
Smart sensors and commu-
nication using IoT in super-
markets
Shelf monitor system

M.D. Berkers & E. Hagenaars

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

SMART SENSORS AND COMMUNICATION
USING IOT IN SUPERMARKETS

SHELF MONITOR SYSTEM

by

M.D. Berkers & E. Hagenaars

in partial fulfillment of the requirements for the degree of

Bachelor of Sciences
in Electrical Engineering

at the Delft University of Technology,

Students: M.D. Berkers 4223438
E. Hagenaars 4272404

Project duration: March 24, 2017 - July 7, 2017

Supervisors: J. Hoekstra (TU Delft)
P. Marcelis (KPN)
B. Frens (KPN)

This thesis is confidential and cannot be made public until July 7, 2022.

ABSTRACT

This thesis tries to find a solution for the problem of managing and monitoring the banana shelf in a super-
market using IoT. The research focuses on using a wireless sensor that detects some features of the banana
shelf while being non-intrusive. The three main features that are examined of the shelf are the quality and
quantity of the bananas and the quality of the shelf. First a research was conducted to find the best sensor
to use for these measurements. The chosen sensor is a color image sensor, the platform for the IoT device
is a Raspberry Pi. Using the python programming language in combination with the openCV library image
processing was used to detect the features.

The image is first smoothed using a Gaussian filter, afterwards the foreground is segmented. The different
segmentation methods are researched and adaptive thresholding is used. To determine the quantity of the
bananas and quality of the shelf the stickers on the bananas are detected. This detection is implemented
using different filtering methods ranging from spectral filtering to color thresholding. With the segmented
foreground the quality of the bananas is assessed using a color histogram. This information is then sent to a
communication module that is connected to a IoT dashboard for user interpretation.

With the proposed design the status of the shelf including the percentage of the shelf filled, the quality of
the bananas on the shelf and the neatness of the shelf are available for a supermarket manager to better or-
ganize his supermarket. This sensor makes it possible to better organize the banana shelf and act preemptive
instead of reactive.

3

CONTENTS

1 Introduction 7
1.1 Background . 7
1.2 Problem definition . 7
1.3 Thesis synopsis . 8

2 Program of requirements 9
2.1 Introduction . 9
2.2 Functional requirements . 9
2.3 Ecological embedding in the environment . 9
2.4 System requirements . 10
2.5 Development of manufacturing methodologies. 10
2.6 Liquidation methodologies . 10

3 Technical review 11
3.1 Types of sensors. 11
3.2 Color formats . 12
3.3 Object detection . 13
3.4 Foreground segmentation . 15
3.5 Quality of fruit with image sensing . 17

4 Design 19
4.1 Design system . 19
4.2 Filtering. 21
4.3 Cluster detection . 23
4.4 Image segmentation . 24
4.5 Color classification . 24

5 Implementation 27
5.1 Inputs and image sensor . 27
5.2 Foreground segmentation . 28
5.3 Object detection of stickers . 29
5.4 Cluster detection . 30
5.5 Histogramming . 32

6 Testing and results 33
6.1 Test criteria . 33
6.2 Test setup . 33
6.3 Results . 33
6.4 Additional complete measurements . 38
6.5 Discussion . 39

7 Conclusion and recommendations 41

Appendices 43

A Primary test sample 45

B Additional test 1 47

C Additional test 2 49

D Python code 51
D.1 Sticker filter . 51
D.2 Cluster detection . 54

5

6 CONTENTS

D.3 Foreground segmentation . 56
D.4 Histogramming . 57

Bibliography 59

1
INTRODUCTION

This chapter contains the introduction of the thesis. First a background of the assignment of the thesis will
be given in Section 1.1. From the assignment a problem will be defined in Section 1.2 and contains the main
problem and goal for the thesis. The last Section 1.3 will contain a synopsis of the thesis. To explore the
technical aspects of the assignment state-of-the-art analysis is performed in Chapter 3.

1.1. BACKGROUND
According to a study by Gartner Inc [1], the number of devices connected to the Internet will increase by 30%
over the next year. Internet of Things (IoT) devices are now still largely used by consumers, but business
applications are also growing. KPN New Business has a group working on IoT devices and presented us with
a business case. A client of KPN identified some problems within a supermarket, KPN wants to produce a
proof of concept to demonstrate the usefulness of IoT devices.

As part of a non-disclosure agreement no further information about the client can be discussed in the
thesis.

KPN asked us to research possible solutions for the following problems:

• Detecting obstructions in aisles and in front of emergency exits.

• Monitoring shelf and fruit quality of the banana shelf.

• Communications between sensors and the Internet in a supermarket environment.

The idea was to develop two sensors and connect these using wireless communication. Two subgroups
work on developing a sensor and the last subgroup works on the communication between the sensors and
provide a main hub to the Internet. Our thesis is about the monitoring of the shelf and fruit quality of the
banana shelf.

1.2. PROBLEM DEFINITION
The problem of monitoring the banana shelf can be split up in three parts.

• Monitoring the quality of the bananas so there are always ripe and no rotten bananas on the shelf.

• Determining the quantity of the bananas to ensure there are always enough bananas for customers to
buy.

• Checking if the shelf is properly filled, looking at the orientation of the bananas.

In the supermarket it currently takes too long to detect when the fruit shelves have to be refilled. This
creates the problem that when customers want to buy bananas they are disappointed because they are un-
available. It also frequently happens that the bananas that are available, are not ripe or almost rotten. Having
a shelf filled with green and brown bananas leaves a bad impression to the customers about the fruit and
vegetables section of the supermarket in a whole.
The reason bananas are the main focus in our thesis is because of a research conducted by the supermarket.
They found evidence that the opinion of the customer about the fruit and vegetables section strongly de-
pends on the banana shelf. If the banana shelf is not filled properly and the fruit is of bad quality, the opinion
about the whole section is influenced. To increase customer satisfaction they want to make sure the shelf is
properly filled and the fruit available is of high quality.
Our solution will be a wireless sensor capable of monitoring the banana shelf on quality and quantity and
send this information at a regular interval to a communication module.

7

8 1. INTRODUCTION

1.3. THESIS SYNOPSIS
The goal of this thesis is to research the possibilities of a sensor to monitor different types of shelves. We
chose the banana shelf because this shelf is the most important one in a supermarket. The project is divided
in 3 parts, first research the possibilities and choose a sensor. After we chose the image sensor the design of
the different types of methods to detect the features of the shelf was done. When we had developed some
early prototypes we used the sensor in combination with the board in combination with test images to test
our prototypes and make changes where needed.

2
PROGRAM OF REQUIREMENTS

2.1. INTRODUCTION
The overall assignment is to create a system of smart sensors in a supermarket which are connected to an
Internet of Things (IoT) platform. The IoT platform will provide managers an overview of the store and the
current problems or defects detected by these smart sensors. This thesis will focus on one of the smart sen-
sors: a banana shelf observation device. Observing the shelf, the device will monitor three main features of
the shelf. These are the quality and quantity of the fruit and the quality of the shelf. To achieve this, the sys-
tem will detect characteristics that give information about one of the main features.
An important feature of the quality of the shelf is product placement. If fruits are placed as they supposed
to be, the same patterns and objects will be shown. For example, Chiquita bananas have blue stickers on
the front, these blue stickers will be shown if placed properly, they will have the branches on top and will be
positioned vertically.
A feature to define the quality of the fruit is odor or color distribution. When fruits ripen, these features will
change. For example, bananas turn from green (unripe) to yellow (ripe) to brown (overripe).
To determine the quantity of fruits, the surface percentage of these specific colors are important. If the back-
ground has a different color, this is easily solved. But with a similar colored background, other methods need
to be used.
An important property of IoT devices is user friendliness. This means that the device should be easily imple-
mented with low maintenance. All of these features will be considered in the program of requirements.

2.2. FUNCTIONAL REQUIREMENTS
This thesis will focus more on the sensing of the features that define the quality/quantity of the fruits and the
quality of the shelf. The functionality will therefore be:

(1.1) The system should sense the color distribution of the bananas alone while ignoring the background.

(1.2) The system should calculate the surface percentage of matching colors compared to the background of
the bananas.

(1.3) The system should detect and count at least 95% of the stickers visible on the bananas.

2.3. ECOLOGICAL EMBEDDING IN THE ENVIRONMENT
The environment of the device will be a supermarket. A focus is customer satisfaction and employee effi-
ciency. With this in mind, the following requirements for the environment can be made:

(2.1) The device must not obstruct the customers.

(2.2) The device should be non-intrusive and no modifications are to be made to the shelf.

9

10 2. PROGRAM OF REQUIREMENTS

2.4. SYSTEM REQUIREMENTS
The system requirements can be divided into three sections. First the usage of the device where the require-
ments for the users is defined. Secondly, the production and development of the device. And finally, the
discarding of the device.

2.4.1. UTILIZATION
The utilization requirements are created in the perspective of the user, the manager or an employee. It there-
fore has to be assumed that the user does not have extensive knowledge of electronic devices.

(3.1.1) Resetting should be a single button operation.

(3.1.2) The device will update the feature values every five minutes.

(3.1.3) Between updating actions, the device should be in low-power or hibernating mode.

(3.1.4) The computational time should be held to a minimum and should not exceed the update rate.

(3.1.5) Foreground extraction should at least extract 90% of the actual foreground and extract at most 10% of
the background as an error.

(3.1.6) 95% of the stickers should be detected. The false detection of a sticker should not exceed 10% of the
total stickers.

2.4.2. PRODUCTION AND PUTTING INTO USE
The production of the device will be done by an external partner. This partner formulated some requirements
for the production and initialization of the product:

(3.2.1) Software should be open source and have no additional cost to the device.

(3.2.2) Hardware components should be widely available and the cost should be reduced to a minimum.

(3.2.3) Initialization of the system should be easy with minimal input.

(3.2.4) The installation of the device should be easy.

2.4.3. DISCARDING
Discarding the whole device is not recommendable. In order to prevent this, multiple independent compo-
nents should create the full system. With this information, the following requirement can be formulated:

(3.3.1) Defect components should be replaceable without completely installing a new module.

2.5. DEVELOPMENT OF MANUFACTURING METHODOLOGIES
For the development, the methodologies are free of choice as long as they can be explained why the method-
ology was used. The platform and programming language are not preassigned.

2.6. LIQUIDATION METHODOLOGIES
When the product is not in use anymore, it should be discarded the same as all other normal electronic
devices. The product should almost have the same sort of components as the average computer or mobile
device.

3
TECHNICAL REVIEW

This section contains a technical review that performs a state-of-the-art analysis of the present research in
this field and possible theory that can be used in designing the system. First a choice is made to determine
which type of sensor is best used for the problem. After the sensor is decided, multiple considerations on the
use of the sensor to make the best decision in what way the sensor should be implemented, we search for
more theory. No specific research was found concerning an IoT device for the detection and classification of
bananas on shelves. However, there is a lot of research done on object detection of fruit, including bananas,
for automated fruit picking systems. Separately, there are some papers that discuss the quality measurement
of bananas and other fruit specifically. No system was found that combines both systems to detect and mea-
sure these features in a static environment.

3.1. TYPES OF SENSORS

3.1.1. IMAGE SENSORS
In previous studies [2][3][4][5][6][7][8], image sensors were used for detecting and locating fruits with various
image processing algorithms or AI algorithms. In this section, multiple types of image sensors are discussed.

BLACK AND WHITE SENSORS

B/W sensors were widely used for fruit detection until 2000 when the last research was done [4]. Since color
sensors have replaced B/W sensors and have improved the results [2], this type of sensor will not be of use
to us. A positive property of B/W images is the dimensions. The B/W image sensors provide a 2 dimensional
array while a RGB image sensor provides a 3 dimensional array with a Red, Green and Blue component. The
computational power needed for operations with B/W images is much less.

