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Abstract—In multimodal emotion recognition, disentangled
representation learning method effectively address the inher-
ent heterogeneity among modalities. To facilitate the flexible
integration of enhanced disentangled features into multimodal
emotional features, we propose a task-driven multimodal emotion
recognition method TDMER. Its Cross-Modal Learning module
promotes adaptive cross-modal learning of features disentangled
into modality-invariant and modality-specific subspaces, based on
their contributions to emotional classification probabilities. The
Task-Contribution Fusion mechanism then assigns controllable
weights to the enhanced features according to their task objec-
tives, generating multimodal fusion features that improve the
emotion classifier’s discriminative ability. The proposed TDMER
approach has been evaluated on two widely-used multimodal
emotion recognition benchmarks and demonstrated significant
performance improvements compared with other state-of the-art
methods.

Index Terms—Disentangled Representation Learning, Cross-
Modal Attention Learning, MultiModal Fusion.

I. INTRODUCTION

With the surge in interest in affective computing [1]-[3],
multimodal emotion recognition (MER) is a critical field in
advancing emotion recognition and analysis by harnessing
information from several modalities. The applications of MER
are extensive and practical, including intelligent customer
service [4], [5] and mental health research [6], [7].

Conventional MER methods generally fall into two cate-
gories: 1) designing intricate fusion strategies [8]—[11] for mul-
timodal features; ii) using cross-modal attention mechanisms
[12]-[15] to enhance multimodal features. However, the data
types of multimodal signals differ, as do their mechanisms for
encoding emotional information. Such inter-modal heterogene-
ity significantly impacts the multimodal fusion. To alleviate
information mismatch caused by it, a core strategy has been
applied: project the features of each modality into modality-
invariant and modality-specific subspaces [16], [17], and then
conduct effective feature learning and fusion [18]-[20].
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In cross-modal learning, Hazarika et al. [21] use attention
mechanisms to push emotional information exchange between
decoupled features. However, such approaches may not fully
utilize each representation’s unique strengths due to manually
specified learning directions. For instance, if audio features
owns more critical emotional cues but cross-modal learning is
directed from other modalities, it may reduce model efficiency.

In the realm of cross-modal fusion, common techniques are
tensor fusion [9], [22] and adaptive weight fusion [23], [24].
These methods synergize effective information across modal-
ities to assist in emotion recognition. However, while some
methods [25], [26]account for the specific contributions of
each modality to the final task and adjust fusion dynamically,
they still overlook that the task contributions of disentangled
features can also serve as controllable weights.

Existing multimodal emotion recognition methods have two
primary drawbacks: i)manually prescribing the direction of
cross-modal learning is not well-suited to the complex and var-
ied distribution of emotional features; ii)existing multimodal
fusion weight allocation mechanisms lack attempts to optimize
emotion prediction by using the emotional classification prob-
abilities of decoupled features as dynamic weights directly.

To address these issues, we propose the Task-Driven Multi-
modal Emotion Recognition method TDMER. It introduces a
dynamic Cross-Modal Learning (CML) module that leverages
the logits of each modality’s features to guide the direction
and intensity of cross-modal learning. This module adaptively
enhances the critical information necessary for emotion recog-
nition within the decoupled common and private features. We
design the Task Contribution-based Fusion (TCF) module,
which dynamically assigns weights to the enhanced fea-
tures based on their individual true classification probabilities
(TCP), facilitating task-driven multimodal fusion.

II. METHOD
A. Model Overview

The architecture of our proposed TDMER is illustrated in
Fig.1. It primarily consists of three modules: Feature Extrac-
tion and Decoupling, CML module, and TCF mechanism.
Firstly, we designed a feature decoupling module to project
features from each modality into respective subspaces. Sec-
ondly, we implemented the CML module for adaptive cross-
modal learning of decoupled modality features. Finally, we
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fuse the enhanced decoupled features using weights based on
their true classification probabilities (TCP) with TCF mecha-
nism.

B. Feature Decoupling

Initially, we handle audio, text, and video modalities with
1D convolutional networks to extract temporally informative
features: X,,, € R(Em*dm) for each modality m € {A,T,V},
with d4 = dpr = dy, standardizing the dimensionality across
modalities.

