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Re-enactment Simulation for Buffer Size
Optimization in Semiconductor Back-End

Production

Jelle Adan, Stephan Sneijders, Alp Akcay, Ivo J.B.F. Adan

Abstract

In this work, we propose a re-enactment simulation-based optimization method
to determine the minimal total buffer capacity in an assembly line required to meet
a target throughput. A distinguishing feature is the use of real-time event traces,
in a fast fluid flow simulation model. Employing real-time event traces avoids
the necessity to make restrictive modeling assumptions. The fluid simulation is
combined with a multi start search algorithm. To demonstrate its effectiveness,
the method is applied to a real-world use case in lead frame based semiconduc-
tor back-end manufacturing. This use case considers an assembly line consisting
of six machines, for which the proposed method determines optimal buffer size
configurations within several minutes of computational time.

1 Introduction
The back-end semiconductor production includes encapsulating a chip into a plastic
package as well as testing and packaging. In this paper, we focus on a serial production
line in back-end semiconductor production. The work-in-process inventory is kept in
buffer areas between two successive machines to assure a smooth flow of products
through the manufacturing line. Motivated by the back-end production of integrated
circuits at an assembly and testing facility of Nexperia, we build a data-driven fluid
simulation model to optimize the buffer sizes. The combination of data mining and
simulation-based business intelligence has proven to be an effective and valuable tool
within daily manufacturing operations at Nexperia. A recent work by Wilschut et al.
[1] builds a software tool and perform simulations of the production equipment, based
on a fluid flow model, enabling the user to analyze which machine errors contribute
most to the production-line downtime.

In Wilschut et al. [1], the historical data on machine errors are considered and past
realizations of machine downtimes and uptimes are recovered, which are subsequently
used to obtain a best-fit probability distributions on the uptimes and downtimes of each
machine. The resulting distributions are used as input models to generate the sample
paths in the simulation model. In the present paper, contrary to generating simulation
input variates from best-fit input distributions, we adopt the data re-enactment simu-
lation (also known as trace-driven simulation) where data traces are collected on the
system inputs and then these traces are directly used to drive the simulation model;
see Jack et al. [2] and Sargent [3]. The main motivation behind this approach is the
availability of large amount of well-structured historical data on the production line and
machine errors as well as the continuous flow of real-time data on the current status of
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the line. Using the real-world data to drive the simulation allows us to capture many
complex relationships between the machine-error types and the production throughput,
which can be hard to capture with parametric input models. That is, the main advantage
of re-enactment simulation is that there is no need to make assumptions concerning the
distributions and independence of the machine uptimes and downtimes.

By following Wilschut et al. [1], we use fluid flow simulation to model the discrete
flow of products through the assembly line similar to a continuous fluid flow. This mod-
eling assumption is viable in this environment because of the high production rates in
the machines. It also makes the simulation very efficient without sacrificing the accu-
racy significantly. In the buffer-size optimization model, we assume that the size of
each buffer is a continuous-valued decision variable. We adopt a gradient-based opti-
mization approach where the performance measure throughput is estimated via simula-
tion; we refer to reader Jian and Henderson [4] for a recent tutorial on simulation-based
optimization methods. Since the size of the historical data is finite, the use of historical
data directly in the simulation sample-path generation induces an additional layer of
uncertainty, making the simulation outputs (i.e., the throughput realization in the pro-
duction line) themselves random. This makes finding the stochastic gradient estimators
itself a challenging problem; we refer the reader to Chau et al. [5] and Fu [6] for recent
developments in gradient-based simulation optimization methods. In this paper, we
develop an algorithm that iteratively increases the length of the historical data until a
buffer-size allocation that satisfies a target throughput value is achieved at minimum
total buffer size. Our preliminary results shows that the algorithm can effectively op-
timize the buffer configuration. Since the algorithm uses the same historical data for
each feasible buffer configuration, it reduces the variance of the throughput difference
between multiple configurations, leading to faster convergence of the algorithm.

There is an extensive literature on the optimization of buffer sizes in manufacturing
lines, see Gershwin and Schor [7]. Buffer size optimization requires efficient search al-
gorithms to select the proper configuration (Gershwin and Schor [7]; Shi and Men [8];
Shi and Gershwin [9]; Ng et al. [10]; Dolgui et al. [11]) and also fast methods to evalu-
ate the performance of a given configuration. Performance evaluation is often based on
analytical approximations (Dallery and Gershwin [12]; Liberopoulos et al. [13]), which
are typically much faster than discrete-event simulation. As explained above, the opti-
mization approach proposed in this paper is a multi start gradient method, based on a
fast trace-driven simulation.

