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Abstract

This thesis investigates the role of time prediction accuracy in optimizing Continuous Descent Operations (CDO) within
the aviation sector, with a specific focus on assessing the additional benefits brought forth by the integration of Air-Ground
Datalink technologies. Continuous Descent Operations, characterized by uninterrupted and efficient descent profiles, hold
promise for reducing fuel consumption, emissions, noise, and overall operational costs. However, the extent to which
accurate time predictions contribute to the success of CDO remains a critical yet understudied aspect.

Keywords: Continuous Descent Operations, Trajectory Prediction, Extended Projected Profile (EPP), ADS-C, ATN-B2

1 Introduction

Airports such as Amsterdam Schiphol Airport (AMS)
are constantly in a pursuit of exploring avenues to
augment their capacity to handle more aircraft move-
ments. As one of the busiest hubs in mainland Eu-
rope, AMS plays a pivotal role in both the economy
of the Netherlands and the European Union. How-
ever, despite its status, the airport faces operational
constraints. Regulatory measures, driven by environ-
mental targets, and discontent among local residents
have curtailed further expansion. Consequently, opti-
mizing traffic flow at AMS takes precedence as the
facility already operates at maximum capacity.

The future concept for arrivals at AMS, as for many
airports, is to progressively implement Continuous
Descent Operations (CDO). The specific approach
that aircraft follow during a CDO is referred to as a
Continuous Descent Approach (CDA). For this, it is
already known that a high degree of predictability of
the arrival trajectories is needed. Research has shown
that the quality of the Trajectory Prediction (TP) can
be improved by leveraging information from the air-
craft [1]. With new Air Ground Datalink (AGDL)
technology emerging, specifically Automatic Depen-
dent Surveillance - Contract (ADS-C) from Baseline
2 datalink, these possibilities are becoming within

reach. However, it is unclear to what extent the in-
tegration of this AGDL provided information will
enhance TP performance. Moreover, the sensitivity
of the managed arrival process to the predictability of
the trajectories, both in the prediction as well as the
execution phase of the arrival is unclear. Having a
better insight in this dependency enables the further
design of the technical concept by providing target
performance levels. In turn, it also provides direc-
tion and input to the business case for equipage by
airlines for trajectory sharing as well as ground sys-
tem trajectory prediction performance. To establish
a useful measurement for value added by improved
predictability of the success rate, that is, the percent-
age of CDA that can be executed without Air Traffic
Controller’s (ATC) intervention, is envisioned.

1.1 Research Objective

The objective of this research is to establish a relation-
ship between prediction accuracy and the successful
execution of a continuous descent approach. For this
research, "During its descent from the Top of Descent
(TOD) until the Initial approach fix (IAF) the descent
is said to be a successful CDA if there are no level seg-
ments in the aircraft’s descent profile and the aircraft
is not laterally vectored". In other terms, it is said to
be an unsuccessful CDA if the aircraft is in a conflict
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path with another aircraft during its descent because
an intervention by air traffic controller is warranted
when an aircraft is in conflict. This resolution would
be in terms of either lateral vectoring or instructing
it to stop its descent and maintain its altitude. For
this study, the aircraft is said to be in a level segment
if its descent rate is less than 300 f t/min for more
than 20 seconds. This threshold for defining a level
segment is derived from similar research, such as
[2], that studied vertical flight trajectory efficiency at
AMS.
This study is performed to answer the following re-
search question:
”How does varying the time prediction accuracy in
the arrival process of aircraft at AMS in high density
situation affect the ability for executing continuous
descent approach procedures successfully?”

1.2 Research Hypothesis

With the research question defined, it can be hypoth-
esised that by increasing the prediction accuracy of
the trajectory the number of CDAs flown increases
because by having a more accurate aircraft trajectory
the number of aircraft in conflict paths would de-
crease which would mean there is less intervention
from the air traffic controller. As the prediction error
increases the number of conflicts would increase thus
the rate with which a CDA can be executed would
decrease. It can also be expected that as the altitude
decreases, the number of conflicts would increase
because at lower altitudes the speeds are lower and
the traffic is converging towards the runway which
would mean increase in aircraft traffic density thus
more chances of conflicts.

2 Background

It is widely acknowledged that numerous airports
in Europe are currently operating at nearly full ca-
pacity, primarily attributed to a consistent rise in air
traffic density over the years [3]. Despite a brief de-
cline in air travel during the pandemic, there has
been a noteworthy rebound. Consequently, Air Navi-
gation Service Providers (ANSPs) are under height-
ened pressure to uphold designated time slots for
planned flights while ensuring the required high
level of safety. As mentioned earlier, airports face
the challenge of striking a balance between regula-
tory constraints and revenue enhancement. AMS
is currently facing societal and governmental pres-
sure to reduce the number of aircraft movements.
This call arises from concerns related to air quality
targets in the region and the noise experienced by
residents along flight paths. Modern systems on air-

craft such as ADS-B, constantly pass on information
to the ground. This system is called Automatic De-
pendent Surveillance where crucial information such
as the aircraft’s position, velocity and flight plan in-
formation from the flight management system of the
aircraft can be broadcast to the ground. This informa-
tion might help us increase the accuracy of aircraft
trajectory prediction. The European Organisation
for the Safety of Air Navigation (EUROCONTROL)
and Airbus [4] are studying the effects of increasing
trajectory prediction with their research on Trajectory
Based Operations (TBO). EUROCONTROL is con-
ducting research on the impact of integrating data
from ADS-C into Air Traffic Management (ATM). The
research, as indicated by [5], suggests various bene-
fits, such as efficient aircraft trajectories and traffic
management.
This research specifically focuses on the Extended
Projected Profile (EPP) that is defined by the Aero-
nautical Telecommunication Network: Baseline 2
(ATN-B2) and transmitted by ADS-C from aircraft to
ground systems. This EPP is a message that contains
information about the reference trajectory calculated
by the aircraft’s flight management computer. EURO-
CONTROL has mandated ATN-B2 standard in 2017
[6].

2.1 Automatic Dependent Surveillance
(ADS)

Automatic Dependent Surveillance (ADS) is a type of
surveillance in which aircraft automatically transmits
information obtained from its onboard navigation
and position fixing systems via a datalink. The in-
formation that is transmitted depends on the type of
ADS system equipped on the aircraft. There are two
different types of ADS systems: ADS-B and ADS-C.
The difference between the two is as shown in Table
1.

2.1.1 Automatic Dependent Surveillance - Broad-
cast (ADS-B) ADS-B is a type of surveillance where
the aircraft and other vehicles equipped with the sys-
tem automatically broadcast their identity, horizontal
and vertical position, emergency status without any
external stimulus. The broadcasting source has no
knowledge of who receives its broadcast data. ADS-B
is used to establish spatial awareness between air-
craft and is used to achieve various benefits such as
improved performance, improved safety, increased
capacity. ADS-B uses Mode-S transponders to broad-
cast data.

2.1.2 Automatic Dependent Surveillance - Contract
(ADS-C) Automatic Dependent Surveillance - Con-
tract (ADS-C) is a type of air traffic surveillance sys-
tems that has the capability to give air navigation

2 M.Raghunandan (2024)
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Parameters ADS-B ADS-C

Transmission Automatic and is transmitted Automatic but is only transmitted to
to all ADSB receivers. receivers that has a contract with the

broadcaster.
Data Transmitted Horizontal position Basic Group

Barometric altitude Flight Identification Group
Aircraft Identification Earth Refernce Group
Emergency Status Air reference Group
Special Position Indicator Airframe Indication Group

Meteorological Group
Predicted Route Group
Fixed projected intent Group
Intermediate Projected intent Group

Mandated to equip on commercial aircraft Yes No

Table 1: Differences between ADS-B and ADS-C

service providers access to aircraft information. The
information that it transmits typically consists of its
position, altitude, speed, meteorological data and
importantly for this thesis, its navigational intent
usually obtained from flight management computers
only to one or more specific air navigation service
providers. ADS-C uses Very High Frequency (VHF)
Datalink, known as VDL-2 radios that support con-
troller pilot datalink transfer, that is, sending data
between aircraft and ground stations. The data trans-
mitted from ADS-C is shown in Table 1. ADS-C pro-
vides much more information as compared to ADS-B
and is categorized into groups and the broadcasting
source knows exactly to whom it is sharing its data.
The data transmitted as a result from a request from
ANSP depends on the contract held by the ground
system. The different types of contracts of ADS-C
are:

• Periodic Contract This type of ADS-C contract
enables the ANSP to define the time interval at
which the aircraft sends the report to the ground
and it also lets the ANSP to define the optional
ADS-C groups that are to be reported.

• Demand Contract A demand contract enables
the ANSP to request a single ADS-C periodic
report.

• Event Contract An event contract allows the
ANSP to request ADS-C report when a specific
event occurs. The ANSP can only establish one
event contract with an aircraft at any one time.
However, the event contract can contain mul-
tiple optional events such as waypoint change,
level range change, lateral deviation, vertical rate
change.

The pilot through the aircraft needs to request to log
on to the ANSP’s server. This then enables the ANSP
to downlink important aircraft intent from its flight

management computer like the EPP to the ANSP’s
server which can then be used to make decisions
regarding its flight path. ADS-C was originally used
for oceanic remote operations where the aircraft tra-
jectory information was downlinked to ground. But
with the newly introduced ATN Baseline 2, the target
is to use it to all operations. ATN-B2 allows the down-
link of EPP which consists of an updated flight man-
agement system’s route prediction which is much
more detailed than the current ADS-C reports. For
instance it includes the predicted aircraft weight and
the predicted horizontal and vertical speeds on upto
128 future waypoints in its flight route [7]. Maastrict
Upper Area Control (MUAC) has recently started
operational use of ATN ADS-C [5] for its trajectory
based operations.

