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On the complete bounds of Lp-Schur multipliers

Martijn Caspers and Guillermo Wildschut

Abstract. We study the class Mp of Schur multipliers on the Schatten-
von Neumann class Sp with 1 ≤ p ≤ ∞ as well as the class of completely
bounded Schur multipliers Mcb

p . We first show that for 2 ≤ p < q ≤
∞ there exists m ∈ Mcb

p with m �∈ Mq, so in particular the following

inclusions that follow from interpolation are strict: Mq � Mp and Mcb
q �

Mcb
p . In the remainder of the paper we collect computational evidence

that for p �= 1, 2,∞ we have Mp = Mcb
p , moreover with equality of

bounds and complete bounds. This would suggest that a conjecture raised
by Pisier (Astérisque 247:vi+131, 1998) is false.

Mathematics Subject Classification. 47B10, 47L20, 47A30.

Keywords. Schur multipliers, Non-commutative Lp-spaces, Operator spaces.

1. Introduction. The Schur product of matrices is given by the entry-wise
product. For m ∈ Mn(C) the linear map

Mm : Mn(C) → Mn(C) : x �→ Mm(x) := (mi,jxi,j)i,j ,

is then called a Schur multiplier.
Schur multipliers appear in several different contexts. They are widely

applied in harmonic analysis because of their close connection with Fourier
multipliers and transference techniques, see, e.g., [4,6,16]. In operator theory
Schur multipliers of divided differences occur naturally in problems involv-
ing commutators of operators, see, e.g., [20] and references given there. Fur-
ther, recently new applications of transference techniques have been found in
approximation properties of Lie groups [8,9,15]. In each of these applications
crucial new results were obtained on the (complete) bounds of Schur multipli-
ers.

The boundedness properties of Mm depend on the norm imposed on Mn(C).
If Mn(C) is equipped with the operator norm, the bounds of Mm can be
described by Grothendieck’s characterization [19, Theorem 5.1]. In particular

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-019-01316-7&domain=pdf
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the bounds and complete bounds of a Schur multiplier agree and in an infi-
nite dimensional setting we see that every bounded multiplier is in particular
automatically completely bounded. If Mn(C) is equipped with the Schatten
Sp-norm, then finding bounds, or even optimal bounds, of Mm becomes very
complicated as there is no such charaterization as Grothendieck’s available.

In the current paper we show two things. Let Mp (resp. Mcb
p ) be the

collection of symbols m that are bounded (resp. completely bounded) Schur
multipliers of the Schatten-von Neumann classes Sp associated with an infinite
dimensional Hilbert space. We refer to Section 2 for exact definitions. Through
complex interpolation we have that Mq ⊆ Mp in case 2 ≤ p < q ≤ ∞. We
show that this inclusion is strict; in fact we get a slightly stronger result in
particular yielding the parallel result on the complete bounds as well. This
extends the results by Harcharras [14, Theorem 5.1] which proves this for even
p and it settles the question of strict inclusions (the problem was also stated
in [11, p. 51]).

Secondly, we study the question whether Mp and Mcb
p are equal for 1 <

p �= 2 < ∞. In fact, the following conjecture is stated in [17]:

Conjecture 1.1 (Conjecture 8.1.12 in [17]) For every 1 < p �= 2 < ∞ we have
that Mp �= Mcb

p .

If we replace Mp and Mcb
p by the class of, respectively, the bounded and

completely bounded Fourier multipliers on a locally compact abelian group,
then Conjecture 1.1 is true as is proven in [17] in case of the torus and in
[1] for arbitrary locally compact abelian groups. Pisier’s argument relies on
lacunary sets in Z (for the bounds) and transference to Schur multipliers and
unconditionality of the matrix units as a basis for Sp (for failure of the complete
bounds). From this perspective it is very reasonable to state Conjecture 1.1.

In [15] it was proved that for continuous Schur multipliers on B(L2(R))
we have Mp = Mcb

p with equal bounds and complete bounds as operators on
Sp(L2(R)). The continuity is essential in their proof and leaves open Conjecture
1.1. It deserves to be noted that Lafforgue and De la Salle find several other
fundamental properties of Schur multipliers in the same paper [15].

In the current paper we approximate the norms of Schur multipliers by
computer algorithms; they suggest that Mp = Mcb

p with equality of norms
and complete norms (just as in the case p = ∞). We show that this is true in
case of the triangular truncation (Corollary 4.2).

