very sensitive to minor temperature changes.

The following research question was opted with the goal to determine the impact of the assumption
to keep the temperature fixed on the prediction of minor species and what influences this impact:

How are the results and run performance affected by applying the energy equation to recompute
the temperature in a CRN for the CFD-CRN method?

It was hypothesized that applying the energy equation would increase the accuracy of the emission
prediction and increase the simulation time. It was expected that the extent of this increase in both
is dependent on the test case and run settings analyzed, but that it would always be present.
In this research, a computational tool developed at the Delft University of Technology, called AGNES,
was adjusted to create the option of updating the temperature in the CRN with the energy equation
and multiple runs were performed for different settings to determine differences between the two
options to test the hypothesis.

As hypothesized, the solving time increases when the temperature is updated by solving the en-
ergy equation compared to keeping the temperature fixed at the value computed by CFD. It was
also found that the relative solving time increases more with increasing number of reactors. There-
fore the effect of increased solving time is more significant when considering the use of the energy
equation in larger CRNs.
Solving the energy equation had a significantly larger impact on the mass fractions of minor species
compared to those of major species predicted by the CRN for both test cases. This was in line with
expectations, which is why the validity of the assumption was only questioned in this thesis for the
minor species.

Regarding the accuracy of the predictions compared to the experimental data, it was found, that
applying the energy equation to update the temperature caused an overprediction in temperature.
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This temperature overprediction was in general more pronounced in the downstream region of the
test domain.
This overprediction of temperature is probably caused by a lack of heat transfer modelling in the
CFD-CRN solver. The only mode of heat transfer that is taken into account is convection, which is
modeled by the mass flow exchange between reactors. However, conduction and radiation are both
neglected, which is suspected to reduces the diffusion of heat from the flame zone, which essentially
keeps it trapped in the system instead of leaving through the domain sides.
Furthermore, the highest temperature region, which is an important factor in minor species produc-
tion, not only increased beyond the original and experimental values, but also moved downstream
in most cases. This can be attributed to the interaction between temperature, density and mass
flow. The increase in temperature was found to cause a decrease in density. Taking into account
the mass flows and volume of reactors that are kept constant, the relative mass exchange has to in-
crease, which leads to a downstream shift.

The increase in temperature in certain regions where the minor species were underpredicted could
lead to an increase in accuracy compared to the experimental results. Unfortunately, in general, the
overprediction in temperature lead to a significant overprediction in CO and NOx.

In conclusion, the application of the energy equation does have a significant effect, but it is not rec-
ommended to apply the energy equation to update the temperature in the current set up, because
it causes overprediction of important minor species mass fractions and increases solving times. If
the heat transfer is accurately modeled in AGNES, this recommendation might change.

5.2. METHOD AND TEST CASE CONCLUDING REMARKS
During the execution of this research there were a few unexpected developments, that do not di-
rectly answer part of the research question, but deserve to be mentioned as relevant conclusions to
progress the field of CFD-CRN, which is the main objective of this research.

The first conclusion is related to the relatively uniform bulk flow moving upward in the Sandia
Flames. Due to this set up, the advective mass flow does not contribute much to radial mixing of
species. Therefore in this case, which doesn’t include any recirculation, turbulent diffusion is a sig-
nificant part in mixing of species in the radial direction and was modeled to improve the accuracy.
Fortunately, this was not found to be necessary for the Verissimo et al. test case, since it has more
radial mixing due to the recirculation.

The second concluding point concerns the clustering method. In the pre-research version of AGNES
multiple clustering criteria could be selected and combined with a global tolerance. These criteria
were used to determine which cells could be grouped. Using this method on the Sandia Flame D
grid convergence was not reached within a reasonable solving time.
It was found that using zones with discrete variations of the clustering criteria and tolerances ac-
cording to the method used by Monaghan et al. [3] for the Sandia Flame D, grid convergence could
be improved significantly. This was attributed to the ability to control the resolution and increase
reactor density in the necessary regions. It was found, that the same clustering method worked
somewhat for the Verissimo et al. test case and although it decreased curve fitting downstream,
resulted in similar or improved accuracy of species prediction when the temperature was not up-
dated.
The zoning method can be seen as a discrete scaling of the tolerances in the domain. The results
of the zoned domain can be approximated by continuously scaled tolerances. Further research into
this type of scaling and standardization for combustion systems has great potential.



