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Abstract: The re-entrant structures are among the simple unit cell designs that have been widely
used in the design of mechanical metamaterials. Changing the geometrical parameters of these
unit cell structures, their overall elastic properties (i.e., elastic stiffness and Poisson’s ratio), can
be simultaneously tuned. Therefore, different design strategies (e.g., functional gradient) can be
implemented to design advanced engineering materials with unusual properties. Here, using the
theory of elasticity and finite element modeling, we propose a fast and direct approach to effectively
design the microarchitectures of mechanical metamaterials with re-entrant structures that allow
predicting complex deformation shapes under uniaxial tensile loading. We also analyze the efficiency
of this method by back calculating the microarchitectural designs of mechanical metamaterials to
predict the complex 1-D external contour of objects (e.g., vase and foot). The proposed approach
has several applications in creating programmable mechanical metamaterials with shape matching
properties for exoskeletal and soft robotic devices.

Keywords: mechanical metamaterials; auxetic; re-entrant structures; finite element modeling; theory
of elasticity; shape matching

1. Introduction

Cellular materials (e.g., bone, wood, and cork) can be extensively found in nature.
These natural cellular materials have been sources of inspiration for engineers for many
decades to create bioinspired lattice structures [1], for instance, those with low density and
high stiffness [2] or high energy absorption properties [3]. Design motifs, such as hierarchy
and functional gradient, are examples of design principles that exist broadly in natural
materials and have been widely used to develop bio-inspired cellular structures [4,5]. The
re-entrant unit cells are among those cellular microstructures that found their roots in
nature and have been utilized to design advanced engineering materials, such as designer
materials or mechanical metamaterials [6,7] (i.e., materials whose mechanical properties
originate directly from their architectural designs at a lower scale and not from their
chemical compositions).

The 2D mechanical metamaterials made from re-entrant structures are composed
of hexagonal repetitive unit cells arranged rationally in a plane. As re-entrant unit cells
belong to the class of bending-dominated [8,9] unit cells, their particular strut’s orientation
can result in unusual properties, such as negative Poisson’s ratio (i.e., auxetic [10]), when
stretched or compressed in-plane or tunable (i.e., synclastic, anticlastic) curvatures when
bent out-of-plane [11,12].

One of the unique features in the design of re-entrant lattices is their inherent simplicity.
This means a relatively low number of design parameters are necessary to design re-entrant
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lattices. That is probably one reason why these particular unit cell designs have received
a great deal of attention with respect to other types of unit cell designs (e.g., chiral, rigid
rotational structures, and crumpled and perforated sheet models [13]). For example, only
by changing the angle of re-entrant unit cells, one can achieve a wide range of elastic
properties (i.e., elastic stiffness and positive or negative values of Poisson’s ratio) [14].
When this simple geometry is combined with the concept of multi-materials, it can provide
even additional freedom for the designer to boost their properties as compared to those of
monolithic lattice structures [15].

Furthermore, by a rational combination of re-entrant unit cells with different values
of Poisson’s ratios, one can control the local (e.g., action-at-a-distance [16]) or global de-
formation (e.g., shape-matching mechanical metamaterials [17]) of the lattice structures
under uniaxial far-field loading. This can then lead to the design of programmable mechan-
ical materials with shape morphing or shape transformation properties with numerous
applications in the fields of architecture, sports, soft robotics, mechanical and biomedical
engineering, and aeronautical industries [18–24].

The state-of-the-art design of programmable mechanical materials with shape mor-
phing and shape transformation properties requires spatial combinations of various unit
cells to guide the deformation patterns within the structure and avoid any unnecessary
strain localizations. This makes the design of such programmable metamaterials using re-
entrant structures more challenging. It is because the re-entrant lattices exhibit anisotropic
properties, which means their properties are different in two principal directions. Al-
though several analytical relations have been proposed to determine the elastic properties
of re-entrant structures [25–30], these models cannot predict their shape transformation
properties, particularly when more complex microarchitectural designs (e.g., functional
gradient) have been used. Computational modeling (e.g., finite element (FE) models) of re-
entrant structures has provided a powerful tool in predicting their design envelop [31–36].
However, again in the case of complex design, these models will often become computa-
tionally expensive.

Here, using the theory of elasticity and finite element modeling, we propose a method-
ology to predict the deformation patterns in mechanical metamaterials created from re-
entrant building blocks. The method offers a high-speed and direct approach in first,
predicting their elastic properties and second, back calculating their microarchitectural
designs. We also analyzed the efficiency of this approach in creating the programmable me-
chanical metamaterials with even more complex (e.g., functionally graded) microstructures
by comparing our results with those of the literature. The proposed method has several
applications in designing programmable mechanical metamaterials with shape matching
properties for exoskeletal and soft robotic devices.