COLOR SENSORS

Color sensors capture more information. The color of the fruit is important for the detection. For bananas,
the color yellow is dominant and will be most important. The stickers on the bananas are a bright blue, which
is an uncommon color in fruits or vegetables. This could also be a good identifier. Color sensors where used
in specific research of fruit detection and localization [2].

SPECTRAL AND THERMAL SENSORS

Spectral imaging detect objects based on their reflectance at different wavelengths. Detecting fruit can then
even be achieved if the background color is similar to the fruit color. A con of using a spectral sensor is the
budget and space. Spectral sensors are expensive, this price increases when the size of the sensor decreases.
The use of thermal sensors are useful if the background is similar to the fruit. Fruit absorbs and radiates more
heat than leaves or other compounds. These changes in heat radiation are so small that it is hard to monitor.
Near Infrared (NIR) sensors where used in combination with color sensor for the detection of various fruit
[3]. The book "Hyperspectral Imaging Technology in Food and Agriculture" uses the hyperspectral sensor for
their research [5].

3.1.2. ELECTRICAL-NOSE
Detecting the ripeness of a fruit is mostly done by looking at its color or smelling for odors. An Electrical-nose
to detect these odors can be very accurate in determining the ripeness of fruit. A big research in ripeness de-
tecting is done with a Ethylene Detector [9]. This detection of ethylene is very complex and the equipment is
expensive. To reduce costs, a gas sensor array structure is proposed [10] containing the following gas sensors
shown in Table 3.1.

In combination with a trained neural network [3] the results should be acceptable at monitoring the shelf
life process.

11

12 3. TECHNICAL REVIEW

Name Main Application
MQ-3 Alcohol
MQ-5 LPG, Natural gas, Coal gas
MQ-9 CO and combustible gas
MQ-131 Ozone
MQ-135 Air quality control
MQ-136 Sulfur dioxide

Table 3.1: List of gas sensors.

3.1.3. CAPACITIVE SENSOR

A capacitive sensor has been used for detecting and measuring ethylene in fruit ripening process [9]. The
different concentrations of ethylene in a closed chamber can influence the capacitance measured by a ca-
pacitive sensor. Another study has used a parallel plate capacitor for the classification of the ripening process
[11]. A big flaw in this design is that the parallel plates need to be on either side of a single banana with
maximum distance of 10 cm.

3.1.4. PRESSURE SENSOR

By using pressure sensors that support the shelf, the total mass of the bananas can be measured and thus the
fill rate of the shelf. This is easy implemented. Register the empty weight of the shelf and the filled weight of
the shelf. The difference is the total weight of the bananas. A signal could be send when that weight drops
beneath a certain threshold.

3.1.5. INFRARED SENSORS

By using infrared sensors for detecting when the bananas are blocking the sensors beam, it can be estimated
if the shelf is empty along its line. The more sensors are blocked, the more bananas lie on the shelf.

3.1.6. CONCLUSION ON TYPE OF SENSOR

The chosen solution for the problem is a color image sensor. After this choice more theory can be considered
for the object detection of fruit quality detection. The objects and bananas have to be detected and the
background has to be removed. After only the bananas remain in the image can we look at the quality.

3.2. COLOR FORMATS
There are several types of color formats that can be used using a color image sensor. The input format when
using an image sensor is mostly RGB or BGR. Each format has its pros and cons for image processing. In the
next few sections we discuss three formats: Grayscale, RGB and HSV.

3.2.1. GRAYSCALE

Grayscale images are created from RGB with the standard transformations given by the IEC standard [12].
Grayscale have the positive that all data is encoded into one matrix, this does mean information is lost during
the transformation. Most classical image processing techniques were developed for grayscale. This format is
useful in detecting the luminosity of object dark is almost black and the more illuminated an object the light
the shade of gray.

3.2.2. RGB
RGB is the color format that is most regularly used and most images are saved in this format. RGB represents
an image in the form of it’s Red intensity, green intensity and blue intensity. Little image processing is done
on the RGB spectrum as it is usually converted to grayscale.

3.2.3. HSV
An important color format for image processing is HSV, which stands for Hue, Saturation and Value. The
Hue is the ‘angle‘ of a color. When increasing the angle, the color changes. Most colors with the same Hue
are referenced as the same color, for example dark-blue and light blue. The Saturation is the colorfulness

3.3. OBJECT DETECTION 13

of a color in respect to its brightness. The Value can also be called lightness or brightness. When the Value
approaches zero, the color becomes more darker until the color is black. Figure 3.1 visualizes this distribution.

The benefit of the Hue property is the color definition. With the Hue alone, a color can be identified. For
example, the color yellow is around 60°. This can easily be filtered this way. The advantages of the Saturation
and Value are the lighting, black or white colors have distinguished values for the S and V. When taking an
image in a darker room, the Hue should not be affected in theory.

Figure 3.1: Visualization of the HSV color format.

3.3. OBJECT DETECTION
The object detection is to detect stickers on the bananas when they are on the shelf. There are several methods
to detect the stickers [13]. They are blue which is easily seen on the yellow bananas that allows multiple color
and brightness methods to be used.

3.3.1. CLASSIFICATION ALGORITHMS AND MACHINE LEARNING

Classification Algorithms and Machine Learning are big research topics. Instead of creating heavy algorithms,
a simple algorithm which has been trained to find certain patterns are used to classify objects in a given input.
These inputs can be from sensors. After training, the algorithm uses only simple calculations to transform the
input to a desired classification. The training however is difficult and almost never results in a global solution
for big problems. For some Classification Algorithms, more than thousands of training samples have to be
provided to the machine and computation power is big during this training. In the next part, the classification
algorithm Neural Networks will be discussed.

Detection with Neural Networks has been done before for different problems, including the detection
of fruits in images [3] the use of a NN with an Electronic-nose [10],detecting peaches using a color image [7]
and the ripening classification on bananas with histograms [11]. Since trained NNs only use simple equations
with weights and sigmoids (which can be converted to step functions later on), the computational power can
be very low and easy to implement on a device. Neural Networks are widely used in classification since small
errors do not matter for the output. A difficult problem would be training the network, which can be very
intensive.

3.3.2. FEATURE DETECTION [8]
Feature detection is the method of first extracting features from the object you want to detect. A feature is an
interesting part of an image, this can be an edge, corner, ridge or blob. By extracting the image’s interesting
features they can form a classifier. The classifier can be trained if multiple reference images are used to get a
more accurate results. The input image is split up in small regions and within this region features are detected.
If the features of the classifier match the detected features there is a a chance of an object. This chance
depends on the amount of training data used and the matching algorithm [14].

3.3.3. TEMPLATE MATCHING

Template matching is the practice of having a reference image and matching the input against this template.
The most common way of template matching is the use of cross-correlation [15]. This method is in the spatial

14 3. TECHNICAL REVIEW

domain, there is also the method of transforming the template with the Fast Fourier Transform (FFT) to the
spectral domain and preforming the cross-correlation of the spectral input image and the spectral image of
the template [16]. Template matching works well if the orientation and shape of the template is the same as
it is seen on the image. When the shape and orientation of the template differs it will not produce accurate
results.
Instead of matching against a template or detecting features there is also the possibility of filtering away the
rest of the image. Because the object that we want to detect is well defined in color and brightness we can try
filtering on change in color and work with thresholding to filter away the noise.

3.3.4. EDGE DETECTION
Filtering methods for detecting regions of interests (RoI) is done by edge detection. Object boundaries are a
powerful tool for detection, the edges stay visible under different lighting and changes in color. There are a
lot of different methods for object boundary detection using edges [17]. The resolution of said edge detection
methods are robust and with additional background filtering can provide accurate detection. The problem is
when objects overlap, when there is no clear space between objects the edges can overlap and only one will
be detected instead of two.

3.3.5. SPECTRAL FILTERING [13]
For spectral filtering the image has to first be transformed to the spectral domain with the Fast Fourier Trans-
form (FFT). In the spectral domain filters of the pass and stop type are easily implemented. After creating a
mask for the filter a Hadamard product is preformed and the resulting matrix is the filtered spectral image.
This image can then be transformed back to the spatial domain to get the filtered image.

3.3.6. COLOR THRESHOLDING
With the properties of the HSV format, filtering becomes useful. Filtering with color components is called
thresholding. With the Hue, specific colors can be filtered by creating an upper and a lower threshold. The
same can be done for the RGB values. Since the stickers are blue, this color could be used in a blue color
threshold. The problem for only looking at the Hue for threshold is that if the Saturation or Value are close to
their maximum values the result will not be the color Hue says it is, but rather the color seen is black or white.
Therefore we need to look away from the maximum and minimum of both the Saturation and Value.

3.3.7. QUATERNION FILTERING
Images can be analyzed using quaternions, quaternions can express images following the model in Equation
3.1 where b, c, d are the RGB values [18].

i 2 = j 2 = k2 = i j k =−1

a +bi + c j +dk
(3.1)

where a, b, c and d are real number and i , j and k are fundamental quaternion units.
If we display a color image as a simple point with three dimensions, the RGB dimensions. The Quaternion
Fourier Transform (QFT) [19] can create a spectral density image that contains all color information. Be-
cause Fourier transforms are computationally heavy a more efficient implementation like the Fast Fourier
Transform can be used for 2-D spaces. There has been research of implementing a Quaternion Fast Fourier
Transform that will use the same principle for 3-D spaces [20].

3.4. FOREGROUND SEGMENTATION 15

Figure 3.2: Example of K-means Clustering.

3.3.8. CLUSTER DETECTION

If using filter methods to create images only containing stickers, some type of cluster detection can be used
to detect cluster and correctly locate and count the stickers. A lot of research has been done on the subject of
cluster detection [21][22][23][24]. An input matrix for a cluster detection unit could resembles a binary NxM
matrix with either ones or zeros. This matrix may have some noise. The goal is to filter the noise and to detect
and locate the centroids of these clusters. Cluster detection can be done numerous ways:

• K-means

• Hierarchical Clustering

When the clusters can be seen as blobs, other methods like Breadth First Search (BFS) or Depth First Search
(DFS) algorithms are possible as well.

K-means clustering is a way to classify and find clusters. K-means clustering is an unsupervised classifi-
cation algorithm. From a given set of points in N dimensions, the algorithm searches for the centroids. With
given coordinates of white points and the number of clusters, the algorithm accurately finds the centers of all
clusters. In Figure 3.2, four clusters are shown with its centroid. Each iteration, the centroids of the clusters
are updated until the differential distance of these centroids converges.

The downside of this algorithm, is that the number of cluster must be known. There are several ways to
determine the number of clusters but it is found to be fairly difficult. Another problem is that every point is
used and cannot be ignored. This means that noise cause problems in correctly determining the centroid.

Hierarchical clustering is an iterating algorithm where two clusters are merged each iteration until a cri-
teria breaks the iteration. The initialization creates N number of clusters where N is the number of points. A
map of every distance between the cluster is created. To link or merge two clusters, numerous linkage crite-
ria can be used. If there would be no breaking criteria, the number of clusters would converge to one cluster.
Choosing a stopping criteria can be difficult. A good stopping criteria would be a maximum distance between
the two closest clusters at that time. Since the clusters are numerous pixels apart, this parameter should cho-
sen easily. The downside of hierarchical clustering is the computation power, the complexity is O(2n) which
is too difficult for large images with over 4 million pixels.

The BFS and DFS algorithms are not clustering algorithms but can be used under certain circumstances
[24]. When all noise is filtered and the clusters are dense enough, a BFS or DFS algorithm can be very efficient
for clustering. The difference of these algorithms are the path they walk trough the neighboring points.

