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A B S T R A C T

The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for
online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold
for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft
failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such
failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding
RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this
study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure
time data. The degradation data are treated as the time-varying covariates so that the degradation does not
directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is
proposed to model the degradation data by considering the system heterogeneities. Based on the developed
proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal
maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance
strategy is successfully applied to predictive maintenance of lead-acid batteries.

1. Introduction

An effective maintenance plan is essential to ensure high system re-
liability and availability. It can reduce the maintenance cost and increase
production efficiency, as well as mitigate the failure risk that may incur
numerous economic losses or even threats to lives. The simplest main-
tenance schedule might be the pure corrective maintenance, where
maintenance is only performed upon unexpected failures. To achieve
higher values of maintenance, it is usually necessary to determine a
preventive maintenance schedule in the case of catastrophic failures.
Classic preventive maintenance usually consists of two steps: (1) pre-
dicting the system failure time based on historical system lifetime data
and (2) planning and conducting maintenance actions [20].

As an alternative to the lifetime data that are difficult to collect for
many systems, continuously or periodically monitored degradation data
can be utilized for better prognostics and health management of the
system [12,31]. Degradation refers to the cumulative change of a sub-
ject’s performance characteristic over time [15], and examples of de-
gradation can be found in the capacity of batteries of hybrid-electric
vehicles [1], the leveling defects of railway tracks [18], the tensile

strength of carbon micro-composites [21], to name a few. Due to the
advances in measurement technology and deployment of sensors, col-
lection of degradation data becomes less costly, which can further fa-
cilitate maintenance decisions based on the in-situ degradation signals
[9,14,25]. This is known as condition-based maintenance (CBM) or,
more broadly, predictive maintenance, which has shown to be more
effective than classic preventive maintenance strategies [30].

Most existing literature of CBM assumes that the system or product
fails only when its degradation level exceeds a fixed threshold. Under
this assumption, the system failure time can be deemed as the first
hitting time of the degradation process to the fixed failure threshold
[29]. Although it facilitates the mathematical modeling and analysis,
the assumption may be inapplicable in many real applications. A mo-
tivating example is the failure behavior of automotive lead-acid bat-
teries in [32], where the degradation and failure time data of 13 bat-
teries are shown in Fig. 1. The dataset is from an accelerated battery
aging test in SAE J2801 [23], where the 13 batteries are of the same
type. The life test simulates high heat automotive service when the
battery operates in a voltage regulated charging system. It subjects the
battery to charge and discharge cycles comparable to those encountered
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in automotive service. Here, the degradation characteristic is the bat-
tery resistance, and the failure time data are based on the aging cycles,
where a battery is deemed to fail when it fails to crank the engine. It is
obvious that each battery fails at a different degradation level, and the
assumption of the fixed failure threshold is not applicable here. This
kind of instantaneous failure mode is called hard failure and it is usually
characterized by a hazard rate function [17]. Some other examples of
hard failures include high-voltage power transformers, bridge systems,
and integrated digital communication systems [13,14,27], to name a
few. In order to make an appropriate maintenance plan, it is necessary
to model the failure behaviors of systems subject to hard failures.

In this study, a proportional hazards model is proposed to model the
hard failure behaviors by integrating both the aging and degradation
effects. The underlying idea is that although the degradation does not
directly lead to system failure, it may be closely related to the system
failure rate. For example, higher resistance often indicates higher
failure probability of the batteries. With this in mind, we treat the de-
gradation data as the covariates that affect the hazard rate of failure
based on proportional hazards model. In fact, the similar treatment can
also be found in the literature [e.g., [11,13,24,32]]. In these studies, the
dynamics of degradation are usually captured by a general path model.
Although it is mathematically convenient, the general path model can
not reflect the time-varying volatility in the degradation data, which
motivates us to propose a new joint model for degradation and failure
data analysis.

To this end, this study uses a Wiener process to model the system
degradation. As a stochastic process, the Wiener process is widely
adopted in degradation modeling due to its ability to model the tem-
poral variation [29]. Due to diverse usage and environmental differ-
ences, the degradation characteristics of different systems are often
different. To account for the system-to-system heterogeneities, random
effects are further incorporated into the degradation model. The pro-
posed random-effects Wiener process is then used as a time-varying
covariate for the hazard function of the hard failure. In addition, we
choose the Weibull hazard function as the baseline hazard function,
which is a popular choice in failure data analysis [3,8,19].