2.2 Current operational procedures for
arrivals into AMS

This research is focused on arrivals into AMS, thus
understanding the current operational procedure be-
comes important. Air traffic flying into AMS is mon-
itored and controlled predominantly by the Dutch
ANSP, Luchtverkeersleiding Nederland (LVNL). In
general, inbound Schiphol traffic flows from the Area
of Responsibility (AoR) of an adjacent centre via an
Amsterdam Area Control Center (ACC)-controlled
area (sector) to the Schiphol Approach (APP)- con-
trolled Schiphol Terminal Maneuvering Area (TMA).
The ACC Air Traffic Controller (ATC) transfers in-
bound traffic to the Schiphol Approach (APP) at
the initial approach fix located near the boundary
between the ACC sector and the Schiphol TMA as
shown in Figure 1.
In the Figure 1 the traffic flows from left to right, but
the planning of the inbound flow is carried out from
right to left. That is, the inbound flow is planned by

M.Raghunandan (2024) 3
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Figure 1: Traffic flow for arrivals into AMS

assigning a flight to a particular runway. A landing
sequence is then built based on the landing interval
per runway. An arrival manager (AMAN) schedules
the aircraft sequence based on the current runway
operating conditions. Once this landing interval is
established the Expected Arrival Time (EAT) is cal-
culated. This is the target delivery time for en-route
(ACC) ATCs to deliver the aircraft at IAF. The ATCs
must deliver the aircraft at IAF at EAT within an al-
lowable margin of 120 seconds. The initial approach
fix is a point in the aircraft’s arrival route where the
aircraft has descended enough to be able to begin
its approach to the runway. The descent from the
IAF until the runway threshold can be a continuous
descent or the aircraft can be vectored depending on
the traffic density in the Terminal Manoeuvre Area
(TMA) and the Tower Control zone (CTR).

2.3 Type of Approach

Descent is the segment of flight where the aircraft
begins to descend from its cruise level such that it can
arrive at its destination. Airports with low traffic den-
sity generally instruct aircraft to descend from its top
of descent in a continuous glide down towards the
runway, as shown by the green flight profile in Figure
2. Another kind of approach that is generally used is
a stepped approach, where the aircraft descends from
TOD towards the runway in ’stepped’ segments and
is as shown by the red flight profile in Figure 2. That
is, the aircraft’s descent profile has level segments
in them or ’steps’. The findings from studies like
[8] and [9] indicate that employing a CDA during
landing not only reduces fuel consumption but can
also serve as an effective noise abatement procedure,
as supported by research in [10]. The research con-
ducted in [11], specifically focused on high-density
operations at AMS, aligns with broader research on
CDA, emphasizing the potential for decreased fuel
burn.
In AMS a continuous descent approach is used when
the traffic density is low, that is, usually during night
time operations. When the traffic density is high, a
stepped approach is used. This can be attributed to
the fact that in the calculation of the descent path
by the flight computers, the ATC is left out of the
loop as critical values such as mass of the aircraft is
not shared and also different aircraft performance
varies. Thus, reducing the control for ATC in case of

Figure 2: Different approaches for descent.

conflicts. No studies have looked into the effect that
the prediction of aircraft arrival at IAF has on the
execution of a continuous descent approach. Ideally
an idle continuous descent approach is desired as
this is more beneficial in terms of fuel burnt and
emission as compared to off-idle CDA [12]. However,
controlling aircraft’s descent speed becomes difficult
in idle CDA, for instance, if an aircraft needs to loose
speed, it would have to do so by employing speed-
brakes which is wastage of energy and could be a
cause of discomfort for passengers. From the safety
point of view, off-idle CDA is preferred over idle
CDA because, in case the aircraft needs to abort its
descent for any unforeseeable reason such as conflict,
the engine spool-up time for off-idle CDA is less
as compared to aircraft performing an idle CDA.
Thus for this research, an off-idle continuous descent
approach is selected.

3 Simulation Design and
Experimental Setup

The objective of this research is to investigate how
prediction accuracy influences the successful execu-
tion of CDAs. To achieve this, a comparative analysis
is conducted, focusing on variations in the number
of CDAs executed across different prediction error
ranges. The entire simulation process is illustrated
in the flow diagram presented in Figure 3. Multiple
simulation runs are performed, enabling a compre-
hensive comparison and evaluation. Statistical tool,
such as the F-test, is employed to assess the simula-
tion’s statistical significance. The subsequent section
provides a detailed description of the simulations and
outlines the simulation setup for a comprehensive
understanding of the study’s methodology.

3.1 Data

For this research work the quality and the quantity
of data plays a pivotal role. The study is conducted
at the Knowledge and Development Centre (KDC) -
Schiphol, where access to precise historical data is
facilitated through collaborative efforts with partners

4 M.Raghunandan (2024)
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Figure 3: Flow diagram of multiple simulation runs.

such as LVNL and EUROCONTROL. Veiligheid, Ef-
ficiency en Milieu - managementinformatiesysteem
(VEMMIS), a LVNL database, encompasses various
components, including radar data, weather data,
track data, and routes. For this research, VEMMIS
is used to obtain the spawn position and condition
of historical flights that flew into Schiphol over the
span of one day in August of 2019 which amounts
to 758 flights. A pre-covid data is considered since
traffic was still unaffected then.

3.2 Simulation Design

To simulate and examine the influence of prediction
accuracy on CDA, it is essential to begin by clearly
defining the variables involved. The independent
variables of this research can thus be defined as pre-
diction error (seconds) and traffic density (number of
aircraft per given day). According to the research ob-
jective, the dependent variable would then be success
rate of executing CDA. To measure the success rate,
an intermediate dependent variable, the number of
aircraft in conflict, is introduced. As the prediction
error increases, it is likely that the number of conflicts
will also increase. This is because the introduction
of more randomness and errors in the trajectory pre-
diction raises the likelihood of aircraft encountering
conflicting paths. An increase in traffic density is
expected to contribute to a higher occurrence of con-
flicts as the increased presence of multiple aircraft
in flight simultaneously raises the probability of en-
countering conflicting paths.

To establish the relation between prediction error
and number of conflicts a simulation needs to be per-
formed. Thus to run these simulations, an air traffic
management simulation environment is needed.

3.2.1 Simulation Software This entire research is
designed such that an air traffic management soft-
ware is needed to perform the analytical calculations
and to observe conflicts. For this work, BlueSky [13]
is used as an ATM simulator tool. BlueSky is an
open source, python based, user friendly, air traffic
management simulator which has high fidelity. Nu-
merous researches have satisfactorily used BlueSky
for simulations and verification. A Scenario file is

created, which is a text file that is used to feed in-
structions (scenarios) to run the simulation. Since
BlueSky is an open-source simulator, there are mul-
tiple variations of it developed for specific use. The
version of BlueSky used for this research is obtained
from InnovationLabs (iLabs) [14]. This version is
chosen because iLabs, a collaborative effort between
LVNL and Delft University of Technology, is actively
developing a customized closed source BlueSky us-
ing proprietary data specifically designed for AMS.
To accurately replicate aircraft performance in the
simulation, the ATM simulator relies on an aircraft
performance model. In this study, the chosen model
is sourced from iLabs and is tailored for assessing
aircraft performance within traffic bound for AMS.
Constructed with proprietary data from iLabs and
its collaborators, this model is intricately designed
to closely mirror the actual traffic performance into
AMS, making it better suited for this research.

After choosing the simulation tool and the perfor-
mance model, the simulation of aircraft flying into
AMS must be configured. As mentioned earlier, this
research employs VEMMIS to acquire historical air-
craft data. It precisely captures the aircraft’s entry
into Dutch airspace, known as the spawn time, along
with three-dimensional spatial information, includ-
ing the aircraft’s altitude, longitude and latitude. The
aircraft must then be instructed to fly a specific route
into its approach to one of the runways. The runway
combination used for this research is arrivals into
Runway 18R and Runway 18C. This instruction is fed
into the software by creating a scenario file.

3.2.2 Creating the arrival route This study employs
fixed arrival routes for runways 18R and 18C, rep-
resenting the most frequently utilized combination
at AMS. Operationally, Dutch airspace is laterally
divided into five sectors, as illustrated in Figure 5.
Sector 1 is situated in the northeast, Sector 2 in the
east, Sector 3 in the south, Sector 4 in the southwest,
and Sector 5 in the northwest of Dutch airspace. The
scenario file is configured to guide aircraft arrivals
from Sector 1 and Sector 2 to Runway 18C, while ar-
rivals from Sector 3, 4, and 5 are directed to Runway
18R. To ensure realistic descents closely resembling
operational procedures, speed and altitude restric-
tions are enforced over predefined waypoints in the
arrival route. The dutch airspace is vertically divided
into airspaces as shown in Figure 6. The area of focus
for this research, as previously defined, is from the
TOD until the IAF. The airspace that is of focus is the
Control Area (CTA) in this case, the Amsterdam Con-
trol Center (ACC). The scenario file is created such
that the aircraft flies from its spawn position towards
the IAF as shown in Figure 5 and then fly the ap-
proach into its designated runway. The orange points
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Figure 4: Flow diagram of performing one experimental run.

in the figure indicate the aircraft spawn position.

Figure 5: The fixed arrival route and the sectors of the Dutch
airsppace.