The outline of this paper is as follows. First, the general concepts behind the back-
end production process is discussed in Section 2. The input data collection procedure
is explained in Section 3, and the fluid flow simulation model is explained in Section 4.
The buffer-size allocation algorithm is introduced in Section 5, and a real-world case
study is presented in Section 6 for the illustration of this algorithm. Section 7 provides
some concluding remarks with future research directions.

2 Back-End Production Process
At Nexperia’s semiconductor back-end assembly sites, semi-finished ICs are encapsu-
lated in a supporting case to prevent corrosion and physical damage. This case, which
is often referred to as “package”, supports the electrical contacts that connect it to a
circuit board. A large part of this packaging process is done on assembly lines. In
Figure 1 a schematic representation of such an assembly line is shown.

From left to right: at the beginning of an assembly line empty lead frame, a (metal)
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Figure 1: A production line consists of multiple die bonders (DB) and wire bonders
(WB) in series with buffers between. Die bonders attach the dies onto a lead frame and
wire bonders construct the electrical connection between the die and the lead frame.

support structure, is fed to the first machine in the sequence. This machine is a so-called
die bonder (DB). It picks up semi-finished ICs, so-called dies, from a wafer and bonds
them onto the lead frame. Once a wafer is fully consumed, an operator must provide
a new wafer to the machine. An assembly line may consist of multiple die bonders in
series. At the next stage, the lead frame, that now contains bonded dies, flows through
one or more wire bonders. These machines establish electrical interconnections (wires)
between the die and a specific position at the lead frame. Similarly, once the wire
supply is finished, an operator must provide a new coil to the machine. In the final
step, the device is encapsulated by a molding compound to protect it from the outside
environment. In this work, we limit ourselves to the first two steps only; die bonding
and wire bonding.

3 Data Collection
In 2001, Nexperia’s Industrial Technology and Engineering Centre (ITEC) introduced
its advanced warning and data collection system, abbreviated AWACS, which is used
for the analysis of equipment performance. Equipment status monitoring forms the
core of this system and is responsible for the collection of a wide range of equipment
events. In this work, the focus is on equipment state change events. Equipment can
be in one of one of three aggregated states: production, standby or down. In Figure 2
diagram with the three aggregate states and their respective sub-states is shown. The
production state indicates that the machine is up and products are being produced. The
standby state indicates that the machine is up but no products are being produced, the
cause for which is indicated by one of the four standby sub-states. The sub-state wait
input means that the upstream buffer is empty and that the upstream machine is down,
i.e. the machine is starved. The wait output state means that the downstream buffer
is full and the downstream machine is down. The wait material state indicates that
the machine is out of some material, e.g. the wafer is consumed, and must wait for
an operator to provide new supply. The down state indicates a machine is unable to
produce and is also divided into multiple sub-states that indicate the reason. It is noted
that the error state is also an aggregate state that contains hundreds of specific errors
that can occur.

As mentioned, in this work the influence of buffer capacities on the overall perfor-
mance of the system is studied. The buffer configuration determines how much time
the system spends in the wait input and wait output states. Therefore, both the wait
input and output states are removed from the original event log. These events are to be
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Figure 2: Overview of the equipment states.

regenerated for each buffer configuration by means of a fluid simulation model, which
is described in the next section.

4 Fluid Simulation Model
In the current work a fluid flow model is used to simulate the behavior of an assembly
line. These lines consist of several machines with buffers in between.

We focus here on Nexperia machines, but the technique is applicable to any se-
quential system that consists of N machines and N−1 buffers. The overall process is
schematically represented in Figure 3. In this figure squares represent machines while
triangles depict buffers. Although the products running through the process are dis-
crete entities, the production rate is so fast that the products literally flow through the
process as a continuum. Therefore, it is reasonable to model the process as a fluid flow.
Typically, fluid flow models can be simulated much more efficiently when compared
to discrete production models. The model used in the proposed framework is similar
to the one described in [1]. For completeness, the fluid flow model is briefly discussed
below.

0 1 1 2 NNN-1

Figure 3: Schematic overview of an assembly line.