We use a common encoder ¢ and three private encoders
aﬁ:i to obtain common feature C,, and private feature P,,:

com

Crm = " (Xm), P = 0" (Xom) ey

Then, we design following four key loss functions to guide
these encoders to perform feature decoupling effectively.

We utilize the Center Moment Discrepancy (CMD) metric
[27] to align features in the modality-invariant subspace. For
random samples X and Y with distributions p and ¢ on [a, b]™¥
the CMD regularizer (CM D)k is the empirical estimate of
the CMD:

1
2)
+ Z |kHOk X) = Cp(Y)]]2
where E(X) = ﬁzze @ is the empirical expectation of X

and Cx(X) = E(z— E(X)*) is its k" order central moments.
The consistency loss L., is computed between modalities:

Leon = CMDg(Cm,,Cmy)  (3)
(m1,ma)e{(a,t),(a,v),(t,v)}

To boost reconstruction capabilities, We concatenate the
C,, and P,, of each modality and utilize private decoders to
obtain features D,,,[Cy,, P,]. They are compared with original
features to ensure that the decoupled features can be restored
as much as possible. The restruction loss L,.. is defined as:

Lrec:ZHXm_Dm(Cmypm)HQ (4)

To ensure the decoupled features contain corresponding
information instead of redundant content. We utilize soft
orthogonality to constrain the similarity between common and
private features, preventing excessive redundancy. Formally,

D — Z COS(Grru P’m) (5)

As it is essential to avoid the model’s generalization of
all information as unique to each modality while comparing
features. Therefore, we compare the private features of two
modalities to reduce the similarity and redundancy of private
information between different modalities:

Lpp — COS(}Dm1 5 Pm2) (6)

(m1,m2)e{(a,t),(a,v),(t,v)}

C. Cross-Modal Learning

We have designed respective cross-modal learning modules
for the common and private features respectively as follows.

For the learning of common features, we introduce the
weight w),_,, to represent the strength of modality ¢’s feature
learning from modality p, and define v,_,, to represent the
difference in logits between p and ¢. Here, p,q € {T, A, V}.

Then, defining F; (hy, 01) and Fy (hg, 61) as the outputs of
modality p and q’s common feature through a fully connected
(FC) layer with parameters 6#;, and further passing them
through a FC layer with learnable parameters 65:

Wp—q = Softmax(FQ(HFl(hP7 01)7 hPL [Fl(hQ7 01)7 hQH7 02))
O]

The loss function for cross-modal learning is as follows:
Lae = [|lw @ || ®)

where, ® means element-wise multiplication.

For the learning of private features, we employ cross-modal
attention [12], [13], [28] additionally. Taking text specific
modality P; as the source and audio modality P, as the
target, the cross-modal attention is: Q¢ = P, P,, K, = P, P,
Vo = P, P, ,where P,, P, and P, are learnable parameters.
Individual heads [29] P¢,, = Soft max(Qf/Ig"T )V, is the
enhanced features from audio to text, where d means the
dimension of Q); and K,.

Similarly, we can also acquire the cross-modal dynamic
learning loss L4, based on logits.

Meanwhile, we designed an enhanced feature loss to ensure
low similarity between the augmented private features and
the common features within the same modality, preventing
redundant learning during cross-modal learning. Formally,

Len = Zcos(cm, Py) )
D. Modality Fusion

It’s essential to allocate different fusion weights to enhanced
decoupled features obtained earlier when composing multi-
modal recognition features. Therefore, we apply a classifier on
each feature to obtain TCP [30], [31] as their contributions in
the fusion process: TCP™ = (z/")I,m € {C,P,, P;, P,}.
Here, 2] is the prediction probability, and I} is the index of
emotion label for each utterance wu;.

In contrast to adaptive weighting that relies on op-
timization methods like backpropagation, using task per-
formance indicators such as TCP as direct weights pro-
vides a more intuitive approach to feature fusion. How-
ever, since true sentiment labels are unavailable during eval-
uation, we utilize predicted values that closely ap rox1-
mate TCP post-training as feature weights: wc/ Fa/Pe/P
Szgmozd(MLPg/P /PPy (Ci/ Pai/ Pii/ Py;)-

Using following constraint functions to obtain the weights:

— Z log(z
i=1

(10)

=> MSE(TCP",w!") (1)

i=1
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Fig. 1: The overall structure of proposed TDMER.