Figure 6: Dutch Airspace

As explained previously and as shown in Figure 3
multiple simulation run is to be performed to estab-
lish the relationship between the number of aircraft
in conflict and the prediction error. The setup of a
single simulation run is as shown in Figure 4. A
sequence of aircraft arrivals is subjected to various
range of prediction error and the number of con-
flicts is recorded for further analysis. A sequenced

arrival is thus needed before the simulation can be
performed.

3.2.3 Obtaining an Arrival sequence An arrival se-
quence of aircraft is needed such that they can be
subjected to the uncertainties of the prediction error.
This is done by a tool called as an AMAN. It cre-
ates a sequence of aircraft separated by a given time
interval. For this thesis the inter arrival time, that
is, the time between aircraft arrivals at the runway
threshold, is set to be 90 seconds. To make it simpler,
let us use an example to explain how this arrival
sequence is created. Let us say a flight ’KLM001’ en-
ters the dutch airspace at 00:00:00 and then takes 20
minutes to arrive at the runway threshold at 00:20:00.
Another flight, ’KLM002’ enters the dutch airspace
at 00:03:00 and takes 17 minutes to fly to the run-
way threshold, which means it would also arrive at
the threshold at 00:20:00, which is the same arrival
time as ’KLM001’. AMAN would then give KLM002
a landing slot of 00:21:30 which is 90 seconds after
the arrival of ’KLM001’. This is done for all aircraft
arrivals and a sequence is obtained. It is to be noted
that in order for ’KLM002’ to arrive at the runway
threshold, it needs to be delayed by 90 seconds from
its initial arrival time of 00:20:00. Now in current
high density operations, this delay would be added
to the aircraft in terms of speed manipulation or by
radar vectoring. But for this research, any radar vec-
toring would deem the CDA unsuccessful. Another
solution in the simulation to enforce this delay could
be that the aircraft could be spawned later such that
it arrives at the runway at its allotted slot. But in
practice this would mean asking the adjacent air traf-
fic center to delay the aircraft’s entry into the Dutch
airspace, which is not desired. Thus for this simu-
lation, the delay is enforced by changing its Target
Descent Speed (KIAS). To achieve this target descent
speed for each aircraft, a database is created which
has the information of each flight of 758 flights that
arrive into AMS which contains the time the flight
takes to fly from its spawn position to the runway
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threshold for different target descent speeds. In the
database, the target descent speed is varied from
200kts to 270kts to obtain the flying time of the air-
craft. In this example, let us say ’KLM002’ takes 20
minutes to fly with an initial target descent speed of
270kts. In our example, it is desired that ’KLM002’
flies an additional 90 seconds to meet its assigned
landing time. The AMAN looks into the database for
’KLM002’ and selects a target descent speed that has
a flying time of 21 minutes and 30 seconds, let us say
for this case, it corresponds to a target descent speed
of 250kts. Thus for this instance, AMAN would cre-
ate a sequence of ’KLM001’ arriving at 00:20:00 with
its original target descent speed and then ’KLM002’
arriving at 00:21:30 with a modified target descent
speed of 250kts. The AMAN does this to all aircraft
flying into the runway and creates an aircraft arrival
sequence and provides a target descent speed for the
aircraft to achieve this sequence.
This research uses descent speed control to achieve
the correct EAT adherence thus the accuracy of pre-
diction influences the success with which the timing
of aircraft arriving at EAT can be effected instead.
There are two methods by which aircraft’s EAT ad-
herence can be influenced: Air traffic controllers man-
aging the speed targets or, alternatively, the aircraft
calculating and controlling the speed target. In the
context of this research, the decision has been made
to have ATC manage the speed targets. This aligns
with operational practices observed at LVNL, where
a similar approach is taken due to the necessity for
predictability in speed patterns, particularly in the
context of high-density operations.

Upon setting up the simulation software, select-
ing the performance model, obtaining the aircraft
spawn data and an arrival sequence, the simulation
as illustrated in Figure 4 can be performed to record
conflict counts under varying levels of prediction er-
ror. Initially, a baseline number of aircraft conflicts
is established, acting as a benchmark for comparison
with conflict counts observed under different pre-
diction error cases. Analyzing this aircraft conflict
count further gives us the rate at which CDAs can be
successfully implemented.

3.2.4 Establishing a Baseline As briefly explained
before, a baseline is obtained which record the num-
ber of aircraft in conflict without any noise added to
the arrival sequence, or, with a prediction error of 0
seconds. While one might intuitively expect a 100%
success rate in executing CDA in this baseline, the
reality is more complex. The irregularity in arrivals
at AMS, characterized by multiple "Arrival Peaks"
with heightened air traffic density, challenges this ex-
pectation. During peak periods, air traffic controllers
might employ strategies like vectoring or placing air-

craft in holding patterns to ensure separation require-
ments. However, in adherence to the CDA definition,
simulations in this research refrain from such vec-
toring practices and instead utilize speed control to
delay aircraft arrivals. Nevertheless, there is a limit
to how much an aircraft can be slowed down. Thus,
the baseline simulation, despite having no prediction
error, may still experience conflicts due to the non-
uniformity of arrivals throughout the day.
The flow diagram of establishing this baseline is as
shown in Figure 7. The data, which consists of his-
toric aircraft data obtained from VEMMIS is first fed
into AMAN and a sequence of arrival is obtained
as explained in the previous section and this acts
as the input. It is fed into the simulation software
and the output is processed to obtain the number
of aircraft in conflicts. This baseline serves as the
benchmark against which the outputs of other sim-
ulations, conducted with varying prediction errors,
are compared.

Figure 7: Obtaining Baseline conflict values.

After establishing the baseline, it is imperative to
conduct simulations with diverse prediction errors
to facilitate an analysis of the number of aircraft con-
flicts. This analysis involves comparing the outcomes
of these simulations with the baseline values. The
variables are the same as the simulation run to obtain
the baseline, that is, number of conflicts is recorded
for varying prediction error.

3.2.5 Simulations with varied Prediction Error To
investigate the impact of prediction error on CDA,
the simulation proceeds by introducing noise to air-
craft arrivals once the baseline is established. Specif-
ically, the spawn time of aircraft is modified, incor-
porating noise in terms of standard deviations. The
number of conflicts is then systematically recorded
for various prediction errors. In this research, the
range of prediction errors spans from 20 seconds to
60 seconds 1-sigma, with an increment of 5 seconds.
This chosen range allows for correlation with similar
studies, such as the research conducted by SESAR
in PJ38 [15]. The workflow for recording conflicts at
different standard deviations is illustrated in Figure
8.

A full simulation run, as depicted in Figure 3, is
considered complete once both the baseline simula-
tion and simulations with varying prediction errors
have been executed. In the context of this research,
three complete simulation runs are conducted. This
facilitates the execution of subsequent statistical anal-
yses, allowing for the application of the F-test and en-
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Figure 8: Changing the prediction error and finding the number
of conflicts.

abling a more thorough evaluation of the relationship
between the dependent and independent variables.

3.3 Statistical Analysis

Upon the completion of all three simulation runs,
additional analysis is essential to comprehend the
output and establish the relationship between the
variables. The primary objective of this research is to
assess the influence of prediction error on the success-
ful execution of CDAs. This evaluation involves ex-
amining the impact of prediction error on the success
rate of flown CDAs. The success rate is determined
by assessing the number of aircraft in conflicts, as in-
stances of conflicts indicate unsuccessful execution of
a CDA. While these values are derived from the sim-
ulation runs as previously explained, it is crucial to
consider the statistical significance of any variations
in output of these simulations. A regression analysis
is performed in this research to determine the impact
of prediction error on the number of conflicts.

3.3.1 Regression Analysis Once the simulation is
done, the output is processed using a statistical tool
to understand the result. As previously stated, this re-
search uses regression analysis to understand the re-
sult of the simulations. Regression analysis is chosen
since the relationship between the prediction error
and the number of conflicts needs to be established.
A non linear regression analysis is chosen instead of a
linear regression analysis as non linear linear regres-
sion analysis is used to model complex behaviour
between dependent and independent variables. It
uses a non-linear function to fit complex patterns
in data. The general form of a nonlinear regression
model involves a nonlinear function that relates in-
put variables to the response variable, with parame-
ters estimated through optimization techniques. The
equation of a nonlinear regression model is given by:

y = f (x, β) + ε (1)

where y is the dependent variable, x is the indepen-
dent variable, β represents the vector of regression
coefficients, f (x, β) is the non-linear regression func-
tion, and ε is the error term.

This research involves a comparative analysis of
simulations conducted using air traffic management
software. An F-test is then performed to further

understand the output. The primary objective of run-
ning the F-Test or Analysis of Variance (ANOVA) is
to assess the statistical significance of the variability
in the number of conflicts observed across three simu-
lation runs. This assessment aims to discern whether
the observed variations are random or if there is a
systematic effect of the independent variable (predic-
tion error) on the number of conflicts. In essence, the
goal is to examine if the variability in the number
of conflicts obtained from running the simulations
three times is significantly influenced by prediction
error.

3.3.2 F-Test / Analysis of Variance (ANOVA) The
F-test stands as a robust statistical method exten-
sively applied in the domain of Analysis of Variance
(ANOVA). Its primary function is to assess the statis-
tical significance of observed variations among mul-
tiple groups, determining whether these differences
are meaningful or might have occurred randomly.
This test is particularly valuable when comparing
means across diverse datasets. In the ANOVA frame-
work, two crucial hypotheses are central to the F-test:

• Null Hypothesis (Ho): The null hypothesis
posits that the means of all compared groups are
equal. This implies that any observed variations
in the data are attributable to random sampling
variability rather than true group differences.