Based on the proposed Weibull proportional hazards model, we
update the joint distribution of degradation parameters by using all the
historical degradation data upon each inspection epoch. Afterwards, we
derive the distribution of the system remaining useful life (RUL) using

the Brownian bridge theory and then make use of the distribution to
determine the optimal predictive maintenance schedule. Under the
maintenance schedule, we can minimize the long-run average main-
tenance cost per cycle based on the degradation signals. The proposed
maintenance policy is an online method in the sense that the optimal
maintenance schedule is updated when new degradation signals are
available. One related model may be found in [16], where a Wiener
process was also used for degradation modeling. However, due to a lack
of the closed-form expression of the RUL distribution, their method is
computationally intensive. Moreover, system-to-system heterogeneities
were not considered in that study.

The remainder of the study is organized as follows. Section 2 pro-
poses the Weibull proportional hazards model to model hard failures. In
addition, the predictive maintenance strategy is also proposed.
Section 3 derives the system RUL distribution upon each decision
epoch, which is used to obtain the optimal predictive maintenance
schedule. Section 4 uses a case study to demonstrate the effectiveness of
the proposed method. Section 5 concludes the study and discusses some
possible future research.

2. Problem statement

2.1. Model development

Consider a system that is subject to hard failure. The hazard rate for
the hard failure is assumed to be a function of the in-situ degradation
level, which is given by

=h t X t h t X t( , ( )) ( ) ( ( )).0 (1)

The form of (1) is motivated by the well-known proportional hazards
model [2], where h0(t) is the baseline hazard rate function and φ(X(t))
characterizes the effects of degradation on h(t, X(t)). The degradation is
modeled by a drifted Wiener process as

= + +X t x µt B t( ) ( ),0 (2)

where x0 > 0 is the initial degradation level, μ> 0 is the degradation
rate, σ> 0 is the degradation volatility parameter, and B(t) is a stan-
dard Brownian motion. Without loss of generality, we assume that the
degradation process is generally increasing over time [7,13]. We adopt
a linear form =X t X t( ( )) ( ) in this study, where β> 0 is the corre-
sponding coefficient. We also assume that the baseline hazard rate of
the hard failure follows the Weibull model, i.e., =h t mt( ) /m m

0
1 . The

Weibull assumption has been widely used in reliability engineering as it
has reasonable flexibility in fitting lifetime data [3,8,19]. In addition,
the above two assumptions enable us to derive the explicit analytical
form of the RUL distribution, which facilitates the online predictive
maintenance in Sections 2.2 and 3.

In this study, we assume that the shape and the scale parameters m
and η in the Weibull distribution, and the coefficient β in φ( · ) fully
characterize the population of interest. To focus on the optimal pre-
dictive maintenance schedule, these parameters are assumed to be
known. In practice, these parameters can be estimated in advance based
on the historical degradation and failure data of systems from the po-
pulation. On the other hand, we assume the degradation rate and vo-
latility parameters μ and σ are unknown and their values vary for dif-
ferent systems. This random-effects model has been commonly used in
degradation literature to incorporate system-to-system heterogeneities
[22,28]. To be specific, we assume that both the parameters follow a
truncated normal distribution [26,28], i.e., µ ( , )2 and

( , ),2 where the probability density functions (PDF) of
( , )2 is given by

Fig. 1. Battery resistance and failure time data from an accelerated aging test.
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= > >f µ µ( | , ) [ ( )]
1 ( )

, 0, 0.2
(3)

Here, ϕ( · ) and Φ( · ) are the standard normal PDF and the cumulative
distribution function (CDF), respectively. The parameters ω, κ, δ, γ are
assumed known or accurately estimated based on historical degradation
data of systems from the same population. With the online inspection
scheme in real applications, we can use the observed degradation data
to update the joint distribution of μ and σ, and hence the optimal
maintenance time.