2. Modeling Approach

We used the conventional 2D re-entrant unit cell structural design proposed by Gib-
son et al. [37] in this study. The re-entrant structure was assumed to be subjected to uniaxial
tensile load T along the y-axis (Figure 1). Cell length (L), cell height (h), cell angle (θ),
and cell thickness (t) are geometrical parameters of the re-entrant unit cell structure (see
Figure 1). First, we modeled re-entrant designs using the classical 2D theory of elasticity
(i.e., Airy function [38]). Since the structure thickness was assumed to be small compared
to the plate dimensions, plane stress equations were used for these analyses. This means
that the in-plane shear strain and shear stress were assumed to be zero. We compared our
results with finite element modeling (see Section 2.2) to validate our analytical approach.
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Figure 1. Re-entrant lattice structure is made of hexgonal unit cells whose geometrical parameters
are shown in the subfigure. The lattice structure is supposed to be under uniaxial tensile loading.

2.1. Elasticity Modeling

The 2D elasticity theory for a thin plate regardless of body force leads to the biharmonic
equation (∇ˆ4 ϕ = 0), where ϕ is an Airy stress function. Stress fields derived from an Airy
stress function satisfy the equilibrium equation and correspond to compatible strain fields.
Airy stress function is suitable to solve stress boundary condition problems. The only
component of the stress boundary condition here is the in-plane tensile loading applied
along the y-direction (Figure 1). Therefore, other stress components (i.e., σxx,τxy) could be
excluded, and the Airy stress function is obtained as follows:

ϕ = Ax2 (1)

The re-entrant structure is under stretch loading, as mentioned above and shown in
Figure 1. The stress boundary conditions are written in Equation (2), where σxx and σyy are
the normal stresses in the x and y direction, and τxy is the in-plane shear stress.

σxx(±c, y) = 0
σyy(x,±b) = ±T

τxy(±c, y) = τxy(x,±b) = 0
(2)

The stress field can be calculated according to Airy functions as Equation (3).

σxx =
∂2 ϕ

∂2y
; σyy =

∂2 ϕ

∂2x
; τxy =

∂2 ϕ

∂x∂y
(3)

The unknown coefficient (A) of the Airy function can be obtained from boundary
conditions shown in Equation (2) as follows:

A =
T
2

(4)

The stress–strain relationship according to Hooke’s law for orthotropic re-entrant
structure under an in-plane state of stresses can be calculated as: σxx

σyy
τxy

 =

 c11 c12 0
c21 c22 0
0 0 c66

 εxx
εyy
γxy

 (5)
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where cij are elastic constants that can be obtained from Equation (6).

c11 =
E11

1− υ12υ21
, c12 =

E22υ12

1− υ12υ21
c22 =

E22

1− υ12υ21
, c66 = G12 (6)

where G12, E11, E22, v12, and v21 are respectively the shear modulus, Young’s moduli, and
Poisson’s ratios in principal directions (Figure 1). The mechanical properties, according to
the unit cell geometrical parameters shown in Figure 1, can be written as follows [39]:

L = l
sin θ

υ12 = −
cos θ

(
1−( t

L )
2)
( h

L−cos θ)

(sin2 θ)
(

1+((cot2 θ+csc2 θ)( h
L ))(

t
L )

2)
υ21 = −

cos θ
(

1−( t
L )

2)(
cot2 θ+( t

L )
2)
( h

L−cos θ)

E11 = E
( t

L
)3 ( h

L−cos θ)(
1+(cot2 θ+ h

L csc2 θ)( t
L )

2)
sin3 csc2 θ

E22 = E
( t

L
)3 1

sin θ( h
L−cos θ)

(
cot2 θ+( t

L )
2)

G12 = E
( t

L
)3 1
( h

L )(1+2 h
L ) cos θ

(7)

The strain relations (Equation (8)) can be calculated by replacing the Airy stress
functions (Equation (3)) in Equation (5).