• Alternative Hypothesis (H1): In contrast, the
alternative hypothesis suggests that at least one
group mean is significantly different from the
others. A rejection of the null hypothesis implies
the presence of meaningful differences among
the group means.

For this research, the hypotheses are framed as:

• Null Hypothesis (Ho): "The variation in the
number of conflicts across the three simulation runs
is solely due to random chance, and there is no
systematic effect of prediction error on the number of
conflicts."

• Alternative Hypothesis (H1): " The variation in
the number of conflicts across the three simulation
runs is not solely due to random chance, and there is
a systematic effect of prediction error on the number
of conflicts."

The F-test generates an F-statistic, a numerical sum-
mary that quantifies the ratio of the variance between
groups to the variance within groups. A higher F-
statistic indicates a greater likelihood of significant
group differences. The associated p-value is a crit-
ical metric obtained from the F-test. Researchers
compare the p-value to a predetermined significance
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level (commonly 0.05) to make decisions about the
null hypothesis. A low p-value (typically below the
chosen significance level) leads to the rejection of the
null hypothesis, signifying that observed differences
among group means are statistically significant.
To summarize, the F-test serves as a robust tool to
determine whether observed variations in the data
are indicative of true group differences or if they can
be attributed to random chance. The interpretation
of the F-test is essential for drawing meaningful con-
clusions about the factors contributing to variability
among groups. In the context of this study, the ap-
plication of the F-test is aimed at assessing whether
the variance in the number of conflicts obtained from
the three different simulations with varying levels
of prediction error is statistically significant. The
null hypothesis posits that the observed variance in
conflict occurrences across different levels of predic-
tion error is solely due to random chance, indicating
no systematic effect of prediction error. The prede-
termined significance level of the p-value for this
research is set to be 0.05.

3.3.3 Rolling Window Analysis To comprehend the
trends of aircraft arrivals throughout the day and
their impacts more effectively, an analysis known
as a Rolling Window Analysis can be conducted.
The Rolling Window Analysis, also referred to as
a moving window or rolling window regression, is
a statistical method employed to evaluate the sta-
bility or trends of a data series over time. In this
analysis, a window of fixed size moves through the
dataset, and statistical computations are performed
for each window. After each calculation, the window
advances by a specified increment, and the process
is repeated until the entire dataset is covered. In this
research, the analysis is carried out to comprehend
the number of aircraft arrivals within a 20-minute
time window throughout the entire day. The aim is to
understand the trending patterns of aircraft arrivals
over the course of the day. The actual operational
saturation limit at AMS is 10 aircraft per window of
20 minutes. Exceeding this limit indicates that the
runway is operating beyond its full capacity, while
a value below 10 suggests that the runway has not
reached its capacity yet. Looking at the results of
analysis could help explain the behaviour of arrivals
into the runway.

4 Results

This section presents the outcomes of the simulation
and analysis performed as explained in the previ-
ous sections. The primary aim of this research is to
assess how prediction accuracy influences the suc-

cessful implementation of a CDA. The independent
variable in this evaluation is the prediction accuracy,
while the dependent variable is the success rate of
executing a CDA. To measure this success rate, an
intermediate dependent variable is considered—the
number of aircraft in conflict. This choice is based
on the assumption that any aircraft in conflict would
prompt intervention from the air traffic controller,
either through employing level segments or radar
vectoring. Both interventions are deemed unsuccess-
ful CDAs according to the definition established in
this research.

4.1 Number of Aircraft in Conflict

The number of aircraft in conflict for varying range of
prediction error for all three simulations for arrivals
into runway 18R is as shown in Table 2. It can be
observed that the number of aircraft in conflict does
not vary much across the three simulation runs. The
result of f-test which was performed to understand
the statistical significance of variation of these conflict
values is presented further in detail in the upcoming
section. The table depicts that the number of air-
craft in conflict increases with increasing prediction
error. In simulation run 1, for a prediction error of 0
seconds 182 aircraft were in conflict which increases
to 222 aircraft in conflict as a result of a prediction
error of 20 seconds. That is an increase of 40 counts
of aircraft in conflict for simulation run 1 whereas
the increase in conflict counts for simulation run 2
and run 3 are 45 and 42 respectively. The data from
the table can be visualised as shown in Figure 11.
The Success rate of executing a CDA across the three
simulations for varying prediction error is tabulated
in Table 3. The success rate of implementing a CDA
in simulation run 1 decreases from 59.73 % for no
prediction error to 50.88% for a prediction error of 20
seconds and the decrease is of a similar magnitude
for run 2 and run 3. A graph that shows the success
rate for the three simulation runs are as shown in
Figure 9.

The number of conflicts for arrivals into runway 18C
is as shown in Table 4. The simulation shows that,
for arrivals on runway 18C, the number of aircraft in
conflict is insensitive to the prediction error. Increase
in prediction error does not seem to show any effect
on the rate with which a CDA can be executed. The
rate of successful CDA hovers around 62%. The
rolling window analysis for arrivals into runway 18C
is as shown in Figure 13 and for arrivals on 18R is as
shown in Figure 14.
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Figure 9: CDA success rate for varying prediction error of arrivals into runway 18R.

Figure 10: Box Plot of number of aircraft successfully executing a CDA for varying prediction error of arrivals into runway 18R.
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Figure 11: Number of aircraft in conflict for the three simulation runs.

Figure 12: Number of conflicts for different range of altitudes.
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Figure 13: A rolling window analysis for arrivals into runway 18C.

Figure 14: A rolling window analysis for arrivals into runway 18R.
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Prediction Error (s) No. of Conflicts
Run 1 Run 2 Run 3

0 182 182 182
20 222 227 224
22 229 223 225
25 243 238 239
30 248 246 235
35 251 248 255
40 264 257 268
45 250 260 266
50 256 254 269
55 270 264 272
60 271 264 266

Table 2: Number of conflicts in the simulation for a range of
prediction error for runway 18R.

Prediction
Error (s)

CDA Rate (%)

Run 1 Run2 Run3 Mean
0 59.73 59.73 59.73 59.73

20 50.88 49.77 50.44 50.36
22 49.33 50.66 50.22 50.07
25 46.23 47.34 47.12 46.90
30 45.13 45.57 48.00 46.23
35 44.46 45.13 43.58 44.39
40 41.59 43.14 40.70 41.81
45 44.69 42.47 41.15 42.77
50 43.36 43.80 40.48 42.55
55 40.26 41.59 39.82 40.56
60 40.04 41.59 41.15 40.92

Table 3: CDA success rate of the simulation for a range of
prediction error for runway 18R.

Prediction Error (s) No. of conflicts
Success
Rate (%)

0 110 64.16
20 99 67.75
22 97 68.40
25 109 64.44
30 114 62.86
35 98 68.07
40 112 63.51
45 115 62.54
50 130 57.65
55 134 56.63
60 114 62.86

Table 4: Number of conflicts in the simulation for a range of
prediction error for runway 18C.

4.2 Number of aircraft in conflict across a
range of altitude

The results of analysis of how aircraft conflicts are
spread across different range of altitude is as shown
in Table 5. A plot of the same is as shown in Figure
12. It is observed that as the altitude decreases, the
number of conflicts increase over the range of varying
prediction error. An average of about 85% of conflicts
occur at altitudes lower than 19000 f t with about
40% of conflicts below 9000 f t. The most number
of conflicts occur in the altitude range of 3000 f t to
5000 f t. This is the region where aircraft converge at
IAF and begin their approach to the runway.

Altitude SD20 SD25 SD30 SD35 SD40
Range (ft)

3000 - 5000 98 102 84 87 74
5000 - 7000 34 49 37 45 47
7000 - 9000 22 33 27 24 24
9000 - 11000 27 30 30 33 27
11000 - 13000 20 25 17 28 25
13000 - 15000 16 15 20 21 24
15000 - 17000 27 20 34 31 21
17000 -19000 25 22 23 18 24
19000 - 21000 8 13 16 10 11
21000 - 23000 10 4 13 14 17
23000 - 25000 10 11 8 7 12
25000 - 27000 2 3 5 3 8
27000 - 35000 4 3 6 3 9

Table 5: Number of conflicts in the simulation for different range
of altitude and prediction error for arrivals to runway 18R.

4.3 F-test

As previously discussed, the F-test is conducted on
the simulation data to interpret the implications of
variations in the number of conflicts across three dis-
tinct runs. The F-test/ANOVA results, presented in
Table 6, yield a f-statistic of 0.0492, signifying a low
value. The corresponding p-value is 0.9519, surpass-
ing the predetermined threshold of 0.05. The box
plot depicting the distribution of the three runs is
illustrated in Figure 10.
A p-value exceeding the established threshold im-

f-test

f-statistic 0.0492
p-value 0.9519

Table 6: p-value and f-statistic after performing f-test.

plies insufficient evidence to reject the null hypothe-
sis Ho. This hypothesis asserts that the variation in
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the number of conflicts among the three simulation
runs is primarily attributable to random chance, and
there is no systematic impact of prediction error on
conflict numbers. The overlapping box plots and the
low f-statistic indicate that there is no statistically
significant difference between the distributions of the
simulations.

5 Discussion

This section delves into a discussion of the previously
presented results. It also encompasses a thorough
exploration of the limitations inherent in the research
work, the underlying assumptions, and outlines po-
tential avenues for future research.