3.4. FOREGROUND SEGMENTATION
The subject of removing the background leaving only objects on interest in the image is well researched.
There are three main choices for segmentation: Background subtraction [25], Thresholding [26] and Edge
based segmentation [27].

16 3. TECHNICAL REVIEW

3.4.1. BACKGROUND SUBTRACTION
Background subtraction is used for detecting moving objects in frames from static image sensors. The funda-
mental approach is using the differences in the reference image or the "background image" to detect change
and thus an object. This method is often used for videos feeds where moving objects are detected. To keep a
good background model it has to be updated regularly to adapt to changes in luminance and background.

3.4.2. THRESHOLDING
Thresholding for image segmentation uses the difference in background and foreground. The difference be-
tween the two depends on the color format and input used. Several thresholding methods are available, to
deal with changes in foreground and background there are adaptive threshold algorithms. One of these al-
gorithms is the OTSU method [28]. This threshold selection methods creates a histogram of the grayscale
values. The threshold is then chosen between the two highest peaks to get the best difference between main
properties present.

3.4.3. EDGE BASED SEGMENTATION
By detecting the contours of objects it should be possible to find all the boundaries of the objects. If all the
boundaries are found the next step is differentiating between the inside and outside of the object. To make
this classification several parameters of the objects have to be determined. With such a classifier, the contours
can be filled when the object matches the classifier or otherwise discarded.

3.5. QUALITY OF FRUIT WITH IMAGE SENSING 17

0 20 40 60 80 100 120 140
Hue [degrees]

0

1000

2000

3000

4000

5000

6000

7000

8000
Green Banana
Yellow Banana
Brown Banana

Histogram of different bananas

Figure 3.3: Histogram of a brown, yellow and green banana.

3.5. QUALITY OF FRUIT WITH IMAGE SENSING
A couple of papers link the color of fruits and vegetables to their ripeness [29], [30] and [11]. One method for
looking at all the bananas at once is analyzing the color of the whole frame and determine the color distribu-
tion of the total image [31]. Other methods include red green ratios of the image [30].

3.5.1. HISTOGRAMMING
A histogram is a block graph which shows the occurrence distribution of certain values in a data stream. For
images, this data stream is the image array and the values origins from a channel of each pixel, for example
the Red value in a RGB image. These histograms can tell numerous things about images, for example object
tracking [31]. If the Hue would be chosen for the histogram, the occurrences for every color would be known.
The hue histogram of a brown, green and yellow banana can be seen in Figure 3.3.

3.5.2. HUE PEAK DETECTION
As seen in Figure 3.3, peaks can easily been found for certain banana examples where the colors are centered
at one Hue. The examples given by the figure are examples of a green, yellow and brown banana. If we would
use images which have mixed colors, these peaks would become less big. Brown color has a low saturation
and is therefore spread more evenly throughout the Hue field. The brown color in the example also has a
small peak in the far yellow area. This could create problems.

Peak finding algorithms are easy and efficient. To find the global peak, the maximum value should be
found. When using images with mixed colors, multiple peak values become relevant. Peaks are defined by
the following definition where x(n) is a value on an array x at point n:

x(n −1) < x(n) > x(n +1) (3.2)

With noise, this definition creates numerous false peaks. It is therefor wise to implement a threshold value
which either thresholds the minimum value of the peak itself or the minimum differential value between x(n)
and x(n-1) or x(n+1).

3.5.3. HUE AREA DIVIDING
Saad [11] proposed to divide the Hue in three or more discrete parts. For example three parts consisting of
brown, yellow and green. These boundary values are assigned depending on the corresponding histogram
values. Simple algorithms could be applied to these values, but more interesting would be the use of neural
networks. Since the input is discrete and the number of inputs is decreased significantly, making neural net-
works easier to implement. Neural Networks are good classification machines that respond well to different

18 3. TECHNICAL REVIEW

Figure 3.4: RGB values in perspective of the Hue.

inputs with noise or errors.

3.5.4. RED-GREEN RATIO
Another approach is computing the R/G ratio of the image. Where R is the value of all the red pixels added
and G idem for the green pixels. This approach was proposed by Intaravanne [30] to determine the ripeness
of bananas. Figure 3.4 shows the relation of the RGB values and the Hue. Since only the Hue values until
around 150°are relevant, blue becomes irrelevant. The R/G value for green will be small while the R/G value
for brown should be much bigger. The R/G value switches from lower than 1 to bigger than one at perfect
yellow.

A possible problem for this method is background colors. If the bananas have a green background, the
R/G value would be bigger than expected. This is why a foreground filter should be implemented.

4
DESIGN

4.1. DESIGN SYSTEM
The most important part of the design is the type of sensor that will be used to measure the three main
features. In Section 3, the different kind of sensors are listed.

Electronic-nose
The Electronic-nose is discussed in Section 3.1.2. This device is accurate at determining the ripeness of the
fruit and could only be used for this purpose. The problems with this sensor is the expensive price and inva-
sive property since the fruit should be enclosed in a chamber.

RGB image sensor
The RGB image sensor is discussed in Section 3.1.1. The benefits of this device is the cheap price, the high
accuracy, the flexible position and the multi-functionality. A problem with a camera is the power usage.

Spectral and thermal image sensor
The spectral image sensor with sub-option the thermal image sensor is discussed in Section 3.1.1. Since fruit
is an organic material, it can easily be detected with the spectral and thermal image sensors. With this infor-
mation, the same image processing as for the RGB image sensor could be used except for the histogramming
since colors are not measured. Unfortunately, these sensors are expensive and complex and don’t provide an
overall solution.

Pressure sensors
The pressure sensors are discussed in Section 3.1.4. These sensors can measure the weight disctribution of
the shelf. With this information, the fruit quantity and shelf quality can be determined with accuracy. This
sensor however is invasive to the shelf.

Infrared sensor
An array of infrared sensors is discussed in Section 3.1.5. When placing these sensors on the side of the shelf,
obstructions can be detected. These obstructions can then determine the quantity of the fruit and the quality
of the shelf. This implementation is invasive and could be inaccurate.

4.1.1. DECISION ARGUMENTATION
To determine which sensor needs to be chosen, an overview is given in Table 4.1.

Sensor Accuracy Cost Installation Power Multifunctional
Electric Nose high high invasive unknown 1
RGB sensor high low non-invasive medium 3

Spectral sensor high high non-invasive medium 2
Weight Scale high low invasive low 2

Infrared low low invasive low 2

Table 4.1: Overview of the sensors

From this table, all the sensors that have the invasive property are rejected. High power sensors are re-
jected as well, since the sensor should be able to run on batteries. This leaves two sensors: The RGB sensor
and the spectral sensor. The RGB sensor provides the solution for all of the features and is the cheapest sensor
and will therefore be used.

19

20 4. DESIGN

4.1.2. DESIGN BLOCK
With the RGB image sensor, every feature can be monitored. To determine the quality of the fruit, a fore-
ground extraction method should be implemented since only the foreground should be evaluated. This im-
age containing only the bananas is then passed to an unit which determines the quality based on the color
of the fruit. With this foreground segment, the quantity of the fruits can also be determined using the total
foreground surface compared to the background. To determine the quality of the shelf, the position of the
fruit is important. When placed correctly, the stickers on bananas are visible. Since these stickers are an im-
portant feature of the shelf quality, they should be detected and counted. The block design for the RGB sensor
is shown in Figure 4.1.

The input will be a NxMx3 matrix representing a RGB image. This image will be created by the image
sensor. The output will be the number of clusters found, the foreground percentage and the green, yellow
and brown percentage in the image.

Figure 4.1: Block Diagram of the design.

4.2. FILTERING 21

4.2. FILTERING
The goal is to detect the labels on bananas on the shelf of a supermarket. We use filtering for the detection of
the stickers on bananas. These stickers give information about the placement and orientation, this is used to
determine the quality of the shelf.

4.2.1. WHAT IS BEING FILTERED
All of the bananas are supposed to have a sticker from the manufacturer, the stickers in our case are blue. The
image taken by the camera is represented in several color formats each with their own characteristics. To de-
termine what color best to use for filtering we compared the generated images 5.2. The RGB arrays displayed
as grayscale do not offer a clear distinction between the stickers and the surrounding area. Converting the
original image to grayscale has more gradient than RGB, but definite differences in color are not detectable
because all colors are merged together. The HSV color format has some interesting properties, all color is en-
coded in the Hue, if we filter for changes in this domain we can see changes in color. The Saturation domain
of HSV determines the saturation of the color. The saturation of the label is different than the saturation of
the of surrounding area (the surface of the bananas).

To achieve the best contrast between the background and the stickers the Hue and Saturation from HSV
are used.

4.2.2. AVAILABLE FILTERING METHODS
In Chapter 3 several filtering methods are introduced for filtering images. There are several methods avail-
able for the detection of change in color, each with it’s own properties and effectiveness. The most important
feature is the robustness, the solution has to provide results in a lot of different sceneries. The working envi-
ronment is variable but we can assume some similarities. The background of the shelf is usually black, this
is good for working with the saturation, because there is little change in the background. We have a sam-
ple photo of what an average shelf looks like in Figure 5.1. The photo is not shot from the desired angle but
everything that we want to look at is in view.

4.2.3. COMPARE AVAILABLE METHODS
There are methods that can use RGB images and provide accurate information about the color image with a
single transformation. In the technical review in Section 3.3.7 look at converting color images to quaternions.
This method might use more of the information but the math behind the Fourier Transform in the quaternion
domain is advanced. If this was the only subject of our bachelor thesis we might be able to do it, but for the
application it will be too difficult. The computational power needed to perform a 2D Fast Fourier Transform
(FFT) on a high resolution image (2000x2000) is significant and would require 4000 1D Transformations [32].
The main advantage of using quaternions to filter is that color information is preserved. This makes it possi-
ble to inverse the transformation and get a color image as the result. difficulty is that the needed amount of
operations needed to calculate the FFT of quaternions and the difficulty of the interpretation of the results.
The next methods all use a single domain for their calculations/transformations. We look at grayscale, hue
and saturation as the domains to work with. For images that are 2D there are multiple options to filter, we
can transform the image to a spectral image with the Discrete Fourier Transform (DFT) or a different imple-
mentation the FFT. The other option is to use a 2D filter.
For images that are 2D there are multiple options to filter, we can transform the image to a spectral image
with the Discrete Fourier Transform (DFT) or a different implementation the FFT. The other option is to use
a 2D filter, the 2D filter is faster than the DFT. The FFT is a efficient implementation of the DFT.

The DFT has a difficulty of N 2 operations where N is the number of points. The FFT needs N log2 N
operations, the larger N is the more efficient the it becomes. The 2D versions of the DFT and FFT perform the
operations for each row, and then each column, thus having the original operations multiplied by N +N for a
square matrix. If we compute the DFT and FFT of a 2000x2000 image (N=2000), it needs N+N = 2000+2000 =
4000 1D DFT or FFT operations. The number of operations needed for computing the DFT is seen in Equation
4.1 operations. the FFT of the same image uses significantly less operations as seen in Equation 4.2. So the
FFT needs 0.55% of the operations the DFT uses.

N 2 = 20002 = 4 ·1064000×4 ·106 = 16 ·109 (4.1)

N l og2N = 2000log22000 = 220004000×22000 = 8.8 ·107 (4.2)

22 4. DESIGN

A 2D filter shifts a kernel, a specific type of square matrix over the image and calculated the sum of the
square matrix multiplied with the image. The amount of operations needed to compute the total image
strongly depends on the size of the kernel. In a 2000x2000 image there are 4 ·106 data points, we need one
matrix multiplication for each pixel. For a 3x3 kernel the number of operations needed is given in Equation
4.3. The difficulty of a spacial filter is given by the R2 where R is the width or height of a square kernel. If the
kernel becomes larger it will be more efficient to calculate thefiltered result with a fourier transform of the
kernel.