2.2. Maintenance policy

In this study, we aim to develop a predictive maintenance model
that determines the optimal maintenance time based on the observed
degradation data. Consider an online inspection scheme where in-
spections will be conducted at predetermined time epochs

= < <t t t0 ,0 1 2 .... In the literature, t0, t1, t2, ..., are often assumed to be
equally spaced. Here, we consider a more general setting that includes
the periodic inspection as a special case. Upon each inspection, we first
update the joint distributions of the degradation parameters μ and σ
based on all the historical degradation data. The maintenance time
interval is then obtained by minimizing the long-run average main-
tenance cost per cycle. In specific, let Cp and Cf be the costs of a planned
replacement and a failure replacement, respectively. We follow the
common assumption that Cf > Cp, since unexpected failures usually
incur numerous downtime losses as well as an increased cost in mate-
rials and labor during maintenance. At the kth inspection epoch tk, we
update the maintenance time interval τ so that the maintenance will be
conducted at time +tk . The long-run average maintenance cost per
replacement cycle given τ can be represented as follows [4]:

=
+

+
X

X X
X

C
C F C F

F z dz t
( | )

¯ ( | ) (1 ¯ ( | ))
¯ ( | )

,k
k k

k k

p f

0 (4)

where …X X t X t X t[ ( ), ( ), , ( )]k k0 1 denotes all the historical degrada-
tion data till epoch tk and XF̄ ( | )k is the corresponding survival function
of the system RUL given Xk. We can see that C(τ|Xk) is directly related
to the system RUL distribution XF̄ ( | )k . It means that we are essentially
using the in-situ degradation data to make a better maintenance deci-
sion. However, it is challenging to obtain the value of XF̄ ( | ),k and we
will derive its explicit analytical expression in Sections 3. Let τ* be the
minimizer of (4), i.e., the optimal updated maintenance time upon tk,
and C* be the corresponding optimal maintenance cost rate. If

+ +t t* ,k k 1 a preventive replacement is scheduled at +t *k so that
the system returns to the as-good-as-new state. Otherwise, no action is
taken until +tk 1 and then the above procedure is repeated to update the
maintenance time based on the degradation data from epochs t0 to +t ,k 1
i.e., +Xk 1.

3. Remaining useful life distribution

3.1. RUL Distribution with known μ and σ

In order to derive the optimal predictive maintenance time τ* to
minimize C(τ|Xk) in (4), we need to derive the RUL distribution XF̄ ( | )k
given the historical degradation data Xk. This section first derives this
survival function assuming the system-specific degradation parameters
μ and σ are known. With the updated joint distribution of these para-
meters, the system RUL distribution and the optimal predictive main-
tenance time can then be obtained when μ and σ are unknown.

Without loss of generality, suppose that we are at the kth inspection

epoch tk and the historical degradation level is = …X x x x[ , , , ]k k0 1 . Let
the underlying remaining times to the hard failure be TF. To derive

XF̄ ( | ),k we first need to derive the distribution of
+ +Y t h s t X s t x ds( ) ( ) ( ( | ))k k k0 0 . It follows from Hoel et al. [6,

Page 134] that Y(t) is normal distributed for all τ ≥ 0. In specific, fol-
lowing the construction procedure in Hoel et al. [6, Pages 134–135], we
have

=E h s B s ds H H s ds( ) ( ) ( ) ( ) .
0 0

2
0 0 0

2

Therefore, the system RUL distribution only considering hard failure
can be derived based on the moment generating function of a normal
random variable. For notation convenience, let A(tk, xk) denote the
event that =X t x( )k k. After straightforward calculation, the system RUL
distribution given μ and σ upon the kth inspection epoch can then be
expressed as

= > = >

=

= +

=
+

+
+

+ +
+ +

+

+
+

+

+

+ +

+ +

+ +

+ +

XF µ T µ T A t x µ

h s X s ds

x H t µ h s sds H t H s ds

x µt
t t µm

m
t t

t
t t t

m

t t
m

¯ ( | , ) Pr( | , , ) Pr( | ( , ), , )

E exp ( ) ( )

exp ( ) ( )
2

( ) ( )

exp ( )
( )

1
( )

2
( )

2( ) (( ) )
1

(( ) )
2 1

,

k k k

tk

tk

k tk

tk
tk

tk

k k
k m

k
m

m
k m

k
m

m

m k m k m k m
k
m

k m
k

m

F F

0

0 0
2 2

0 0 2

1 1

2 2
2

2
1 1

2 1 2 1

(5)

where = +H t h s ds( ) ( )t
t

0 0k
k .