6. RECOMMENDATIONS
In this chapter, recommendations are made based on the research and programming performed
through this thesis. These recommendations include recommended improvements of AGNES in
Section 6.1, recommendations for users of AGNES in Section 6.2 and suggestions for future research
with AGNES in Section 6.3.

6.1. RECOMMENDED IMPROVEMENTS OF AGNES
In Section 1.3, five recommendations were made for improvements of the pre-research version of
AGNES. Two of these recommendations were implemented in the current version of AGNES. This
leaves the following three recommendations:

Turbulence: Currently temperature fluctuations due to turbulence present in the PSR is not mod-
eled in AGNES [20]. However, the effect of turbulence on temperature fluctuations was found to be
important by Cuoci et al. (2013), who saw an significant improvement in the results when temper-
ature fluctuations due to turbulence were accounted for in the model [12]. It is recommended to
further study the effect that the modeling of these temperatures fluctuations has on the accuracy of
the emission predictions for different test cases to determine when modeling these fluctuations is
useful.

Liquid Fuels: AGNES has only been used for gaseous fuels [20]. To allow research of test cases
with liquid fuels, like gasoline and kerosene, some adjustments will have to be made. To ensure
proper modeling of the liquid fuel spray a simulation for spray combustion of ANSYS Fluent can
be used [20]. This would require some changes to the processing of the CFD results to ensure the
simulation results are read correctly. For the chemistry modeling it is possible to neglect the liquid
phase chemistry and just consider the gas phase. This method is based on the assumption that CFD
correctly predicts droplet evaporation of the liquid fuel and the associated changes in heat release
and temperature [20]. This method would require the gases formed by the droplet evaporation to
enter the respective reactor as boundary inlet mass flow by including it in the source term [20].
An expected issue for running simulations for liquid fuels is the increased computational power and
time associated with the larger kinetic mechanism required to model liquid fuels, like gasoline and
kerosene [20]. Therefore it might be useful to also focus on the computational efficiency of AGNES
to reduce the computational time for dealing with liquid fuels.

Complex geometries: AGNES was not tried on complex geometries yet [20]. The program has some
hard coded zone IDs incorporated that have to be adjusted for the respective simulation [20]. Fur-
thermore, AGNES is currently only able to handle one Fluent fluid zone [20]. In the future, it might
be useful to enable multiple zones to allow the modeling of combustion systems with more complex
geometries.

In addition to the continued recommendations listed above, two recommended implementation
were identified during this research. AGNES is meant to be a generic tool that can be applied to
virtually any test case. However, it was found that the pre-research clustering method, that uses one
tolerance value for the entire domain, results in too high resolution in less relevant regions, too low
resolution in essential regions or a combination of both. In this research, this problem was reme-
died by using the zoning as proposed by Monaghan et al. [3]:
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Zoned/Scaled clustering: To improve AGNES and make sure it can be used in a more generic way,
the principle of zoning and/or scaling tolerances should be explored further and a more generic/s-
tandardized zoning/scaling function should be added to the clustering method of AGNES.

Diffusion proved to be a significant issue for the Sandia Flame D test case, due to the predominantly
axial bulkflow and lack of recirculation. Therefore a turbulent diffusion model was added. However,
although the model improve the results somewhat, the results clearly still show a lack of diffusion.
This lack could be caused by size and shape of the clusters combined with the use of PSRs in the
CRN:

Plug Flow Reactors: To decrease the effect of the axial elongation of clusters, on the species diffusion
in axial bulk flows, the option of using PFRs in the CRN instead of PSRs should be added to AGNES.