5.1 Result

The outcomes of the simulations and the analysis
conducted in the experiment to assess the influence
of prediction accuracy on the success rate of CDA
were presented in the previous section. It was ob-
served that, for runway 18R, the number of conflicts
increases as the prediction error rises. This aligns
with the research hypothesis. This behavior could
be attributed to the fact that, with an increase in pre-
diction error, more randomness is introduced into
the system, consequently raising the chances of air-
craft having conflicting paths. A noticeable trend
was the decrease in the mean CDA success rate from
59.73% to approximately 40% when the prediction
error reached 60 seconds. The variation in the mean
CDA success rate with increasing prediction error is
noteworthy. An intriguing observation is the plateau
observed after 40 seconds of prediction error, where
the decline in the mean success rate is not as sub-
stantial as the decrease observed between 0 and 40
seconds. This phenomenon could be attributed to
the scenario during an arrival peak when the traffic
density is high. If all potentially conflicting aircraft
are already in conflict, further increases in random-
ness may not result in additional conflicts, as there
are no remaining aircraft to be in conflict with. To
comprehend this behavior more thoroughly, a more
in-depth analysis should be conducted.

The results for runway 18C contrasted with those
for 18R. Notably, the prediction error seemed to have
no discernible impact on the number of conflicts, and
the success rate of CDA consistently hovered around
62%. The outcomes of the rolling window analy-
sis revealed that the duration during which runway
18R exceeded or equaled the saturation limit of 10
aircraft per a 20-minute window was significantly
higher than the corresponding period for runway
18C. The observed variation could be attributed to a

greater number of arrivals from sectors 3, 4, and 5 for
runway 18R compared to sectors 1 and 2, resulting in
a lower traffic density at runway 18C. Consequently,
despite the introduction of randomness into the sys-
tem, the configuration of aircraft arrival was likely
such that it exerted a minimal influence on conflict
paths, primarily due to the lower overall traffic den-
sity for arrivals into 18C. A more in-depth analysis
of this behavior is required for a comprehensive un-
derstanding.

An examination of the number of aircraft conflicts
across different altitude ranges revealed a substan-
tial increase in conflicts as the altitude decreased.
Specifically, approximately 40% of the total recorded
conflicts occurred below 10,000 feet. This trend might
be associated with aircraft converging at the IAF at
lower altitudes as they initiate their approach into
the runway, coupled with the fact that aircraft tend
to fly at slower speeds at lower altitudes. However,
it is essential to conduct a more comprehensive and
detailed study to thoroughly understand the relation-
ship between altitude and the occurrence of conflicts.
The results of the F-test reveal a low f-statistic value
of 0.049 and a very high p-value of 0.9519. Both of
these parameters suggest that there is not enough
evidence to reject the null hypothesis. The null hy-
pothesis states that the variation in the number of
conflicts across the three simulation runs is solely
due to random chance, and there is no systematic
effect of prediction error on the number of conflicts.
In other words, there is no statistically significant dif-
ference between the distributions of the three simula-
tions. This implies that it can be reasonably assumed
that the simulation, when run any number of times,
would behave in a similar manner as it did during
these three runs.

5.2 Limitations and Assumptions

The current study has inherent limitations that
warrant acknowledgment and consideration for a
more nuanced interpretation of the research findings,
paving the way for future investigations into the im-
pact of trajectory predictability on aircraft operations.
For this research it is assumed that the relevance of
weather data is not high as this can be reproducible.
The simulations were exclusively conducted on the
air traffic management simulator, BlueSky, which,
while offering high fidelity, is not without its own
set of limitations. Notably, the aircraft performance
models, though advanced, may still be refined for
increased realism and accuracy.
A notable limitation arises from the current con-
straints imposed by the aircraft performance model,
which limited the arrival manager database to speeds
ranging from 200 knots to 270 knots. Ideally an upper
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limit of 310 knots is preferred. To address this con-
straint, future developments could involve expand-
ing this speed range, enabling the inclusion of higher
speeds in the database. Such an enhancement would
grant ATC greater flexibility in managing speed tar-
gets, thereby bolstering the overall robustness of the
study.
Moreover, the reliance on historic data comprising
a single day’s arrivals, totaling approximately 758
aircraft, was dictated by computational constraints.
To enhance the robustness of the results, expanding
the date range could be considered if computational
resources permit.
The assumption made that the weather data is irrele-
vant for this study needs more scrutiny. While easily
reproducible, the validity of this assumption remains
uncertain. A comprehensive evaluation is essential to
understand how weather factors may influence the
relationship under investigation.

5.3 Recommendations and Future works

Future research within the scope of understanding
how prediction errors affect continuous descent ap-
proaches could involve using an updated aircraft
model with an advanced algorithm to incorporate
the Mach-CAS speed schedule. Additionally, inves-
tigating the influence of weather conditions would
contribute to a comprehensive understanding of the
complete impact of prediction errors on trajectory-
based operations. While this study focused on a
specific runway combination, 18C and 18R, there is
potential for exploring additional runway combina-
tions to assess their performance and gain further
insights.

6 Conclusion

The primary goal of this research was to evaluate the
impact of prediction error on the successful execution
of continuous descent approaches in a high-traffic
density condition at Amsterdam Schiphol Airport.
The study presents promising evidence suggesting
that there is a significant improvement in implement-
ing CDA when prediction errors are reduced.
Nevertheless, it’s important to note the presence of
certain assumptions and limitations in the study’s
methodology. These factors should be considered
with a degree of caution when interpreting the re-
sults, as they introduce complexities to the overall
understanding. Despite these considerations, the
findings contribute substantively to our comprehen-
sion of how prediction errors impact CDA, offering
a nuanced yet comprehensive view of the behaviour.
Furthermore, this research lays a foundation for fu-

ture studies in the field. The insights gained from
examining the influence of prediction errors on CDA
not only contribute to the current understanding but
also provide a starting point for further investiga-
tions. Future research endeavors can explore addi-
tional aspects related to CDA dynamics and delve
into potential refinements for more accurate predic-
tions, contributing to the ongoing advancement of
air traffic management practices.
Moreover, this research offers a compelling rationale
for airlines to consider investments in equipping their
fleets with ADS-C ATN-B2 systems. The findings sug-
gest that these technological advancements not only
contribute to the overall enhancement of CDA effi-
ciency but also make a persuasive case for optimizing
air traffic management. As such, this study stands
as a substantive resource for aviation stakeholders,
providing both theoretical insights into the correla-
tion between prediction error and CDA, and acting
as a foundation for future conversations where the
persuasive value can be leveraged to encourage the
adoption of advanced surveillance and communica-
tion systems, specifically the ADS-C ATN-B2, within
the airline industry.
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1
Introduction

Airports that have high traffic movements such as Amsterdam’s Schiphol are in constant search for
methods that help improve their efficiency. One of the important areas of focus for airports are de-
parture and arrivals. The goals of such busy airports is to improve their arrival capacity as much as
possible which in turn leads to an increase in revenue. This means that they need to constantly research
and adapt new techniques and methods.

One such future concept for arrivals at Amsterdam Schiphol Airport, as for many airports, is to pro-
gressively implement Continuous Descent Operations (CDO). For this, it is already known that a high
degree of predictability of the arrival trajectories is needed. One key parameter used to determine the
arrival trajectory is to have time prediction at Initial Approach Fix (IAF) as accurately as possible.
Research has shown that the quality of the Time Prediction can be improved by leveraging information
from the aircraft. With new Air Ground Datalink (AGDL) technology emerging, specifically ADS-C
from Baseline 2 datalink, these possibilities are becoming within reach. However, it is unclear to which
extent the integration of this AGDL provided information will enhance the time prediction. Moreover,
the sensitivity of the managed arrival process to the predictability of the trajectories, both in the pre-
diction as well as the execution phase of the arrival is unclear.

Having a better insight in this dependency enables the further design of the technical concept by pro-
viding target performance levels. In turn, it also provides direction and input to the business case for
equipage by airlines for trajectory sharing as well as ground system trajectory prediction performance.
To establish a useful measurement for value added by improved predictability of the success rate, that
is, the percentage of CDO’s that can be executed without ATC intervention, is envisioned.

In order to improve the time prediction accuracy using the AGDL, this research project is to develop a
model of advanced arrival management in which the effect of varying time prediction can be measured
in terms of percentage of flights that can execute a full and partial CDO procedures.

This report is structured as follows. Chapter 2 defines the research objective of this thesis and establishes
the research question. Followed by Chapter 3 which provides background and information on continuous
descent operations and the current operational problems in detail. It also explains the definitions of
terms used for this research project. Chapter 4 explains the methodology and important concepts
required for this research. Chapter 5 gives more details about the research proposal, the limitations of
this study and the assumptions made. Chapter 6 concludes this report and gives a status update of
the work and the further steps that needs to be carried out. A Gantt chart is attached in the appendix
that highlights the research plan in terms of dates.
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2
Research Objective

The motivation for this research and the research objective and the research question is established in
this chapter.

2.1. Motivation
As previously mentioned, Amsterdam Airport (AMS) must continually embrace innovative approaches
to enhance its capacity. One effective strategy involves implementing Continuous Descent Approaches
(CDAs) during periods of high traffic density. However, the hindrance to executing CDAs in these
scenarios lies in the lack of critical information available to ground controllers, such as aircraft mass
and performance. Consequently, controllers are not involved in the trajectory calculations. The current
unavailability of essential information poses a barrier to the implementation of CDAs during high-
density operations at AMS. To address this challenge, the introduction of systems like Automatic
Dependent Surveillance - Contract, particularly Extended Profile Projection (EPP) from Aeronautical
Network: baseline 2 (ATN-B2), facilitates the sharing of vital information, paving the way for improved
trajectory management. This research is conducted to analyze the impact of prediction accuracy on
the successful implementation of a Continuous Descent Approach (CDA).