2000×2000 = 4 ·1064 ·106 ∗32 = 3.6 ·107 (4.3)

There is a difference in result of the different filter methods. In the spectral domain it will be easy to apply
an ideal filter that passes or blocks certain frequencies. With the spatial filter it is hard to do the same, in the
spatial domain we more often look at edge detection so change of pixels that are close to each other instead
of the total image at the same time. This produces different results but can both be used for our purpose.
The goal of the filter is to detect the stickers that are put on fruit that resides on the shelf. This is not the
only demand for the system, we want to make the system work on a battery so power consumption is also
important. Power consumption is strongly related to execution time of the program. The shorter the active
time of the program the less power is used. There is a trade-off between resolution and speed that needs to
be considered for the final implementation. The goal is good enough detection in the shortest time. The two
methods that have the potential to quality are the FFT filtering and the spatial filter.

The last option only later came into focus when working with the HSV color format. When the foreground
is already segmented from the background only the bananas with the stickers are left in the picture. The only
blue left in the image then are the stickers. If we can filter away all colors except for blue then the only thing
left should be the stickers.

We will implemented three methods and make a choice for the final implementation based on the test
results.

4.2.4. DESIGN OF CHOSEN METHODS
Each filter method requires it’s own type of input and filter region.

For the spatial filter there are several kernels that were designed for edge detection and removing noise
[33]. We have to look at what the best input is for the filter to get the best detection result for the stickers.
Because we want to look at edges or changes in the color domain it seems logical to analyze the HSV color
format. In this format the color is in one array and the saturation in one array. With spatial places where
the object is will have very small or very big values compared to the surroundings, to get the best resolution
between sticker and the rest we can use a threshold value that determines if it belong to a sticker or whether
it belongs to the background. This gives two possible outputs, ‘1‘ what is a sticker and ‘0‘ what is not a sticker.
The output should then be a bitwise array of the same resolution of the original image.
For the frequency domain filtering there is also the choice between inputs what produces the best results
after filtering. The same argument can be made for this method to use the HSV color format because all
the relevant changes can be examined with more resolution and within one array. To analyze the frequency
domain we first have to convert the input array to the frequency domain. In the frequency domain we create
a filter, this filter has to be the same size as the converted input to preform a Hadamard matrix product. After
this product we have the filtered image in the frequency domain, to retrieve the information in the spatial
domain to extract the locations of the object we have to preform the inverse transform.
If we filter the image for color the desired range needs to be determined. Blue has a color angle that could
range from 180°to 300°. Because of the note in HSV section in the technical review also the saturation and
value need to be assessed. Because they should not be near their maximum or minimum.

4.3. CLUSTER DETECTION 23

4.3. CLUSTER DETECTION
The cluster detection receives a binary image containing noisy clusters at the locations of the stickers. In
order to neglect this noise, a smoothing filter should be implemented to create blobs at the locations of the
stickers.

4.3.1. BLOB FILTERING
2D correlation
2D correlations are widely used in image filtering. The filter moves over each pixel and adds the multiplica-
tions of the filter ’pixel’ overlapping the image pixel. This creates a smooth image without noise if threshold-
ing is applied in the end. A flaw of the system could be the time when the size of the image or filter increases.

Integral imaging
A different method for filtering noise in the image is to convert the image to a integral image. This performs
an integration on the image from the top left corner to the bottom right. By examining the edges at the
four corners of a rectangle the mean value in the rectangle can be determined. If a cluster is present in the
rectangle the mean value will be large, if there is no rectangle the mean value is small. Calculating the integral
is a easy operation and does not require a lot of time. The building of a new matrix with the edge values is
inefficient as four additions and four multiplication are needed per pixel.

Both options should be suitable for the task. Since it is unpredictable which method will be faster, both will
be used for testing the system.

4.3.2. BLOB DETECTION
The blob detection unit will receive a binary image from the sticker filter. This image will contain ‘blobs‘,
clusters with directs neighbors.

Three cluster detection algorithm were discussed in Section 3. One simple blob detection method was
discovered during implementation and will be explained briefly.

K-Means clustering
The first option for cluster detection is K-means clustering which is discussed in Section 3.3.8. K-means
clustering is a fast and easy method to detect clusters and its centroid. A big downside of this method is the
unknown amount of clusters, this number is a variable. Since we do not know the number of stickers as well,
additional algorithms should be implemented to find this number which increases the complexity.

Hierarchical clustering
Cluster detection can be done with Hierarchical Clustering which is discussed in Section 3.3.8. The problem
of the unknown number of clusters is terminated with this implementation if the stopping criteria for merging
clusters is chosen properly. However, the method is complex and the stopping criteria for merging is sensitive.
The robustness of the system will be doubtful.

BFS/DFS algorithm
The BFS or DFS algorithm (Section 3.3.8) can be used since the clusters are defined as blobs. The complexity
of these algorithms is small and would be easy to implement.

Simple blob detection
During implementation, the simple blob detection algorithm was found. The speed is by far the best of all the
functions, since the image is divided in different small images and then evaluated for blobs by counting the
values in that section. A simple blob detection function could be the most fitting algorithm. In addition, the
filter options are extensive, where it is possible to filter on blob size, convexity, thresholds, circularity, inertia
ratio and minimum/maximum distances.

When evaluating every blob finding method, the BFS and simple blob detector will be chosen for testing.
The K-means clustering is lacking, since the number of clusters are not known. The algorithms to determine
the number of clusters are not accurate and time consuming if the clustering algorithm would be ran multiple

24 4. DESIGN

times using various estimations. The Hierarchical Clustering method wil fail since the stopping criteria for
the merging stage is too sensitive for different images. It would also become time consuming if the image
would become larger or would have more ‘1‘ pixels. Where the K-means and Hierarchical Clustering lack the
execution time for large images, the BFS and simple blob detection would suffice.

4.4. IMAGE SEGMENTATION
Image segmentation is used to remove the background of the image and only display the objects of interest.
This result is then used to create a color histogram to make a estimation of the quality of the product on the
shelf. It is important to remove the background and keep all important information. The background or the
color of the shelf is in most cases black, so we take this as a reference for filtering.

For foreground segmentation all the available inputs can be used. Most methods discussed in the theory
use grayscale images for image segmentation. Because the objects on the foreground have the predefined
color from brown to green, color can be used as a criteria for segmentation. The background that should
be removed is black, the problem with this surface is that it reflects light. The amount of light reflected de-
pends on the angle of the camera. On the corners of the shelf a lot of light is reflected in the direction of the
camera. Because of this reflection the background on these spots can look very light instead of black. This
makes it difficult to only use grayscale for foreground segmentation. The other information that is available
is the image in HSV or RGB format. The fruit to detect has a specific color, when the Hue from HSV is used for
segmentation the corresponding Hue value can determine the threshold.
There are several methods for image segmenting but one of the most generally used is thresholding [26].
Because the background is usually very uniformly colored the foreground can be detected using a thresh-
old. The problem with this detection method is that there needs to be a clear difference in shade between
foreground and background.

The other option is background subtraction, there are several options for background subtraction [25].
Our solution should be able to deal with the changes in lighting, the other requirement is low power, this
implies something computationally light. The methods reviewd by Piccardi [25] all use grayscale images.
This works because often the main differentiator between background and foreground is luminosity of the
objects. In our situation artificial lighting from the ceiling causes a lot of the objects to be in the shadow of
others. This makes it hard to differentiate between foreground objects and the background. For background
subtraction you need information about the background, to make the system as non-intrusive as possible. It
will be hard to get a clear picture of the background, without interrupting usual business.

The best method for the situation is thresholding because of the clear difference in color in combination
with difference in lighting of the background and foreground. If only one of the aspects is used there will
not be more accuracy than with background subtraction. But if we can combine thresholding in the hue
and saturation domain it should be possible to deal with the lighting problem. Thresholding does not need
calibration with a background and can work in all supermarkets that fit the model.

4.5. COLOR CLASSIFICATION
In order to determine the quality of the fruit and the quantity of the fruit, color computations need to be
made.

In Section 3.5, three possible options for the quality and quantity measurements have been discussed.

4.5.1. QUALITY MEASUREMENTS
Histogramming
Two of the methods make use of histogramming in the Hue space of the HSV image (Section 3.5.1). One of
the method involves peak finding in this Hue histogram. The peak will often tell what the dominant color is,
and this could indicate what quality the fruit has. However this method is sensitive for peak errors or even
distributions of colors. The other method involves dividing the histogram in three parts: A green, yellow and
brown area. From these areas the counts are added and the ratio of the area with the total count is calculated.
This method tells us more about the overall distribution, which will be more accurate since all the bananas
are taken at once. It however does require more computational power.

Red-green Ratio
The other method describes the proposal of calculating the Red/Green ratio [30] discussed in Section 3.5.4.
Here, all the red and green pixels are counted and then divided by each other. It has been shown that the

4.5. COLOR CLASSIFICATION 25

difference can been seen as a high value for brown bananas and low value for green bananas. This method
could be inaccurate when using multiple bananas in one picture.

Since the Hue could describe the Red/Green ratio as well, it would be more convenient to use this his-
togram. The R/G ratio only uses two colors, while the Hue uses every color possible which would result in
greater accuracy. On top of that, a histogram provides more information than a R/G ratio and will be more
easy to evaluate. It is therefore that the histogramming with the three color areas will be used for testing.

4.5.2. QUANTITY MEASUREMENTS
It would be possible to measure the quantity with histogramming. The background of the image was thresh-
olded to black. This black resembles a Hue of 0°. If all the counts, except the Hue at 0°counts would be added,
the total counts for the foreground would be known. If these counts where divided by the total number of
counts, including the background at Hue is 0°, the percentage of foreground would be known. For this rea-
son, the histogramming implementation would suffice for testing.

5
IMPLEMENTATION

The platform chosen to implement the methods and test the system will be Raspberry Pi in the Python pro-
gramming language. The Raspberry Pi delivers enough calculating power for image processing tools while
being relatively cheap in price. The Raspberry Pi also has dedicated hardware, for example the Pi Camera.
Python is an easy programming language with widely available libraries which will help making the imple-
mentation easier. Some libraries that could come in useful:

• PiCamera [34], this is a library which can easily take images or record videos with the Pi Camera with
simple functions.

• NumPy [35], an extensive library dedicated to array calculations and other algorithms which involve
arrays.

• OpenCV [36], a library specialized in image processing calculations.

The code in Python which are relevant to this implementation is documented in Appendix D.

5.1. INPUTS AND IMAGE SENSOR
Retrieving an image from the sensor is the first step in the system. The image sensor is an 8 MP (megapixel)
color sensor. Because the distance from the camera to the shelf is not constant the region of interest (RoI)
is not the same for each setup. To make sure we get the maximum resolution for the RoI the maximum
resolution of the camera is used. Before this image is given to the rest of the system it will need to be cut to
only contain the banana shelf. To calibrate the cutting of the image to the RoI this has to be done manually
for now. There have been no tests where the system was placed in the final location.

The Pi Camera provides a 3280 by 2464 pixel resolution with horizontal FOV of 62.2°and vertical FOV of
48.8°. This will grant an effective area of 1.2 meters in length per height unit and a 0.9 meters in width per
height unit. For example, if a shelf of 3 by 2 meters would have to be monitored, the minimal height of the
camerawould be 2.5 meters. This height could be altered with additional lenses.

Since the shelf is illuminated by big fluorescent tubes, the images could be too bright for the camera. An
important property of the PiCamera involving brightness is the (International Organization for Standardiza-
tion) ISO value. On the PiCamera this value can range from 0 to 1600 where 0 is very dark while 1600 is bright.
In Figure 5.1, the difference in ISO is shown for the range of 50 to 150. During testing, multiple images with
different ISO values will be used to test effectiveness per ISO value.

