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1
Introduction

This chapter introduces the concept of a single microarchitecture that can facilitate not one, but two
instruction sets. It discusses the importance of facilitating multiple instruction sets, related work, and
the main contributions. Section 1.1 presents the concept of an instruction set, and the difficulty of
changing it, and the proposed solution. Section 1.2 describes the variety and history of instruction sets
used in the industry. Section 1.3 reviews the state-of-the-art in facilitating multiple instruction sets and
shows the challenges designers are facing. Section 1.4 covers the contributions of this thesis. Finally,
Section 1.5 provides the outline of the rest of this work.

1.1. Motivation

Application Software

Operating System

Compiler

Instruction
Set
Architecture

Microarchitecture

Logic

Transistors

Figure 1.1: Layers of
abstraction in Computer and

Software Engineering

Modern computer architectures are massively complex feats of engineering.
They can be made to maximize performance, minimize power consumption,
fit in small embedded systems, or some combination of these goals. The
overwhelming complexity of contemporary processors, and the software they
run, is too much for a single mind to handle. This is why various levels of
abstraction are used in the software engineering and computer engineering
disciplines. One such abstraction is the Instruction Set Architecture (ISA).

An instruction set can be seen as an agreement between software engi-
neers and hardware engineers. Note how the ISA sits between the microar-
chitecture and compiler in Figure 1.1. In the words of David Chisnall, an
early contributor to the RISC-V specification: “An instruction set is the lingua
franca between compilers and microarchitectures” [9]. This agreement pro-
vides a target for computer engineers to implement, and a base for software
engineers to build on top of. In this way, the ISA provides the foundation on
which software is built.

The fact that an ISA is so fundamental to all software written for a com-
puter system makes it difficult to change that ISA. For example, the x86 ISA,
which is commonly used in desktops and laptops, has a legacy which goes
back to the 8086 processor designed in 1978 [42, Chapter 3]. The fact that
earlier software was written for the previous ISA creates an incentive to keep
supporting that old ISA. This leads to design choices made in very different times affecting the archi-
tecture of microprocessors today.

Since the requirements of an ISA change over time, eventually it becomes beneficial to make break-
ing changes to the ISA. In fact, the personal computer manufacturing company Apple has done this
twice in as many decades [20], [41]. First, the ISA switched from PowerPC to x86 in 2007, and then
announced the architecture would switch from x86 to ARM in 2020. However, changing the ISA of a
computer lineup is not a trivial decision. After all, all the software written for the old ISA will suddenly
be incompatible. This is a reason why x86 has been extended by Intel and AMD for almost 50 years,
instead of being replaced by a more modern instruction set.

9
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RISC-V

Pipelined Single Cycle Multicyle

(a) A single ISA implemented by multiple microarchitectures

RISC-V ARM MIPS

Pipelined

(b) A single microarchitecture facilitating multiple ISAs

Figure 1.2: a) A single ISA can be implemented in multiple kinds of microarchitectures, b) so I propose a single
microarchitecture could facilitate multiple ISAs. The abstraction level is lower at the bottom and higher at the top.

There is simultaneously a need to change the ISA from time to time, but also the cost of software
compatibility that makes switching a difficult choice. Usually, a switch in ISA for a line of computers
comes with many pieces of software being incompatible with the new hardware. For example, when
Apple launched its second switch in 2020, Patrick Moorhead of Forbes wrote “While Apple may have
promised miraculous levels of compatibility, it’s just not here yet for what I’m testing.” [30] It would
benefit the computer industry if an ISA could be significantly modified without breaking software com-
patibility. Various solutions to ease the ISA transition have been proposed, and these serve as prior
art to this thesis.

In the prior art, a microarchitecture always implements one ISA. But as illustrated in Figure 1.2,
one ISA can be implemented in various different microarchitectures. For example, there are RISC-V
microprocessors that are single cycle [23] multi-cycle [50], pipelined [10], or even superscalar [51]. So,
what if we flip that perspective? If one ISA can be implemented in multiple microarchitectures, then
why not have one microarchitecture that can facilitate multiple instruction sets? That is the motivating
thought behind this thesis.

1.2. Background of Instruction Set Architectures
x86 is an example of a Complex Instruction Set Computer (CISC). Other architectures may be Reduced
Instruction Set Computers (RISCs). The difference is in the instruction set, a CISC architecture has
more complex instructions than a RISC architecture. According to Hennessy, this was a popular choice
in the 1970s when compilers were less advanced, and there was a need to bridge the ‘semantic gap’ [18,
Appendix K]. This semantic gap is the different way a programmer thinks about a computer compared
to the computer engineer. An engineer may think in terms of registers and data busses, a programmer
may think in terms of functions and data structures. As compilers began to fill in this semantic gap in
the 1980s, architectures shifted to using less complex instructions for the sake of performance. ARM
and MIPS are examples of an early RISC design, and RISC-V is a more modern example. RISC-V was
introduced in 2014, while the first version of ARM was made between 1983 and 1985 [16, Chapter 2],
[4]. The choice to make a RISC or CISC architecture is one of many.

Besides being RISC or CISC, any ISA design has trade-offs that lead to a choice that needs to be
made. For example, an ISA might have a very irregular instruction encoding to favor code density,
however this hinders ease of decoding. In 1991, Bhandarkar and Clark demonstrated this choice as
a significant limitation of the VAX architecture compared to MIPS [6]. According to Hennessy and
Patterson, this was mostly due to advances in technology [19]. Larger memories allowed programs
to be larger, reducing the need for dense instructions. In other words, while reducing code size made
sense when VAX was developed in 1977, it fell out of fashion over time.

The choices made in an ISA are not only a matter of time, but also of application. For example,
he ARM Cortex architecture uses Thumb encoding. This is an encoding system that reduces code
size, sacrificing ease of decoding. This is the exact trade off made for the VAX in 1977, and was
considered by Bhandarkar and Clark to be obsolete in 1991 because code size was not as important
in high performance computing. But the ARM Cortex is not made for high performance computing. It
is used in embedded devices, where memory constraints are a concern even today. For example, the
Embench Internet of Things (IoT) benchmarks explicitly do not use more than 64 kilobytes of memory
because some systems used in IoT devices will not have more than 64 kilobytes of RAM available [5].



1.3. State of the Art in Facilitating Multiple Instruction Sets 11

The original Embench benchmark even used as little as 16 kilobytes of ram [36]. So a design decision
that may not be correct in high-performance computing, may still be correct in the context of embedded
computing.

In general, some ISAs are better suited to certain applications than others. Ashish and Dean man-
aged to extract as much as 20% more performance out of a multi-core system by using multiple ISAs
[47]. They claim differences such as register pressure1, code density, and accelerations for particular
operations using e.g. SIMD or floating point instructions explained the difference in performance.

1.3. State of the Art in Facilitating Multiple Instruction Sets
Software Translation in Apple Rosetta 2
As said before, Apple has a history of changing the ISA of their computers. In order to facilitate this
transition, Apple released a piece of software called Rosetta 2. This software can transpile an x86
program to ARM, allowing old software to run on the new ARM processors. Using this technology,
the ISA can be changed completely while maintaining backward compatibility. As Moorhead wrote,
Rosetta 2 was not a silver bullet to fix all compatibility issues [30]. However, Apple used more than just
software for x86 compatibility.

The processor cores Apple uses have some special extensions specifically designed to facilitate
x86 emulation. J. Dougal has analyzed the code that Rosetta 2 produces to find these extensions [13].
This includes changes to the processor status flags, the floating point computation, and even having a
special operating mode in which common instructions such as addition compute the same flags as they
do on x86. These ARM processors also have support for a memory concurrency model that mimics
x86. In other words, the ARM processor has been modified to be more like an x86 processor to facilitate
the transition.

Software Translation in the Transmeta Crusoe
Binary translation software was also used by Transmeta for their Crusoe line of processors [11]. How-
ever, these processors had no hardware modification done to facilitate the transition. Since Transmeta
was aiming for the laptop market at the turn of the century, power efficiency was a top priority [17]. How-
ever, the Crusoe was slower than other x86 laptop processors due to the overhead of transpiling every
program. Ultimately, the Crusoe processors did not manage to disrupt the laptop market sufficiently,
and the line was discontinued after the second generation [43].

The Crusoe processors used software to continuously optimize the program that was running.
Transmeta called this technique Code Morphing. According to Klaiber, this was supposed to amor-
tize the cost of translating the binary and allow the Crusoe processor to reduce execution time [25].
Kistler and Franz determined that although this approach may sometimes work, continuous software
1Register pressure refers to local variables being saved to memory because there are not enough architectural registers to store
them in
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Figure 1.3: Contrast between this work and hardware binary translation as used by RVAM16 [21]
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optimization frequently cannot hit a break-even point [24]. Combined with the failure of Crusoe to stay
in the x86 market for long, doubt can be cast on the efficacy of software binary translation on its own.
This may explain why the engineers at Apple Inc. chose to modify the microarchitecture to fit the x86
instruction set as well as the ARM instruction set.

Hardware Binary Translation
Instead of transpiling instruction sets in software as with Rosetta and Crusoe, research has been done
on transpiling instructions in hardware. For example, Madni et al. have conceptualized a micropro-
cessor which translates x86 instructions to ARM [28]. This work is only a simulation framework; a full
hardware design was left by the authors as future work. The authors therefore do not know the area
overhead of their proposed design, although they were able to make an estimate of the performance
overhead using a simulation.

Huang et al. took an extra step and designed a processor in hardware that can run both ARM and
RISC-V binaries [21]. This processor is called RVAM16. The design of RVAM16 is shown in Figure
1.3a. Their design still uses a hardware translation system, in which ARM instructions are translated
to RISC-V. RVAM16, has a microarchitecture that only implements RISC-V, with a frontend to translate
ARM instructions to RISC-V. A major design constraint of RVAM16 was to keep the area comparable
to an ARM Cortex M0. The design shown in Figure 1.3a is a full RISC-V microprocessor, with an
additional hardware binary translation table. To make room for the table, the RISC-V processor would
need to be smaller than the ARM processor it is replacing.

To maintain such a low area despite adding a binary translation table, Huang et al. made the
choice to use a 16 bit ALU, even though ARM and RISC-V are 32-bit instruction sets. This caused a
performance loss of 30% in running native RISC-V instructions. What’s more, RVAM16 is about 25%
slower at running ARM instructions than running RISC-V instructions, when running the Embench test
suite. That is in addition to the 30% performance penalty of running RISC-V with a 16 bit ALU. In
conclusion, making the microprocessor fit in a small area required a significant loss of performance.
According to the authors, RVAM16 was designed to minimize resource consumption. It is not surprising
that performance had to be sacrificed to achieve this. This leaves the question of how much area such
a core would use if it had not sacrificed performance.

Heterogeneous ISA Multi Core Systems
So far, these solutions have aimed to support additional instruction sets for the purpose of compati-
bility, sacrificing performance. Heterogeneous ISA systems instead support multiple ISAs to extract
performance. In 2019, Venkat et al. have created a multi core processor in which some cores imple-
ment a certain subset of the x86 ISA [46]. This is called a heterogeneous ISA multi core processor, as
different cores have different ISAs. By scheduling programs for the appropriate core, a performance
gain of 19% could be reached.

Later, in 2024, Venkat et al. took this one step further and created a heterogeneous ISA processor
using entirely different ISAs [47]. Instead of using variations of x86, this multi core processor used
cores that ran x86, ARM thumb, and DEC Alpha. This system also achieved a performance gain of
21%, similar to the one they made in 2019. In these cases, the cores could each only run one ISA. The
multi core system facilitated multiple ISAs by having some cores that implement each instruction set.
Whether performance could be gained depends on how well the task set matches with the resources
the processor has available. Venkat et al. used a design space exploration method to find an optimal
configuration for the benchmark they used.

1.4. Contributions
This thesis features Combi, a single microarchitecture that can facilitate both ARMandRISC-V binaries.
In contrast to RVAM16, the proposed Combi microarchitecture in Figure 1.2b will execute both ISAs
natively. That is, instructions are not translated from one ISA to another, but rather amicroarchitecture is
made which can facilitate instructions from either ISA. In contrast to microarchitectures that implement
only one ISA, meaning they were never intended to run another instruction set, this processor can
facilitate multiple ISAs without translating into a primary ISA. This microarchitecture is designed to run
binaries of either ISA from the ground up.

Since the aim is to facilitate multiple instruction sets, a choice needs to be made. What instruction
sets will be facilitated? Four ISAs came to mind: x86, ARM, MIPS, and RISC-V. These are commonly
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Table 1.1: Instruction count of various versions of the ARM and RISC-V ISA

ISA Unique instructions
ARMv7A 189
ARMv6 116
ARMv5 72
ARMv4 63
RV32I 37

RV32IM 45

used ISAs and have an extensive library of documentation. However, x86 is too big to be reasonably
implemented in the span of a masters thesis. Consider that Shanley’s book on the x86 ISA is over
1500 pages long [42]. Also, MIPS and RISC-V are very similar instruction sets. A microarchitecture
that facilitates both would not be much different from a microarchitecture that was made to implement
only one. Therefore, the aim of this work is to make a single microarchitecture that facilitates both ARM
and RISC-V instructions.

ARM is not nearly as complex as x86, but the ARM ISA has grown in size as newer versions were
made. The amount of unique instruction mnemonics each version has is shown in Table 1.1. Two
versions of the RISC-V ISA are also shown - RV32I and RV32IM. We can see that every version of
ARM since version 4 has had more instructions than the basic RISC-V instruction set. To make the
combined microarchitecture in a reasonable amount of time, the somewhat dated version 4 instruction
set will be implemented. For reference, microprocessors implementing ARMv4 were already being
made in the year 2000 [2].

In this thesis, we will compare and contrast the RISC-V ISA and ARM ISA. Combi is compared
to the state of the art RISC-V microarchitectures. Combi can also be configured to function as a pure
RISC-V or ARM processor, which allows insights to be gleamed into the overhead of combining multiple
instruction sets on a single microarchitecture.

The design of a single microarchitecture that facilitates both RISC-V and ARM binaries
We create a single pipelined microarchitecture that can facilitate two instruction sets, named Combi.
The five stage pipeline can have both ARM and RISC-V instructions in flight at the same time, and can
forward results from one instruction to another across ISA boundaries. There is no pipeline flush or
stall required to switch the instruction set. In fact, the entire microarchitecture can seamlessly morph
between being a RISC-V processor and an ARM processor.