2. Preliminaries.

2.1. Schatten classes Sp. Let H be a Hilbert space and let B(H) be the space
of bounded operators on H. For 1 ≤ p < ∞ we let Sp = Sp(H) be the space
of operators x ∈ B(H) such that

‖x‖p := Tr(|x|p) 1
p < ∞.

The assignment ‖ ‖p defines a norm on Sp which turns it into a Banach space
and which is moreover an ideal in B(H). We set S∞ for the C∗-algebra of
compact operators with operator norm ‖ ‖∞. In case H = C

n we write Sn
p
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for Sp = Sp(Cn). Fixing an orthonormal basis fj , j ∈ N≥1, we have that we
may identify Sn

p (completely) isometrically as a subspace of Sp by mapping
the matrix unit ei,j ∈ Sn

p to the matrix unit efi,fj
∈ Sp given by efi,fj

fk =
〈fk, fj〉fi. Let Pn be the projection onto the span of f1, . . . , fn. Then this map
is an isometric isomorphism Sn

p � PnSpPn. Moreover, under this isomorphsim
∪nSn

p is dense in Sp. In case 1 ≤ p ≤ q ≤ ∞ we have Sp ⊆ Sq and the
inclusion is (completely) contractive. This in particular turns (Sp,Sq) into a
compatible couple of Banach spaces and for any p ≤ r ≤ q we have that Sr is
a complex interpolation space between (Sp,Sq), see [3,18]. Any tensor product
Sn

p ⊗ Sp will be understood as a Lp-tensor product, i.e. the p-norm closure as
a subspace of Sp(Cn ⊗ H).

2.2. Operator space structure. For the theory of operator spaces we refer to
[12], [18]; we shall only need a result of Pisier on completely bounded maps
on Schatten classes which we recall here. In [17] Pisier shows that Sp have a
natural operator space structure as interpolation spaces between S1 and S∞.
In [17] it was proved that a linear map M : Sp → Sp is completely bounded iff
for every s ∈ N the amplification

ids ⊗ M : Ss
p ⊗ Sp → Ss

p ⊗ Sp

is bounded with bound uniform in s. Moreover,

‖M : Sp → Sp‖CB(Sp) = sup
s∈N

‖(ids ⊗ M) : Ss
p ⊗ Sp → Ss

p ⊗ Sp‖B(Ss
p⊗Sp).

(2.1)

The reader may take (2.1) as a definition, other properties (besides interpola-
tion) of the operator space structure of Sp shall not be used in this text.

2.3. Schur multipliers. A symbol is a function m : Z × Z → C. We call m an
Lp-Schur multiplier if there exists a map Mm : Sp → Sp determined by

Mm : Sn
p → Sn

p : (xi,j)i,j �→ (m(i, j)xi,j)i,j .

Here we view again Sn
p as a subspace of Sp by fixing a basis. From the closed

graph theorem, as Mm is presumed to be defined on all of Sp, the map Mm is
automatically bounded. The space of all Lp-Fourier multipliers will be denoted
by Mp which carries the operator norm ‖ · ‖Mp

of B(Sp). This turns Mp

into a Banach space. We denote Mcb
p for the subset of m ∈ Mp such that

Mm : Sp → Sp is completely bounded. We equip Mcb
p with the completely

bounded norm ‖ · ‖Mcb
p

as completely bounded maps on Sp. With slight abuse
of terminology we shall refer to both the symbol m as well as the map Mm as
a Schur multiplier and usually write ‖Mm‖Mp

for ‖m‖Mp
(and similarly for

the completely bounded norms). Obviously Mcb
p ⊆ Mp. The question whether

this inclusion is strict remains open, see Conjecture 1.1.
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3. Strict inclusions of the set of Schur multipliers. Here we prove that for 2 ≤
p < q ≤ ∞ there exists a symbol m : Z × Z → C that is a completely bounded
Lp-Schur multiplier but which fails to be a bounded Lq-Schur multiplier. The
following lemma is based on [7, Lemma 1]. For a finitely supported meausre μ
on the torus T we write μ∗ for the convolution operator Lp(T) → Lp(T) : f �→
μ ∗ f . We let ‖μ‖ be the norm of the measure.

Lemma 3.1. Let 2 ≤ p ≤ ∞. There exists a finitely supported measure μn, n ∈
N, on the torus T such that

2n/p ≤ ‖μn ∗ ‖B(Lp(T)) ≤ ‖μn ∗ ‖CB(Lp(T)) ≤
√

2 2n/p. (3.1)

Proof. Let sn = e
πi
2n . Set μ0 = ν0 = δ1, the Dirac delta measure in 1 ∈ T ⊆ C.