3.2. RUL Distribution with unknown μ and σ

The system RUL distribution in (5) can be derived for known μ and
σ, whose values are unobservable in real applications. This section
derives the RUL distribution when μ and σ are unknown. Note that we
have assumed that μ and σ follow the truncated normal distributions in
(3). By leveraging on the observed degradation data, we can update the
joint distributions of μ and σ for a more cost-effective maintenance
planning. Recall that the historical degradation data are = …X x x[ , , ]k k0
upon the kth inspection epoch tk. Let =x x xi i i 1 and =t t t ,i i i 1

= …i k1, , , be the degradation increment and the time interval between
the ith and the +i( 1)th inspections, respectively. For notation con-
venience, let A(tk, τ, xk, y) denote the event that =X t x( )k k and

+ =X t y( )k .
By the conditional independence, the joint distribution of μ and σ

given Xk is

=

×

>
=

Xf µ Cf µ f

t
x µ t

t

T t A t t x x

( , | ) ( | , ) ( | , )

1
2

exp ( )
2

Pr( | ( , , , )),

k

i

k

i

i i

i

i i i i i

2 2

1
2

2

2

F 1 1 (6)

where C is a normalizing term independent of μ and σ. Meanwhile,
>T A t x yPr( | ( , , , ))k kF denotes the probability that no hard

failure occurs during time interval +t t[ , ]k k conditional on
A(tk, τ, xk, y), which can be derived from the fact that

+X t A t x y t t t{ ( | ( , , , )), }k k k k is a Brownian bridge. Based on
[10], we have
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= + + +E X t y t t x t t t t t[ ( )] ( ) ( ) , ,k k k
k k

Then, = +Z h s X s ds( ) ( )t
t

0k
k follows a Gaussian distribution, with mean

=

= + +

+

+

E Z h s E X s ds

h s y s t x t s ds

[ ] ( ) [ ( )]

( ) ( ) ( ) ,

t

t

t

t k k k

0

0

k

k

k

k

and variance =Z E Z E ZVar[ ] [ ] [ ] ,2 2 where

=
+ +

E Z h s h u E X s X u duds[ ] ( ) ( ) [ ( ) ( )] ,
t

t

t

t2
0 0

k

k

k

k

= +E X s X u X s X u E X s E X u[ ( ) ( )] Cov[ ( ), ( )] [ ( )] [ ( )],

and

= +X s X u t s u s u tCov[ ( ), ( )] ( max{ , })(min{ , } ) .k k
2

The variance of Z can be then obtained based on the above values and it
is given as

= + +
+ +

Z h s h u t s u s u t g u g s duds

E Z

Var( ) ( ) ( ) ( max{ , })(min{ , } ) ( ) ( )

[ ] ,

tk

tk
tk

tk k k
0 0

2

2

where = + +g s y s t x t s( ) [ ( ) ( )]/k k k . Based on this distribution,
the closed-form of >T A t x yPr( | ( , , , ))k kF can be derived based on the
moment generating function of the normal random variable, which is

> = + +

+

+

+ + + + +

+ +

+

+ +

+

T A t x y h s y s t x t s ds

h s h u

t s u s u t

y u t x t u y s t x t s duds

h s y s t x t s ds

Pr( | ( , , , )) exp ( ) ( ) ( )

1
2

( ) ( )

( max{ , })(min{ , } )

( ( ) ( ))( ( ) ( ))

1
2

( ) ( ) ( ) .

k k tk

tk k k k

tk

tk
tk

tk

k k

k k k k k k

tk

tk k k k

F 0

2 0 0

2

2

0 2

(7)

With this conditional joint distribution f(μ, σ|Xk), we can now up-
date the RUL distribution upon tk by integrating μ and σ out, which is
given by

= >X XF F µ f µ dµd¯ ( | ) ¯ ( | , ) ( , | ) , 0.k k0 0 (8)