Ly =

>

me{C,Pq,Pt,Py}

(Ly + Ly") (12)
where, L))" represents the prediction label loss and L;" rep-
resents the prediction TCP loss. Then, we can get the fused
multimodal features h; = wic C; + wf “Pai + Wf 'Pi + wf * Dui-

E. Objective optimization

Finally, the fused multimodal representation h; is used
for obtaining the probability of predicted emotion y; =
Softmax(MLP(h;)). Then the emotion task related loss is:

Liask = Lgc + Ldp - Z lOgyia Ij (]3)
i=1

We can define the objective by integrating above losses:
L= a(Lcon + L'rec) + /B(ch + Lpp) + ’YLen + 6Lf + Ltask (14)

Here, «,3,7,d determine the importance of different con-
straints in the overall loss L.

III. EXPERIMENTS
A. Datasets

Our evaluations utilized the CMU-MOSI [32] and CMU-
MOSEI [33] benchmark datasets for multimodal emotion
recognition, both comprising audio, text, and video modalities.
These datasets are annotated with sentiment scores that span
the range from -3 (highly negative) to 3 (highly positive).
We employed their pre-defined training, validation, and testing
splits for our experiments and analysis.

B. Implementation Details

For the audio modality, we use the COVAREP [34] toolkit
to extract 74-dimensional low-level features. For the visual
modality, we utilize Facet [35] to encode each video frame,
capturing 35 facial action units. And we use BERT [36] pre-
trained model to obtain text embeddings rich in high-level
semantic information. During the experiments, the batchsize
was set to 16 for CMU-MOSI and 32 for CMU-MOSEI We
utilized an RTX 3090 GPU equipped with 24GB of memory
and PyTorch [37] to conduct model training and evaluation.

C. Comparison with State-of-the-Art Methods

We compare the proposed TDMER model with other cur-
rent state-of-the-art Multimodal Emotion Recognition(MER)
methods. The TFN [9] and LMF [18] employ tensor fusion and
related low-rank variants in the models. The MFM [38] is a
multimodal learning model based on generative-discriminative
decoupling representations. The ICCN [39] extracts two pairs
of fusion features, using a correlation analysis network for
emotion classification. The MulT [13] model leverages cross-
modal attention learning to achieve modality interactions. The
MISA [21], FDMER [23], and ConFEDE [40] fuse decou-
pled features with adversarial learning, cross-modal attention
learning, and contrastive learning respectively.

TABLE I: Comparison on the CMU-MOSI

Methods Acc2(%) | Acci(%) | Fi(%) | MAE
TFN [9] 80.8 349 80.7 | 0.901
LMF [18] 525 332 824 | 0917
MEM [38] 817 354 816 | 0.877
ICCN [39] §3.0 39.0 83.0 | 0.860
MulT [13] 83.0 20.0 828 | 0.871
MISA [21] 8§34 3 836 | 0.783
FDMER [23] 84.6 41 847 | 0.724
ConFEDE [40] 842 3 841 | 0.742
TDMER(ours) 86.1 446 860 | 0.712

In the Tab. I, our TDMER model excels over other ap-
proaches on the CMU-MOSI dataset, demonstrating substan-
tial improvements on emotion recognition. Whether for binary
or multi-class classification tasks, it enhances the performance
of multimodal emotion recognition through controllable learn-
ing.

In the Tab. II, our model maintains strong competitiveness,
particularly in terms of MAE and Acc7. Despite the additional
unimodal dataset enhances the training of ConFEDE [40], the
performance gap is minimal. This underscores our model’s
fine-grained classification and emotion prediction capabilities,
affirming the efficacy of our task-driven feature enhancement
strategy. Overall, TDMER makes a significant contribution
to improving performance in multimodal emotion recognition
tasks.
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TABLE II: Comparison on the CMU-MOSEI

TABLE V: Ablation study of main modules

D. Ablation Studies

To validate the influence of each module component, we
conducted a thorough ablation study. As shown in Tab. III
and IV, our ablation study on the four loss functions for
feature decoupling, demonstrated a performance decline upon
their removal, underscoring their significance for cross-modal
learning and multimodal fusion. Exceptionally, eliminating the
reconstruction loss paradoxically improved the Acc7. It can be
inferred that the loss may restrict the model’s capacity to learn
finer details of the features, so the model’s enhanced ability
to refine multi-class categorization after its removal is logical.