2.2. Research Objective
The future paradigm for arrivals at Amsterdam Schiphol, akin to many airports, involves the grad-
ual implementation of Continuous Descent Operations (CDO). It is recognized that achieving a high
degree of predictability in arrival trajectories is crucial for successful CDO implementation. Previous
research indicates that enhancing the Trajectory Predictor’s (TP) performance is possible by incorpo-
rating information from the aircraft. The emergence of new Air Ground Datalink (AGDL) technologies,
particularly ADS-C from Baseline 2 datalink, offers opportunities in this regard. However, the extent
to which integrating AGDL-provided information enhances TP performance and the sensitivity of the
managed arrival process to trajectory predictability remain unclear.
Gaining a better understanding of this dependency is essential for refining the technical concept, estab-
lishing target performance levels, and providing guidance for the business case associated with airline
equipage for trajectory sharing and ground system trajectory prediction performance. To measure the
value added by improved predictability of the success rate — expressed as the percentage of CDOs ex-
ecuted without Air Traffic Control (ATC) intervention — a useful metric is envisioned. This endeavor
aims to inform the further development of the technical concept and enhance decision-making processes
related to trajectory sharing and prediction performance.

2.3. Research Questions
The following research question is formulated based on the research objective:

”How does varying the time prediction accuracy in the arrival process of aircraft at Amsterdam Schiphol
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Airport in high density situation affect the ability for executing continuous descent approach procedures
successfully?”

This research question can be further divided into sub-questions which can be formulated as follows:

• What is the relation between time prediction accuracy and flights executing continuous descent
approaches?

• What effect does different levels of top of descent (TOD) have on the time prediction accuracy?
• To what extent does successfully performing CDAs relate to the performance of arrival capacity?

2.4. Research Project Stakeholders
This research is focused on establishing a relation between executing successful CDO and time prediction
accuracy to perform this successful CDO. The outcomes from this research thus has several stakeholders
with their interests.

• LVNL
The ANSP can use this knowledge of how integrating AGDL into inbound planning affect in
executing CDOs and how the capacity of arrivals could potentially be increased.

• Aircraft Operators
The airlines can use the knowledge of this research to understand the justification of investing in
equipping their aircrafts with air ground data link equipment’s that transmit critical data to the
ground constantly.

• General Public
The potential improvement in successful CDO would imply low fuel use which implies lower
emissions and less noise emitted which would benefit the general public.

• Scientific Community
This research can be a stepping stone for further research on how the approaches can be made
more efficient and also investigate the effect of AGDL data and its feasibility

2.5. Hypotheses
With the research question defined, it can be hypothesised that:

• By increasing the prediction accuracy of the trajectory the number of CDAs flown increases
because by having a more accurate aircraft trajectory the number of aircraft in conflict paths
would decrease which would mean there is less intervention from the air traffic controller. As the
prediction error increases the number of conflicts would increase thus the rate with which a CDA
can be executed would decrease.

• It can also be expected that as the altitude decreases, the number of conflicts would increase
because at lower altitudes the speeds are lower and the traffic is converging towards the runway
which would mean increase in aircraft traffic density thus more chances of conflicts.



3
Background

This chapter provides the reader with an introduction to the literature. It explains the phases in
arrival in detail, the different kind of approaches and more information about operational background
of Continuous Descent Operations(CDO), with the purpose of identifying a research gap and thus
determining what analyses ought to be undertaken. First, Section 3.1 introduces the general concept of
aircraft operations, describing the phases involved in a flight. Secondly, Section 3.2 describes the types
of approaches that exist at AMS schiphol Airport and their differences.

3.1. Flight Phases
Any given flight that is ready to depart for its destination from its origin, can basically be divided into
three distinct operational phases as shown in 3.1.

Figure 3.1: Different Phases of a commercial flight

The climb phase, the cruise phase and the land phase. During the climb phase, the aircraft is predom-
inantly in contact with the departure part of the ANSP. During the cruise phase it is in contact with
area control part of the ANSP. During the Descent, it is in contact with approach and tower part of
the ANSP.
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It is a known fact that many airports and hubs are operating at almost full capacity due to a steady
increase in air traffic density over the years in Europe [8]. Although this has currently reduced due
to Covid and its aftereffects, the flight traffic is almost reaching back to pre pandemic levels. This
means that there’s more pressure on ANSPs to balance the assigned time slots for flights planned while
maintaining the required high level of safety and to respect the regulations present with respect to noise
and emissions. Which means the aircraft must leave and return to the ground as quick as possible
to reduce noise and with efficient engine settings to satisfy the emissions parameters. This already is
the case with takeoff, where the aircraft is given instructions to climb as quickly as possible to reach
higher altitude to make less noise in the vicinity also known as noise abatement procedures. Thus the
attention is now moved to the approach phase. This phase has been using the same navigational aids
for a long time now which encompasses of instruments such as the Instrument Landing System (ILS),
Very high frequency omni-directional Range (VOR), Distance Measuring Equipment (DME) and such.
But with the amount of advancement in technology and the highly increasing capabilities of the Flight
Management System (FMS) which enables the aircraft to execute more complex procedures are seldom
used.

3.2. Approach Procedures
Approach procedure can be described as the profile the flight follows both laterally and in altitude
from the point of its initial descent, called Top of Descent (TOD), till it reaches the runway surface.
Generally, every airport has a specific sets of arrival routes called the Standard Terminal Arrival (STAR)
Procedures. These are like specific preset highways in air. But the descent profile that an aircraft can
follow flying a specific STAR can be flight specific. During high traffic density operations at Amsterdam
Schiphol Airport, every aircraft is vectored individually by the ATC. Although the vertical profile of
the approach can be unique to a flight, it can be classified in a broader sense. There are various kinds
of vertical profile of approach procedures. The two predominant ones are namely Stepped approach as
explained in 3.2.1 and Continuous Descent Approach profile as explained in 3.2.2.

3.2.1. Stepped Approach

Figure 3.2: Stepped Approach profile

It is a common approach procedure used in most airports worldwide where an aircraft is given an altitude
to maintain until a new lower altitude is given by the ATCs. It is as shown in Figure 3.2. It can be
observed that the aircraft descends in steps. It is to be noted that to fly in segments between points
B-C, D-E and various such level segments, the aircraft needs to increase its thrust settings considerably.
This can be attributed to the thrust required to maintain the speed with extended flaps and to the fact
that aircraft needs more thrust to fly level in air as compared to descending down. This means that
the pilots use aggressive variable thrust settings to maintain this stepped flight path of the aircraft.
A stepped approach is generally used in airports during high traffic density approaches as a stepped
approach gives ATC more control over traffic.
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3.2.2. Continuous Descent Approach

Figure 3.3: Continuous Descent Approach Profile

Continuous descent approach can be explained as the flight profile of an aircraft that starts its decent
from its cruise level, and then fly’s in one smooth downward motion towards the runway. It is as shown
in Figure 3.3. It can be observed that the aircraft starts its decent from TOD at point A, and then
flies down to point B where the ILS can be intercepted without any intermediate level segments. This
approach is generally used when the traffic density is not high. The need for ATC to constantly worry
about the trajectory of aircraft is less.

3.3. Comparison between stepped and continuous descent approaches
A comparison of the vertical flight path of both the approaches can be plotted as shown in 3.4

Figure 3.4: Comparison between flight paths of a stepped approach and continuous descent approach

Various researches have been conducted in evaluating both the stepped approach and the continuous
descent approach. It can be said with sufficient scientific backing that CDAs are better than stepped
approaches with respect to a lot of parameters [5]. One major parameter in the aviation industry is the
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fuel consumption. There are various variations in CDA when it comes to the fuel settings used. These
are mainly off idle settings and ideal fuel settings.

3.3.1. CDO to save fuel burnt
In the research of [7] where the CDO is executed from any start flight level and ideal thrust conditions
, it is observed and concluded that there is significant amount of fuel saved by executing CDOs. For an
airbus 320 family, it was calculated that 3.51*106 kg of fuel is saved per year. This study considered a
fuel-optimal flight path angle. Now it can be argued that in actual operations, often off idle conditions
exist. The research in [2] explores executing CDO in off idle conditions. The research also concludes that
CDO with an off idle flight path angle that majority of the CDOs executed offered enormous advantages
over the stepped approach procedures. CDO can also be used as a noise abatement procedure. This
can be attributed to the fact that there’s no rapid change in thrust settings and there’s no altitude level
patterns that tend to be closer to the ground.

3.3.2. CDO as a noise abatement procedure
Research in [3] explores CDO as noise abatement procedure at Louisville International Airport. The
research was evaluated with an actual flight demonstration test which proved that CDO was statistically
better than conventional approaches for noise abatement. It further goes on to conclude that there would
be a 7 percentage of 50 Day and Night Average Sound Level contour shrinkage if all aircrafts performed
CDO at thee airport.

3.3.3. CDO in high density capacity
There’s also research done in [1] on CDO specifically at Amsterdam Schiphol Airport during arrival
peaks which support previous studies that performing CDO even during maximum capacity situations
result in savings in fuel burnt. [1] also examines the limitation and consequences of such operations.
As stated before, the ANSPs in Europe are facing difficulty in satisfying the increased airline efficiency
and reduced environmental impact. A SESAR project was setup by the European Commission to move
to a new air traffic management concept based on predictability of flight operations and optimization
of airline operations. [12] does similar research but at congested airports in the united states and found
similar results.