εxx = − Tυ12(−1+υ12υ21)
−E11+E22υ12

2

εyy = − T(−1+υ12υ21)
E11−E22υ12

2

γxy = 0

(8)

By integrating Equation (8), the displacement field in the x and y directions (i.e., u and
v) can be determined as:

u = −Tυ12(−1 + υ12υ21)

−E11 + E22υ12
2 x + g(y)v = −T(−1 + υ12υ21)

E11 − E22υ12
2 y + f (x) (9)

The functions f and g are unknown functions that can be calculated by applying the
shear strain relation given in Equation (8):

∂u
∂y

+
∂v
∂x

= 2γxy = 0→ f́ (x) = −ǵ(y) = constant (10)

By integrating from Equation (10), the unknown functions can be written as:

f (x) = wx + v0g(y) = −wy + u0 (11)

where u0, v0, and w are arbitrary constants of integration that indicate the translation and
rotation of the plate. Since the structure is symmetrical, regardless of the rotation and rigid
displacements, the displacement of the plate is expressed using Equations (12) and (13).

u = −Tυ12(−1 + υ12υ21)

−E11 + E22υ12
2 x (12)

v = −T(−1 + υ12υ21)

E11 − E22υ12
2 y (13)
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2.2. Finite Element Modeling

Finite element modeling (FEM) of the re-entrant structure has been performed by
Abaqus 6.12.1, as shown in Figure 2. The 2D beam element (B31, linear element based on
Timoshenko formulation) is used for computational simulation, which has a low analysis
run time. We performed a mesh sensitivity analysis that showed the displacement results
converged by element size equal to L/10. Because of the symmetry of the plate, the
midpoint of the plate was constrained in the x-direction. The upper and lower edges of
the plate were in tension. The equivalent load in the y-direction must be equal to the
corresponding load in the elasticity theory. Python programming language was used to
parametrically model the structure in Abaqus.
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3. Results and Design Producer

First, the effects of porosity on the elasticity solution were studied. The area of the
lattice structure was directly calculated from Abaqus. We then calculated the void space
by subtracting this area from the equivalent solid plate. The porosity was defined as the
ratio of the void space filling to the equivalent solid plate. The porosity value can therefore
change between 0 and 1, where 0 means the fully solid plate. Here, we changed the porosity
of the lattice structures by changing the dimensions of their unit cells (i.e., h and L) while
the strut thickness (i.e., t) and unit cell angle (i.e., θ) were kept unchanged (see Figure 3b–d).
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The finite element model was compared with the results obtained from the elasticity
approach with different porosities in Figure 3. The dimensionless results are represented

as u = u(x=c,y),E
2bT 10−3, where E is the mean values of the elastic modulus of the lattice

structure. As it can be seen in Figure 3, there is a good agreement between FEM and the
results of the elasticity approach at a lower level of porosities. However, by increasing the
porosity, the difference between the two models increased. This can be due to the rotation
of unit cells in higher porosities that can lead to in-plane shear strain, thus violating our
assumption regarding the zero-shear strain condition.

3.1. Variable Porosity Modeling

More complex re-entrant structures were modeled by changing their cell parameters
in a way to have functionally graded unit cells in the y-direction and repeated unit cells in
the x-direction. Since the unit cell angle has the greatest effect on the Poisson’s ratio [14],
the presented model has an angle varying in the longitudinal direction. To satisfy the
compatibility with other unit cell designs, the unit cell height also changed in each row
according to a variable unit cell angle. The structure was divided into several rows with a
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specific angle in the longitudinal direction. As an example, a model with a linear variable
angle was created as Equation (14).

θ = 48 + 0.7461y (14)

The mechanical properties of the structure are obtained by replacing Equation (14) with
Equation (7). Although the material properties vary along the y-direction, the presented
elasticity solution remains valid because the stress function does not depend on y. Therefore,
a variable deformation along the y-direction is the result of heterogeneity of mechanical
properties in the y-direction. The dimensionless deformation (u) vs. normalized length
(y = y

b ) of a lattice structure with different levels of porosity are shown in Figure 4, where
b
c = 2.5 and h

l = 2. It can be seen in this figure that the difference between these two models
(i.e., FEM and elasticity approach) increased by increasing the porosity. As mentioned
above, this can be explained by creation of shear strain due to cell rotations in higher
porosities. Based on this observation, we fixed the level of porosity to ~90% for our lattice
designs hereafter.
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Two other models with higher polynomial order for unit cell angle in a function of y-
coordinate (rows) were considered in Figure 5 with the porosity of 88%. Equations (15) and (16)
show the change of angle in the longitudinal direction for these models. These models
consist of 23 × 35 cells and the dimension ratio with b

c = 2.5 and h
l = 2. As it can be seen

in Figure 5, the deformed structure has an arbitrary shape that can be used for reaching a
specific design that will be discussed in the next section.

θ = 42.0628 + 1.679y− 0.0161y2 (15)

θ = 51.838 + 1.16y − 0.01202y2 + 0.0000644y3 (16)
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Figure 5. Dimensionless displacement in functionally graded re-entrant structure for the desired parabola (a) and cubic
(b) shapes.

3.2. Variable Porosity Designing

In this section, a method is presented to design a functionally graded re-entrant
structure. Programming the microstructure to reach the desired deformation in tension
is the main goal of this section. For this purpose, the angle of unit cells of the re-entrant
structure must be calculated in terms of displacement.