3.3. The Metropolis-Hasting algorithm

Directly computing the value of XF̄ ( | )k can be quite time-con-
suming. This is because we need to first compute the double integral in
(7) to obtain F µ¯ ( | , ), and then compute another double integral in
(8). In view of this fact, we use a Monte Carlo simulation to approx-
imate the value of XF̄ ( | )k in this study. We first sample B groups of μ
and σ from the PDF f(μ, σ|Xk), where B is a sufficiently large number.
For each group of μ and σ, we use the numerical integral to calculate
(7), obtain F µ¯ ( | , ) in (5), and take average of the B groups to obtain
the value of (8). To generate the samples of μ and σ, we develop a
Metropolis-Hasting algorithm, which is a well-known Markov chain
Monte Carlo (MCMC) method [22], with detailed steps provided in the
Appendix. The proposed algorithm enables us to obtain the variance
and the kernel density distribution of XF̄ ( | )k based on the generated
samples (μ, σ) from f(μ, σ|Xk). With XF̄ ( | )k in (8), we can now obtain
the value of the long-run average maintenance cost per cycle C(τ|Xk) in

(4) given any maintenance time τ. The optimal maintenance time τ* can
be efficiently obtained by a one-dimensional search in modern opti-
mization software.

4. Case study

This section applies the proposed predictive maintenance policy to
the automotive lead-acid batteries in Fig. 1. This dataset is from an
accelerated battery aging test in SAE J2801 [23]. The resistance level is
treated as the degradation indicator and the degradation level is ob-
served weekly, i.e., =t kk . As seen, there are no soft-failure thresholds
for the resistance level and the battery is considered as failed when it
fails to crank the engine. In this section, we first use the battery of the
dash line marked with squares in Fig. 1 to demonstrate the proposed
policy. Then, the proposed policy is applied to each battery respec-
tively, and the average cost rate of all the batteries is calculated. For
comparison purposes, the proposed maintenance policy is further
compared with two traditional predictive maintenance policies, i.e.,
time-based maintenance and degradation-limit conditional main-
tenance. Finally, sensitivity analysis of the proposed maintenance
policy is conducted. Throughout this case study, the model parameters
are set as = 0.1,2 = 0.1 (mΩ/week), = 0.1,2 and = 0.08 (mΩ/
week). The baseline hazard rate function is captured by a Weibull
distribution as =h t t( ) 4 /14. 50

3 4 and let = 0.45. The values of these
parameters can be obtained based on the historic degradation/failure
time data of batteries of the same population. The cost of preventive
replacement and corrective maintenance are set to be =C 1p and

=C 3,f respectively.

4.1. Optimal predictive maintenance policy

Upon each inspection epoch, the joint distribution of the unit-spe-
cific degradation parameters μ and σ are updated based on the observed
degradation signals. The Metropolis-Hasting algorithm in the Appendix
is adopted to draw the samples of μ and σ. We implement the MCMC
algorithm in MATLAB, where 5000 samples are generated for the burn-
in period and the subsequent 10,000 samples are used for obtaining the
joint distribution. The convergence of every MCMC replication is
monitored based on the Gelman-Rubin ratio [5]. Once the parameter

Fig. 2. The true and the estimated RUL of the battery at all prediction epochs.
The band shows the corresponding 95% credible interval.
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samples are available, they can be used to predict the RUL upon each
inspection epoch. Fig. 2 shows the predicted RULs as well as the true
RUL for the selected battery at =t 1, , 12k . As seen, the proposed
method generally predicts the RULs well as the 95% confidences in-
tervals contains all the true RULs. In addition, the prediction accuracy
improves with the amount of degradation data.

Fig. 3. RUL distribution of the unit at selected time points.

Fig. 4. Conditional cost rate of the unit at selected time points. The upper, lower, and middle curves correspond to the case when the 2.5th, the 97.5th point-wise
percentile, and the mean of F̄ ( ) is used, respectively.

Table 1
Optimal maintenance time and corresponding cost rate at selected time points.