Figure 5.1: The difference in brightness for numerous ISO values.

27

28 5. IMPLEMENTATION

Figure 5.2: The input images of the thresholds with from left to right: The original in RGB, grayscale and saturation.

Figure 5.3: The resulting images after thresholding with white being past the threshold and black under. From left to right there is the
grayscale threshold result, saturation threshold result and the subtraction of the results saturation subtracted from grayscale.

5.2. FOREGROUND SEGMENTATION
Foreground segmentation is applied to the original image. The used color formats for the image are from HSV
the Hue and Saturation. The RGB image is also converted to grayscale to use in thresholding.

The domains used for thresholding are grayscale and the saturation of the original image. before thresh-
olding is applied first the input is preprocessed. To remove some of the noise in the image and smooth sur-
faces a Gaussian filter is used. To get enough blurring to remove the noise around the edges of the objects a
filter size of ksize = 11 is used. The Gaussian kernel is created using the openCV function getGaussianKernel
[36] get the coefficients, this function calculates these following the Equation 5.1.

Gi =α ·e−i−
ksize−1

2
2

2σ2 (5.1)

Where i = 0, ..., ksize -1 and α is the scale factor chosen that
∑ksize−1

i=0 Gi = 1. The value for σ, the Gaussian
standard deviation is automatically calculated for ksize with σ= 0.3∗ ((ksize−1)∗0.5−1)+0.8. This kernel is
then correlated with the original RGB image to give a smoothed version. For thresholding we use the grayscale
and color converted HSV versions of the smoothed image. The original, grayscale and saturation of a test
image are given in Figure 5.2

To find and determine the correct threshold values of the foreground, we first take a look at the picture in
grayscale. As seen in figure the bananas are relatively light compared to the background. To determine the
correct threshold value we use the method named after Otsu explained in Section 3. A typical threshold value
for the test images is in the neighborhood of 105. The resulting image of thresholding with 105 can be seen in
Figure 5.3.

As seen in the resulting image there is still some background of the image included that is bright because
of the reflection from the lights. In the saturation image in Figure 5.2 the background at the spots is not bright
and thus we can threshold this image. The value used for this threshold aims to extract the dark spots of the
saturation where the grayscale is bright. With a threshold of around 65 the banana’s are not detected but all
the required background is included. The result of this threshold is displayed in Figure 5.3.

5.3. OBJECT DETECTION OF STICKERS 29

Figure 5.4: The resulting foreground in RGB.

To extract the foreground using both images we subtract the saturation threshold from the grayscale
threshold and get an estimate of the foreground seen in Figure 5.3. There is still some noise in the resulting
image and to remove it a morphological transformation is applied, we first erode the image. This decreases
the size at the edges, and afterwards we dilate the image. Dilating extends the image at the edges. Small
points or edges are thus removed. The resulting image is used as a mask for the original image to create a
color view of the foreground. The result is given in Figure 5.4

5.3. OBJECT DETECTION OF STICKERS
The detection accuracy of stickers on bananas varies with changes in the input images. Because of the
changes in environment and each detection method having its pros and cons for dealing with those changes.
Three methods have been implemented to test for the final setup:

• A spectral filter in the Fourier domain that filters the saturation from HSV.

• A small kernel 2D filter that spatial filter with a Laplacian kernel.

• Thresholding combined with color matching in the HSV domain.

All methods have the same goal to detect the stickers and provide a binary map to the cluster detection
module. Because the stickers are always present on the foreground and never on the background we use
the already segmented image for detecting the stickers. This is needed because the background has a lot
of differences in lighting because of reflection. The foreground segmentation is adapted a bit to make sure
the labels are present in the mask. This is done by morphologically dilating the edges of the mask. A bit of
background around the foreground is included in the mask but this is not a problem for the sticker detection.

5.3.1. FOURIER DOMAIN FILTERING.
The input used for the spectral filtering for the stickers is the saturation. Because most of the elements we
want to filter away have low frequency components we use a bandstop filter for in the low frequency region.
Instead of watching peak values we look at the lowest values, this is why the filter removes the objects to
detect. The origin where frequency is zero is still important for information so we filter from 2 to 3 with a
circular ideal filter. The equation used to create the ideal circular filter is given in Equation 2.

After filtering both the saturation the results is made binary with a threshold to get the regions of the
stickers. The threshold value used is around 20 on the scale from 0 to 255. Because the stickers will always be
on the bananas and never on the background we remove any regions outside the foreground. For this we use
the foreground segmentation mask. We preform a bitwise and with the mask of the foreground and the result
from the filter. The accuracy of the detection of stickers depends on the changes in saturation. If the image is
overexposed then filtering for saturation produces less results.

5.3.2. 2D LAPLACIAN FILTER
With a 2D Lapacian style filter it produces a type of high pass filter for the saturation of HSV. To make sure the
value during the filter does not overflow the values in the kernel are divided by the sum of the elements. We

30 5. IMPLEMENTATION

compute the correlation of the kernel and the saturation with the openCV filter2D function [36]. After this we
use a threshold to get a binary image of the regions of interest. Because of the same reasons as with spectral
filtering, that no stickers can be found outside the foreground the same process is applied to the result of the
Laplacian filter. We subtract the background mask that is enlarged from the result to only get the stickers.
There is still some false positives in the result even after the background subtraction. These small errors can
be detected in the cluster detection and are acceptable.

5.3.3. COLOR MATCHING HSV
The stickers that we want to detect always are always blue, if no foreign objects are present they should be the
only blue elements in the image. This makes it possible to locate the stickers by filtering the color, the easiest
way to filter color is using the HSV domain. The region for blue in the HSV domain is around 180° to 300° this
is on a scale from 0° to 360°. The openCV library region is from 0° to 180°. Thus the region of blue for openCV
is from 90° to 150°.

The stickers are always present in the foreground, instead of looking at the original image background we
can use the segmented foreground iamge.

The result of every filter is seen in Figure 6.2. It would be possible to combine the results or choose the one
with the best performance with respect to processing time and accuracy. Some noise in the in the result is
acceptable because in the following module the detected clusters are classified based on their area removing
small blobs.

5.4. CLUSTER DETECTION

5.4.1. PRE FILTER
To exterminate small misplaced clusters caused by items with the same features as the stickers, a filter will al-
ways be needed. In Section 4.3, both filters will be tested. In python, the OpenCV [36] library offers numerous
dedicated functions for these methods:

• cv2.integral(image)

• cv2.filter2D(image, -1, filter)

INTEGRAL IMAGE

The integral image is calculated with the openCV function Integral. This creates a map with large integers
that are the sum of the pixels in the image. The sum of the pixels in the window is given by Equation 5.2.

Sum = A+D −B −C Mean = Sum

si ze ∗ si ze
(5.2)

where A, B, C and D are the vertices of of the window. To get the mean of the sum of the pixels the sum is
divided by the total number of pixels in the window. This is the same as the square of the size of the window.

2D FILTER

In OpenCV’s documentation, the complete function is defined by:

1 dst = cv2 . f i l t e r 2 D (src , ddepth , kernel , dst , anchor , delta , borderType)

Only three parameters are of interest for the implementation. The src is for the input image, the ddepth is
static at -1 and will keep the resolution of the input image, which will be 8 bit. And lastly the kernel, which is
the filter.

The function implements a correlation with default values:

d st [x, y] =
col s∑
xi=0

r ow s∑
yi=0

ker nel (xi , yi)∗ sr c(x +xi +1, y + yi +1) (5.3)

Where cols and rows are the number of columns and rows of the kernel. The ker nel is the filter matrix, x is
the x coordinate of the image and y is the y coordinate of the image.

The kernel will be a NxN matrix of ones where N is the filter size. This filter size will be variable during
testing. This ones filter will count every value within the size parameter to the pixel position. When dealing

5.4. CLUSTER DETECTION 31

Figure 5.5: Input and output of the two methods used during implementation design. Left is the input binary image. The middle image
is the output of the 2D filter with filter size of 39 and threshold of 50.000. The right image is the output of the integral image method with
filter size 39 and threshold 20.

with a large filter, these values can become unpredictably high. A solution to this problem is normalizing the
output. This can be done by dividing the ones matrix with the squared value of the filter size.

After this filter operation, the image should be converted to binary. Since we do not want small cluster,
the filtered image needs the following thresholding computations:

1 image_f (image_f<threshold) = 0 # t h i s negates the small c l u s t e r s .
2 image_f (image_f >0) = 1 # t h i s f i n a l i z e s the binary image

5.4.2. CLUSTER DETECTION
Two types of cluster detection will be tested. The simple blob finder and the BFS algorithm. The simple blob
finder has a python implementation while the BFS algorithm will have to be programmed without dedicated
functions.

BFS ALGORITHM

The BFS is initially designed for connected structures with one tree of connections. Since the image could
be seen as more trees, a solution for this problem should be implemented. For every cluster a unique value
could be assigned starting with 2 when dealing with a binary image where 0 and 1 are already used. The
algorithm will check every pixel for an ‘1‘. When an ‘1‘ is found, a new tree is started. At this moment the
BFS algorithm is initialized. For this first point, the value is changed to the next unique value. At this point
surrounding pixels are evaluated for an ‘1‘. This position is then added to the queue. When evaluation of this
point is done the point is deleted from the queue and the next point in the queue is evaluated. This iterates
until the queue is empty which means the cluster is found completely and assigned the unique value. After
this, the unique value is incremented by one. When every pixel is evaluated for an ‘1‘, the algorithm is done
and no ‘1s‘ should be present in the new array.

The number of clusters can then be simply calculated by finding the maximum value and subtracting ‘1‘.
The function numpy.wher e(ar r ay,n − 1) could be used to find all the points of cluster N where n is the
unique value of the cluster. Numpy is a simple array library for python. To find the x centroid position of
this cluster, all the x coordinates can be added and divided by the number of points in the cluster. The same
operation can be done for the y centroid position.

Iterating through all clusters provides an array with all the positions of the centroids of the clusters.

SIMPLE BLOB FINDER

The dedicated function of OpenCV for the simple blob finder uses the following function in the corresponding
syntax:

1. par ameter s = cv2.Si mpleBl obDetector _Par ams(). This creates an object for all the parameters
that can be used to filter the blobs.

32 5. IMPLEMENTATION

2. detector = cv2.Si mpleBl obDetector _cr eate(par ameter s). This creates the detector object with
correct parameters.

3. ke y poi nt s = detector.detect (i mag e). This creates a keypoints object, including the coordinates, the
diameter along with other unimportant information about the found clusters.

The variable names of the coordinates and size are defined as pt and si ze.

Parameters The parameter object has numerous options for filtering:

1. Color: blobColor [0 255]

2. Size: minArea [0, ∞] and maxArea [0, ∞]

3. Shape, which has multiple suboptions:

(a) Circularity: minCirculatity and maxCircularity [0, 1]. Where a circle has the value one and a square
the value 0.785.

(b) Convexity: minConvexity and maxConvexity [0, 1]

(c) Inertia Ratio: minInertiaRatio and maxInertiaRatio [0,1]

The input image of the simple blob finder should be a grayscale array from 0 to 255, the binary image
from 0 to 1 is therefore compatible.

5.5. HISTOGRAMMING
As an input, the extracted foreground image will be provided. For this histogram the Hue will be of most
importance. The histogramming functions will be provided by the library of NumPy which is specialized in
array computations.

In order to use the hi stog r am function, the Hue image will have to be transformed into a single row
array. For this the Ar r ay. f l at ten()function of NumPy will be used.

The two input arguments of relevance for succecfully create a histogram array will be the flattened array
and the possible range in that array. The hue will be in range from 0 to 179. This is a standard in the OpenCV
library.