6.2. USER RECOMMENDATIONS FOR AGNES
Future users of AGNES are advised to consult the readme.txt file when starting a project with AGNES.
EmissionsCalculator_Batch.py is the main run file of AGNES. To perform a simulation on a selected
test case the non-binary case and data file of ANSYS Fluent have to be included in the same folder as
EmissionsCalculator_Batch.py. Test case specific inputs have to be supplied to the Main() function
in EmissionsCalculator_Batch.py as well as the desired clustering criteria and number of reactors.
The plotting functions present are specific to the Sandia Flame D and Verissimo et al. test case and
will have to be adjusted for other test cases.

When generating a CRN from CFD results the correct choice of clustering criteria and the number
of reactors is crucial. It is recommended to chose clustering criteria that directly influence the emis-
sion production. This is the main reason why temperature and mixture fraction are often used, in
literature, as a clustering criteria. However, most researchers have used manually applied zones to
further control the reactor distribution. In case of AGNES, it is advised to look at the distribution of
reactors and their shape and size to determine if other criteria or zones need to be used/added to
ensure the desired accuracy.

6.3. SUGGESTED RESEARCH WITH AGNES
It is suggested to attempt modeling heat transfer in the form of conduction and radiation in AGNES
and rerun simulations for the test cases described to determine, whether that improves the accu-
racy of the temperature prediction using the energy equation. If there is significant improvement,
the use of the energy equation could prove to be beneficial for future test cases.

Furthermore, it was recommended in Section 6.1 to develop a more standardized way of applying
tolerance zones or tolerance scaling. To start this development, it is recommended to perform an
optimization/sensitivity study on the tolerance scaling method attempted in this research with the
Sandia Flame D. Once the best method of zoning/scaling is found, the same method can be applied
on similar test case, e.g. the other Sandia Flames, to develop a standardized automatic method of
clustering for piloted flames.

CFD-CRN is a promising method from fast and accurate emission prediction. To further mature the
method more research has to be performed on several more test cases. Preferably, these test cases
include combustion from different regimes, such as flameless combustion, and different types of
flow phenomena, like recirculation. In this way, the best approach for setting up the CFD-CRN
method and its effectiveness can be determined for the different regimes and flow phenomena.
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AGNES can be used by researchers at the Delft University of Technology to perform research on
the CFD-CRN method. Once more is known about simulating certain combustion systems, AGNES
could be used for emission prediction of combustion system concepts and set-ups in the lab.
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A. CFD SET-UP
The exact CFD set-up of both test cases is described below:

SANDIA FLAME D
MESH:

• Dimension: 2D

• Cell shape: Hexahedral

• Spacing: Increasing with distance from origin

• Number of cells: 24278

SOLVER:
• Type: Pressure-Based

• Velocity Formulation: Absolute

• Time: Steady

• 2D Space: Axisymmetic

VISCOUS MODEL:
• Model: Reynolds Stress Model

• Submodel: Linear Pressure-Strain

• Near-Wall Treatment: Standard Wall Functions

• Model constants:

Cµ Cε,1 Cε,2 C1 C2 C ′
1 C ′

2
TKE

Pr
TDR

Pr
Energy

Pr
Wall

Pr
PDF

Sc
0.09 1.53* 1.92 1.8 0.6 0.5 0.3 1 1.3 0.85 0.85 0.85

RADIATION MODEL:
• Model: Discrete Ordinates

• Iteration Parameters: 1 iteration per 10 energy iterations

• Angular Discretization:
θ Div. φ Div. θ px φ px

5 5 3 3

*both 1.53 and 1.6 were selected for this parameter based on result agreement with experimental data.
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SPECIES MODEL:
• Turbulent Chemistry Interaction: Flamelet Generated Manifold

• Operating Pressure: 101325

• Flamelets: Non-premixed flamelets

• Chemical kinetic reaction mechanism: GRI-3.0

• Post-processing model: NOx

• Progress Variable: CO2, CO†

The progress variable (PV ) is computed with Equation (A.1), which uses the sums of mass fractions
associated with species considered for the progress variables (Ysi ). It relates the equilibrium mass
fractions to the current disregarding the mass fraction already present in the unburnt mixture [43].