XF̄ ( | ),k =t 5k XF̄ ( | ),k =t 8k
Mean 2.5% 97.5% Mean 2.5% 97.5%

(τ*, C*) (3,0.15) (2,0.18) (5,0.13) (τ*, C*) (1,0.13) (0,0.14) (2,0.12)

Table 2
Summary of the different model parameters in the sensitivity analysis .

Cf/Cp ω 2 δ 2

Base 3 0.1 0.1 0.08 0.1
Low 1.5 0.05 0.05 0.04 0.05
High 6 0.2 0.2 0.16 0.2

Fig. 5. Sensitivity of maintenance policy with respect to cost ratio Cf/Cp.
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Based on the predicted RULs, we can then obtain the optimal
maintenance schedule by minimizing the long-run average main-
tenance cost upon each inspection epoch. For illustration, we present
the results at the inspection epochs =t 5k and 8, respectively. From
10,000 Monte Carlo samples, we can compute the mean and the 2.5th/
97.5th point-wise percentile of the unit RUL. The results are shown in
Fig. 3. Under the mean, the 2.5th, and the 97.5th point-wise percentile
of the unit RUL, we can compute the corresponding maintenance cost as
a function of the maintenance time τ as shown in Fig. 4. Note that we
only consider the situation where = …1, 2, so that the maintenance
action can only be taken on a weekly basis. A one dimensional search
efficiently finds the optimal maintenance time τ* at each inspection
epoch for each case of F̄ ( ), where the optimal (τ*, C*) are also shown
in Table 1.

It can be seen that the proposed maintenance strategy determines
the optimal maintenance time dynamically upon each inspection based
on all the available degradation signals. At =t 8,k the point-wise
credible interval of F̄ ( ) becomes narrower compared the one at =t 5,k
due to the increased amount of the unit information as tk increases. It is
worth pointing out that =* 1 at =t 8k based on the mean of RUL,
indicating the prediction process should be stopped and an preventive
replacement should be implemented at the next week.

4.2. Comparison with other maintenance policies

The proposed predictive maintenance policy is then applied to other
batteries. Here, all the results are obtained based on the mean of the
RUL distribution. The average cost rate of all the batteries is obtained as
0.14. Other two policies, i.e., time-based maintenance and degradation-
limit maintenance policies are adopted for comparison. Following the
tradition in the literature, the heterogeneities are assumed negligible
under both polices. In other words, the degradation parameters are the
same for all the batteries and they are obtained based on the historical
degradation data in advance.

Under the time-based maintenance policy, a preventive replacement
is implemented at +tk 1 when the optimal maintenance interval TT sa-
tisfies < +t T t ,k kT 1 or a corrective replacement is implemented when a
failure occurs before that. The optimal maintenance interval TT can be
obtained by minimizing

=
+

C T
C F T A x C F T A x

F z A x dz
( )

¯ ( | (0, )) (1 ¯ ( | (0, )))
¯ ( | (0, ))

,TT
p T 0 f T 0

0 0
T

where = >F T A x T T A x¯ ( | (0, )) Pr( | (0, ))T 0 F T 0 is given by (5). The
average cost rate of all the batteries can be obtained as 0.20. As a result,
it is increased by 42.9%(=(0.20-0.14)/0.14) compared with the

Fig. 6. Sensitivity of maintenance policy with respect to random-effects parameters.
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proposed policy. Under the degradation-limit maintenance policy, a
preventive replacement is implemented at tk when the measured de-
gradation level xk first exceeds the threshold Xc, or a corrective re-
placement is implemented when a failure occurs before that. The op-
timal degradation threshold Xc can be obtained by minimizing

=
> + >

>

C X
C T t A t x X C T t A t x X

T t A t x X dt
f

t dt

( )
Pr( | (0, , , )) (1 Pr( | (0, , , )))

Pr( | (0, , , ))

( |0) ,

t X x

c

0
p F c c 0 c f F c c 0 c

0
c

F c c 0 c c
c | 0

c c

where >T t A t x XPr( | (0, , , ))F c c 0 c is given by (7). Meanwhile, f t( |0)X x| cc 0
is the PDF of the first reach time of the degradation level to Xc, which is

=f t X x
t

X x µt
t

( |0)
2

exp ( )
2

.X x| c
c 0

2
c
3

c 0 c
2

2
c

c 0

The average cost rate of all the batteries can be obtained as 0.17. It is
increased by 21.4%(=(0.17-0.14)/0.14) compared with the proposed
policy. All these results validate the effectiveness of our proposed pre-
dictive maintenance policy.