TABLE III: Ablation study of feature decoupling functions on
the CMU-MOSL.

Model | Acc2(%) | F1(%) | Acci(%) | MAE
O) Leon 854 85.2 452 | 0736
() Lree 854 85.2 456 | 0.734
O) Lep 85.2 84.9 328 | 0.951
O Loy 85.2 85.2 433 0.751
TDMER | 86.1 86.0 446 | 012

2(-) represents removing the factors.

TABLE IV: Ablation study of feature decoupling functions on
the CMU-MOSEI.

Model Acc2(%) | F1(%) | Acc7(%) | MAE
- Leon 85.1 85.0 S1.1 0.559
- Lyec 85.3 85.3 53.8 0.542
- Lep 85.6 85.5 51.8 0.559
- Lpp 85.6 85.6 51.9 0.543
TDMER 85.9 85.7 54.3 0.532

Furthermore, we performed ablation studies on the model’s
core components, such as Cross-Modal Learning (CML), Task-
Contribution Fusion (TCF), and essential elements within
these modules, as illustrated in Tab. V.

Removing the loss function L., led to a slight performance
decline, indicating its benefit for private features to learn con-
tributive private information in other modalities. The removal
of the CML module in the common and private feature learn-
ing components respectively, resulted in a more pronounced
decrease in model performance, with the greatest deterioration
occurring when both were removed. This suggests that the
CML module enhances the model’s ability to acquire better
emotional features through adaptive learning across decoupled

Methods Acc2(%) AccT(%) F1(%) MAE Dataset | Len | CML4 CMLg TCF | Acc2(%)| FI(%) | Acc?(%)| MAE
TING] | 825 | 502 | 821 | 0593 ol e (e a
LMF [18] 82.0 48.0 82.1 0.623 CMU-MOSI v v X v 85.0 85.0 436 0736
MEM [38] 84.4 513 843 [ 0568 A R IR I I I Iy R vt
ICCN [39] 84.2 51.6 84.2 0.565 v v v v 86.1 86.0 4.6 0712
MulT [13] 82.5 51.8 82.3 0.580 "/ xf j :; ;i-é gjg z:} 822‘3‘
MISA [21] 85.5 52.2 85.3 0.555 emumoser | ¥ v x v 84.6 845 539 0.586
FDMER [23] | 86.1 54.1 858 | 0.536 A I A B I I
ConFEDE [40] 85.8 54.9 85.8 0.522 v v v v 859 857 543 0532
TDMER (ours) 85.9 54.3 85.7 0.532 Note: Here, a cross (X) indicates the module or function has been removed,

while a check mark (v') denotes that the module has been retained.

modalities, leading to improved recognition outcomes. Lastly,
the removal of the TCF module also prevented the TDMER
model from achieving its original optimal emotion recogni-
tion results, confirming the module’s positive contribution to
addressing the MER task.

E. Visualization of the Decoupled Features

To showcase the effectiveness of our model’s feature de-
coupling for projecting onto common and private subspaces,
we visualized the feature distributions of the three modali-
ties on the CMU-MOSEI dataset, as shown in Fig. 2. This
visualization illustrates the transformation from the initial
feature distribution to the disentangled state post-application
of our model. Without our mechanism, direct attempts at
decoupling fail to project the features onto different subspaces.
In contrast, our approach successfully help disentangle features
into common and specific attributes, highlighting its critical
role in enabling effective cross-modal learning and fusion.

(a=0, 8=0)

Fig. 2: Feature distribution on the CMU-MOSEI dataset
before(c = 0,8 = 0) and after(av # 0,5 # 0) the model’s
feature decoupling process.

IV. CONCLUSION AND DISCUSSION

In this paper, we introduce TDMER, a task-driven method
for multimodal emotion recognition. It decouples features into
modality-invariant and modality-specific subspaces, enhancing
learning and fusion through task-guided performance. TD-
MER employs Cross-Modal Learning module to refine decou-
pled features. The integration of the Task-Contribution Fu-
sion mechanism enables dynamically merging features based
on task relevance. Our evaluations reveal TDMER outper-
forms existing SOTA methodologies. However, considering
the limitations of our model, there is still room for further
improvement. As the incorporation of unimodal emotion-
labeled data could be beneficial for enhancing the model’s
fine-grained classification capabilities, we consider to utilize
relevant datasets in future work.
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