A comprehensive and systematic classification of the RISC-V and ARM instructions
To inform the design of a microarchitecture that is able to facilitate both ISAs, we split the RISC-V
and ARM instruction sets into three categories. These are register instructions, load/store instructions,
and branches. We compare and contrast the differences and similarities between the ISAs using this
classification as a framework.

By splitting ARM and RISC-V instructions across the same instruction type, we can determine which
instructions one has that the other has no equivalent to. We show that even though RISC-V does not
have some instructions that ARM has, hardware meant for instructions exclusive to ARM can be used
to facilitate certain RISC-V instructions as well.

Evaluation of the area and performance overhead of combining instruction sets
We synthesize Combi both to an FPGA realization and an Integrated Circuit (IC). In addition to being
able to morph between instruction sets, Combi can be configured at build-time to only implement ARM
or only implement RISC-V. The three versions of Combi - combined ISA, RISC-V, and ARM - are
compared in terms of area and maximum clock speed to evaluate the chip area and performance
cost of facilitating more than one instruction set. Combi is also compared to a state of the art RISC-
V microprocessor, Ibex [7]. This is done to show that Combi is not excessively large or slow when
configured to run only the RISC-V ISA.

A novel methodology for cross-ISA calls
In addition to comparing the instruction sets themselves, we discuss how the instruction stream can
be handed over from one instruction set to another. We show how the microarchitecture can make
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calling libraries written in foreign instruction sets completely transparent to the caller. Furthermore,
this does not take considerable area, nor does it require rewriting anything in the library or binary.
We present a methodology for changing the instruction set during the execution of a program, which
includes hardware methods, software methods, and a combination thereof.

1.5. Thesis Overview
The rest of this work is organized into five chapters. The first two chapters describe the two ISAs
that are implemented. These chapters each focus on one ISA, but instructions from both ISAs are
classified in the same way. The middle two chapters explain the methodology of switching between
the instruction sets and the design of a microarchitecture that facillitates the instruction sets. The final
chapter concludes this thesis.

The following list provides a detailed description of the contents of each chapter:

• In Chapter 2, the RISC-V ISA is described according to a general classification. This includes
the register set, the instruction set, and the Application Binary Interface. The same classifica-
tion is used in Chapter 3 to describe ARM instructions, which demonstrates the similarities and
differences between the ISAs The instructions that are implemented in Combi are discussed
comprehensively. The ABI is also described, which will be used in Chapter 4 as an example of
methodology for calling functions in a foreign ISA.

• In Chapter 3, the ARM ISA is described comprehensively according to the same classification as
the RISC-V ISA. As in Chapter 2, this is organized as first discussing the register set, then the
instruction set, and finally the Application Binary Interface. The ARM ABI is described to serve
as an example of the methodology for cross-ISA function calls.

• In Chapter 4, the approach used to combine these ISAs to a combined ISA is shown. The instruc-
tions of RISC-V and ARM are contrasted by category, with a focus on the similarity in instructions.
The matter of disambiguating Instruction Set Architectures is discussed here. Finally, a method-
ology for calling procedures from a different ISA is presented, including hardware and software
methods.

• In Chapter 5, it is shown how this combined ISA is implemented. We start from a generic pipelined
microarchitecture. Thenwe extend it with the necessary features required to facilitate both instruc-
tion sets. Special attention is given to ensuring the added features are used by both instruction
sets as much as possible. In other words, the aim is to make this microarchitecture unbiased
toward any ISA. Also, the implementation is compared to the state of the art.

• In Chapter 6, this thesis is concluded. A summary of the contributions is provided and future work
is discussed.
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RISC-V Instruction Set Architecture

To move toward implementing Combi, we start with systematically breaking down the RISC-V ISA. In
Chapter 3, the same is done for the ARM ISA. By analyzing both ISAs in the same way, the road to a full
picture of the Combi microarchitecture will be paved. Section 2.1 explains the modular naming scheme
of RISC-V, and provides an overview of the instruction encoding. Section 2.2 shows the register set of
RISC-V. Sections 2.3, 2.4, and 2.5 go into detail of all RISC-V instructions according to a categorization
that will also be used for ARM: instructions that operate on registers, instructions that interact with
memory, and instructions that modify control flow, in that order. Finally, Section 2.6 touches on the ABI
of RISC-V, which will be used to construct a methodology for function calls across ISAs in Chapter 4.

2.1. Modularity of the RISC-V Instruction Set Architecture
To understand the implementation of Combi, an understanding of the ISAs it facilitates is necessary.
Therefore, this section describes the RISC-V instruction set. In particular, the RV32IM instruction set
according to the RISC-V instruction set manual is described [49]. The RISC-V instruction set is de-
signed to be modular and extensible. RISC-V CPU’s must implement the core part of the instruction
set and may implement any combination of extensions. The core instruction set is called RV32I, and
extensions are usually single letters such as ‘M’ for multiply/divide instructions, ‘A’ for atomic instruc-
tions1, and ‘C’ for compressed instructions2. Combi facilitates the base integer RISC-V instructions
(RV32I) as well as the Multiply extensions (RV32M). The combined instruction set is called RV32IM.

As explained in Chapter 3, the ARM ISA also has a multiplication instruction. Unlike RISC-V, the
ARM ISA was not designed to be modular. To be compatible with ARM, a microarchitecture must
implement the full ISA, including the multiply instructions. To be compatible with ARM binaries, Combi
will have to facilitate multiplication in any case. Therefore, implementing the multiplication extension
will be trivial.

The RV32IM instruction set also has instruction encodings for division and remainder operations,
but these will not be implemented in Combi. This technically means that the full M specification is not
facilitated, but the Zmmul subset is. Therefore, it is more accurate to say that Combi facilitates the
RV32IZmmul instruction set.

All RISC-V instructions in the RV32IM ISA are encoded as 32 bits. At the start of every section
describing an instruction, the encoding of that instruction is shown as a long bar separated into seg-
ments of bits, with the bit positions labeled above the bar. Many instructions in RISC-V follow a similar
encoding. For example, most instructions that operate on two registers are encoded in a similar way.
In RISC-V, this is called the R-type encoding. The name of the encoding type will be next to the bar, or
sometimes the instructions that use an encoding will be next to it.

1The atomic instructions are used to ensure thread safety in concurrent programs
2Compressed instructions are 16-bit instructions that can be used to optimize code density
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Table 2.1: Overview of the RV32I instruction types

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd 0 0 1 1 0 1 1 R-type, Section 2.3

imm[11:0] rs1 funct3 rd 0 0 0 1 0 1 1 I-type, Section 2.3

imm[31:12] rd opcode U-type, Section 2.3

imm[11:5] rs2 rs1 funct3 imm[4:0] 0 0 1 0 0 1 1 S-type, Section 2.4

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] 1 1 0 0 0 1 1 B-type, Section 2.5

[20] imm[10:1] [11] imm[19:12] rd 1 1 0 1 1 1 1 J-type, Section 2.5

RISC-V Encoding Overview
There are six instruction types in the base 32-bit RISC-V ISA. These are shown in Table 2.1. In general,
the first seven bits of an instruction type are a unique opcode. This is used to identify the type of
instruction, which is then used to interpret the meaning of the other 25 bits. The funct7 and funct3 fields
then identify a more specific instruction from the instruction type. For example, the add instruction is
an R-type instruction with the funct3 and funct7 field set to all zeroes.

The R-type instructions are used for operations that calculate a result using two registers and store
it in a third register. The I and U-type instructions instead use a constant to modify a register. Together,
these form the kinds of instructions that will be discussed in Section 2.3. The S-type instructions are
used for storing to memory, and loading from memory uses an I-type instruction. These instructions
are covered in Section 2.4. Finally, the B and J-type instructions are used for conditional branches and
unconditional jumps. These are explained in in Section 2.5.

2.2. Registers
The RV32I specification has 32 registers, called x0 to x31. The x0 register is special: writing to this
register has no effect and reading from this register will always result in zero. All other registers are
general purpose, all instructions can use any register. Therefore, an instruction that uses a register will
specify it using a 5 bit field.

x0 can also be used in any instruction. This can be useful in some circumstances. For example,
adding an immediate to x0 is the idiomatic way to load an immediate into a register, according to the
RISC-V ISA manual [49]. x0 can also be used to discard the register result of an instruction. For
example, the RISC-V ISA manual recommends using the Jump and Link instruction (Section 2.5.1) for
jumping without saving the return address [49]. In this case, x0 is used as the destination register, and
the return address is not saved.

2.3. Register Instructions
31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd 0 0 1 1 0 1 1 R-type

Register instructions perform an operation on two registers and store the result in another register.
The two source registers are rs1 and rs2, and the destination register is rd. Since there are 32 regis-
ters, the source and destination fields are 5 bits wide. These instructions are called R-type instructions
and are listed in Table 2.2.

A 64 bit multiplication is done in two instructions: mulh to compute the most significant 32 bits,
and mul to computer the least significant 32 bits. There are 3 variants of mulh for signed or unsigned
operands. mul can be used for signed or unsigned arithmetic, because the lower 32 bits of the product
are independent from the sign of the 32-bit multiplicand or multiplier [35, Section 9.4]. Signed or un-
signed multiplication has the same result in the lower 32 bits, but a different result in the upper 32 bits.
That is why there are special instructions for signed multiplication when computing the upper 32 bits,
but not for computing the lower 32 bits.
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Table 2.2: RV32IZmmul R-Type instructions

Instruction funct3 funct7 Operation
add rd, rs1, rs2 000 0x00 rd = rs1 + rs2
sub rd, rs1, rs2 000 0x20 rd = rs1 - rs2
sll rd, rs1, rs2 001 0x00 rd = rs1 << rs2
slt rd, rs1, rs2 010 0x00 rd = rs1 < rs2 ? 1 : 0
sltu rd, rs1, rs2 011 0x00 rd = rs1 <unsigned rs2 ? 1 : 0
xor rd, rs1, rs2 100 0x00 rd = rs1 ^ rs2
srl rd, rs1, rs2 101 0x00 rd = rs1 >> rs2
sra rd, rs1, rs2 101 0x20 rd = rs1 >>arith rs2
or rd, rs1, rs2 110 0x00 rd = rs1 | rs2
and rd, rs1, rs2 111 0x00 rd = rs1 & rs2
mul rd, rs1, rs2 000 0x01 rd = (rs1 * rs2)[31:0]
mulh rd, rs1, rs2 001 0x01 rd = (signed(rs1) * signed(rs2))[63:32]
mulhsu rd, rs1, rs2 010 0x01 rd = (signed(rs1) * rs2)[63:32]
mulhu rd, rs1, rs2 011 0x01 rd = (rs1 * rs2)[63:32]

2.3.1. Immediate Instructions
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd 0 0 0 1 0 1 1 I-type

Immediate instructions are like Register instructions, except that a 12-bit immediate is used instead
of rs2. The instructions encoding is shown in Table 2.3. The 12-bit immediate is sign extended, even
for non-arithmetic instructions. Even sltiu (Set if Less Than Immediate Unsigned), which is explicitly
an unsigned comparison, will first sign extend the 12-bit immediate to 32 bits before the unsigned
comparison, as pointed out explicitly in the manual [49]. There is no instruction to multiply with an
immediate. There is also no instruction to subtract an immediate. However, an addition with a negative
immediate is possible.

2.3.2. Upper immediate Instructions
31 12 11 7 6 0

imm[31:12] rd opcode U-type

There are two instructions that use the U-type format. These are lui and auipc. The operation
of these instructions is shown in Table 2.4. The U-type format has the largest immediate size of any
RISC-V instruction type, 20 bits long. When combined with an immediate type instruction (Section
2.3.1), these instructions can load an arbitrary 32-bit constant into a register using two instructions.

auipc will load the immediate value relative to the program counter, which is useful for Position
Independent Code (PIC). Position Independent Code means that a program will execute correctly re-
gardless of where in memory it is loaded. Consider a library that has 8 kilobytes of code followed by 4

Table 2.3: RV32IZmmul I-Type instructions

Instruction funct3 funct7 Operation
addi rd, rs1, imm 000 0x00 rd = rs1 + imm
slli rd, rs1, imm 001 0x00 rd = rs1 << imm
slti rd, rs1, imm 010 0x00 rd = rs1 < imm ? 1 : 0
sltiu rd, rs1, imm 011 0x00 rd = rs1 <unsigned imm ? 1 : 0
xori rd, rs1, imm 100 0x00 rd = rs1 ^ imm
srli rd, rs1, imm 101 0x00 rd = rs1 >> imm
srai rd, rs1, imm 101 0x20 rd = rs1 >>arith imm
ori rd, rs1, imm 110 0x00 rd = rs1 | imm
andi rd, rs1, imm 111 0x00 rd = rs1 & imm
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Table 2.4: RV32IZmmul U-type instructions

Instruction opcode Operation
lui rd, imm 0x37 rd = imm<<12
auipc rd, imm 0x17 rd = pc + (imm<<12)

kilobytes of data, as shown in Figure 2.1.
Now consider if this library is loaded in a program that is also 8 kilobytes large, like shown in figure

2.2. To make space for the program, the library has been moved and the library’s data now resides
at address 0x00004000 instead of 0x00002000. This means that if the library was loading data from
0x00002000 directly, it will now readmeaningless data instead. If it was instead using addresses relative
to the program counter, this problem would not happen. This is because the library code was also
moved 0x2000 bytes up. The relative difference between the address of the library code and the library
data has not changed. In conclusion, using addresses relative to the program counter allows binaries
to be relocated in memory, which is called Position Independent Code. This can be achieved by using
the auipc instruction.

0x00002FFF

0x00002000

Library Data

0x00001FFF

0x00000000

Library Code

Figure 2.1: Example library memory map

0x00004FFF

0x00004000

Library Data

0x00003FFF

0x00002000

Library Code

0x00001FFF

0x00000000

Program Code

Figure 2.2: Example memory map of library loaded within an application

2.3.3. Immediate Encoding
As mentioned in various other sections, the encoding of immediates in RISC-V may seem strange at
first glance. However, there is a design choice behind the way immediates are encoded. The encoding
is done the way it is to make sure as many bits of the immediate are the same as possible. Figure 2.3
shows an overview of how every bit of the immediate is stored for all RISC-V instruction formats. Note
that many bits are in the same position, even in different instruction types. For example, bits in the
B-type instruction were shifted to the left to align with bits in the S-type, because the B-type immediate
is shifted one position to the left in branch instructions. To understand why the B-type immediate should
be shifted by one, refer to Section 2.5.
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31 25 24 20 19 12 11 7 6 0

11 10 9 8 7 6 5 4 3 2 1 0 I-type

11 10 9 8 7 6 5 4 3 2 1 0 S-type

12 10 9 8 7 6 5 4 3 2 1 11 B-type

20 10 9 8 7 6 5 4 3 2 1 11 19 18 17 16 15 14 13 12 J-type

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 U-type

Figure 2.3: Immediate encodings for RISC-V instruction formats. Immediate bits with same position are highlighted in green.