4.3. Sensitivity analysis

In this subsection, we conduct the sensitivity analysis of the para-
meters on the predictive maintenance policy. Based on the model stu-
died in Section 4.1, we vary the parameter values and obtain the cor-
responding optimal maintenance time. Table 2 summarizes the
parameter values used in the sensitivity analysis. The ‘Base’ row con-
tains the parameters used in Section 4.1, and the ‘Low’ and ‘High’ rows
list the alternative values used in the sensitivity study. Again, all the
results are obtained based on the mean of the RUL distribution.

We first investigate the sensitivity of the maintenance policy on the
cost ratio Cf/Cp. Fig. 5 shows the optimal maintenance time over time
interval [1, 12] when Cf/Cp changes. We can see that the policy be-
comes more conservative in terms of a shorter maintenance time when
Cf/Cp increases. On the other hand, it becomes less attractive to im-
plement preventive replacement for the unit before its failure when Cf/
Cp decreases.

We next examine the influence of model parameters ω, ,2 δ and
,2 which characterize the degradation heterogeneity, on the main-

tenance policy. The results are shown in Fig. 6. Recall that
µ ( , )2 and ( , )2 . A larger ω implies faster de-
gradation, leading to a shorter maintenance time at early ages. This is
because only limited degradation signals are available during this
period, and the decision relies heavily on the initial distributions. When
more degradation data are available, we may estimate the true de-
gradation rate μ accurately. Consequently, the influence of ω on the
optimal maintenance time is not significant as tk increases. Meanwhile,
a larger 2 indicates a more significant unit heterogeneity. It is

reasonable to observe from Fig. 6(b) that, the maintenance time de-
creases more smoothly over time as 2 decreases. Similar results for δ
and 2 can also be seen from Figs. 6(c) and (d), respectively. It is worth
mentioning that the optimal maintenance time τ* is nearly the same for
different levels of model parameters when the degradation data are
sufficient (i.e., tk is near 10). This implies the merit of the online ad-
justment of maintenance plan in the sense that the initial estimate error
of μ and σ will not affect the optimal maintenance time significantly.

5. Conclusion

This study successfully modeled the failure behavior of systems that
are subject to aging and degradation. The degradation of system was
modeled by a random-effects Wiener process and the in-situ degrada-
tion levels were used to update the conditional joint distribution of
degradation parameters. Meanwhile, the hazard rate of the hard failure
is a function of both the time and the in-situ system degradation level,
where a higher degradation level implies a higher instantaneous
probability of the hard failure. We have developed a predictive main-
tenance model that determines the optimal maintenance time for the
system based on the historical degradation data. To minimize the long-
run average maintenance cost per cycle, we derived the explicit RUL
distribution based on the Brownian bridge theory. The optimal pre-
dictive maintenance time was updated upon each inspection epoch. The
predictive maintenance strategy was successfully applied to determine
the maintenance time of lead-acid batteries.

There are a number of extensions and topics for future research. In
this study, MCMC is adopted to sample parameters from the joint dis-
tribution. The decision process is efficient due to the derived closed-
form RUL distribution, and the proposed maintenance policy is capable
for real applications. In future studies, an extended Kalman filter or
particle filter can be adopted for some specific scenarios to achieve
more efficient computation. In addition, only hard failures are con-
sidered in this study. In some applications, systems may be subject to
both hard failures and degradation-induced soft failures. It is of interest
to investigate maintenance optimization for such systems. Moreover, a
linear form is adopted for the link function in this study. Other forms
such as the exponential form can be explored based on the degradation
and failure time data in future studies.
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Appendix

The detailed steps of the MCMC are provided in Algorithm 1. As introduced in Section 3.3, we used 5000 samples for burn-in and the subsequent
10,000 samples for generating the sample, so that = + =T 5000 10, 000 15, 000. Meanwhile, the normal distribution is adopted as the proposal
distribution in the Metropolis-Hasting algorithm.
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