The two output arguments that will be created are an array with the counted occurrences per value
(count s) and an array containing the range of the histogram (bi ns). An example of the output is seen in
Figure 3.3.

With this information, four features need to be calculated:

1. The percentage of the foreground counts in relation to the total image

2. The percentage of brown counts in relation to all the counts of the foreground

3. The percentage of yellow counts in relation to all the counts of the foreground

4. The percentage of green counts in relation to all the counts of the foreground

To determine the counts of the foreground are the counts of yellow, brown and green combined. The
background counts are all stored in Hue = 0 since the RGB value [0,0,0] is converted to a Hue of 0. The range
of the three colors are defined as [0,15] for brown, [16,25] for yellow and [26, 60] for green.

The total counts of these ranges are added and a percentage is calculated, which will describe more about
the ripeness of all bananas as a collective.

6
TESTING AND RESULTS

Testing the system of the fruit monitoring system needs to apply to different test criteria, these are discussed
in the first section. When all the criteria are known, the test setup needs to be designed. This could be with
the implementation of a GUI or a multi-stage test design. This is discussed in the second section. The third
section will show the test results and observations made during these tests. At last, these test results and
observations will be discussed.

6.1. TEST CRITERIA
The test criteria need to be representative to the real situation. This real situation is located in a supermar-
ket. Some of the important situations possible in supermarkets are: an empty shelf, bad product placement,
variety of fruit quality and objects blocking the view. From these situation, test criteria can be defined:

1. A realistic range of fruit quality. For bananas this is from green to brown spots.

2. An empty shelf as test sample.

3. The test samples should be test on different heights and angles.

4. The images should be locally saved for further evaluation and testing.

5. The test samples should include blockades of the sensor.

6. The intermediate signals should be saved

6.2. TEST SETUP
The test setup will be done in 2 stages. One stage to acquire the test samples at a real supermarket. These test
images need to be taken multiple times in order to obtain multiple scenarios. For every time of the day, the
morning of the opening, during lunch hours, diner time and closing time, some test images need to be taken.
To create a representative image, the real Pi Camera will be used to create these images.

Since the Raspberry Pi does not have an integrated interface, a new script and interface need to be made
in order to create these images. This setup could be very basic with only a button and a LED. The button has
the use of actually taking the image, and the LED will be turned on when the system is ready to take an image.

The second stage is actually testing the functions of the system. Here, the test images of the first stage
will be used as input for the total system. In order to evaluate every system step, the intermediate images
need to be saved. An useful tool would be a simple GUI which easily inputs an given image and shows the
intermediate images in a grid with the option to save these images.

6.3. RESULTS
The test results will be shown per operation. This will allow for a better evaluation of the total process. In
total, there are 2 main operations: the sticker detection and the foreground histogramming.

6.3.1. STICKER FILTER
Three methods to filter stickers are implemented, the method that produces the best results is seen in Figure
6.2. This method uses color thresholding in the HSV domain to detect the blue labels on the foreground of
the image. Noise is first removed by using a Gaussian smoothing filter. There is blue detected in the black of
the background but because we only look at the blue on the bananas these results are filtered away. All the
stickers from the original images in Figure 6.1 are visible on in the filtering result. The other two methods are

33

34 6. TESTING AND RESULTS

(a) ISO 50 (b) ISO 150

Figure 6.1: Original test image with ISO of 50 and 150.

(a) ISO 50 (b) ISO 150

Figure 6.2: Sticker filter results with ISO of 50 and 150.

6.3. RESULTS 35

visible in Figure 6.3, these are the 2D laplacian and the spectral filter method of the original image seen in
Figure A. All of the methods do detect the stickers. The results of these two methods do differ when the ISO
is different. The filtering methods produce the best results with an ISO of 100, this ISO is seen in the Figure
6.3. The results of the 2D Laplacian filter are better than the spectral filter. One idea could be to combine the
results of multiple filtering methods to have an additional check and calculate a final result. The result of both
the 2D filter and the spectral filter is still less than the color threshold method. The reason for this is because
these two methods focus on change, this change is only detectable at the edges of the objects. This is why
only the outlines of the stickers are visible. This causes problems to detect clusters because the outline will
not create just one cluster if it is fully detected. The color threshold method doesn not have this inaccuracy
because we focus on the color blue, this color fills the whole object and creates a good cluster.

36 6. TESTING AND RESULTS

(a) 2D Laplacian filtered and thresholded (b) Spectral filtered bandstop and thresholded

Figure 6.3: Sticker filter results with ISO 100 and left the 2D Laplacian filter and right the Spectral filter.

(a) ISO 50 (b) ISO 150

Figure 6.4: Blob filter results with ISO of 50 and 150.

6.3.2. STICKER DETECTION
In Figure 6.4, the blob filter results are shown with the different ISO values. When running the algorithm with
big cluster sizes, most of the clusters got merged. Since the sticker filter used a Gaussian smoothing filter ,
most of the noise is already removed. Figures 6.4 and 6.2 are very similar, the only function of the blob filter
is creating larger blobs exterminating two clusters that represent one sticker. As expected, the simple blob
finder performed substantially better than the BFS algorithm. The BFS algorithm performed worse when
giving more clusters in an image where the performance of the blob finder stayed the same. The advantage
of the simple blob finder over the BFS algorithm was the numerous option to filter the blobs with ease. With
a simple parameter, the blobs could be filtered with one line of code where the BFS had to be implemented
into the code.

6.3.3. FOREGROUND SEGMENTATION
In Figure 6.6 the result of the foreground segmentation is displayed for two different values of the ISO. The
segmentation requires the bananas to be properly illuminated for the best segmentation. With an ISO of
100 the segmentation produces the best results. It captures most of the foreground while still filtering away
enough of the background. In Figure 6.7 another representative foreground segment is seen. Created from
the original in Figure A.1. As seen all of the bananas are present in the foreground, the only problem with
this result is that some of the area that does contain bananas is not present in the foreground mask. This
creates the problem that if the conclusion is made that the shelf is 60% filled that it might in reality be only
50%. This has to be taken into account when drawing conclusion from the data. There is another method
for foreground segmentation that is only viable when the color of the background is completely black. The
segmented image seen in Figure A.1 uses the same method used for filtering the stickers. It looks at the HSV

6.3. RESULTS 37

(a) ISO 50 (b) ISO 150

Figure 6.5: Sticker detection results with ISO of 50 and 150.

(a) ISO 50 (b) ISO 150

Figure 6.6: Foreground extraction results with ISO of 50 and 150.

38 6. TESTING AND RESULTS

Figure 6.7: Foreground segmented image from Figure A.1 using all three domains of HSV with the threshold values [5, 30, 30] and [50,
225, 225]. Everything outside of this region is removed.

(a) first (b) second

Figure 6.8: Histogram results with ISO of 50 and 150.

domain and filters everything out of it’s region. The chosen region for the foreground is [5, 30, 30] and [50,
225, 225] for H, S and V respectively. The region from 5-50 contains green, yellow and brown. Because of the
small of offsets in S and V the black and white background parts are removed. The only noise left in the image
is on the top part, there the background is not completely black.

6.3.4. FOREGROUND HISTOGRAM

Figure 6.8 shows the results of the histogramming of the two foreground segmentation. As expected, the
differences on the histograms with different ISOs are minimal since the luminance is not altering the Hue.
On the image, the bananas are mostly yellow. The small hill at the 10-12 area is caused by the apple being
extracted in the foreground. The other tests with a black background resulted in a similar result. However, the
images with a green background had more counts in the green Hue area since when extracting the foreground
with an green background, parts of these background gets extracted.

6.4. ADDITIONAL COMPLETE MEASUREMENTS
In Appendix B and C some complete measurements have been preformed and their output is shown. The
first measurement is where part of the background is green. Because green is one of the colors we want to
detect, the foreground segmentation has trouble filtering this bright color. The brightness and saturation of
the green background is not filtered away as seen in the image multiplied with the foreground mask. This
causes the percentage of the foreground to be inaccurate and the color histogram has additional values in the
green region. The sticker filter and detection is not inhibited by the presence of the green background. All the

6.5. DISCUSSION 39

stickers are detected some additional “stickers“ are detected that are not actual stickers. Because some of of
these cannot be filtered away but will always be detected the amount of clusters needs to be calibrated when
placed to ignore these. The second measurement is a image of the shelf where the background is completely
green. This has some of the same problems as the previous measurement where the foreground segmentation
does not accurately create a mask over the bananas. The solution provided expects a black background for
the banana shelf and this would be a requirement for the system to function the best.

6.5. DISCUSSION
The accuracy of the implemented methods depends strongly on the picture that is used. When the back-
ground of the banana shelf is not black, then the foreground segmentation does not work like intended. The
consequence is that the total foreground calculated is not representative for the total shelf covered by ba-
nanas. The difference between the correct foreground and the calculated foreground is not is always within
10% of the actual value. This makes it possible to still make an estimated guess about the actual foreground.
The goal is not 100% accuracy but rather to signal the manager of the supermarket about the status of the
shelf. We think that this can still be achieved even if some of the background is removed.

There is one big problem with the chosen solution. The foreground segmentation used determines by
looking at peak values in the histogram. When the banana shelf is completely empty this adaptive threshold-
ing will generate a very wrong picture because the chosen threshold does not represent the bananas. Because
of this we also included the counting of stickers on the bananas. When the system does detect foreground
but no stickers are detected, surely something is wrong because there should always be stickers in sight when
there are bananas left. There is a correlation between the total foreground and the number of detected stick-
ers.

The next feature that we want to detect is the quality of the bananas. The histogram created from the
segmented image should only contain the color information of the bananas. The color is then divided into
three parts. The problem with this is that when there is only one banana that is rotten on the shelf, the
histogram with the amount of brown is not detectable. But the manager of the supermarket will probably
want to remove this one bad banana from the shelf. The way to deal with this problem does not lie with the
sensor but rather the data interpretation. Rotten bananas will never be put on the shelf by the shelf filler, so
instead of analyzing the amount of brown, the focus should be on the change from yellow to brown. For this
long term analysis is needed and we instead of only giving the percentage should also pass along the total
amount of brown.

7
CONCLUSION AND RECOMMENDATIONS

In conclusion, our design extracts all the features we wanted to detect and produces results that could be
helpful for a supermarket manager. The prototype made is not yet an IoT device in the sense that it uses a
battery and could be placed anywhere, but the potential is there. The system can determine how filled the
banana shelf is, what the quality of the bananas on the shelf is, and if it is properly filled. There are a few
conditions that are needed for the system to work, the background of the shelf has to be black to get the best
results. When the background of the shelf is not black, the system does work but the accuracy the determining
how filled the shelf is decreases. When these conditions are met, the accuracy of the of the sticker detector
when calibrated is greater than 95%. The foreground segmentation when the background is completely black
also meets our requirement of more than 90%.

The applications of the design are needed in the supermarket of the future where algorithms can tell
employees when and where what needs to be restocked. The second reason is that because the data is being
stored in a database it can be analyzed to react preemptive instead of reactive. The next step in this research
is the application of machine learning, can we use a trained system to detect defects in the fruit. That would
make it possible to spot rotten fruit with precision so the manager can take action. We think the system can
be expanded to different sorts of fruit and vegetables. The quality of the fruit or vegetables can not always be
determined by only looking at color but the amount is always detectable.

41

Appendices

43

A
PRIMARY TEST SAMPLE

(a) Original image (b) Sticker filter

(c) Foreground segmentation (d) Blob filter

(e) Histogram (f) Cluster detection

Figure A.1: Results of a test with a high resolution.

45

B
ADDITIONAL TEST 1

(a) Original image (b) Sticker filter

(c) Foreground segmentation (d) Blob filter

(e) Histogram (f) Cluster detection

Figure B.1: Results of test 1.