The angle effect on the displacement field can be obtained from Equation (12). The
angle of the unit cell affects the mechanical properties of the structure and can change the
displacement field. Therefore, the displacement field was assumed to be a function of the
angle of unit cells, as shown in Figure 6. We fitted a curve to calculate the angle of the
unit cell as a function of displacement. Three different fitting curves were used (Table 1)
that were calculated with MATLAB (R2014a, MathWorks, Natick, MA, USA). There is
a minimum error for FC3 (Fit Curve 3) that consisted of polynomial and trigonometric
functions (Table 1).
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dimensionless lateral displacements using the elasticity theory. The corresponding fitting equations
are shown in Table 1.

Table 1. Fitting curves (FC) and corresponding errors.

Fit Curve Fitting Equation R2

FC1 θ = 90 + 248.8Sinu 0.9722
FC2 θ = 90 + 325.1u − 2621.4u3 0.9977
FC3 θ = 90 – 7.5 × 106u + 1.24 × 106u3 + 7.5 × 106Sinu 0.9997
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The desired deformation in tensile loading can be obtained by a re-entrant cellular
structure using variation in angle. This change has the strongest effect on the mechanical
properties of the lattice structure. The angle of each row can be obtained by fitting equations
introduced in Table 1.

The angle of each row is dependent on the desired displacement. The desired displace-
ment of each row must be calculated in the middle of the ligament of each row. The location
of this point can be calculated from Equation (17), where m is the number of segments and
n is the row number.

y =
m

∑
n=1

hn =
m

∑
n=1

(
b
m
− Lsin(θn)

)
(17)

To show the capability of this method, a typical linear deformation is considered as
Equation (18).

u = −0.19577 + 0.00288y (18)

By dividing the height of the structure into 35 rows, the angle of each cell can be
back-calculated from Table 1 and Equation (18). Figure 7 shows a comparison of the desired
displacement with a designed model that was used in the development of FEM. First, the
angle of each row is obtained, and then FEM is performed to see the deformation result.
The design based on three different fitting curves, introduced in Table 1, was compared in
this figure. It can be seen that FC3 is the best match with the target shape of deformation.
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Figure 7. Functionally graded design of a re-entrant cellular plate with non-dimensional lateral and
longitudinal deformation.

The implemented method was compared with experimental test data published in [17].
The deformation field reported in this reference was used to design a functionally graded
re-entrant structure with the presented method. The angle of cells was compared by
reported angles in Figure 8. We observed a good match between the two approaches. A
deviation between two results was observed at regions close to the gripping fixture. The
difference in applied boundary conditions can be one of the sources of such difference
between two approaches.

To show the application of this method for the design of programmable shape-
matching mechanical metamaterials, two arbitrary shapes were used in Figure 9. The
first model is a vase structure with a special 1D curved contour line and the second model
was the complex shape of a foot. We used our approach to design the corresponding
microarchitectures of lattice structures so that under applied tensile loading, a particular
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1D curved shape can be achieved. As a consequence, the presented design approach has a
wide range of applications in the design of wearable medical (e.g., exo-skeletal prosthesis)
and soft robotic devices (e.g., soft grippers to grip delicate objects). Re-entrant cell parame-
ters can be designed with an elasticity approach, instead of other time-consuming methods,
such FEM with 2D plane elements. Moreover, the proposed elasticity approach is sensitive
to the level of porosity of the final structure as well as the applied boundary condition.
Nevertheless, this approach may provide a fast and accurate design tool for the design of
shape-matching mechanical metamaterials.
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Figure 9. A flowchart is shown in the top row showing the steps necessary for the design of mechanical metamaterials. This
flowchart was used to back-calculate the microarchitecture of lattice structures for predicting the complex 1D shapes of two
arbitrary examples, namely foot (a) and vase (b). Based on the elasticity approach proposed here, the microarchitectures of
the lattice can be determined using re-entrant unit cells.
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4. Conclusions

To conclude, here, the functionally graded mechanical metamaterials made from
re-entrant structures under uniaxial tensile load were modeled using the elasticity theory
and FEM. The effects of different morphological and geometrical parameters (i.e., porosity)
on the overall shape of deformation of such materials were analyzed. We also showed
how the presented approach can be used for the back-calculation of the microarchitectural
designs of lattice structures in order to achieve any arbitrary target shape of deformation.
This approach can be considered an effective tool in the design of programable mechanical
metamaterials with shape matching properties. We expect this approach can be extended
to the design of 3D structures with the same properties and predicting arbitrary shapes
in 2D or 3D. The proposed design method can be used in many applications, such as soft
robotics, fashion industries, and medical devices.
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