2.4. Load/Store Instructions
Loads and stores in RISC-V follow the same basic addressing mode. The memory address is a register
plus a signed 12-bit immediate offset. The ARM ISA has many more options than this, as shown in
Section 3.4. The next sections describe the load and store instructions in more detail.

2.4.1. Store Instructions
31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] 0 0 1 0 0 1 1 S-type

Store instructions use a sign extended 12-bit immediate like immediate instructions. However, the
immediate is encoded differently from an I-type instruction. The lower 5 bits are stored in the place
where I-type instructions place the destination register. The store instructions do not have a destination
register, since the data is stored to memory. The upper 7 bits are in the same place as the I-type
instructions. There is only one addressing mode: a base register offset by an immediate. As shown in
Table 2.5, there are three instructions for storing values: storing an 8-bit byte, a 16-bit halfword, or a
32-bit word.

Table 2.5: RV32IZmmul S-Type instructions

Instruction funct3 Operation
sb rs2, imm(rs1) 000 mem[rs1 + imm][7:0] = rs2[7:0]
sh rs2, imm(rs1) 001 mem[rs1 + imm][15:0] = rs2[15:0]
sw rs2, imm(rs1) 010 mem[rs1 + imm][31:0] = rs2[31:0]

Word and halfword stores may not be aligned to their boundary. That is, the address may not be a
multiple of the size of a word or the size of a halfword. The RISC-V ISA manual document allows an
execution environment (like a CPU) to do one of two things if this happens, the CPU may:

• raise an exception;

• perform the load/store correctly, with a possible performance penalty.

As an example of how compilers handle this ambiguity, The GNU Compiler Collection (GCC) will emit
aligned stores and loads depending on the target CPU [44]. If the CPU hardware does not support
fast unaligned loads/stores, GCC will make sure that all memory accesses are aligned to the correct
boundary by default. This behavior can be changed with a compiler flag.

2.4.2. Load Instructions
31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd 0 0 0 0 0 1 1 lw, lh, lhu, lb, lbu

Load instructions use the same encoding as immediate type instructions, but with a different opcode.
That is, bits 6 down to 0 have a different constant value. Unaligned loads are handled in the same way
as unaligned stores, see Section 2.4.1.



20 2. RISC-V Instruction Set Architecture

What is different from store instructions is the ability to sign extend a loaded byte or halfword. As
shown in Table 2.6, there are two more load instructions than store instructions, lbu and lhu. The
value stored in the register will be the value of the signed data in memory, sign extended to 32 bits.
For example, if the value 0xFF (−1) is stored as a byte in memory at address 0x100, executing ld x1,
0x100 will load the x1 register with the value 0xFFFFFFFF (−1). The lbu and lhu instructions do not sign
extend the loaded value and instead extend the value with zeroes, in accordance with the ISA manual
[49]. Returning to the example, lbu x1, 0x100 will load the x1 register with the value 0x000000FF
(255) instead of 0xFFFFFFFF (−1), clearing bits 8 through 31.

Table 2.6: RV32IZmmul load instructions

Instruction funct3 Operation
lb rd, imm(rs1) 000 rd[7:0] = se(mem[rs1 + imm][7:0])∗
lh rd, imm(rs1) 001 rd[15:0] = se(mem[rs1 + imm][15:0])∗
lw rd, imm(rs1) 010 rd[31:0] = mem[rs1 + imm][31:0]
lbu rd, imm(rs1) 100 rd[7:0] = mem[rs1 + imm][7:0]
lhu rd, imm(rs1) 101 rd[15:0] = mem[rs1 + imm][15:0]

∗se() means sign extended.

2.5. Branch Instructions
31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] 1 1 0 0 0 1 1 B-type

Branch instructions have an 12-bit immediate, which is shifted to the left by one. This is because
instructions in RISC-V are always aligned to two bytes. All the instructions in this chapter are 4 bytes
long, but the compressed instruction extension (RV32IC) has instructions that are 2 bytes long. Since
the smallest instructions are 2 bytes long, all instructions are aligned to a 2 byte boundary. Therefore,
any branch must be a multiple of 2 bytes away.

The 12-bit immediate should be shifted to the left by one, which is why it is encoded in the way it
is. Bits 10 down to 1 are stored in the same place as the S-type instruction, with bits 11 and 12 stored
in the remaining space. This is done to reduce complexity in the decoder, according to the RISC-
V ISA manual [49]. The immediate is also sign extended to allow branches forward and backward.
All branches are listed in Table 2.7. There are branches for equality, signed arithmetic relations, and
unsigned arithmetic relations.

Table 2.7: RV32IZmmul B-Type instructions

Instruction funct3 Operation
beq rs2, rs1, imm 000 if(rs1 == rs2) pc += imm<<1
bne rs2, rs1, imm 001 if(rs1 != rs2) pc += imm<<1
blt rs2, rs1, imm 100 if(rs1 <signed rs2) pc += imm<<1
bge rs2, rs1, imm 101 if(rs1 >=signed rs2) pc += imm<<1
bltu rs2, rs1, imm 110 if(rs1 < rs2) pc += imm<<1
bgeu rs2, rs1, imm 111 if(rs1 >= rs2) pc += imm<<1

2.5.1. Jump Instructions
31 30 21 20 19 15 14 12 11 7 6 0

[20] imm[10:1] [11] imm[19:12] rd 1 1 0 1 1 1 1 J-type

imm[11:0] rs1 funct3 rd 1 1 0 0 1 1 1 jalr

RISC-V has two kinds of jump instruction: jal and jalr. jal is encoded as a J-type instruction,
and jalr as an I-type. The immediate of the J-type instruction is shifted by one, and therefore is stored
in a similar way to branch instructions to reduce decoder complexity [49]. Note that bits 10 down to 1
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Table 2.8: RV32IZmmul Jump instructions

Instruction type funct3 Operation
jalr rd, imm I 000 rd = pc+4; pc = (rs1+imm) & ~0x01
jal rd, imm J rd = pc+4; pc += imm<<1

are stored in the same position as the I-type instruction, and bits 19 down to 12 are stored in the same
position as the U-type instruction. This might seem jarring, but the method to this peculiar immediate
encoding is explained in Section 2.3.3.

jal will make the program counter jump to a position specified by a 20-bit offset. This offset is sign
extended, and shifted by one for the same reason as branch instructions, see Section 2.5. The address
of the next instruction (pc+4) is also stored in a register for the sake of function calls. If this is not the
needed the RISC-V ISA manual recommends using register x0, the zero register, as a destination [49].

jalr performs the same operation as jal, but using a register as an offset instead of a 20-bit
immediate. The manual explains that this allows jumps to anywhere in the 32-bit address space when
combined with the lui or auipc instructions [49]. lui and auipc are explained in Section 2.3.2.

2.6. Application Binary Interface
As explained in Section 2.2, all registers are interchangeable from an ISA perspective. However, the
RISC-V ABI does assign special meanings to these registers [8].

The list of registers, as well as their role in the RISC-V ABI, are shown in Table 2.9. Two registers
are assigned to hold return values, these are a0 and a1. Furthermore, eight registers are assigned as
function arguments, these are a0-a7. This is different from the ARM ABI, and the way to consolidate
this difference will be shown in Section 4.6.

When a function is called, this function will use some registers as part of its execution. The value of
these registers may need to be restored by either the function called (callee) or the program that called
the function (caller). Which one of the caller or callee is responsible for saving the value of a register
at a function call is shown in the ‘Saved’ column of Table 2.9.

Function arguments that do not fit into a0-a7 are put on the stack. The stack pointer (x2) will point
to the first argument, with other arguments in the memory addresses above. The stack pointer must
be aligned to a 16-byte boundary when a function is called. However, according to the RISC-V ABI,
it is not necessary to keep the stack aligned within the function [8]. The only requirement is that the
stack should be aligned when a ABI compliant function is called. The ABI does not state a reason for
why the stack should be aligned, but it might have to do with simplifying caching the stack. In short,
cache lines are usually aligned to a power of two. If the head of the stack is also aligned to a power
of two, then it neatly fills a cache line. But if the stack is not aligned, it will occupy two lines of cache.
Since the head of the stack is frequently accessed, optimizing those accesses to one cache line can
be beneficial.

Note that three fo the 32 RISC-V registers do not have a defined saving convention. These are
x0, x2, and x3. As discussed above, x0 is immutable and will always read a value of 0. Therefore,
it does not need to be saved. x2 and x3 have a special function in the RISC-V ABI. In compliance
with the ABI, these registers should be set only once: in the program’s prelude or the thread’s prelude
respectively. Their value points to the location of the global variables and the global variables of the
thread respectfully, plus 0x800 (2048). The exact meaning of this ABI function is outside the scope of
this thesis; suffice to say, the values of these registers should not change in the normal execution flow
of the program.
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Table 2.9: RISC-V registers and usage in the RISC-V ABI [8]

Register ABI name ABI Function Saved
x0 zero always zero
x1 ra return address caller
x2 sp stack pointer (full) callee
x3 gp global pointer
x4 tp thread pointer

x5-x7 t0-t2 temporary registers caller
x8-x9 s0-s1 saved registers callee

x10-x11 a0-a1 function arguments / return values caller
x12-x17 a2-a7 function arguments caller
x18-x27 s2-s11 saved registers callee
x28-x31 t3-t6 temporaries caller
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ARM Instruction Set Architecture

This chapter will describe the ARM ISA using the same framework as was used in Chapter 2. Then,
the two will be contrasted in Chapter 4, to serve as the basis for the Combi microprocessor. Section 3.1
provides an overview of the ARM instruction encoding. Section 3.2 will explain the special properties
of ARM registers. Sections 3.3, 3.4, and 3.5 will go into detail about the ARM instructions in the same
order as the RISC-V instructions: instructions that operate on registers, instructions that interact with
memory, and instructions that modify control flow. Finally, Section 3.6 touches on the ABI of ARM, to
be used in the methodology of switching ISAs in Chapter 4.

The instructions of the ARM ISA are 32 bits long, like RISC-V. The ARMv4 ISA also has a set of
16 bit instructions, called Thumb [1]. The Thumb instructions serve a similar purpose in ARM as the
Compressed instructions do in RISC-V, however neither are implemented in this work.

At the start of every section describing an instruction, the encoding of that instruction is shown as a
long bar separated into segments of bits, with the bit positions labeled above the bar. Some instructions
in ARM follow a similar encoding. For example, most instructions that operate on two registers are
encoded in a similar way. In ARM documentation, these is called data processing instructions. This
name will be next to the bar describing how data processing instructions are encoded. Most other
instructions use a unique encoding, and in this case the mnemonic of the instruction will instead be
next to the encoding.

3.1. ARM Instruction Set Overview
In Section 2.1, the tidy organization of the RISC-V ISA was shown. Unlike RISC-V, the ARM ISA has
evolved over time, with new instructions being added every version. As the product of several revisions,
the ARMv4 ISA is less organized than the RISC-V one. Nevertheless, an attempt is made to provide
an overview in this section. This will aid in understanding the context of the following sections, which
go into detail on the instructions.

An overview of the instruction types is shown in Table 3.1. Some bits are left unspecified, since
their interpretation is strongly tied to the type of instruction they represent. The meaning of these bits
is often represented by a single letter, which would have no meaning in the context of this overview.
Therefore, refer to the specified section to see the full encoding of an instruction type.

The most significant bits of all instructions specify a predicate for conditional execution. For ex-
ample, an instruction can be specified to not execute if the result of the previous instruction was zero.
The most significant bits after that specify the kind of instruction that will execute, with some excep-
tions. These instruction types were later additions to the ARM ISA, which explains the nonstandard
encoding they use. The data processing, load/store, load/store multiple, and branch instructions follow
the general convention that the most significant bits dictate the type of instruction. The multiplication
and special load/store instructions do not follow this convention. Instead, an instruction of this type will
have bits 7 and 4 specifically set to ‘1’. This happens to not ever occur in the Data Processing and
Load/Store instructions, which is necessary for the encoding to be unique. If this was not the case,
Multiplication instructions would have the same binary encoding as other Data Processing instructions.

23



24 3. ARM Instruction Set Architecture

Table 3.1: Overview of ARM instructions

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 4 3 0

cond 0 0 opcode Rn Rd operand 2∗ Data Processing, Sec. 3.3

cond 0 1 Rn Rd operand 2∗ Load/Store, Sec. 3.4

cond 1 0 0 Rn register list Load/Store Multiple, Sec. 3.4

cond 1 0 1 offset Branch, Sec. 3.5

cond 0 0 0 0 Rd Rn Rs 1 0 0 1 Rm Multiplication, Sec. 3.3

cond 0 0 0 Rn Rd imm[7:4] 1 op 1 Rm Special Load/Store, Sec. 3.4
∗bits seven and four of operand 2 are never both 1, which ensures it does not overlap with other instructions. See Figure 3.1

The instruction types were given a name in this thesis that matches with the category of instructions
they encode. The data processing and multiplication instruction fit the description of instructions that
operate on registers, and are therefore discussed in Section 3.3. The load/store, load/store multiple,
and special load/store instructions all operate on memory and are explained in Section 3.4. The spe-
cial load/store instructions are given that name because of their unique encoding. Finally, the branch
instruction is the only ARM instruction that is specifically designed to change control flow, and is dis-
cussed in Section 3.5.

3.2. Registers
The ARMv4 ISA has 16 general purpose registers, named r0-r15 [1]. r14 is also called the link register,
and it has a special interaction with the branch and link (BL) instruction. The BL instruction is explained
in Section 3.5.

r15 is also special. It is linked to the program counter. When r15 is read, the value of the current
program counter is read. And when r15 is written to, the program counter is changed to that value.
That is, a jump occurs in the program flow. The ARM Reference Manual actually specifies that the
value of the program counter when read is not the address of the instruction that is executed, but rather
that value plus 8 [1]. According to the ARM7 data sheet, this is due to instruction prefetching [2]. In
other words, the program counter will already have advanced two instructions ahead.