The machines and buffers are indexed as shown in Figure 3: machines have indexes
ranging from 0 to N and every buffer has the same index as the first machine down-
stream of the buffer. Since no buffer is situated upstream of the 0th machine, buffer
indexes range from 1 to N, i.e. buffer i is between machine i−1 and i. Every machine
i has its own maximum production rate vmax

i in products per time unit and every buffer
i has its own product storage capacity ci in absolute number of products. The actual
rate of machine i can vary between 0 and vmax

i as it is dependent on the state of all other
components in the system. Machines are either in the up or down state, while buffers
can be full, empty or neutral. A state change of one component, buffer or machine,
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may induce a state change on all other constituents of the system. The fluid flow model
simulates the production process with discrete events. In the next sections, the behavior
of buffers and machines is described in more detail.

4.1 Buffer Behavior
Each buffer in the system has a certain storage capacity. Depending on the relative
production rates of the machines directly upstream and downstream of a specific buffer,
its product content either increases or decreases. This is true as long as the buffer
is in the neutral state. If a buffer reaches the maximum capacity or runs empty, the
buffer state is changed to full or empty respectively. Such a state change influences
neighboring machines. In case buffer i runs empty, machine i will adjust its production
rate to that of machine i− 1. If machine i− 1 is down for some reason the rate of
machine i simply becomes zero. On the other hand, when a neutral buffer runs full, the
production rate of machine i becomes vmax

i and the production rate of machine i−1 is
adjusted to the rate of machine i.

4.2 Machine Behavior
The machines can have two different states, either up or down. If a machine is down,
it is not able to produce products due to of problems with the machine itself (e.g.
maintenance or errors). When a machine is up, it produces products with a rate that
ranges between 0 to vmax

i products per time unit, depending on the other machines and
buffers in the system. If machine i is up and its downstream buffer i+ 1 is full, its
production rate is the same as machine i+1 (and if machine i+1 is down, its rate is 0).
In case the downstream buffer is empty, its rate is dictated by the upstream machines,
i.e. if buffer i contains any products, then machine i will produce at maximum rate.
However, if buffer i is empty machine i produces at the same rate as machine i− 1.
A trace of up and down times for every machine serves as input for the model. The
simulation always starts with all buffers being empty and all machines in the up state.
When the production rate of a machine is zero, the up time is frozen until it restarts
production, i.e. a machine can only breakdown while in production.

5 Multi Start Algorithm
The objective of the multi start algorithm is to minimize the total buffer capacity of
an assembly line required to meet a certain target product throughput performance.
The fluid flow model requires several input parameters: a set of maximum machine
rates V = {vmax

1 , . . . ,vmax
N } and a set of buffer capacities C = {c1, . . . ,cN−1}. For a

given input, the fluid simulation model determines the throughput performance of the
system.

The multi start algorithm is initialized by assigning a very large buffer capacity to
all the buffers in the system, simply to represent a system with infinite buffer capacities.
This set of buffer capacities is inserted in the fluid flow simulation, which determines
the throughput. This value is considered the maximum achievable throughput of the
system. Hence, the target throughput is set as a fraction of this maximum throughput.
Next, a new set of buffer capacities is defined through multiplication of each buffer
size with a step size α , a number between 0 and 1. This new set is again inserted in the
simulation model. If the throughput is still above the required target, the new buffer
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configuration is feasible and accepted. In this case, another new set of buffer capacities
is defined, again by multiplying each buffer size with α . This procedure continues as
long as the target remains satisfied. As soon as the performance of the system drops
below the specified target, the new set is rejected, α is reduced by a factor two, and the
process is repeated. This procedure continues until α drops below a certain threshold,
in this case 10−7 is chosen. The result of this procedure is a certain C that satisfies the
target with minimal total buffer capacity and the special property that all ci are equal.

After reaching the point where buffer capacities are equally minimized and through-
put still meets the target, randomness is incorporated in the search in an attempt to ob-
tain the overall minimum. First, the step size α is reset to 0.9. Secondly, to generate
a random start, all buffer capacities are multiplied with a random number between 1
and 10. From this new set of buffer capacities a steepest descent method is used to find
a buffer configuration that also meets the target throughput and possibly has a smaller
overall capacity. This method starts by independently decreasing each buffer capacity
ci through multiplication with α , yielding N− 1 different buffer configurations. The
buffer configuration that results in the highest throughput is accepted as the new buffer
configuration. This process continues until no feasible buffer configuration is found.
At this point, the step size is reduced by a factor two. This procedure continues until
α drops below a certain threshold. Similar to the previously described procedure, this
threshold is set to 10−7. As the name of the algorithm suggests (multi start), this pro-
cess is repeated numerous times to obtain a complete overview of the solution domain.