3.4. Current operational procedure at AMS
Currently, aircrafts flying to Amsterdam airport are monitored and controlled predominantly by LVNL.
In general , inbound schiphol traffic flows from the area of responsibility (AoR) of an adjacent centre
via an Amsterdam ACC-controlled area (sector) to the Schiphol APP- controlled Schiphol TMA. The
ACC controllers transfer inbound traffic to the schiphol APP at the initial approach fix (IAF) located
near the boundary between the ACC sector and the Schiphol TMA as shown below in figure 3.5.

Figure 3.5: Traffic Flow Diagram for AMS Schiphol

In the figure3.6 the traffic flows from left to right. The planning of the inbound flow is however from
the right to left. The figure highlights the major points for an aircraft that is scheduled to land at
Amsterdam airport. The inbound flow is planned by assigning a flight to a particular runway and
building a landing sequence based on the landing interval per runway. Now, this runway selection can
vary on the actual plan filed by the aircraft, or the current runway configuration used. An arrival
Manager or AMAN as explored in [6] schedules the aircrafts based on a few requirements and criteria.
What an arrival manager does basically, is to generate a list of aircraft with its scheduled time of landing
on the runway which is called the landing sequence. This is done in a reverse direction of the flow of
the aircraft. In the sense, First, the current landing interval of the runway is determined. This can
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vary depending on the current delay the airport is experiencing, the weather conditions or various other
restrictions. The maximum arrival arrivals is currently limited to 40 arrivals per hour, since each aircraft
needs to be 120 seconds apart. Once an landing interval is arrived at, a flight is allocated the runway
for a specific time. Now with this allocated runway arrival time, an expected arrival time is calculated.
Expected Arrival Time is the time that aircraft is expected to be at the initial approach fix. Initial
approach fix is a point in the STAR where the aircraft has descended enough and is at the point where
it now needs to make an approach to the runway. From this point, the descend is generally linearly
downwards till the runway. Thus this point is chosen for a handover of aircraft between Amsterdam
Area Control (ACC) to Amsterdam Approach (APP). Understandably this is a crucial point for air
traffic management in Amsterdam arrivals. This Expect Arrival Time is calculated 12 minutes prior to
the time that aircraft is scheduled to arrive at the initial approach fix. This is the target delivery times
for the ACC controllers. Now, the ATC’s can intervene and speed up a flight to absorb a delay, or delay
a flight that’s early such that the aircraft is delivered at the IAF within a margin of 120 seconds.
From this landing slot for each flight a time is calculated at which the flight is expected to enter the TMA
at the IAF. This Expected Approach Time (EAT) is calculated 12 minutes before the flight is expected
to arrive over the IAF. The EAT is used by Amsterdam ACC as a target time to deliver inbound flight
to schiphol within a margin of two minutes of the EAT. In addition, there are restrictions at the IAF
on flight level and speed for flights that are transferred from ACC to APP.

Figure 3.6: Steps for an aircraft arrival at Amsterdam Airport.

Currently, the ATCs use their intuition to deliver an aircraft at the IAF with the required EAT. This is
done by using radar vectoring and or speed changes.The Concept of this research is to come up with a
concept similar to NASA’s EDA [4] and LVNL’s own tool called Speed and Route Advisor (SARA)[10].
SARA comes up with a speed advise , a route advice, or a speed and route advice to deliver an aircraft
at IAF with a margin of 30 seconds of EAT.

The addition being, this research uses ADSB-C data to improve the predictability of the TP and thus
enabling successful CDO. The Basic Concept of the working of this tool is presented below.
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Figure 3.7: Diagram depicting the working of various entities during an approach



4
Methodology

This chapter describes the methodology used to perform the research plan that was discussed in the
previous chapter. It must mentioned that the two research questions stated in the previous chapters
are interconnected.
This chapter is structured as follows. Firstly, TP and an arrival manager needs to be modelled such
that the experiments can be run. The next step would involve injecting AGDL noise into this TP and
looking at its performance.

4.1. Simulation Framework
The basic outline to answer the second research question is as shown below in Figure 4.1. The steps
are explained further in brief in this section.

Figure 4.1: Workflow Process

4.1.1. Model a simple Arrival Manager
The simulation software also lacks an arrival manager. Arrival Manager is simply a tool that determines
the sequence in which aircraft must be delivered at the IAF. A simple research Arrival Manager thus
needs to be modelled for the scope of this research. It is crucial to clarify that the primary objective
of this research is not to quantify the impact of Air-Ground Datalink (AGDL) on Trajectory Predictor
(TP) accuracy. Extensive research on this aspect has already been conducted, as evidenced by studies
such as the one carried out by the Single European Sky ATM Research (SESAR) project [13]. The
SESAR project’s findings have conclusively demonstrated that integrating AGDL into the TP results
in improved accuracy.
An arrival manager is to be modeled to generate a sequence of arrivals into a runway, spacing the
aircraft at 90-second intervals. This specific spacing, referred to as the inter-availability time, is in line
with the operational standard set at Amsterdam Airport Schiphol (AMS).

4.1.2. Baseline Simulation
A baseline simulation is created, modeling the arrival of aircraft at a specific runway. The simulation
records the number of aircraft conflicts, serving as a benchmark for comparison with other simulations.

4.1.3. Simulation with Prediction Error
After establishing a baseline, the system is introduced to randomness by altering prediction accuracy,
achieved through changes in the spawn time of aircraft. The resulting number of aircraft conflicts
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with varying prediction errors is recorded for comparison with the baseline, enabling further statistical
analysis.

4.2. Simulation software : BlueSky
BlueSky [9] stands out as an open-source, user-friendly air traffic management simulator renowned
for its high fidelity. Widely embraced in numerous research endeavors, BlueSky offers capabilities for
simulations and verification. The software allows the creation of air traffic scenarios through scenario
files that can be seamlessly loaded into the program. Notably, it can simulate actual flight paths using
historical data by integrating BADA (Base of Aircraft Data) into its framework.
BlueSky provides the ability to exert control over aircraft using various commands, mimicking real-
life scenarios, and supports real-time simulations. Originating with the primary goal of establishing a
versatile tool for comparisons in air traffic management (ATM), BlueSky has successfully fulfilled this
purpose. The version of BlueSky utilized in this research is sourced from Innovations lab [11], chosen
for its specific focus on customizing BlueSky with proprietary data tailored for Amsterdam Airport
Schiphol (AMS). The graphical user interface of this version is depicted in Figures 4.2 and 4.3.
To ensure precise replication of aircraft performance within the simulation, the ATM simulator relies
on a dedicated aircraft performance model. For this study, the selected model is obtained from iLabs
and is specifically designed for evaluating aircraft performance within traffic destined for Amsterdam
Airport Schiphol (AMS). Crafted using proprietary data from iLabs and its collaborators, this model is
intricately tailored to closely emulate the actual traffic performance into AMS, rendering it particularly
well-suited for the objectives of this research.

Figure 4.2: GUI of BlueSky [9]used in Innovationlabs [11]
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Figure 4.3: Various control inputs [11] that can be fed into the software [9].



5
Research proposal

For a research project to be successful, a good scope is required. This is because with a proper scope,
it can be established that the research is focused, realistically planned and is executable. A detailed
background was explained in the previous chapters. This chapter deals with application of knowledge
from previous chapters into setting up this research.

5.1. Research performed
This research uses the ”Black box approach to try to answer the research questions previous established.
Black box approach is an approach, where the input and the output is known to the user, but the
intermediate understanding needs to evaluated. In this research it can be shown as in Figure 5.1. The
aim of this research is to understand the relation between the prediction error and CDO. But the end
result would be to increase the traffic flow capacity into Amsterdam Airport. This is what is illustrated
in the figure.

Figure 5.1: TP flow diagram

5.2. Phases of this research
To address the research questions posed in the previous sections, this thesis can be segmented into
distinct phases, as depicted in Figure 5.2.
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Figure 5.2: Phases of this research

The initial phase involves obtaining a baseline, which serves as a reference for comparison with the
modeled experiments. Subsequently, a function is formulated to define the successful Continuous De-
scent Operation (CDO) rate. Simulations are then conducted, introducing varying prediction errors as
noise. This noise is quantified in terms of standard deviation, introducing randomness into the system
concerning its arrival time at the runway threshold. The general flow diagram depicting the process
of running both a baseline simulation and simulations with varying prediction errors is illustrated in
Figure 5.3.

Figure 5.3: Simulation work flow.

5.3. Experimental Setup
The experimental setup to perform this research is explained in this section.

5.3.1. Model
The experimental setup for this work is outlined below. As mentioned earlier, the experiment utilizes
BlueSky [9], which operates on Python. Simulations are input into BlueSky in the form of ”.scn” files
(Scenario Files), which serve as the intrinsic input for the software. While these scenario files are
essentially written in Notepad, they employ commands specific to BlueSky. Scenario files function as
detailed instructions for creating, flying, and landing an aircraft. They can be modeled to operate on
BlueSky’s autopilot using commands like waypoints, or defined using coordinates. A sample ”.scn” file
is provided in the appendix A.1, demonstrating its use to simulate actual historic flight routes flown
in August of 2020. For analysis and various other computational tasks, Python is employed. The
computational resources and processing time for these simulations are not a significant concern, as this
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setup is not live or GUI-based. It primarily processes historical data and simulations in BlueSky that
are not time-restricted. The designed model is open source, subject to approval from stakeholders.