There is another exception to reading from r15, according to the ARMv4 Reference Manual [1]. If
the instruction is a store type, such as str or stm, the value may be 8 more than the address of the
instruction, or 12 more. Which one it is depends on the implementation of the ARM ISA. For example,
the ARM7TDMI-S data sheet claims the value will be 12 more than the address of the instruction
[2]. Due to the ambiguity, the ARM Reference Manual advises against storing the program counter in
memory using the str or stm instructions directly.

3.3. Register Instructions
31 28 27 26 25 24 21 20 19 16 15 12 11 0

cond 0 0 I opcode S Rn Rd operand 2 Data Processing

There are 16 data processing instructions in ARM. Which instruction is executed depends on the
value of the opcode field. The 16 instructions are listed in Table 3.2. If the S bit is set, data processing
instructions will modify certain bits in the status register. Which bits can be changed depends on the
instruction, the ‘Flags’ field in Table 3.2 shows which fields are changed by an instruction. In general,
instructions that use the adder or subtractor can set all flags, and instructions which do not will only set
the negative and zero flags.
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Table 3.2: ARM Data Processing Instructions [2]

Opcode Mnemonic Operation Flags Set∗
0000 and Rd = Rn & op2 NZ
0001 eor Rd = Rn ^ op2 NZ
0010 sub Rd = Rn - op2 NZ
0011 rsb Rd = op2 - Rn NZCV
0100 add Rd = Rn + op2 NZCV
0101 adc Rd = Rn + op2 + C NZCV
0110 sbc Rd = Rn - op2 + C - 1 NZCV
0111 rsc Rd = op2 - Rn + C - 1 NZCV
1000 tst set condition codes on Rn & op2 NZ
1001 teq set condition codes on Rn ^ op2 NZ
1010 cmp set condition codes on Rn - op2 NZCV
1011 cmn set condition codes on Rn + op2 NZCV
1100 orr Rd = Rn | op2 NZ
1101 mov Rd = op2 NZ
1110 bic Rd = Rn ^ ~(op2) NZ
1111 mvn Rd = ~op2 NZ

∗The flags are explained in Section 3.5.1

3.3.1. Operand 2
The lower 12 bits of a data processing instruction specify the second operand, also known as operand2.
The encoding of these 12 bits is shown in Figure 3.1. This operand can take one of three forms:

1. An 8 bit immediate rotated to the right by an even amount of positions;

2. The value of a register (Rm) shifted by any amount;

3. The value of a register (Rm) shifted by an amount specified by a third register (Rs).

If the I bit is set, the immediate version is used. The 8 bit immediate is not sign extended. The
immediate can be rotated to the right by an even amount of positions, but not an odd amount. Rotating
bits to the right means that bits shifted below bit zero will appear starting from bit 31, as opposed to
shifting. If the bits were shifted to the right, bits shifted to a position below bit zero will vanish.

If the I bit is not set, another register (Rm) will be used as the second operand. This operand can be
shifted in four ways, as shown in Figure 3.1b. An arithmetic right shift sign extends the shifted value
based on the 31st bit. The ‘rotate right’ operation is the same operation as the one used for immediates
when the I bit is set. There can be two sources of the shifted amount. If bit 4 of the instruction is 0, an
immediate value is used. If bit 4 is 1, the value of a register Rs is used. Thus, operations such as Rd
= Rn + (Rm << Rs) can be encoded with just one 32-bit instruction. That is, up to three registers may
be used in a single instruction.

11 8 7 6 5 4 3 0

shift type 0 Rm Register shifted by constant

Rs 0 type 1 Rm Register shifted by register

rotate[5:1] imm Immediate

(a)

type shift operation
00 logical left
01 logical right
10 arithmetic right
11 rotate right

(b)

Figure 3.1: a) ARM Shift operations for operand 2, b) Shifts performed depending on type field in Figure a.
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3.3.2. Multiply
31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

cond 0 0 0 0 0 0 0 S Rd Rn Rs 1 0 0 1 Rm mul

cond 0 0 0 0 0 0 1 S Rd Rn Rs 1 0 0 1 Rm mla

cond 0 0 0 0 1 U 0 S RdHi RdLo Rs 1 0 0 1 Rm mull

cond 0 0 0 0 1 U 1 S RdHi RdLo Rs 1 0 0 1 Rm mlal

ARMv4 has four kinds of multiply instructions. These are multiply (mul), multiply-accumulate (mla),
multiply long (mull), and multiply-accumulate long (mlal). mul and mla will be discussed first, followed
by mull and mlal.

mul simply multiplies the 32-bit value of Rm with Rs and stores the result in the 32-bit register Rd. The
upper 32 bits of the multiplication are discarded. If the S bit is set, the N and Z flags are set correctly, the
C flag is set to what the ARM7 data sheet calls a meaningless value [2], and the V flag is unaffected.
mla performs the same multiplication, but also adds Rn to the result. That is, mla performs the operation
Rd = Rs * Rd + Rn.

mull performs a full 64-bit multiplication of Rm and Rs. The lower 32 bits are stored in RdLo, and
the high 32 bits are stored in RdHi. If the U bit is set, an unsigned multiplication is performed. If
the S bit is set, the N and Z flags are set correctly, but the C and V flags will be set to meaningless
values. Otherwise, the values of both Rm and Rs are treated as signed numbers. mlal performs the
same multiplication, but also adds the 64-bit value of RdHi and RdLo to the result. In other words, the
operation [RdHi, RdLo] = Rm * Rs + [RdHi, RdLo] is performed.

3.4. Load/Store Instructions
31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 0 1 I P U B W L Rn Rd operand 2 ldr, str

Arm has various addressing modes for memory access. The basic form is a load/store with a base
address stored in a register Rn with an offset specified by operand 2. Operand 2 works as described in
Section 3.3.1, except that shifting by a register is not possible. Operand 2 is then added to the value
of Rn to calculate the memory address.

This addressing mode can be changed by 4 bits in the instruction: P, U, B, and W. Table 3.3 shows
the effect of the various bits.

• If the P bit is set, operand 2 is added to Rn before indexing into the memory. If the P bit is clear,
the memory is read at the address pointed to by Rn and Rn will have operand 2 added to it;

• If the U bit is set, operand 2 is subtracted from Rn instead of being added to it;

• If the B bit is set, only a byte is transfered. If this is a load, the value is not sign extended;

• If the W bit is set, the calculated memory address is written back to register Rn.

If the L bit is set, the value is loaded into Rd from the memory. Otherwise, the value into Rd is stored
into memory. Note that if a load is specified and the memory address is written to Rn, two registers
can be written to in a single instruction. This will be important when discussing the microarchitecture
of Combi, the novel processor of this thesis.

Table 3.3: ldr and str bits and their meaning.

Bit Mnemonic Operation if clear Operation if set
P Pre-increment mem[Rn] = Rd; Rn = Rn + op2 mem[Rn + op2] = Rd
U Up mem[Rn - op2] = Rd mem[Rn + op2] = Rd
B Byte mem[Rn + op2][31:0] = Rd[31:0] mem[Rn + op2][7:0] = Rd[7:0]
W Write back mem[Rn + op2] = Rd mem[Rn + op2] = Rd; Rn = Rn + op2
L Load mem[Rn + op2] = Rd Rd = mem[Rn + op2]



3.4. Load/Store Instructions 27

3.4.1. Special Load/Store Instructions
31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0 P U I W 1 Rn Rd imm[7:4] 1 1 0 1 Rm ldrsb

cond 0 0 0 P U I W 1 Rn Rd imm[7:4] 1 1 1 1 Rm ldrsh

cond 0 0 0 P U I W L Rn Rd imm[7:4] 1 0 1 1 Rm ldrh,strh

cond 0 0 0 1 0 0 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm swp

Some new load and store instruction were added in ARMv4, according to the ARM Architecture
Reference [1]. These are:

• ldrsb: load a sign extended byte;

• ldrsh: load a sign extended halfword (16-bits);

• ldrh,strh: load a zero extended halfword or store a halfword;

• SWP: load the contents of the memory address into Rd and stores the value of Rm into the same
address atomically.

The P, U, W, and L bits work as described in Table 3.3 and Section 3.4. The I bit, however, is unique
to these instructions. If the I bit is set, the bits of the instruction at 11 down to 8 and 3 down to 0 are
used to create an 8-bit immediate offset from the base register Rn. Otherwise, the value of register
Rm is added to or subtracted from Rn. The immediate is always unsigned, but negative offsets are still
possible using the U bit, since the U bit effectively controls the sign of the offset.

3.4.2. Load/Store Multiple
31 28 27 25 24 23 22 21 20 19 16 15 0

cond 1 0 0 P U S W L Rn register list ldm, stm

ARM has instructions for loading and storing the values of multiple registers at once. These are the
load multiple (ldm) and store multiple (stm) instructions. These instructions use the bottom 16 bits as a
bit field to specify registers to be stored/loaded. For example, if bits 3, 4, and 13 of the instruction are
set, registers r3, r4, and r13 will be loaded. Registers are stored and loaded from lowest to highest, so
r3 will bit loaded before r4. r15 - the program counter - can also be specified. However, when using
stm with r15, some architectures will add 8 to the program counter when stored, and some will add 12.
Therefore, the ARM Reference manual discourages using stm with the program counter (r15) [1].

These instructions always increment (or decrement) the address pointed to by Rn by 4 for every
register loaded or stored. No other immediate or register offset can be specified. Essentially, the
registers will be loaded or stored into a contiguous block of memory. The P, U, W, and L bits of the
instruction work as specified in Table 3.3 and Section 3.4. In this case, if the P bit is set, the first register
will be loaded to the value of Rn plus 4. The S bit of this instruction is related to switching privilege levels,
and is outside the scope of this thesis.
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3.5. Branch Instructions
31 28 27 25 24 23 0

cond 1 0 1 L offset Branch

Branches in arm use the conditional execution system explained in Section 3.5.1 to either condi-
tionally or unconditionally branch. The 24-bit immediate is a signed offset which is shifted by 2, since
ARM instructions are always aligned to 4 bytes. This 26-bit value is added to the program counter,
if the instruction executes. This allows both forward and backward branches. If the desired target is
further away than 225 bytes, the target could also be jumped to by using r15 as the destination of a
data processing or memory load instruction.

If the L bit is set, the value of the program counter plus 4 is stored in register r14. This is known
as the branch and link (bl) instruction. r14 is also known as the link register, and it is not possible to
use another register for this function. This is used for calling functions, which will return to the address
pointed to by r14.

3.5.1. Conditions
31 28 0

cond

Every instruction in ARMv4 can be executed conditionally. This includes branches, of course, but
also instructions such as add (add two registers) and str (store a register in memory). The first four
bits of any ARM instruction specify the condition in which it executes. Whether this condition is true
depends on the value of the flags register, which can be changed as a side effect of various data
processing instructions, see Section 3.3.

According to Section 2.5.1 of the ARM Architecture Reference Manual here are four flags [1]:

1. N: the negative flag. Set when the 31st bit - the sign bit - of the result is 1.

2. Z: the zero flag. Set when the result is zero.

3. C: the carry flag. Set when an unsigned addition overflows or an unsigned subtraction underflows.

4. V: the overflow flag. Set when a signed addition overflows or a signed subtraction underflows.

Table 3.4: ARM condition codes and their function

Code Meaning Flags
0000 equal Z set
0001 not equal Z clear
0010 unsigned greater than or equal C set
0011 unsigned less than C clear
0100 negative N set
0101 positive or zero N clear
0110 overflow V set
0111 no overflow V clear
1000 unsigned greater than C set and Z clear
1001 unsigned less than or equal C clear or Z set
1010 signed greater or equal N equals V
1011 signed less than N does not equal V
1100 signed greater than Z clear and (N equals V)
1101 signed less than or equal Z set or (N does not equal V)
1110 always (ignored)
1111 never∗ (ignored)

∗The never condition was deprecated in ARMv4. Later versions of the ARM ISA use this bit pattern for new instructions.
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3.6. Application Binary Interface
As shown in Table 3.5, the 16 ARM registers have a special meaning in the ARM ABI. ARM has four
registers for function arguments and return values, all arguments that do not fit will be pushed to the
stack. The stack pointer (r13) will point to the first argument, with other arguments in the memory
addresses above. Unlike in RISC-V (see Section 2.6), the ARM stack pointer is not necessarily aligned.

When a function is called, this function will use some registers as part of its execution. The value of
these registers may need to be restored by either the function called (callee) or the program that called
the function (caller). Which one of the caller or callee is responsible for saving the value of a register
at a function call is shown in the ‘Saved’ column of Table 3.5.

Note that two registers do not have a defined saving convention. These are r12 and r15. Since
r15 will always return the value of the program counter, it is not necessary to save it. No data can be
stored in r15. r15 could be used to store the return address when returning from a function, but due to
the ambiguity of the offset between r15 and the instruction address, the ARM ABI discourages this [3].

r12 is not saved for a different reason. This register is designated as the Intra-Procedure Call
scratch register. It may be used by the linker to connect library code to binary code. For example, the
ARM branch instructions (Section 3.5) can only reach code 32 megabytes (225 bytes) away. To reach
subroutines farther away, the linker can insert some code that uses r12 to jump to a far-away address.
For that reason, neither the caller nor the callee can assume the r12 register is saved.

Table 3.5: ARM registers and usage in the ARM ABI [3]

Register ABI name ABI Function Saved
r0-r3 a1-a4 Arguments Caller
r4-r11 v1-v8 Variable Registers Callee
r12 ip Intra-Procedure Call scratch register
r13 sp Stack Pointer Callee
r14 lr Link Register Caller
r15 pc Program Counter





4
Combining Instruction Set Architectures

The previous two chapters described the RISC-V and ARM ISAs separately. In this chapter, the two
are contrasted to create a path toward the microarchitecture that can implement both ISAs. Sections
4.1 and 4.2 explain the concept of Combi and how registers are shared between the ISAs. Sections
4.3, 4.4, and 4.5 contrast the instructions of ARM and RISC-V across the familiar categories of register,
load/store, and branch instructions. Sections 4.6 and 4.7 explain the methodology of library calls across
ISA boundaries and some methods for disambiguating the ISA of a binary at a hardware level.