47

C
ADDITIONAL TEST 2

(a) Original image (b) Sticker filter

(c) Foreground segmentation (d) Blob filter

(e) Histogram (f) Cluster detection

Figure C.1: Results of test 2.

49

D
PYTHON CODE

D.1. STICKER FILTER

1 ’ ’ ’
2 Mandatory S t i c k e r f i l t e r
3 IN : hsv NxMx3 array representing an image in HSV format
4 gray NxM array representing the gray format
5 OUT: mask NxM array of the mask
6 h s v _ f i l NxMx3 array of hsv with opening
7 opening NxM array of the opening
8 ’ ’ ’
9 def s t i c k e r _ f i l t e r 1 (hsv , gray) :

10 # Threshold input
11 ret2 , thresh2 = cv2 . threshold (hsv [: , : , 1] , 65 , 255 , cv2 . THRESH_BINARY_INV)
12 ret5 , thresh5 = cv2 . threshold (gray ,65 ,255 , cv2 .THRESH_BINARY)
13

14 # s u bst rac t thresh
15 sub = cv2 . subtract (thresh5 , thresh2)
16

17 # c l o s e substraction
18 opening = cv2 . morphologyEx (sub , cv2 .MORPH_CLOSE, kernel , i t e r a t i o n s = 5)
19

20 # c r e a t e toher output paramters
21 lower = np . array ([9 0 , 30 , 30] , dtype=np . uint8)
22 upper = np . array ([150 ,225 ,225] , dtype=np . uint8)
23 h s v _ f i l = cv2 . bitwise_and (hsv , hsv , mask=opening)
24 mask = cv2 . inRange (h s v _ f i l , lower , upper)
25

26 return mask , h s v _ f i l , opening

51

52 D. PYTHON CODE

1 ’ ’ ’
2 Second f i l t e r with 2D f i l t e r method
3 IN : S NxM array representing the Saturation of the image
4 opening NxM array of the opening calculated in c l u s t e r _ f i l t e r 1
5 OUT: f i n a l NxM array of the foreground mask
6 ’ ’ ’
7 def c l u s t _ f i l t e r 2 d (S , opening) :
8 # f i l t e r with Saturation
9 kernel = np . array ([[0 , −1 ,0] , [−1 ,9 , −1] , [0 , −1 ,0]] , dtype= ’ f ’)

10 kernel = kernel /np .sum(kernel)
11 f i l _ S = cv2 . f i l t e r 2 D (S , cv2 . CV_8U, kernel)
12

13 # simple threshold
14 f i l _ S = f i l _ S <50
15

16 # c r e a t e inverse mask
17 mask_inv = cv2 . bitwise_not (opening)
18 kernel = np . ones ((7 , 7))
19 mask_inv = cv2 . d i l a t e (mask_inv , kernel , i t e r a t i o n s =10)
20

21 # s u bst rac t inverse mask from f i l _ s
22 f i n a l = cv2 . subtract (f i l _ S . astype (np . uint8)*255 , mask_inv)
23

24 return f i n a l

D.1. STICKER FILTER 53

1 ’ ’ ’
2 Create f i l t e r f o r c l u s t _ d i g _ f i l t e r
3 ’ ’ ’
4 def c r e a t e _ f i l t e r (r , typ , sizex , s izey) :
5 a , b = sizex /2 , s izey /2
6 i f (typ == 0) :
7 z = np . ones ((sizex , s izey))
8 x , y = np . ogrid[−a : sizex−a , −b : sizey−b]
9 mask = x * x + y * y <= r * r

10 z [mask] = 0
11 e l i f (typ == 1) :
12 z = np . zeros ((sizex , s izey))
13 x , y = np . ogrid[−a : sizex−a , −b : sizey−b]
14 mask = x * x + y * y <= r * r
15 z [mask] = 1
16 e l i f (typ == 2) :
17 z = np . zeros ((sizex , s izey))
18 x , y = np . ogrid[−a : sizex−a , −b : sizey−b]
19 mask = x * x + y * y <= r * r
20 z [mask] = −1
21

22 return z
23

24 ’ ’ ’
25 Second f i l t e r with d i g i t a l f i l t e r method
26 IN : S NxM array of the Saturation
27 mask NxM array of the opening in previous function
28 OUT: d i g _ f i l t e r _ t e s t 2 NxM array of new mask of foreground
29 ’ ’ ’
30 def c l u s t _ d i g _ f i l t e r (S , mask) :
31 # c a l c u l a t e d f t of S
32 img_fft_S = cv2 . d f t (np . f l o a t 3 2 (S) ,
33 f l a g s = cv2 .DFT_COMPLEX_OUTPUT | cv2 . DFT_SCALE)
34

35 # c r e a t e f i l t e r
36 sizex , s izey = S . shape [: 2]
37 x = c r e a t e _ f i l t e r (3 , 0 , sizex , s izey)
38 z = c r e a t e _ f i l t e r (2 , 1 , sizex , s izey)
39 h = np . zeros ((sizex , sizey , 2))
40 h [: , : , 0] = x + z
41 h [: , : , 1] = x + z
42

43 # operations with f i l t e r
44 i m g _ f i l _ f f t _ S = img_fft_S * np . f f t . i f f t s h i f t (h)
45 img_inv_S = cv2 . i d f t (i m g _ f i l _ f f t _ S , f l a g s =cv2 .DFT_COMPLEX_OUTPUT)
46 output_array_S = cv2 . magnitude (img_inv_S [: , : , 0] , img_inv_S [: , : , 1]) < 20
47

48 # c r e a t e mask
49 d i g _ f i l t e r _ t e s t 2 = cv2 . bitwise_and (output_array_S . astype (np . uint8)*255 ,
50 output_array_S . astype (np . uint8)*255 ,
51 mask=mask)
52

53 return d i g _ f i l t e r _ t e s t 2

54 D. PYTHON CODE

D.2. CLUSTER DETECTION

1 ’ ’ ’
2 Call bw_func to s t a r t
3 ’ ’ ’
4

5 " " "
6 Function f o r BWS algorithm , change a l l c l u s t e r points to i t value
7 " " "
8 def BFS(x , i t , i _ i , j _ i) :
9 Queue = [(i _ i , j _ i)] # c r e a t e QueueX and QueueY

10

11 # while s i z e of Queue i s not zero
12 while (len (Queue) ! = 0) :
13 point = Queue[0] # point evaluated i s in Queue [0]
14 x [point [0] , point [1]] = i t # value should be i t
15

16 # check surroundings
17 for di in range (−1 ,2):
18 for dj in range (−1 ,2):
19 # i f surrounding i s 1
20 i f (x [point [0] + di , point [1] + dj] == 1) :
21 tPoint = (point [0] + di , point [1] + dj)
22 # i f not in queue already −−> add
23 i f (tPoint not in Queue) :
24 Queue . append(tPoint)
25 Queue . pop(0) # d e l e t e point in queue a f t e r evaluation
26 return x
27

28 " " "
29 Function to c r e a t e a BW array of the binary array
30 IN x NxM binarized array
31 OUT bw NxM array with min = 2 and max = number of c l u s t e r s + 1
32 " " "
33 def bwfunc (x) :
34 # padding f o r simple i t e r a t i o n s
35 x = np . l i b . pad(x , 1 , padzero)
36 i t = 2 # s t a r t i t e r a t i o n
37 s = np . shape (x)
38

39 # i t e r a t i o n through every point
40 for i in range (1 , s [0] −1) :
41 for j in range (1 , s [1] −1) :
42 # i f i s one −> new c l u s t e r found
43 i f (x [i , j] == 1) :
44 x = BFS(x , i t , i , j)
45 i t += 1
46 return x

D.2. CLUSTER DETECTION 55

1 ’ ’ ’
2 Pre F i l t e r to created blobs instead of c l u s t e r s
3 IN : img The NxM binary image
4 s i z e F i l t e r s i z e
5 t h r e s Threshold to f i l t e r small c l u s t e r s out
6 OUT: f i l The binary output
7 ’ ’ ’
8 def p r e _ f i l t e r (img , size , thres) :
9 kernel = np . ones ((size , s i z e) , np . f l o a t 3 2) / (s i z e * s i z e)

10 f i l = cv2 . f i l t e r 2 D (img . astype (np . f l o a t 3 2) , −1, kernel)
11 f i l = f i l > thres
12 return f i l . astype (np . uint8)
13

14 ’ ’ ’
15 Blob d e t e c t o r which finds the blobs
16 IN : bit_map The NxM binary image
17 mincluster Minimum Area of the blobs
18 OUT: x Array of X coordinates
19 y Array of Y coordinates
20 ’ ’ ’
21 def blobdetector (bit_map , mincluster) :
22 # Parameters of the blobdetector
23 params = cv2 . SimpleBlobDetector_Params ()
24 params . blobColor = 255
25 params . f i l t e r B y C o l o r = True
26 params . f i l t e r B y C i r c u l a r i t y = False
27 params . f i l terByConvexity = False
28 params . f i l t e r B y I n e r t i a = False
29 params . f i l t e r B y A r e a = True
30 params . minArea = mincluster
31 params . maxArea = 100000
32

33 # c r e a t e d e t e c t o r and find keypoints
34 detector = cv2 . SimpleBlobDetector_create (params)
35 keypoints = detector . detect (bit_map *255)
36 x = np . array ([])
37 y = np . array ([])
38 for i in keypoints :
39 x = np . append(x , i . pt [0])
40 y = np . append(y , i . pt [1])
41

42 return x , y

56 D. PYTHON CODE

D.3. FOREGROUND SEGMENTATION

1 ’ ’ ’
2 Function to e x t r a c t foreground
3 IN : img NxMx3 array representing the imagen in RGB [0 − 255]
4 OUT: h_foreground NxM array of the foreground Hue [0 − 179]
5 opening NxM array of the foreground mask [0 | 255]
6 ’ ’ ’
7 def foreground_segmentation (img) :
8 # Smoothen the image with gaussian f i l t e r
9 kernel = cv2 . getGaussianKernel (11 , 0)

10 Gaussian = kernel * kernel . T
11 img_smooth = cv2 . f i l t e r 2 D (img , cv2 . CV_8U, Gaussian)
12

13 # convert to gray and HSV format
14 img_gray = cv2 . cvtColor (img_smooth , cv2 .COLOR_RGB2GRAY) ;
15 img_hsv = cv2 . cvtColor (img_smooth , cv2 .COLOR_RGB2HSV) ;
16

17 # threshold the smooth gray image and the smooth saturation
18 ret2 , thresh2 = cv2 . threshold (img_hsv [: , : , 1] , 65 , 255 , cv2 . THRESH_BINARY_INV)
19 ret3 , thresh3 = cv2 . threshold (img_gray ,0 ,255 , cv2 .THRESH_BINARY+cv2 .THRESH_OTSU)
20

21 # s u bst rac t the t hr e s values found
22 back_rm = cv2 . subtract (thresh3 , thresh2)
23

24 # c r e a t e opening and mask
25 kernel = np . ones ((5 , 5) , np . uint8)
26 opening = cv2 . morphologyEx (back_rm , cv2 .MORPH_OPEN, kernel , i t e r a t i o n s =1)
27 mask = opening/255
28

29 # return the Hue array with mask and opening
30 return img_hsv [: , : , 0] * mask , opening

D.4. HISTOGRAMMING 57

D.4. HISTOGRAMMING

1 " " "
2 Function to c a l l with a HSV Foreground image
3 IN : h_foreground H of HSV image of the foreground
4 OUT: per_green Percentage of green p i x e l s
5 per_yellow Percentage of yellow p i x e l s
6 per_brown Percentage of brown p i x e l s
7 CONSTANTS: brown_range Range of brown Hue [01 − 15]
8 yellow_range Range of yellow Hue [16 − 30]
9 brown_range Range of green Hue [31 − 60]

10 " " "
11 def color_histogram (h_foreground) :
12 # Constants f o r the color ranges
13 brown_range = [1 , 15]
14 yellow_range = [16 , 25]
15 green_range = [26 , 60]
16

17 # Histogramming
18 data = h_foreground . f l a t t e n ()
19 counts , bins = np . histogram (data , range (179+1))
20

21 # Counting f o r every category
22 counts_brown = np .sum(counts [brown_range [0] : brown_range [1]])
23 counts_yellow = np .sum(counts [yellow_range [0] : yellow_range [1]])
24 counts_green = np .sum(counts [green_range [0] : green_range [1]])
25 counts_colors = counts_brown + counts_yellow + counts_green
26 counts_black = counts [0]
27 counts_total = np .sum(counts)
28

29 # Percentages
30 p_b = f l o a t (counts_brown) / f l o a t (counts_colors) * 100.0
31 p_y = f l o a t (counts_yellow) / f l o a t (counts_colors) * 100.0
32 p_g = f l o a t (counts_green) / f l o a t (counts_colors) * 100.0
33 p_f = f l o a t (counts_total) / f l o a t (counts_total) * 100.0
34

35 return p_b , p_y , p_g , p_f , counts , bins

BIBLIOGRAPHY

[1] Gartner Inc., Gartner says 8.4 billion connected "things" will be in use in 2017, up 31 percent from 2016,
(2017).