PV =
∑n

i=1(Ysi −Y u
si

)∑n
i=1(Y eq

si
−Y u

si
)

(A.1)

INLET CONDITIONS:
• Type: Velocity

• Jet: Mean Mixture Fraction = 1, Progress Variable = 0

• Pilot: Mean Mixture Fraction = 0.268, Progress Variable = 1

• Co-flow: Mean Mixture Fraction = 0, Progress Variable = 0

SOLUTION METHODS:
• Pressure Velocity Coupling: SIMPLE

• Spatial Discretization Gradient: Green-Gauss Cell Based

• Spatial Discretization: Second Order Upwind

VERISSIMO ET AL. BURNER

MESH:
• Dimension: 3D (45◦ cut-out)

• Cell shape: Hexahedron (trapezoidal)

• Spacing: Increasing with distance from origin

• Number of cells: 2310062

SOLVER:
• Type: Pressure-Based

• Velocity Formulation: Absolute

• Time: Steady

†In combination with Cε,1 = 1.6, H2O and H2 were added to the usual progress variable.
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VISCOUS MODEL:
• Model: k-ε

• Submodel: Standard

• Near-Wall Treatment: Standard Wall Functions

• Model constants:

Cµ C1,ε C2,ε
TKE

Pr
TDR

Pr
Energy

Pr
Wall

Pr
PDF

Sc
0.09 1.44 1.92 1 1.3 0.85 0.85 0.85

RADIATION MODEL:
• Model: Discrete Ordinates

• Iteration Parameters: 1 iteration per 10 energy iterations

• Angular Discretization:
θ Div. φ Div. θ px φ px

3 3 2 2

SPECIES MODEL:
• Turbulent Chemistry Interaction: Flamelet Generated Manifold

• Operating Pressure: 101325

• Flamelets: Non-premixed flamelets

• Chemical kinetic reaction mechanism: GRI-3.0

• Post-processing model: NOx

• Progress Variable: CO2, CO

SOLUTION METHODS:
• Pressure Velocity Coupling: SIMPLE

• Spatial Discretization Gradient: Green-Gauss Cell Based

• Spatial Discretization: Second Order Upwind





B. CRN SET-UP
The exact CRN set-up of both test cases is described below:

SANDIA FLAME D
CFD INPUT:

• Inlet:
Air (O2: 0.23, N2: 0.77 | T[K]: 291)
Fuel (CH4: 0.16, O2: 0.19, N2: 0.65 | T[K]: 294)
Pilot (O2: 0.059, N2: 0.735, H2O: 0.091, CO2: 0.111, OH: 0.001, NO: 0.003 | T[K]: 1880)

• CFD:
CFD PV1 (CO2, CO) Cε1 = 1.53
CFD PV2 (CO2, CO, H2O, OH) Cε1 = 1.6

CLUSTERING:
• Criteria: Static Temperature (T ), X-Coordinate (x), Mean Mixture Fraction ( f )

• Reactor numbers: 249, 493, 1035 | 247, 590, 1006

• Reactor zoning [3]:

zone limits reactor criteria limits
0 ≤ f ≤ 0.01 ∆x = 0.2m

0.01 < f ≤ 0.1 ∆T = 100K
0.1 < f ≤ 0.9, T ≤ 1800K ∆T = 100K

0.1 < f ≤ 0.9, 1800K < T ≤ 2000K ∆T = 50K
0.1 < f ≤ 0.9, 2000K < T ∆T = 2K

0.9 < f ≤ 1.0 ∆ f = 0.01, ∆x = 0.01m

SPECIES MODEL:
• Chemical kinetic reaction mechanism: GRI-3.0

VERISSIMO ET AL. BURNER

CFD INPUT:
• Inlet:

Air (O2: 0.23, N2: 0.77 | T[K]: 673.15)
Fuel (CH4: 1.0 | T[K]: 300.0)

• CFD: Run 2

CLUSTERING:
• Criteria: Static Temperature (T ), Mass fraction of H2O (YH2O), Mass fraction of O2 (YO2 ) and

Mass fraction of CH4 (YCH4 )
| Static Temperature (T ), X-Coordinate (x), Mean Mixture Fraction ( f )

• Reactor numbers: 3137 | 1008, 3210

• Clustering method: tolerance 0.05 [20] | Monaghan [3]

SPECIES MODEL:
• Chemical kinetic reaction mechanism: GRI-3.0
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C. CHANGELOG AGNES
# Changelog
All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en
,→ /1.0.0/),

and this project adheres to [Semantic Versioning](https://semver.org/spec/v2
,→ .0.0.html).

## [Unreleased]

### Added
- *energy=’on’* Temperature terms to ’Js’ and ’Jw_add’ in ’

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.Jacobian_sparse’
- *energy=’on’* Temperature terms to ’Jw’ in ’

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.source_analytic’
- *energy=’on’* Temperature terms to ’Cw’ and ’RatesofProduction’ in ’

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.function’
- *energy=’on’* Temperature terms to ’fvect’ in ’

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.Gen’
- Diction with zones and tolerances, called ’avg_dict’, (see in code comment

,→ for further details) in ’EmissionsCalculator_Batch.py’
- Copied ’BFS_pchanged’ function as ’BFS_pchanged_monaghan’ with the option

,→ of adding zones and zone specific tolerances
- Function checking the zone of graph data called ’check_zone’ in ’

,→ BFS_pchanged_monaghan’
- Included dictionary with zones and tolerances in ’EmissionCalculator_Batch’

### Changed
- *energy=’on’* Model heat flux at the cantera walls using constant heat

,→ transfer coefficient ’U’ instead of constant heat flux ’Q’ in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.py’

- *energy=’on’* Increase ’vectsize’ by 1 in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.py’

### Removed
- Unused list in ’ReactorGen_min_internalmfc_outletvalve_newton_odeint.

,→ function’

## [1.3.0] - 2019-07-01

### Added
- Added ’Turbulent Viscosity’ from the standard data ’data_std’ to the ’

,→ header’ and ’Data’ files in ’datfilepy.py’
- *2D cases* *case specific* appended surface area of respective faces
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,→ between cells to the ’facearea.pkl’ in ’casefilepy.py’
- Mass averaging function ’mass_average’ that calculates the mass average of

,→ a specified value of two reactors in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.py’

- Include turbulent diffusive mass flow rate in ’coeffmat’ based on Peclet
,→ number with equal opposite size for each face between reactors in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.Gen’

- Include ’Turbulent Viscosity’ in the ParaView plots in ’SaveReactors.py’

## [1.2.0] - 2019-06-24

### Added
- Copied ’ReactorGen_min_internalmfc_outletvalve_newton’ as ’

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint’ to act as CRN
,→ solver with global time integration

- Divergence check for entering the Newton Solver, called ’globalsolver’, in
,→ stead of global time integration, called ’globalsolver_odeint’, in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.Gen’

### Changed
- Replace ’ode’ with ’BDF’ method of ’Scipy.integrate’ in

,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.
,→ globalsolver_odeint’

- Adjusted while-loop to accommodate for ’Scipy.integrate.BDF’ method in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.
,→ globalsolver_odeint’

- Account for ’rate_error’ not output by ’Scipy.integrate.BDF’ method in ’
,→ globalsolver_odeint’ in ’
,→ ReactorGen_min_internalmfc_outletvalve_newton_odeint.Gen’