4.1. Multi ISA Support
The Combi microprocessor facilitates both the RV32IZmmul and ARMv4 ISA. Therefore, the opcodes
are binary compatible with both RISC-V and ARM. However, some RISC-V instructions have the same
binary sequence as ARM instructions. For example, the binary word e0800113 encodes the ARM
instruction add r0, r0, r3 lsl r1, but also encodes the RISC-V instruction addi x2, x0, -504.
There is no way to tell if this word was meant to be interpreted as an ARM instruction or as a RISC-V
instruction. To make Combi interpret the instruction stream correctly, a mechanism must exist to dis-
ambiguate RISC-V and ARM instructions. This is part of the Combi ABI. Since Combi facilitates both
ISAs natively, switching is instant. That is, instructions could switch between ARM and RISC-V at no
overhead, not even a pipeline stall.

4.2. Registers
Combi has all the architectural registers of RISC-V and ARM. To facilitate RISC-V programs calling ARM
procedures and vice versa, ARM registers could be mapped to RISC-V in a way that facilitates overlap
in their respective ABIs. This hypothetical mapping is shown in Table 4.1. This mapping facilitates
procedure calls between architectures, at the cost of a slightly more complicated microarchitecture.
This more complicated microarchitecture may require more area, run slower, or use more power.

Note that the ARM register r15 is not available in RISC-V. This is because r15 is used in ARM to ac-
cess the program counter. RISC-V does not use a register for this, and instead has special instructions
that specifically modify the program counter. In a similar vein, the RISC-V register x0 has no analogue
in ARM. In RISC-V, x0 is used as a constant 0. ARM has no such register.

4.3. Register Instructions
ARM has 20 data processing instructions - also counting the shifts that can be applied to operand 2
- but RISC-V has only 10. Some of these instructions perform the same operation. As can be seen
in Table 4.2, ten ARM instructions have a RISC-V equivalent. Two of these use a pseudo-instruction,
an encoding that acts like one instruction but uses a different encoding. First, the ARM mov instruction
can be performed in RISC-V by adding the source with x0. Since x0 is always zero, this has the same
architectural behavior as the ARM mov instruction. Second, the ARM mvn instruction can be performed
in RISC-V by using xori with an immediate value of −1. Since the XOR operation with a ‘1’ bit is

31
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equivalent to negation, this RISC-V instruction inverts the bits of the source. This is equivalent to the
ARM mvn instruction.

There are 10 ARM instructions which have no analogue in RISC-V. Of these, eight require the
status registers, which RISC-V does not have. These are adc, sbc, rsc, tst, teq, cmp, and cmn. The
last two, bic and rsb, perform operations which RISC-V simply has no equivalent to. Note that rsb
(reverse subtract) is more useful in ARM than RISC-V. In ARM, only the second operand can be shifted
in a register-register operation. It may therefore not be trivial to swap the operands of the subtract
instruction. This is why rsb is useful. In RISC-V, no operand is shifted in this way. The operands of
sub can simply be swapped. Therefore, rsb would not add any value to the RISC-V ISA.

There are also two RISC-V instruction which have no ARM equivalent. These are slt (Set if Less
Than) and sltu (Set if Less Than Unsigned). Two possible applications of these instructions are bounds
checking for array accesses and performing big integer arithmetic. In both of these cases a program
written in ARM would use the carry flag of the status register.

4.3.1. Multiplication
ARM multiplication is encoded differently from other data processing instructions, but RISC-V uses the
same encoding for both. Combi will support both encodings. In ARM, a single instruction can perform
a 32x32 -> 64 bit multiplication, but in RISC-V this would take two instructions, one for the high 32
bits and one for the low 32 bits. That also means the ARM instruction will write to two registers in one
instruction, whereas most instructions only write to one register. This will have consequences for the
microarchitecture of Combi.

4.4. Load/Store Instructions
Despite the unique encoding of ARM loads and stores, the behavior is similar to RISC-V. As shown
in Table 4.3, all single-byte ARM loads and stores have a RISC-V equivalent. The addressing mode
is a base plus an offset, and bytes and halfwords can be read with sign extension or zero extension.
However, like multiplication, the write back feature of ARM loads makes a single instruction write to
multiple registers. The ldm and stm instructions can even modify up to 16 registers (ldm), or 16 words
in memory (stm). Once again, this will have consequences for the microarchitecture of Combi.

4.5. Branch Instructions
Superficially almost every ARM branch has an equivalent in RISC-V. This is shown in Table 4.4. The
only exception is the bvs and bvc pair of instructions, which branch if the previous instruction caused
a signed overflow. RISC-V does not have such an instruction.

However, branches in ARM work quite differently from RISC-V. In ARM, there is only one branch
instruction with a 24-bit offset. Conditional branches are performed using the cond bits that every ARM
instruction has. Whether the branch is taken or not depends on the operation of previous instructions,
for example cmp or tst.

In RISC-V, conditional branches are completely different from unconditional ones. The conditional
branch has only a 12 bit offset, and it specifies the condition for branching itself. That is, the branch
condition is calculated by the branch instruction, not an instruction preceding it.

Unconditional branches in RISC-V are called jumps, and there are two types. A jump may use a
20-bit immediate offset, or a jump may be to a register (with a 12 bit offset). The jump to a register

Table 4.1: ARM registers mapped to RISC-V registers

ARM Register RISC-V Register ABI Function
r0-r3 x10-x13 (a0-a3) Arguments
r4-r5 x8-x9 (s0-s1) Variable Registers
r6-r11 x18-x23 (s2-s7) Variable Registers
r12 x5 (t0) Intra-Procedure Call scratch register
r13 x2 (sp) Stack Pointer
r14 x1 (ra) Link Register
r15 Program Counter
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Table 4.2: Combined set of ARM and RISC-V register-register instructions

ARM mnemonic RISC-V mnemonic
and and
eor xor
sub sub
add add
orr or
mov r1, r2 add x1, x0, x2
mvn r1, r2 xori x1, x2, -1
(operand2) lsl sll
(operand2) lsr srl
(operand2) asr sra
(operand2) ror
rsb
bic
adc
sbc
rsc
tst
teq
cmp
cmn

slt
sltu

Table 4.3: Combined set of ARM and RISC-V load/store instructions

ARM mnemonic RISC-V mnemonic
ldr lw
ldrsh lh
ldrsb lb
ldrh lhu
ldrb lbu
str sw
strh sh
strb sb
ldm
stm

operation is equivalent to an ARM instruction that moves something to register r15.
Branch and link are performed the same way in RISC-V and ARM. The linked address is the address

of the branch instruction plus four. That is, the address of the instruction after the branch instruction is
stored in the link register.

4.6. Application Binary Interface
The Combi ABI should facilitate not only procedure calls to the same ISA, but also from one ISA to
another. Preferably, it would appear to both the caller and callee that the other is using the same ISA.
That is, neither binary has to be modified. To achieve this, two things must be corrected in between
cross-ISA procedure calls: the registers, and the stack layout.

In Figure 4.1 and 4.2, a general methodology for calling and returning to a foreign ISA is shown. The
method to use depends on properties of both the ISAs and the microarchitecture itself. This methodol-
ogy can be used by a dynamic loader or a static linker to facilitate, for example, a RISC-V application
using an ARM library. Neither the application nor the library are affected, but the linker may need to do
some more work.
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Table 4.4: Combined set of ARM and RISC-V branch instructions

ARM mnemonic RISC-V mnemonic Condition
b j
bl jal
bx jalr
beq beq equal
bne bne not equal
bcs bgeu unsigned greater than or equal
bcc bltu unsigned less than or equal
bhi bltu∗ unsigned greater than
bls bgeu∗ unsigned less than
bmi bltz (blt rs, x0) signed less than zero
bpl bgez (bge rs, x0) signed greater than or equal to zero
bge bge signed greater than or equal
blt blt signed less than
bgt blt∗ signed greater than
ble bge∗ signed less than
bvs overflow
bvc no overflow

∗ Swap the arguments of this instruction, i.e. bhi r1, r2 is equivalent to bltu r2, r1

The first difference in possible methods depends on whether the microarchitecture or the linker
handles mapping ABI registers. This is represented by the first choice in Figures 4.1 and 4.2. Using
the register mapping from Table 4.1, all ARM registers would correspond to the correct RISC-V register
in a procedure call. If the microarchitecture does not handle this, the linker will need to insert code to
swap the registers in software for ABI compatibility. If the microarchitecture does remap the registers
from one ISA to another, the linker does not need to do any swapping in software.

However, RISC-V has more registers than ARM. RISC-V uses 8 argument registers in its ABI, and
ARM has only 4. The second and third choices in Figure 4.1 show what method to use based on which
ISA is calling and which is called. The 4 registers that are present in RISC-V but absent in ARM must
be pushed to the stack before an ARM procedure is called from RISC-V. This would not be necessary
when calling a RISC-V function from ARM. However, after switching ISAs, some arguments that were
pushed on the stack may need to be popped into RISC-V registers.

On the other hand, a RISC-V procedure only uses 2 registers for the return value, and ARM uses
4. These two registers would have to be pushed to the stack when returning from ARM. The opposite
applies to calling a RISC-V routine from ARM. The second and third choices in Figure 4.2 show what
method to use based on which ISA is returning. Registers in RISC-V that are absent in ARM have to be
filled with data popped from the stack when an ARM function calls a RISC-V function. These additional
instructions can be inserted by a linker when a library with one ISA is being used by a program with the
other ISA.

Figure 4.3 shows an example of code being inserted. On the left, the RISC-V code calls a routine
fun, which has five arguments. The RISC-V code is agnostic to the fact that this is an ARM routine.
The linker has inserted some glue code that will make the RISC-V function call appear like an ARM
function call for the ARM callee routine. The RISC-V code has provided the fifth argument in register
a4, but the ARM routine expects to pop it from the stack. Therefore, the glue code allocates a bit more
stack space and stores the value of a4 there. The ARM routine loads this value from the stack and
proceeds as normal, without having to know that it was called from RISC-V code.

4.7. Disambiguating ISAs
There is also the issue of switching the Combi processor from interpreting RISC-V instruction to inter-
preting ARM instructions. There are three methods to do this:

• Use a dedicated opcode to switch;

• Detect the ISA based on statistical properties;
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Entry

Registers mapped
by microar-
chitecture?

Swap registers

Arguments in
caller registers fit
in callee registers?

Allocate
stack space

Push regis-
ters to stack

Switch ISA

Arguments in
callee registers fit
in caller registers?

Pop registers
from stack

Call routine

no

yes

no

yes

no

yes

Figure 4.1: Possible methods for calling a different ISA
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Figure 4.2: Possible methods for returning from calling a different ISA
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RISC-V Glue code ARM

addi    sp, sp, -16
sw      ra, 12(sp)
...
addi    a4, zero, 5
call    fun
...

fun_L:
 ldr     r12, [sp]
 ...
 bx      lr

fun:
 addi sp, sp, -4
 sw   a4, (sp)
 switch_arm

 ret
      

 bl   fun_L
 switch_rv

Figure 4.3: Example of a RISC-V binary calling an ARM routine with 5 arguments. RISC-V code is red, ARM code is blue.

• Assign an ISA to individual pages in the memory map.

These options will be explored in more detail.

Dedicated Opcode
Using a dedicated opcode to switch would involve having some 32-bit value that has no meaning in
ARM to encode the ‘switch to RISC-V’ instruction, and having a 32-bit value for RISC-V likewise. All
ARMv4 instructions that have the binary sequence ‘011’ at bit positions 27 to 25 are invalid, so an
instruction like that could be used. RISC-V has certain opcodes marked as ‘custom’, which guarantees
that they will not be used for standard extensions. The RISC-V ISA manual expressly recommends
these for custom instructions.

Use Statistical Properties
Most ARM instructions have the bit sequence ‘1110’ in bits 31 to 28, but few RISC-V instructions do.
This is because bits 31 to 28 of an ARM instruction are the condition bits, and ‘1110’ mean to execute
the instruction always. In RISC-V these bits have no special meaning. It is therefore possible to tell at
a glance if a binary instruction sequence is ARM, and it would be possible to make a processor that
can detect this pattern to determine the mode it should operate in. However, this method is error prone,
and decoding even a single instruction wrong could lead to the entire program state being corrupted.

Use Virtual Memory
Finally, the paging system could be used to tell if a piece of code is ARM or RISC-V. If the program is
loaded in such a way that RISC-V and ARM code never occur on the same page, a bit could be used
to signal which executable code is RISC-V and which is ARM. This is likely to be the case if the ARM
code is dynamically loaded, but not if the ARM code is statically linked.

Conclusion
Considering that the linker has to insert some instructions between most function calls anyway, the best
option for this work is to use a dedicated opcode. The overhead may be small compared to other code
the linker inserts. As shown in Figure 4.3, the linker already has to insert two instructions if the function
called has more than four words of arguments. This system works in both static and dynamically linked
contexts, and is not error-prone.

If an operating system is present, and applications are loaded into virtual memory, using paging
to distinguish ARM and RISC-V code would avoid needing to add an explicit ‘swap ISA’ instruction.
As shown in Figures 4.1 and 4.2, this may even allow a foreign ISA call to occur without the linker
needing to insert any code, although this would be limited to functions that take only a few arguments,
and return only a few values. In the case of RISC-V and ARM, any function that takes four word sized
arguments and returns a result of two word sizes would qualify. For example, the standard C library
function memset has a signature of void *memset(void s, int c, size_t n). If the right method is
used, one could call this function from an ARM library inside a RISC-V program without needing to
modify or insert any code.





5
Combi Implementation & Results

In this chapter, the implementation of Combi - the microprocessor which facilitates two ISAs - is pre-
sented. Section 5.1 describes how the platform to base Combi on was selected. Section 5.2 delves
into the details of how Combi was created from this platform. Section 5.3 discusses the results of this
implementation using facts and figures. Finally, Section 5.4 puts the results of this work into context
with the state of the art in this field.

5.1. Platform Choice
In order to start making the Combi microarchitecture, it would make sense to start with a platform that
already implements RISC-V and could implement ARM, or vice versa. A structured platform is also a
prerequisite, since the aim of Combi is to reuse as many parts to facilitate the RISC-V and ARM ISA.