[2] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis, Sensors and systems for fruit detection and
localization: A review, Computers and Electronics in Agriculture 116, 8 (2015).

[3] I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, Deepfruits: A fruit detection system using deep
neural networks, Sensors 16 (2016), 10.3390/s16081222.

[4] Y. Edan, D. Rogozin, T. Flash, and G. E. Miles, Robotic melon harvesting, IEEE Transactions on Robotics
and Automation 16, 831 (2000).

[5] R. L. Bosoon Park, Hyperspectral Imaging Technology in Food and Agriculture, 1st ed., 10, Vol. 1 (Springer-
Verlag New York, The address, 2015) an optional note.

[6] J. P. Wachs, H. I. Stern, T. Burks, and V. Alchanatis, Low and high-level visual feature-based apple detec-
tion from multi-modal images, Precision Agriculture 11, 717 (2010).

[7] F. Kurtulmus, W. S. Lee, and A. Vardar, Immature peach detection in colour images acquired in natu-
ral illumination conditions using statistical classifiers and neural network, Precision Agriculture 15, 57
(2014).

[8] H. N. Patel, Fruit detection using improved multiple features based algorithm, (2011).

[9] S. Janssen, K. Schmitt, M. Blanke, M. L. Bauersfeld, J. Wollenstein, and W. Lang, Ethylene detection in
fruit supply chains, Philosophical Transactions of the Royal Society of London Series A 372, 20130311
(2014).

[10] A. Sanaeifar, S. S. Mohtasebi, M. Ghasemi-Varnamkhasti, and M. Siadat, Application of an electronic
nose system coupled with artificial neural network for classification of banana samples during shelf-life
process, in 2014 International Conference on Control, Decision and Information Technologies (CoDIT)
(2014) pp. 753–757.

[11] H. Saad, A. P. Ismail, N. Othman, M. H. Jusoh, N. fadzlina Naim, and N. A. Ahmad, Recognizing the
ripeness of bananas using artificial neural network based on histogram approach, in 2009 IEEE Interna-
tional Conference on Signal and Image Processing Applications (2009) pp. 536–541.

[12] IEC 61966-2-1:1999, Multimedia systems and equipment - Colour measurement and management - Part
2-1: Colour management - Default RGB colour space - sRGB, IEC (1999).

[13] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision (Thomson-
Engineering, 2007).

[14] P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, in Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001,
Vol. 1 (2001) pp. I–511–I–518 vol.1.

[15] J. N. Sarvaiya, S. Patnaik, and S. Bombaywala, Image registration by template matching using normalized
cross-correlation, in 2009 International Conference on Advances in Computing, Control, and Telecommu-
nication Technologies (2009) pp. 819–822.

[16] A. Hii, C. E. Hann, J. Chase, and E. V. Houten, Fast normalized cross correlation for motion tracking using
basis functions, Computer Methods and Programs in Biomedicine (2006).

59

http://www.gartner.com/newsroom/id/3598917
http://dx.doi.org/https://doi.org/10.1016/j.compag.2015.05.021
http://dx.doi.org/10.3390/s16081222
http://dx.doi.org/ 10.1109/70.897793
http://dx.doi.org/ 10.1109/70.897793
http://dx.doi.org/ 10.1007/s11119-010-9198-x
http://dx.doi.org/ 10.1007/s11119-013-9323-8
http://dx.doi.org/ 10.1007/s11119-013-9323-8
http://dx.doi.org/10.1098/rsta.2013.0311
http://dx.doi.org/10.1098/rsta.2013.0311
http://dx.doi.org/10.1109/CoDIT.2014.6996991
http://dx.doi.org/ 10.1109/ICSIPA.2009.5478715
http://dx.doi.org/ 10.1109/ICSIPA.2009.5478715
https://webstore.iec.ch/publication/6169
https://webstore.iec.ch/publication/6169
http://dx.doi.org/ 10.1109/CVPR.2001.990517
http://dx.doi.org/ 10.1109/CVPR.2001.990517
http://dx.doi.org/ 10.1109/ACT.2009.207
http://dx.doi.org/ 10.1109/ACT.2009.207

60 BIBLIOGRAPHY

[17] E. Rachmawati, M. L. Khodra, and I. Supriana, Edge based approach in object boundary detection on
multiclass fruit images, in 2016 4th International Conference on Information and Communication Tech-
nology (ICoICT) (2016) pp. 1–6.

[18] T. A. Ell and S. J. Sangwine, Hypercomplex fourier transforms of color images, IEEE Transactions on Image
Processing 16, 22 (2007).

[19] Z. Lu, Y. Xu, X. Yang, L. Song, and L. Traversoni, 2d quaternion fourier transform: The spectrum properties
and its application in color image registration, in 2007 IEEE International Conference on Multimedia and
Expo (2007) pp. 1715–1718.

[20] S.-C. Pei, J.-J. Ding, and J.-H. Chang, Efficient implementation of quaternion fourier transform, convolu-
tion, and correlation by 2-d complex fft, IEEE Transactions on Signal Processing 49, 2783 (2001).

[21] W. Zhu, Q.-L. Fu, and J.-Q. Bai, The real-time object detection algorithm based on orbp and cascade svm,
in 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC) (2016) pp. 1023–1027.

[22] H. C. Karaimer, I. Cinaroglu, and Y. Bastanlar, Combining shape-based and gradient-based classifiers for
vehicle classification, in 2015 IEEE 18th International Conference on Intelligent Transportation Systems
(2015) pp. 800–805.

[23] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, An efficient k-means
clustering algorithm: analysis and implementation, IEEE Transactions on Pattern Analysis and Machine
Intelligence 24, 881 (2002).

[24] M. A. Kaur, M. P. Sharma, and M. Verma, A appraisal paper on breadth-first search, depth-first search and
red black tree, International Journal of Scientific and Research Publications (IJSRP) 4 (2014).

[25] M. Piccardi, Background subtraction techniques: a review, in 2004 IEEE International Conference on Sys-
tems, Man and Cybernetics (IEEE Cat. No.04CH37583), Vol. 4 (2004) pp. 3099–3104 vol.4.

[26] V. Sivakumar and V. Murugesh, A brief study of image segmentation using thresholding technique on a
noisy image, in International Conference on Information Communication and Embedded Systems (ICI-
CES2014) (2014) pp. 1–6.

[27] J. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, Automatic image segmentation by integrating
color-edge extraction and seeded region growing, IEEE Transactions on Image Processing 10, 1454 (2001).

[28] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man,
and Cybernetics 9, 62 (1979).

[29] S. R. Rupanagudi, B. S. Ranjani, P. Nagaraj, and V. G. Bhat, A cost effective tomato maturity grading system
using image processing for farmers, in 2014 International Conference on Contemporary Computing and
Informatics (IC3I) (2014) pp. 7–12.

[30] Y. Intaravanne, S. Sumriddetchkajorn, and J. Nukeaw, Ripeness level indication of bananas with visible
and fluorescent spectral images, in 2012 9th International Conference on Electrical Engineering/Electron-
ics, Computer, Telecommunications and Information Technology (2012) pp. 1–4.

[31] M. Verma and B. Raman, Object tracking using joint histogram of color and local rhombus pattern, in 2015
IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (2015) pp. 77–82.

[32] B. Guoan and Z. Yonghong, Transforms and Fast Algorithms for Signal Analysis and Representations
(Birkhäuser Basel, 2004).

[33] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, Design of an image edge detection filter using the sobel
operator, IEEE Journal of Solid-State Circuits 23, 358 (1988).

[34] PiCamera, Picamera docs, (2017).

[35] SciPy, Numpy user guide, (2017).

[36] OpenCV, Open source computer vision 3.1, (2015).

http://dx.doi.org/10.1109/ICoICT.2016.7571938
http://dx.doi.org/10.1109/ICoICT.2016.7571938
http://dx.doi.org/ 10.1109/TIP.2006.884955
http://dx.doi.org/ 10.1109/TIP.2006.884955
http://dx.doi.org/ 10.1109/ICME.2007.4285000
http://dx.doi.org/ 10.1109/ICME.2007.4285000
http://dx.doi.org/10.1109/78.960426
http://dx.doi.org/ 10.1109/IMCEC.2016.7867366
http://dx.doi.org/ 10.1109/IMCEC.2016.7867366
http://dx.doi.org/10.1109/ITSC.2015.135
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/10.1109/TPAMI.2002.1017616
http://dx.doi.org/ 10.1109/ICSMC.2004.1400815
http://dx.doi.org/ 10.1109/ICSMC.2004.1400815
http://dx.doi.org/10.1109/ICICES.2014.7034056
http://dx.doi.org/10.1109/ICICES.2014.7034056
http://dx.doi.org/10.1109/83.951532
http://dx.doi.org/ 10.1109/TSMC.1979.4310076
http://dx.doi.org/ 10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/IC3I.2014.7019591
http://dx.doi.org/10.1109/IC3I.2014.7019591
http://dx.doi.org/10.1109/ECTICon.2012.6254230
http://dx.doi.org/10.1109/ECTICon.2012.6254230
http://dx.doi.org/ 10.1109/ICSIPA.2015.7412167
http://dx.doi.org/ 10.1109/ICSIPA.2015.7412167
http://dx.doi.org/10.1109/4.996
https://picamera.readthedocs.io/en/release-1.13/
https://docs.scipy.org/doc/numpy-1.12.0/reference/
http://docs.opencv.org/3.1.0/

	Introduction
	Background
	Problem definition
	Thesis synopsis

	Program of requirements
	Introduction
	Functional requirements
	Ecological embedding in the environment
	System requirements
	Development of manufacturing methodologies
	Liquidation methodologies

	Technical review
	Types of sensors
	Color formats
	Object detection
	Foreground segmentation
	Quality of fruit with image sensing

	Design
	Design system
	Filtering
	Cluster detection
	Image segmentation
	Color classification

	Implementation
	Inputs and image sensor
	Foreground segmentation
	Object detection of stickers
	Cluster detection
	Histogramming

	Testing and results
	Test criteria
	Test setup
	Results
	Additional complete measurements
	Discussion

	Conclusion and recommendations
	Appendices
	Primary test sample
	Additional test 1
	Additional test 2
	Python code
	Sticker filter
	Cluster detection
	Foreground segmentation
	Histogramming

	Bibliography