5.3.2. Variables
The independent variable for this experiment is prediction accuracy, measured in seconds. The de-
pendent variable is the percentage of successful Continuous Descent Operations (CDOs). To establish
what constitutes a successful CDO, a definition will be provided shortly. An intermediate variable, the
number of aircraft in conflict, is introduced to gauge the success rate of CDOs. This variable represents
the count of aircraft in conflict during the simulation.

5.3.3. Assumptions and Definitions
These following assumptions are made for this research;

• It is assumed that the effect of wind is out of scope for this project as this is easily reproducible
when it is fed into a normal working TP.

• It also assumes that the aircraft model present in BlueSky by default is highly accurate enough.
• In real world, off idle continuous descent is more achievable and is beneficial enough as compared

to idle CDOs.

The following definition is of utmost importance: Defining a successful CDO. A successful Continuous
Descent Operation for this research is defined as:

• a CDO performed without any radar vectoring.
• a CDO that has no level segments between the Top of Descent till the Initial Approach Fix.
• a CDO where speed manipulations is still allowed.

When a conflict occurs, if the ATC intervention is in terms of anything other than speed changes then it
is not a successful CDO. Which is why understanding the speed advisories from SARA was important.

5.3.4. Data
In this research endeavor, the significance of both the quality and quantity of data cannot be overstated.
The study is conducted at the Knowledge and Development Centre (KDC) - Schiphol, where access to
precise historical data is made possible through collaborative initiatives with partners such as LVNL and
EUROCONTROL. The Veiligheid, Efficiency en Milieu - managementinformatiesysteem (VEMMIS), an
LVNL database, encompasses various critical components, including radar data, weather data, track
data, and routes.
For the purposes of this research, VEMMIS serves as a valuable resource for obtaining the spawn
position and conditions of historical flights that arrived at Schiphol throughout a single day in August
2019, totaling 758 flights. The selection of pre-COVID data is deliberate, as it allows for an examination
of air traffic conditions unaffected by pandemic-related disruptions during that period.

5.3.5. Verification
As stated before, BlueSky is used in a lot of research and has proven to be a test worthy tool. The
validations of this setup would be thus performed on Bluesky by running simulations and understanding
the outcomes. It is possible to obtain actual flight data from sources like BADA and LVNL data. These
can be used to draw comparisons and check for anomalies and assumptions.

5.3.6. Limitations
The simulations of the experimental can be attributed to the following reasons:

• Limitations of the simulation software (BlueSky).
• Assumptions made such as the effect of weather on CDO.
• Over simplifying the TP.
• It can be argued that the consideration of off idle descent is not the most optimum way.
• The definition of a CDO can be as strict or as lenient as required.
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• Certain Data obtained from stakeholders and partners cant be published as a part of non disclo-
sure.

the limitations of BlueSky can be attributed to the facts that:

• Its a new open source program and is under constant updates.
• The execution speed needs to be better optimized.
• Aircraft characteristics needs to be updated and the effect of aircraft characteristics on simulation

is unknown.

5.4. Expected Results
5.4.1. Relationship between prediction error and the CDO success rate
Multiple simulations is to be run to determine the performance of the TPs Prediction error. A curve such
that shown in Figure 5.4 would be expected where the CDO success increases with lower prediction
error. Different flight levels can also be simulated for a better understanding of the TP. the curves
might vary for different SD values and different distribution, but it is expected that all of the curves
are expected to be similar to as shown in figure.

Figure 5.4: Simulation Hypothesis

5.4.2. Injecting the Air Ground Data Link Data
It can also be expected that leaner curves can be obtained with injecting noise that was processed with
AGDL as compared to the ones processed without AGDL.



6
Conclusion

This report presents the literature study performed and defines the framework of the research to under-
stand the effect of prediction accuracy on successfully implementing a CDA. The report also elaborates
more on the fundamental definitions used in the research such as the definition of a CDA and the deci-
sion to select an off-idle CDA approach over an idle. It also establishes the previous research performed
on CDA and highlights the benefits of flying a CDA into Amsterdam Schiphol Airport. A scientifically
defined framework is then discussed which elaborates on the experiments that is to be run and the
software that is used to perform these simulations.
The appendix shows the scenario files that would be used to run these simulation and a Gantt chart
that highlights the research planning.
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A
Appendix

A.1. Scenario files
This is a scenario file created to feed the aircraft spawn information into BlueSky and few parameters
are recorded. Additional waypoints are defined such that the arrivals fly a a specifc route which is
shown later.

1 #to simulate the setsim function of tbar
2

3 00:00:00.00>DEFWPT YARMA 52.60490551344223 4.581121278305933
4 00:00:00.00>DEFWPT HASMI 52.59996051343656 4.683734755241533
5 00:00:00.00>DEFWPT WERAF 52.54822667781622 4.729400794173316
6 00:00:00>DEFWPT FICAH_ 52.60695348205575 4.469377497932994
7 00:00:00>DEFWPT UMBUB_ 52.45893840404931 4.229188779798621
8 00:00:00>DEFWPT EHAM_18R 52.36012053453362 4.711689073328444
9 00:00:00.00>DEFWPT OMEBU 52.61224523851872 4.890376355417231

10 00:00:00.00>DEFWPT MITJA 52.59345944830903 4.788107577371504
11 00:00:00.00>DEFWPT ADEVI 52.55267286755689 4.760609599793353
12 00:00:00>DEFWPT MORQU_ 52.59264324393692 5.296125374121468
13 00:00:00>DEFWPT KERCI_ 52.60972231544173 5.038940016492004
14 00:00:00>DEFWPT LEVKI 52.43105 4.718466667
15

16 00:00:00> crelog baseline_experiment 1 to_check_ilp
17 00:00:00> baseline_experiment add id lat lon alt cas gs traf.cd.inconf
18 00:00:00> baseline_experiment on
19 00:00:00> asas on
20 00:00:00> setsimname COMBINED
21 00:00:00> PERF ilp
22 #00:00:00> playback vemmis vemmis20190826
23 00:00:00> playback vemmis vemmis2019 -08-0506

The following scenario was created to simulate arrival into runway 18C. The waypoints with their speed
and altitude restrictions are as shown.

1 00:00:00.00>%0 ADDWPT MORQU_ ,3500
2 00:00:00.00>%0 AFTER MORQU_ ADDWPT KERCI_, 3500
3 00:00:00.00>%0 AFTER KERCI_ ADDWPT OMEBU, 2000, 220
4 00:00:00.00>%0 AFTER OMEBU ADDWPT MITJA, 2000
5 00:00:00.00>%0 AFTER MITJA ADDWPT ADEVI, 2000, 180
6 00:00:00.00>%0 AFTER ADEVI ADDWPT SIDNI, 2000, 180
7 00:00:00.00>%0 AFTER SIDNI ADDWPT AM630, 2000, 160
8 00:00:00.00>%0 AFTER AM630 ADDWPT TH18C, 50
9 00:00:00.00>%0 AT TH18C DO DEL %0

10 00:00:00.00>%0 LNAV ON
11 00:00:00.00>%0 VNAV ON

The following scenario was created to simulate arrival into runway 18R from the waypoint SUGOL. The
waypoints with their speed and altitude restrictions are as shown.

1 00:00:00.00>%0 ADDWPT UMBUB_ ,3500
2 00:00:00.00>%0 AFTER UMBUB_ ADDWPT FICAH_, 3500, 220
3 00:00:00.00>%0 AFTER FICAH_ ADDWPT YARMA, 3500, 220
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4 00:00:00.00>%0 AFTER YARMA ADDWPT HASMI, 2000
5 00:00:00.00>%0 AFTER HASMI ADDWPT WERAF, 2000, 180
6 00:00:00.00>%0 AFTER WERAF ADDWPT PEVOS
7 00:00:00.00>%0 AFTER PEVOS ADDWPT AM621, 2000, 160
8 00:00:00.00>%0 AFTER AM621 ADDWPT LEVKI, 1310, 140
9 00:00:00.00>%0 AFTER LEVKI ADDWPT TH18R, 50

10 00:00:00.00>%0 AT TH18R DO DEL %0
11 00:00:00.00>%0 LNAV ON
12 00:00:00.00>%0 VNAV ON

The following scenario was created to simulate arrival into runway 18R from the waypoint RIVER. The
waypoints with their speed and altitude restrictions are as shown.

1 00:00:00.00>%0 ADDWPT UMBUB_ ,3500
2 00:00:00.00>%0 AFTER UMBUB_ ADDWPT FICAH_, 3500, 220
3 00:00:00.00>%0 AFTER FICAH_ ADDWPT YARMA, 3500, 220
4 00:00:00.00>%0 AFTER YARMA ADDWPT HASMI, 2000
5 00:00:00.00>%0 AFTER HASMI ADDWPT WERAF, 2000, 180
6 00:00:00.00>%0 AFTER WERAF ADDWPT PEVOS
7 00:00:00.00>%0 AFTER PEVOS ADDWPT AM621, 2000, 160
8 00:00:00.00>%0 AFTER AM621 ADDWPT LEVKI, 1310, 140
9 00:00:00.00>%0 AFTER LEVKI ADDWPT TH18R, 50

10 00:00:00.00>%0 AT TH18R DO DEL %0
11 00:00:00.00>%0 LNAV ON
12 00:00:00.00>%0 VNAV ON
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A.2. Gantt Chart

Figure A.1: Gantt Chart
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