The VexRiscV is a RISC-V microprocessor that is designed to be extendable, which implies a sense
of modularity. In fact, every RISC-V instruction is implemented separately, and if none of the instructions
are specified as part of the CPU, only an empty 5-stage pipeline is generated [33]. VexRiscV was made
in a software oriented way, and is written in a language called SpinalHDL [34]. VexRiscV is certainly
an option, however a design using a more common Hardware Description Language (HDL) such as
SystemVerilog would be preferable.

Another option was the microarchitecture described in the book Digital Design and Computer Ar-
chitecture, by Sarah and Davis Harris [39]. This book is an educational piece, and therefore describes
the microarchitecture in extensive detail. There is also an ARM edition [38]. This is a promising start
to a microarchitecture that combines the RISC-V and ARM ISA. Do note that the microarchitecture de-
scribed in Digital Design and Computer Architecture only implements a few instructions. The RISC-V
edition implements add, sub, and, or, sw, lw, and beq. The ARM edition implements add, sub, and, orr,
str, ldr, and b. This is far from a complete set, and all other instructions will have to be implemented
in Combi.

5.2. Implementation Details
In this section, we give a general overview of the Combi microarchitecture, starting from the design
of Digital Design and Computer Architecture. Next, we show the additional components needed to
facilitate all RISC-V and ARMv4 instructions.

5.2.1. Overview
In this section, the framework that Combi inherits from the Digital Design and Computer Architecture
book is described [39]. Combi has a 5 stage pipeline, as shown in Figure 5.1:

• Fetch: a 4-byte instruction is fetched from memory. The program counter is also incremented. If
a branch occurs, the program counter is overwritten by data from the execute stage;

• Decode: the instruction is decoded into control signals for the following stages. Multi cycle in-
structions are dispatched by sending different control signals each cycle while the fetch stage is

39
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Figure 5.1: Combi 5 stage pipeline with most significant modules

stalled. The register file is also in this stage;

• Execute: The ALU performs an operation on the data from the register file. The conditional logic
for branches and conditional ARM instructions is also handled here. If a branch occurs the new
address is immediately forwarded to the fetch stage;

• Memory: The result of the ALU can be used as an address into memory. The memory value read
from this address advances to the write-back stage, or the value of one of the registers can be
written to memory;

• Write-back: Either the ALU result or the memory value is written back to a register. If the register
in question is the program counter - as is possible in ARM - the value is instead forwarded to the
fetch stage.

In addition to the pipeline, a hazard handling unit ensures all instructions are executed correctly in
parallel. The hazard unit uses three systems to ensure the proper operation of the pipeline:

• Forwarding: results from one stage are forwarded to another, skipping the usual pipeline stages.
This incurs no performance penalty;

• Bubbles: one of the pipeline stages has its control bits cleared, and the stages before it don’t
update for a cycle. Normal control flow resumes in the next cycle, except a no-operation ‘bubble’
is traveling down the pipeline from the stage that was cleared. A performance penalty of one
machine cycle is incurred.

There are three common pipeline hazards to handle:

• Data dependencies: an instruction uses registers that will be written to by an earlier instruction
which is still in flight. The value can be forwarded to the execute stage from a later stage. This
is shown in Figure 5.2. In this figure, the result of instruction 1 is used in instruction 2. That is
why the data is forwarded from the memory stage to the execute stage at cycle 4. The result of
instruction 1 is also used in instruction 3, which is why it is forwarded from the write back stage
again in cycle 5;

• Load dependencies: an instruction uses a register that will be written to via the memory unit. The
value cannot be forwarded since it will only be available in the write-back stage. A bubble must
be inserted in the execute stage. Figure 5.3 shows that forwarding is impossible, because the
red arrow travels back in time from cycle 5 to cycle 4. Instead, the execute and decode stages
must be stalled for 1 cycle to make forwarding possible. This stalling inserts a bubble;
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Figure 5.5: Combi condition unit, responsible for conditional execution of ARM and RISCV instructions.

• Branches: when a branch occurs in the execute stage, the fetch and decode stages contain
instructions that were fetched from the wrong address. These instructions were fetched assuming
the branch was not taken. The instructions in the fetch and decode stage must be flushed. Two
bubbles are inserted. As shown in Figure 5.4, the execute and decode stages are flushed such
that instructions 2 and 3 never change any architectural state.

An additional bit is propagated from the decode stage to the subsequent stages. If it is a ‘1’, that
stage is executing an ARM instruction. Otherwise, the stage is executing a RISC-V instruction. Behav-
ior that should different between the two is switched on or off based on this bit.

5.2.2. Branches
Despite branches in RISC-V and ARMworking differently, Combi can implement both in much the same
way. In ARM, there is one branch instruction, simply b. The conditional execution bits reserved for any
instruction are used to make conditional branches (beq, bne, etc.). Whether a branch is taken depends
on the result of the instruction that previously set the condition bits in the status register, for example
cmp, r1, r2. In RISC-V, there is no status register. Conditional branches specify the registers to be
compared directly (beq, r1, r2). RISC-V and ARM do share similar branch conditions, though.

These two different mechanisms are unified in Combi’s condition unit. The internals of the condition
unit are shown in Figure 5.5 This unit takes the flags generated by the ALU and calculates whether
the instruction should continue executing. This is done by clearing the control bits if the instruction
should not execute, essentially transforming the instruction into a pipeline bubble. The only difference
between ARM and RISC-V mode is the source of these flags. In RISC-V mode, these flags come from
the ALU directly. In ARM mode, these flags are stored in the pipeline register between the decode and
execute stages. The condition unit will therefore use the flags from a previous instruction.

Target address calculation
In ARM mode, the ALU is used to calculate the target address. In RISC-V mode, the ALU is already
occupied with generating the flags for conditional branches, so the branch address is generated by a
separate adder. The placement of this adder is shown in Figure 5.6.

There are three sources of a branch in Combi. One is unique to RISC-V, one is unique to ARM, and
one is shared between both. The result of the separate branch adder is unique to RISC-V. It is used
for branches and jumps. The result at the write-back stage is used in ARM. It is used when r15 is the
target of an instruction. The result of the ALU in the execute stage is used by both. In ARM, this is
used in the common branch instruction. In RISC-V, it is only used by the jump and link register jalr
instruction. This RISC-V instruction is the only one with a register source and the program counter
as a target. It is also an unconditional jump, so the ALU does not need to generate any flags unlike
conditional branches in RISC-V. Hence, the ALU can be used to calculate this target address. The two
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Figure 5.6: Unique branch sources for RISC-V and ARM

unique branch sources are shown in Figure 5.6. The common branch source was already shown in
Figure 5.1.

5.2.3. Multi Cycle Instructions
If the register file has one write port, the machine can change the value of one register per cycle.
Similarly, if the register file has two read ports, the machine can use the value of two registers per
cycle. Some ARM instructions require more than this. These are:

• Data Processing instructions which use a register specified shift amount;

• Loads that write back to the base register;

• Stores that use a register offset to the base register;

• Load/Store multiple;

• All multiply instructions except the basic mul.

Some of these instructions could be done in a single cycle, at the cost of area. However, the register
file, pipeline registers, and Arithmetic and Logic Unit (ALU) would need a bigger amount of ports.
Additionally, more 32-bit busses would have to be routed in the CPU. Alternatively, these instructions
could be allowed to take multiple cycles.

The Combi data path shown in Figure 5.1 has two values read into the ALU, and one value written
back into the register file. The Load/Store multiple instructions can use up to 16 registers at once, so
those should definitely be executed over multiple cycles. If the hardware for multi-cycle instructions is
implemented anyway, other instructions which do not fit the Combi data path can be done in multiple
cycles as well. No RISC-V instruction needs to execute in multiple cycles, and many ARM instructions
can run in one cycle too. The types of instructions that do need multiple cycles to execute are shown
in Table 5.1. These need to be run over multiple cycles because they either read from more than 2
registers, or because they write to more than 1 register.

In order to implement multi-cycle instructions, the instruction decoder is augmented. The instruction
decoder can now instruct the hazard unit to stall the fetch stage. It also has an internal micro program
counter, which counts up as micro instructions are issued. When the final micro instruction has been
issued, the fetch stage stall is deasserted and program flow continues. Finally, the instruction decoder
can force the ALU result to be forwarded from the memory stage back to the execute stage. This
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Table 5.1: ARM instructions that Combi executes over multiple cycles.

Command Action Registers
read

Registers
written

add rd rm rn LSL rs2 rd = rm + (rn << rs) 3 1
ldr rd, [rn,rm]!2 rd = mem[rn+rm]; rn = rn + rm 2 2
str rd, [rn,rm]2 mem[rn+rm] = rd; rn = rn + rm 3 1
ldm rb ... Pops registers from the stack 1 ≤ 16
stm rb ... Pushes registers to the stack ≤ 16 0
mla rd rm rs rn rd = (rn * rs) + rm 3 1
mull rdLo rdHi rs rn [rdHi, rdLo] = rn * rs 2 2
mlal rdLo rdHi rs rn [rdHi, rdLo] = [rdHi, rdLo] + (rn * rs) 4 2

2Also includes other register and load store instructions using the shifting, post-, or pre-increment option.

overrides the hazard unit’s forwarding logic. This allows subsequent microcode instructions to use
previous ALU results without modifying architectural registers. In fact, since this system reuses the
pipeline registers, no additional data registers are needed to implement multi-cycle instructions at all.

5.2.4. Register Instructions
Both RISC-V and ARM have instructions that process two registers and write the result to one regis-
ter. In ARM, these are called Data Processing instructions, and in RISC-V, these are called R-type
instructions. We will refer to both of these as register instructions.

Some of the register instructions of ARM and RISC-V overlap in functionality. Table 5.3 shows all the
operations the ALU of Combi can perform, and which instructions use the ALU in this mode. There are
23 functions the Combi ALU can perform of which 11 are used for both RISC-V and ARM instructions,
2 are unique to RISC-V, and 8 are unique to ARM. Two of these instructions (adc and sbc) only require
the use of the carry flag, which is absent in RISC-V. The remaining 6 instructions require more involved
modification of the ALU.

Control Signals of Register Instructions
Like many instructions, the register instructions of ARM and RISC-V use the same control signals. To
simply, not nearly all control signals have been discussed here. This section aims to show the general
principle that applies to all control signals: ARM and RISC-V instructions can be decoded to the same
signals, making the Combi microprocessor execute either ISA.

Some instructions from both ISAs, and the most relevant control signals are shown in Table 5.2. The
control signals are also shown in Figure 5.7, which shows how the control signals affect the various
modules of the Combi microarchitecture. Note that all of these control signals are shared between
RISC-V and ARM instructions.

The ResultSrc signal selects where the value that is written to the register comes from, for these
instructions that is always the ALU, but for store instructions this would be memory, and for branch and
link instructions (bl on ARM and jalr on RISC-V) this would be the program counter. The RegWrite
signal enables writing to the register file in the write back cycle, which is why it takes a long loop in Figure
5.7 to propagate through the other stages first. The MemWrite signal similarly enables writing to the
memory, which is turned off for register instructions. Instructions that store registers to memory would
have these values switched. The ALUControl signal selects one of the ALU functions shown in Table
5.3, and this is what differentiates many of the register instructions. For example, the RISC-V add and
sub instructions have the same control signals except for ALUControl. Finally, the Condition signal
is used for conditional execution of ARM instructions. This is used by the Condition Unit, as shown
in Figure 5.5. For ARM instructions, this signal is wired to the upper bits of the instruction. RISC-
V instructions have no conditional execution predicate, so the Condition signal is wired to always
(1110) for RISC-V instructions. Conditional branches in RISC-V do use the condition bits to specify the
condition for which the branch is taken.

Register Instructions Using the Program Counter
The ARM r15 register is always a unique one. When read, Combi will substitute the value read from
r15 with the program counter plus 8 in the decode stage. This can be done by using the pc plus four
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Table 5.2: Microcode of some Register Instructions

Type Instruction R
es

ul
tS
rc

R
eg

W
rit
e

M
em

W
rit
e

ALUControl Condition
RISC-V add ALU 1 0 add always
ARM add ALU 1 0 add instr[31:28]
RISC-V or ALU 1 0 or always
ARM orr ALU 1 0 or instr[31:28]
RISC-V sub ALU 1 0 sub always
ARM rsb ALU 1 0 sub reverse instr[31:28]
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Figure 5.7: Control signals used for register instructions.
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Table 5.3: ALU operations and the instructions that use them

Operation Functional Unit ARM
instruction

RISC-V
instruction

op1 & op2 Logic and, tst and
op1 ^ op2 Logic eor, teq xor
op1 - op2 Adder sub, cmp sub
op1 + op2 Adder add, cmn add
op1 | op2 Logic orr or
~op2 Not mvn
op1 << op2 Shifter (operand2) lsl sll
op1 >> op2 Shifter (operand2) lsr srl
op1 >>arith op2 Shifter (operand2) asr sra
op1 >>rot op2 Shifter (operand2) ror
op2 - op1 Adder rsb
op1 & ~op2 Logic bic
op1 + op2 + carry Adder adc
op1 - op2 - ~carry Adder sbc
op2 - op1 - ~carry Adder rsc
op1 - op2 < 0 ? 1 : 0 Adder slt
op1 < op2 ? 1 : 0 Adder sltu
op1 *low op2 Multiplier mul mul
op1 *high op2 Multiplier mull mulhu
signed(op1) *high signed(op2) Multiplier smull mulh
signed(op1) *high op2 Multiplier mulhsu

op1 ( multi cycle
instructions )

op2 mov lui

signal in the fetch stage, because the program counter has already been incremented by four in the
fetch stage. The fetch stage is already fetching the instruction after what’s in the decode stage, so it is
already incremented by four. The only exception to this rule is if the fetch stage is running a jump. In
this case, the instruction in the decode stage will be flushed anyway, since the Combi microarchitecture
always speculatively execute that branches are not taken. This trick is also used by Sarah and David
in the ARM edition of the Digital Design and Computer Architecture book [38].

When r15 is used as a destination, the program counter must be updated. To allow this, the hazard
unit inserts four bubbles in the decode stage until the instruction that writes to r15 has exited the write-
back stage. This is a significant performance overhead, but the common branch instruction does not
use this path. Programs that write to r15 often instead of using the branch instruction will take longer
to execute, but the ARM reference manual discourages using r15 in this manner except for jumps that
are more than 32 megabytes away [1]. This may therefore be a rare occurrence.