Illustrative Example
The algorithm has been tested with an illustrative example. For this purpose a simple
system of three machines and two buffers was used, since this allows for easy visual-
ization of the results. Maximum production rates of the machines were set to: vmax

1 = 5,
vmax

2 = 4 and vmax
3 = 4. The target throughput was set to 90% of the maximum through-

put. The results of 50 starts are shown in Figure 4. All the data points correspond to
the same throughput, i.e. the target throughput. Clearly, in order to reach the target
there are several Pareto optimal solutions for the buffer capacity, measured in products
(pdts). In our case, we define the optimal solution as the solution where the sum of the
buffer capacities is minimized.

6 Real-World Case Study
In this section the proposed simulation-based optimization method is applied to one of
Nexperia’s assembly lines. This particular line consists of six machines in total: two die
bonders and four wire bonders. Both the fluid simulation model and the optimization
method are coded in C# 6.0 and computations are run on a computer with an Intel
Core i7 processor running at 2.60 Ghz and 20 GB of RAM. For each of the machines,
an event trace (from 2017) with a length of 15 · 104 time units is used. Recall that
the wait input and wait output states are removed from the original trace since they
are to be regenerated by the simulation model. The other standby states, i.e. the wait
material and idle states, are treated as down states. Hence, the resulting event trace is
an alternating sequence of up and down times. Note that when the removal of a wait
input or wait output state leads to two subsequent up or down states, these are merged
into a single up or down state, see Figure 5.
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Figure 5: Illustration of filtering wait input and wait output times.

The production rate of each machine is taken from the available data, i.e. the total
amount of products produced is divided by the total time spent in the production state
during the whole event trace. In Table 1 the production rates are summarized. Addi-
tionally, the fraction of the time that the machine is in the up (production) state and the
effective rate are shown.

In the following experiment we set the target throughput to 90% of the maximum
achievable throughput and determine the minimum total capacity required to achieve
this target. Furthermore, the step size s in the optimization procedure is set to 0.1, the
minimum step size smin is set to 10−5 and a total of 100 starts are generated. Clearly,
the length of the simulation must be sufficient in order to derive a reliable solution for
buffer size allocation. Therefore, in the following experiment we increase the length
of the simulation with increments of 104 time units, to investigate when the buffer
configuration stabilizes.

In Figure 6 the optimal buffer configurations are shown for increasing simulation
lengths. To give an indication of the speed of the fluid simulation, it takes approxi-
mately 43 milliseconds to perform the (longest) simulation of length 105 time units.
For small simulation lengths the sizes of the buffers strongly deviate, possibly due to
random effects in the first part of the trace. These effect appear to average out as the
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Table 1: The production rates of each machine in products per time unit.

Machine Rate % Uptime Effective rate
# (pdts / time unit) (-) (pdts / time unit)
0 272.98 0.84 229.23
1 264.60 0.84 223.06
2 161.45 0.86 142.96
3 163.61 0.91 148.10
4 156.12 0.90 141.20
5 162.00 0.90 145.37

simulation length increases. From a simulation of length approximately 7 ·104 and on-
wards, the buffer allocations seem to stabilize. Clearly, the optimal buffer configuration
assigns most of the capacity to buffers two and four. These are the buffers in front of
the machines with the lowest effective production rate, see Table 1.
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Figure 6: Optimal buffer size allocation for increasing simulation length.

7 Conclusions and Future Work
It has been demonstrated that the combination of a re-enactment simulation model
and a multi start optimization algorithm can effectively be applied to determine the
optimal buffer size allocation for a discrete product assembly line. For this method, it
is essential that the simulation model is very efficient, which has been achieved using
a fluid flow simulation model. In a real-world scenario that considers an assembly line
consisting of 6 machines the fluid simulation model requires less than 0.1 seconds to
evaluate the throughput performance for a given configuration. Combined with the
multi start algorithm, the optimal buffer size configuration can be determined within
several minutes.

The use of this approach is not limited to buffer size allocation. Another possible
application is to use the simulation model for prioritizing errors according to their
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impact on the throughput performance of the system, in order to steer maintenance
engineers and structural improvement programs.
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