## [1.1.0] - 2019-05-06

### Added
- *case specific* Reading and plotting functions for the experimental and CFD

,→ results of the Sandia Flame D (Read_Plot_all.py)
- Plotting function in ’PostProc.py’ called ’axial_plot0’ that generates

,→ plots along a radial line at a predefined axial location.
- *case specific* Plotting function in ’PostProc.py’ called ’axial_plot’ that

,→ generates comparative plots of the CRN, CFD and experimental results
,→ of the Sandia Flame D

- Include new variables {’id_dict’: [dictionary] with zone labels, ids, inlet
,→ composition and temperature, ’data_num’: [integer] case specific cell
,→ id, ’symm_axis’: [string] coordinate name of symmetry axis (’X-
,→ Coordinate’, etc.), ’variables’: [list] variables to be plotted, ’
,→ axial_locations’: [list] axial locations to be plotted} in ’
,→ EmissionsCalculator_Batch.py’ to centralize changes for new cases

- ’DataFileQuantities.txt’ listing the necessary Data File Quantities to be
,→ switched on in CFD to allow AGNES to function

- *case specific* ’pmD.stat’ folder with the experimental data of the Sandia
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,→ Flame D
- *case specific* ’SFD_RSM_FGM_DO_Ceps1_153_PV1_NOx_MeshV7’ folder with the

,→ case relevant CFD results of the Sandia Flame D
- Include key ’Cell Volume[m^3]’ in diction using ’Cell Volume’ from header

,→ in ’PostProc.Post’
- Key ’Axial Velocity[m/s]’ to diction from ’Velocity Magnitude’ and ’Radial

,→ Velocity’ from header in ’PostProc.Post’
- *case specific* Key ’Cell Height[m]’ to diction in ’PostProc.Post’ for ’

,→ Cell Volume[m^3]’ and radial location
- Integral function in ’PostProc.py’ called ’integral’ that computes the

,→ surface integral of a revolved curve
- atomic mass calculation function in ’PostProc.py’ called ’mass_of’ that

,→ computes the mass of a certain atom in each cell
- Plotting function in ’PostProc.py’ called ’integral_plot’ that generates

,→ plots of the surface integrated average over the axial locations
- *case specific* Plotting function in ’PostProc.py’ called ’parallel_contour

,→ ’ that generates a contour plot parallel to the axial axis
- *case specific* Plotting function in ’PostProc.py’ called ’cross_contour’

,→ that generates radial contour plots of selected run cases as pie-
,→ sections of the same plot

### Changed
- *2D cases* Add the missing coordinate as a list of zeros in ’datfile.py’ if

,→ necessary
- *2D cases* Use ’Cell Volume’ times 2pi ’Cell Volume’ in ’datfilepy.py’ if

,→ necessary
- Automatically generate ’startlist’ from ’id_dict’ in ’CRN_Gen.py’
- Determine starting point by checking if ’start_ratio’ is included in ’

,→ id_dict’ in ’BFS_pchanged.py’
- *2D cases* Let the missing velocity direction be zero in ’BFS_pchanged.py’

,→ if necessary
- Determine ’vel_dir’ in ’BFS_pchanged.py’ based on the predefined symmetry

,→ axis ’symm_axis’ in stead of a default axis
- Only proceed with generating inlet boundary cell if ’mflux’ is not 0 in ’

,→ ReactorGen_min_internalmfc_outletvalve_newton.py’ (related to issue of
,→ many reactors near the wall of the inlet, causing a 0 inlet mass flux)

- Compressed boundary inlet definition and removed hard coding by using ’
,→ id_dict’ in ’ReactorGen_min_internalmfc_outletvalve_newton.py’

- Use ’symm_axis’ in stead of a default axis in ’SaveReactors.py’

### Removed
- (Forgotten) commented out sections
- Unused (valued) local variables (except checks inside try-except set ups)
- Unused function parameters in all occurrences
- Unused imports

### Fixed
- General PEP-8 compliance
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