When an ARM register instruction uses a register shift amount, i.e. ADD rd, rn, rm LSL rs it
needs to be executed over two cycles. In the first cycle, rm is shifted by rs. In the second cycle, the
result of the first cycle is forwarded and added to rn. Instructions that use a constant shift amount
can be executed in one cycle. The alternative would be to have a third read port on the register file,
a bigger pipeline register, and more forwarding logic. This would allow instructions that use a register
shift amount to also execute in one cycle.

5.2.5. Multiplication
ARM and RISC-V have very different multiplication instructions. In RISC-V, a 32*32->64 multiplication
is done in two instructions: mul for the low 32 bits and mulh for the high 32 bits. ARM can also calculate
only the bottom 32 bits as a separate instruction. The best way to combine these is to make the 32*32-
>64 multiplication spread out over two cycles, the first takes the same data path as the RISC-V mul
and the second will take the path of RISC-V mulh. Thus, a 64-bit result is written in two cycles. This is
also maximally efficient usage of the single 32-bit write port on the register file.
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ARM also has two multiply-accumulate instructions. One has a 32-bit result, the other 64 bit. The
32-bit mla is executed in two cycles. This can be implemented by reusing the adder inside the ALU.
The flow of data is shown in Figure 5.10. In the first cycle, the product is calculated. In the second
cycle, this result is added to the third argument. Since the ALU has two inputs, the product will have
to be calculated on a cycle before the addition. The 64-bit multiply accumulate (mlal) has a more
interesting microcode. It goes in four cycles. First, the low multiplication is performed, resulting in the
low 32 bits of the product. Then, the result is added to RdLo, which will generate a carry for later. Then,
the high multiplication is performed, resulting in the high 32 bits of the product. Finally, that result is
added to RdHi, which uses the carry generated in the second step. This way, the 64-bit multiplication
and addition is done correctly with a 32-bit data path in four cycles.

5.2.6. Load/Store
Although loads and stores are encoded very differently in ARM and RISC-V, the fundamental operation
is quite similar. The value to be stored is either the lowest byte, lower halfword, or full word of a register.
When loaded, halfwords and bytes can be sign extended or zero extended. The address of the store
is the sum of two values.

In RISC-V, this will always be a register and an immediate, meaning the instruction uses two regis-
ters and can be done in one cycle. In ARM, the value can be the sum of two registers, meaning three
registers (base, offset, and value) may be needed for a store. Since only two registers can be read in
one cycle, this instruction will take two cycles. If the offset is an immediate rather than a register, the
instruction will take one cycle. Writing back the result to a register will also take an extra cycle.

Load/Store Multiple
The ARM ldm and stm instructions are something completely unalike RISC-V. These instructions can
load and store up to 16 registers in one instruction.

In Combi, these instructions take one cycle per register loaded or stored, plus another cycle if write
back to the base register is specified. A 16-bit priority encoder is used to select the next register every
cycle. This 16-bit priority encoder is made using two 4-bit priority encoders, as shown in Figure 5.11. A
‘divide and conquer’ approach is used, as is common for computer arithmetic [35]. The 16-bit input is
split into four 4-bit nibbles. The nibbles each form the input of one OR gate, whose output is one if any
bit in the nibble is set. By using a 4-bit priority encoder on the output of the four OR gates, the highest
two bits of the 16-bit encoders output is generated. These two bits are also used to select which of the
four nibbles go to the second 4-bit priority encoder. This 4-bit priority encoder then generates the lower
two bits of the complete output. Using one more NOR gate, another output can be made which is true
if and only if every bit of the input is clear.

This priority encoder scans the bottom 16 bits of the instruction, returning the index of the first ‘1’
it sees. This is used as the address of the register to dispatch to the execute stage and eventually
to/from memory. As long as the priority encoder finds a set bit in the bit field, the instruction decoder
will not advance its microcode. Every bit in the bit field is cleared as the register is dispatched. When
the bit field is clear, the instruction decoder can advance its microcode counter. This is why the priority
encoder also has an output which is set to ‘1’ if the bit field is clear.
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Table 5.4: Instructions and their sources/destinations. [ldm] denotes the output of the priority encoder

Instruction op1 op2 dest
add [19:16] [3:0] [15:12]

b 15
bl 15 14

(operand2) [11:8] [3:0]
mla [15:12] [19:16]
stm [19:16] [ldm]
ldm [19:16] [ldm]
str [19:16] [15:12]

5.2.7. Sources and Destinations
Immediates in ARM and RISC-V are completely different, so the sign extending unit of Combi is es-
sentially two separate units.

The registers used as sources and destinations in RISC-V are entirely homogeneous. The two
sources are at bits 24 to 20 and 19 to 15 of the instruction, and the destination is at bits 11 to 7. Things
are not so simple in ARM. Various options for the two source and destination registers are chosen by
the Combi decoder depending on the ARM instruction decoded. Some examples are shown in Table
5.4.

The first register source can be hard coded to r15 in case of a branch, at position 11 to 8 for a shift,
at 15 to 12 for mla and mlal, or at 19 to 16 for normal data processing instructions. The second register
source can be the output of the LDM priority encoder, the destination register in case of a load or store,
or at position 3 to 0 for normal data processing instructions. The destination register can be the output
of the LDM priority encoder, at position 19 to 16 for load/store write back or multiplication, hard coded
to r14 for branch and link, or at position 15 to 12 for normal data processing.

5.3. Results
In this section, the Combi architecture is presented as a candidate for a multi-ISA microarchitecture.
The overhead in area and performance required to facilitate two instruction sets is shown. To do this
Combi is compared to a RISC-V core with a similar architecture, Ibex - formerly known as zero-riscy
[7]. Ibex was configured to have a single-cycle multiplication like Combi. Ibex also has a single-issue
in order pipeline like Combi. However, it does not have a five stage pipeline. Ibex has three pipeline
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stages: instruction fetch, decode and execute, and write-back. Also, Ibex has support for the C exten-
sion of RISC-V, which are a small set of 16-bit instructions. This makes the architectures a bit different.
Ibex serves as a reference of a ‘typical’ RISC-V microarchitecture, unlike Combi which was designed
to facilitate the ARM ISA too.

In addition to contrasting Combi to Ibex, different configurations of Combi are contrasted to each
other. Ibex has architectural differences to Combi, which will affect the results. Thus accuracy is lost
since it is desired to only see the effects due to implementing multiple ISAs. Contrasting different
versions of Combi allows us to know the overhead to implementing multiple ISAs without any other
architectural changes.

Combi was made for two targets: ARM and RISC-V. The architecture can be set to facilitate only
one ISA by hard-wiring the arm bit of Section 5.2.1 to either ‘1’ or ‘0’. This will let the synthesis tool
infer all the circuitry of Combi that is not needed for that ISA and remove it, leaving only the essential
parts. This way, the total area required for each configuration can be found. The performance lost
when facilitating both instruction sets can also be determined this way.

5.3.1. Tests for Correctness
To verify the correctness of Combi, the RISC-V ISA test suite was used [31]. This is an official test
suite of the RISC-V Foundation, and is therefore an authoritative resource on the functionality of a
RISC-V core. In fact, another RISC-V design project - PicoRV32 - also uses this test suite to verify
the correctness of its core [37]. The test suite contains one program for every instruction. To test the
correctness of this core, the program corresponding to each and every instruction in the RV32IZmmul
ISA was run. The fact that Combi passes these tests shows that Combi facilitates the RISC-V ISA
completely.

There was no official source for an ARM ISA compatibility test. Since ARM Ltd. makes the cores that
implement the ARM ISA in-house, test suites are generally not made public. The RISC-V test programs
are organized using macros. Each macro defines some preconditions, a command to execute, and
postconditions. For example, to test the add instruction, the preconditions would be that the arguments
are 1 and 2, and that the result is 3. Many such tests are performed on every instruction. To port this
system to ARM, the macros themselves were ported first, and then the tests were extended to also test
the ARM instructions that have no equivalent in RISC-V.

These tests were performed using Verilator, which transpiles the SystemVerilog description to C++.
By compiling the C++ to machine code, a simulation can be run about 100 times faster than what would
be possible using a simulator that interprets SystemVerilog [48]. By using a simulator, the complete
state of the CPU can be inspected at every cycle. This made it easier to find problems in the mi-
croarchitecture, and fix them. The tests were run before every commit to the Combi repository, and
comprehensively tested every instruction of both the ARM and RISC-V ISA.

For example, in section 5.2.3, we modified the instruction decoder to sometimes force the result of a
previous instruction to be forwarded to the ALU. This was used to facilitate somemulti-cycle instructions
of the ARM ISA. However, when this was first implemented, some RISC-V tests that were passing
before suddenly started failing. The failure mechanism was quite complicated, so it would have been
much more difficult to catch without these comprehensive tests.

The cause of the error was as follows. Since the ARM instruction decoder still physically exists in
the Combi microarchitecture, it was decoding the RISC-V instructions as if they were ARM instructions.
The Combi microarchitecture will ignore the control signals from the ARM decoder when running RISC-
V instructions, however the signal to force a result forwarding was not being ignored. This meant that,
in the rare case that a RISC-V instruction happened to also decode to a multi cycle ARM instruction,
the data path of the Combi pipeline would break. The test suites were instrumental to catching this
failure, as it would surely have been difficult to identify later.

When the tests passed on the HDL sources, the tests were also run using a post-synthesis descrip-
tion of the microarchitecture. Experience teaches that designs which work before synthesis may not
always work after synthesis, after all. But when the post-synthesis description also passes the tests,
the result is that we can be confident the Combi microarchitecture does indeed run RISC-V and ARM
programs correctly.
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(a) ASIC realization (first three metal layers) (b) FPGA realization (one PFU, schematic from nextpnr)

Figure 5.12: A sample of Combi realized as an ASIC and on an FPGA

5.3.2. Experimental Setup
After implementing Combi in SystemVerilog, the design was synthesized on two platforms. First, a
Field Programmable Gate Array (FPGA) platform, and second an Application Specific Integrated Circuit
(ASIC) platform. The FPGA platform can be used to run the Combi realization at real-time speed. The
ASIC platform is used to asses how Combi would perform if it was fabricated into an IC. On both
platforms, area after place and route was measured to asses the size of Combi. The speed of Combi
was assessed using the maximum clock frequency of the ASIC implementation.

The FPGA chosen was a Lattice ECP5 [26]. This FPGA is supported by the open-source Yosys
tool chain [52][40]. It can therefore be programmed without needing to use a proprietary tool, which
simplified the synthesis flow. The ECP5 itself is also affordable, and third-party development boards
are available at a reasonable price. In fact, such a development board was already in our possession.
It does not support very high speed designs, though. This will be reflected in the speed at which Combi
can run on this FPGA.

The ASIC was also made with an open-source tool chain. The OpenROAD project allows anyone
to synthesize an ASIC [32]. This project uses the NanGate45 cell library, which cannot be fabricated
to a real IC. This library was made by NanGate, Inc using the NC State University FreePDK45 [14]. To
fabricate to a real IC, a proprietary cell library would have to be used. Nevertheless, the OpenROAD
results are similar to a real ASIC. We can compare the Combi realization to Ibex synthesized using the
NanGate45 library. The mflowgen project hosts docker containers that have all the tools needed [29].

The maximum speed the ASIC can run at was determined by reducing the cycle time until the router
could not realize the design. As nextpnr optimizes the placement of the cells, it report the Total Negative
Slack (TNS). This number will slowly become zero as the routing improves. However, if the required
clock frequency is too high, the TNS stops reducing after every generation of optimization, and the
design cannot be realized. The clock period was decreased by units of 0.1ns until nextpnr failed to
resolve the timing constraint.

One part of the design was changed between the FPGA and ASIC realization of the design. In the
FPGA design, the register file is implemented using D-type flip-flops. These flip-flops are a standard
unit in an FPGA, so it is best to use them. However, this is not the case for an ASIC. D-type flip-flops
are also available in the NanGate45 cell library, but they are significantly larger than latches. Therefore,
the register file is implemented using latches instead. The design is based on the Ibex RISC-V core,
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Figure 5.13: Maximum clock frequency of Combi in all configurations

which also uses latches [22]. A register using flip-flops is used at the write port of the register file to
avoid a combinatorial cycle.

Measuring area on the ECP5 is less straightforward than an ASIC. Figure 5.12 shows a zoomed in
part of Combi realized on the ECP5 and as an ASIC. On an Integrated Circuit, the cells (Fig. 5.12a,
in pink) take up a certain amount of square micrometers, and the area used on the die itself can also
simply be measured in square micrometers. However, an FPGA realizes the design in a different way.
The ECP5 has generic cells that can be configured to have multiple functions. A cell could for example
be a full adder, an arbitrary logic function, or a multiplexer. All of these functions would use the same
area, the area equal to one FPGA cell. Thus, the base unit of area on an FPGA is a cell, not square
micrometers. During routing, up to eight logic cells are assigned to a Programmable Functional Unit
(PFU) in the ECP5. Additionally, each Programmable Functional Unit can have up to eight D-type flip-
flops. The PFU shown in Figure 5.12b is split into four slices, which each have two logic cells on the
left and two flip-flops on the right.

Ideally, all PFUs are filled with eight cells and eight flip-flops. However, this is not always possible.
In Figure 5.12b, only four cells and two flip-flops are used. Some PFUs will be filled more than others,
depending on specifics of the design. This is similar to how cells in an ASIC cannot always be packed
right next to each other. Sometimes a gap between the cells is necessary for routing.

For the ECP5 realization, post routing area was taken to be the total count of PFUs used. This
represents how much of the FPGA is dedicated to the realization of Combi. The remaining PFUs
would be available for other functions. Counting the amount of used PFUs is done using a simple
python script called by nextpnr after routing [40].

5.3.3. Performance Analysis
Combi was also compared to Ibex in terms of performance. The OpenROAD synthesis flow can be
used to predict the maximum clock speed these designs can run at.

The maximum clock speeds determined with OpenROAD are shown in Figure 5.13. The RISC-V
and ARM versions of Combi run at a clock speed as fast as Ibex. Ibex was configured to also have a
single-cycle multiplier, like Combi. It also has a single-issue in-order pipeline design. This makes Ibex
comparable to Combi. However, Ibex has only three stages, while Combi has five.

This change in microarchitecture may have consequences for the performance in terms of execution
time of a given program. Usually, a benchmark program is used to evaluate the performance loss due
to such differences. However, since the C standard library was not ported to Combi, this is difficult.

We can still conclude that, when configured for two instruction sets, Combi will run slower than for
one instruction set. In this case, the microarchitecture of Combi does not change between configura-
tions. Therefore, the only loss in performance is due to a slower clock speed. In this case, Combi loses
8.9% of performance when configured for both instruction sets compared to being configured for only
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Figure 5.14: Area used by Combi in all configurations (45nm process), lower is better

one ISA.
Using nextpnr, the maximum frequency on the FPGA can also be found. The maximum frequency

of all Combi configurations is shown in Figure 5.13. On the FPGA, Combi is fastest when configured to
only implement ARM instructions. The RISC-V and combined ISA versions are about the same speed.
This is not the case for the ASIC implementation, where all three are equally fast.

After some critical path analysis, the reason for this was found. The critical path of Combi is the
sequence of logic that takes the longest time to propagate from an output to an input. Inside the Combi
processors, these would also be the outputs and inputs of flip-flops. The longest chain determines the
maximum clock frequency of the entire design. For Combi, the critical path goes through the Condition
Unit shown in Figure 5.5.

Recall from Section 5.2.2 that branches in RISC-V and ARM are different in a key aspect. ARM
branches are based on the output of the flag register, which is a flip-flop. However, the RISC-V branches
are based on the output of the ALU directly, which is a combinatorial circuit. As such, the data path for
RISC-V instructions goes though the ALU and the Condition Unit in one cycle. This is different from
ARM instructions, which have an instruction flags register in between this path. Thus, when configured
for ARM instructions, Combi can have a smaller cycle time. But when running RISC-V instructions, the
microarchitecture needs to have this longer path, and is therefore slower.

5.3.4. ASIC Area Usage Analysis
The results of this analysis are shown in Figure 5.14. The three configurations of Combi are compared
to each other and to Ibex, a RV32IMC core that is used as a reference. The overhead of combining
both instruction sets is only 13.7% compared to the RISC-V configuration of Combi.

Combi uses more cell area than Ibex, yet uses less die area after routing. In a sense, the Combi
microarchitecture is more compact than Ibex. We can conclude that Ibex has more gaps between the
cells than Combi. Ultimately, the die area after routing determines the size of the Integrated Circuit.
Therefore, Combi can be considered to be smaller than Ibex. In contrast, the relative difference between
the combined ISA version of Combi and the RISC-V configuration did not change.

Figure 5.15 shows how much area is used by Combi by stage and by functional unit. Do note that
the register file is part of the decode stage, and the multiplier is part of the execute stage. The wedges
labeled ‘Execute’ and ‘Decode’ represent everything else in those stages. Also note that the memory
units of this design are external, which is why the ‘Fetch’ and ‘Memory’ stages are so small. These
stages interact with memory units that are not a part of Combi, but rather part of a hypothetical larger
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System on a Chip (SoC).-
Since Combi decodes not one but two instruction sets, one might expect the decode stage to be

large. However, the decode stage is only 5% of the total area. The biggest contributors to area are the
register file, execute stage, and multiplier. The register file and multiplier are entirely shared between
the RISC-V and ARM instruction streams, which shows how much hardware can be reused when
facilitating two instruction sets.

5.3.5. FPGA Area Usage Analysis
The area that Combi uses in the RISC-V, ARM, and combined configuration is shown in Figure 5.16.
Pre-route area is measured in the amount of reconfigurable cells of the ECP5 used. These cells might
represent a four-input Look Up Table (LUT), a D-type flip-flop, a full adder, or other features which
map to an FPGA cell. Post route area is measured in Programmable Functional Units (PFUs). These
represent the resources that are used by the FPGA to realize the Combi microarchitecture. A design
may need more PFUs if it has an architecture which does not neatly map to the FPGA fabric.

In the ASIC area results (Figure 5.14), we saw little difference in the ratio between the pre- and
post-route area. In Figure 5.16, we do see a change. Before placement and routing, the design that
only implements RISC-V is 27% smaller than the configuration that facilitates both ISAs, and the ARM
version is 23% smaller. After placement and routing, the RISC-V design is 19% smaller and the ARM
area is reduced by only 11%. This is a notable decrease in area overhead after placement and routing.
You could say the combined architecture is more ‘compact’ than the designs which implement only one
instruction set. Thismight be because amajor contributor of the extra cells in Combi when implementing
both ISAs is multiplexers. Thesemultiplexers act as switches between functions that are unique to ARM
and RISC-V. Since they can be placed next to the cells that realize the function in question, these cells
may fill in some of the gaps inside a PFU.

Compared to Ibex, Combi takes up significantly less area, yet is also significantly slower. This is
an unexpected result, considering they were quite similar when using the ASIC as a target. Ibex was
reconfigured to use flip-flops for its registers, since these work better than latches on an FPGA. The
FPGA platform was mostly designed for testing though, so this strange result is acceptable. Perhaps
with some more careful analysis of the FPGA design flow the cause of this difference would become
clear. However the comparison with Ibex was not as thoroughly done on the FPGA platform as it was
on the ASIC.

5.4. Comparison with State of the Art
It is hard to estimate the size of a comparable ARM core. The last ARM core to implement the ARMv4
ISA was the ARM7 [2]. No official documentation of ARM can be found on the area of this core. Sec-
ondary sources are very mixed. According to Fujitsu, this core has an area of 1.1mm2 with a 180nm
technology node [15]. According to Dr. Umapathi, the area is 0.53mm2 with a 180nm technology [45].
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Figure 5.16: Area used by Combi in all configurations on the FPGA, lower is better

And finally, according to Domingo et al., the area is 2.1mm2 with a 250nm technology [12]. These
are all very different figures, so it is impossible to know based on this information exactly how big the
ARM7 is. Therefore, Combi is compared with another RISC-V core, Ibex. Since Ibex is open source,
it can simply be tested using the exact same methods as Combi.

The comparison to Ibex in Figure 5.14 shows that Combi in the RISC-V only configuration is compa-
rable to other RISC-V cores. Note that Ibex has some features Combi does not have, namely support
for the compressed (C) instruction set1, and a few status registers for operating system support that
are out of scope for this thesis. This explains why Ibex uses slightly more area than Combi.

5.4.1. Comparison to Multi ISA Systems
Compared to RVAM16, Combi uses 32% less area. However, RVAM16 uses a 16-bit data path, which
leads to a 30% reduction in performance according to Huang et al. [21]. This is a clear performance-
area trade off. While RVAM16 is preferable for low-cost designs, Combi is better suited for higher
performance designs. Also note that RVAM16 was designed to run at 100 MHz, and Combi runs at
270 MHz. This once again shows that Combi is a higher-performance processor. Rosetta 2 has 32%
to 42% overhead, a bit worse than RVAM16 [27]. It may take zero area overhead, but the performance
is once again lost.

Heterogeneous ISA multi-core systems can only work at maximum capacity if the distribution of
workloads over the facilitated ISAs exactly match the available compute power per ISA. Combi does
not have this limitation. If a Heterogeneous ISA system has 2 RISC-V cores and 2 ARM cores, and 4
threads to run using the ARM ISA, only two out of four cores can be used. If a 4-core Combi system
had the same workload, all four cores could run in ARMmode. Combi is therefore more versatile than a
heterogeneous ISA system. However, a multi-ISA Combi core is 13% larger than a comparable single-
ISA core. Therefore, each core in a Heterogeneous ISA multi-core system will be slightly smaller than
a multi-core Combi system. This is a downside of using the Combi microarchitecture.

1The C instruction set is a subset of the RV32I ISA that is encoded in 16 bits instead of 32 bits





6
Conclusion

This chapter provides a summary of the achievements of this thesis. Additionally, it presents some
potential future research directions. Section 6.1 presents the summary of this work, and Section 6.2
shows the possibilities for future work.

6.1. Summary
We have systematically compared the RISC-V and ARM ISA. By dividing the instructions of both ISAs
into the same categories, we could identify the similarities and differences of the architectures. We
compared the register instructions, memory instructions, and branch instructions of both sets. Many
instructions were shared between ARM and RISC-V, and the hardware needed to facilitate the ones that
were not is small. Even branches, which work very differently on ARM and RISC-V, could be facilitated
with hardware that was almost entirely used by both architectures. There were two main differences.
The first was that ARM branches use flags, but RISC-V has no flag register. The second was that ARM
has some instructions which cannot execute in one cycle, but RISC-V does not. For example, most
register instructions on ARM can be supplemented by an additional shift in the same opcode. If these
instructions use a constant shift amount, the ALU of Combi can process it in one cycle. However, if the
shift amount is specified in a third register, the ALU has to take two cycles. This is because the ALU
has only two input ports, which was a design decision of Combi.

RISC-V does have more registers than ARM, which has consequences for calling ARM functions
from RISC-V and vice versa. We have described a general methodology for switching between in-
struction sets, keeping in mind the differences in ABI. We have applied this methodology to RISC-V
and ARM, and concluded that RISC-V and ARM binaries can interoperate without any modification.
This can be achieved using the linker to insert code when a program is loaded, or in some cases binary
interoperability can be resolved purely in hardware. Different methods have been presented, depend-
ing on the level of hardware support, properties of both the calling and called ISA, and the signature of
the routine called. If the function signatures are sufficiently small, or both ISAs have the same amount
of argument and return registers, the call can be resolved using only hardware. Otherwise, some extra
program code would have to be inserted during the linking.

Additionally, three methods of switching between ISAs have been presented. Switching ISAs is
necessary for library calls which cross an ISA boundary, or for running binaries of both ISAs in a shared
operating system. These three methods are using an unused instruction to switch, using the paging
system to detect the ISA of the program, or using statistical properties to detect the ISA. Using an
unused instruction can work even without a memory mapping unit, but requires code to be inserted
wherever the ISA changes. Using the paging system requires no modification of the binary, but requires
a form of memory mapping which may be absent in some systems, for example Combi. Finally, using
statistics requires neither inserting any code, nor using a memory mapping unit. It may be possible to
do so reliably in the case of ARM and RISC-V, however it could still fail. Failing to decode even one
instruction can be fatal to the correct execution of a program and must be avoided.

Finally, we have created Combi, a microarchitecture that can run both RISC-V and ARM binaries.
To achieve this, Combi must use 13% more area and have a cycle time that is 9% slower than when it
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is running only RISC-V or only ARM code. Combi is comparable in area to a typical RISC-V processor,
but slower. But Combi is faster than a multi-ISA microarchitecture that tries to preserve its area, and is
faster than binary translation in software. Overall, this thesis shows that amicroarchitecture can support
multiple ISAs at a competitive speed without nearly becoming as big as two separate processors. This
can be done by sharing most of the hardware that is used to implement the ISAs, thus facilitating both
with little extra required hardware.

6.2. Future Work
There is still work left to be done on multi-ISA microarchitectures. In this section, we will discuss some
of the questions left unanswered and possible future work.

Software Support for Multiple ISAs
• Support for linking binaries of different ISAs: in this work we developed a methodology for switch-
ing instruction sets, but not a linker capable of performing any proposed method. For example,
being able to statically link a new program targeting RISC-V with a library written in ARM that has
no source code available may be necessary if a platform is transitioning from one ISA to another.
This might even be done dynamically instead. In this case, the performance of the linker itself is
also a concern, since the program will be linked before it is run. One can investigate the extra load
time due to linking two binaries of different sizes, or the extra run time due to the code inserted
by the linker at every ISA switch.

• Kernel support for programs of different ISAs: what this work has not touched upon at all is the
possibility of an operating system that can have programs running of multiple different ISAs. This
will require the kernel to keep track of which ISA every program is running in, and ensuring the ISA
is switched back to the one the kernel uses when a program is interrupted. Multitasking operating
systems will regularly interrupt a program to allow other programs to execute, but programs may
also be interrupted in the case of an exception. Examples of errors that interrupt the program
include a memory access out of the bounds of allocated memory or executing a binary instruction
that is not part of the ISA. In these cases, the operating system may also need to switch back to
its own ISA before handling the exception.

• Emulation of system calls: in the presence of an operating system, programs may also perform
system calls. These system calls can be thought of as requests to the operating system from
the program, for example allocating memory, writing to a file, or sending data over the Internet.
System calls also differ between ISAs. If an operating system runs programs of a different ISA,
some system must exist to ensure the operating system can understand the system call from that
foreign ISA.

Exploring Different ISAs
• Combining CISC and RISC ISAs: in the introduction of this work, we stated that implementing
a CISC microarchitecture would not be feasible. This leaves the question open as to what the
limitations of combining a RISC and a CISC ISAs would be. This problem has been addressed by
software simulation in earlier work such as Rosetta 2 and the Crusoe processor, but has seen little
attention at a hardware level. If a CISC microarchitecture were to split its complex instructions
into simple micro instructions, it may be able to support a RISC ISA too.

• Further classification of ISAs: this work has looked at three classes of instructions: register in-
structions, memory instructions, and branch instructions. However, more kinds of instructions
are also common in ISAs. For example, some ISAs have instructions that operate on memory
directly, such as adding a register to an address in memory. Floating point instructions are also
common, which may share a lot of similarities between ISAs. Finally, ISAs for high performance
computing may support Single Instruction Multiple Data extensions. These extensions may be
work very differently, and it will be interesting to know if a common microarchitecture can facilitate
multiple.

• Combining variable and fixed width ISAs: ARM and RISC-V both have 32-bit instructions, which
made the fetch stage of Combi almost identical for both instruction sets. If instruction sets were
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combined that did not have the same length encoding, the fetching system becomes more inter-
esting. It is currently unknown what the consequences of such a system would be for the area or
performance of a processor.

Exploring More of the Microarchitecture
• Other architectures: Combi is a single issue, in-order pipeline microarchitecture. As stated in the
introduction, other microarchitectures have beenmade that implement RISC-V. It may be interest-
ing to see how well the Combi approach works on, for example, a superscalar microarchitecture.
Superscalar architectures use more area than single issue pipelines, so perhaps the overhead
would be less. On the other hand, instructions of different ISAs may interact in ways that were
not considered in this thesis when dispatched simultaneously.

• Memory models: many processors have a memory system that ensures programs only interact
with memory in appropriate ways. For example, the memory of concurrent programs is isolated
such that program A cannot interfere with the memory of program B. This memory model is often
also different between processors, and was not considered in this thesis.

• Power management: in Chapter 5, it was shown that a control line determines if the instruction
executing is a RISC-V or an ARM instruction. It may be beneficial to disable the hardware that
is only needed for ARM instructions when RISC-V instructions are executing, or vice versa. This
could lead to a design that uses less power.
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