Then define inductively

μn+1 = μn + sn ∗ νn, νn+1 = μn − sn ∗ νn,

and note that the supports of μn and sn ∗ νn have empty intersection.
We claim that for every f ∈ Cc(T,Sm

2 ),m ∈ N, we have

‖νn ∗ f‖22 + ‖μn ∗ f‖22 = 2n+1‖f‖22. (3.2)

Indeed, this is clear for n = 0 and further by the parallellogram law

‖νn+1 ∗ f‖22 + ‖μn+1 ∗ f‖22 = 2(‖νn ∗ f‖22 + ‖sn ∗ μn ∗ f‖22)
= 2(‖νn ∗ f‖22 + ‖μn ∗ f‖22).

Then (3.2) follows by induction. From (3.2) we obtain that

‖μn ∗ f‖22 ≤ ‖μn ∗ f‖22 + ‖νn ∗ f‖22 = 2n+1‖f‖22.
So that ‖μn ∗ ‖CB(L2(T)) ≤ 2(n+1)/2. Also ‖μn ∗ ‖CB(L1(T)) ≤ ‖μn‖ = 2n and
by duality also ‖μn ∗ ‖CB(L∞(T)) ≤ 2n. By complex interpolation therefore
‖μn ∗ ‖CB(Lp(T)) ≤ √

2 2n/p. This proves the upperbound in (3.1).
For the lower bounds let f ∈ Cc(T) be a function with small support close

to 1 ∈ T. If the support is small enough, then μn ∗ f consists of 2n disjointly
supported translates of f so that ‖μn ∗ f‖p = 2n/p‖f‖p. This yields the lower
bound. �

The following theorem shows in particular that the class of Lp-Schur mul-
tipliers can be distinguished from the Lq-Schur multipliers for 2 ≤ p < q ≤ ∞.

Theorem 3.2. Let 2 ≤ p < q ≤ ∞ or 1 ≤ q < p ≤ 2. There exists a symbol
m : Z

2 → C such that m ∈ Mcb
p but m �∈ Mq.

Proof. We first treat the case 2 ≤ p < q < ∞. Let μn be the finitely supported
measure on T of Lemma 3.1. Let mn : Z → C be its Fourier transform given
by

mn(k) =
∑

θ∈supp(μn)

μn(θ)eikθ.

Then set m̃n : Z
2 → C by m̃n(k, l) = mn(k − l). By [16, Theorem 1.2] or [6,

Theorem 4.2 and Corollary 5.3] we have

‖μn ∗ ‖CB(Lp(T)) = ‖Mm̃n
‖CB(Sp). (3.3)
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We amplify m̃n by defining m̃cb
n : Z

2 × Z
2 → C : (k, l) = (k1, k2, l1, l2) �→

m̃(k1, l1). Then,

‖Mm̃cb
n

‖B(Sp) = ‖Mm̃cb
n

‖CB(Sp) = ‖Mm̃n
‖CB(Sp). (3.4)

Combining (3.3) and (3.4) with the estimates obtained in Lemma 3.1 we find
that

2n/p ≤ ‖Mm̃cb
n

‖B(Sp), and ‖Mm̃cb
n

‖CB(Sq) ≤
√

2 2n/q. (3.5)

From these two estimates we are able to prove the theorem as follows.
Suppose that the theorem is false, so that we have an inclusion map i :

Mcb
p → Mq. By the closed graph theorem this inclusion is continuous. Indeed,

if kj ∈ Mcb
p is a net in symbols such that kj → 0 in Mcb

p and such that
kj converges to k in Mq, then for every matrix x ∈ Sn

p ⊆ Sp we find that
Mkj

(x) → 0 in Sn
p and hence also in the norm of Sn

q . This shows that for
x ∈ Sn

q ⊆ Sq we have Mk(x) = limj Mkj
(x) = 0. But by density of ∪nSn

q in
Sq we get that Mk(x) = 0. Hence the graph of i is closed indeed.

However, the estimates (3.5) show that

‖Mm̃cb
n

‖B(Sp)

‖Mm̃cb
n

‖CB(Sq)
≥ 2

n
p − n

q − 1
2 ,

which converges to infinity if n → ∞. This contradicts that i : Mcb
p → Mq is

bounded.
Now, if 1 < q < p ≤ 2, then the statement follows from duality as M∗

m =
Mm∨ , where m∨(k, l) = m(k, l) and duality preserves the (complete) bounds of
linear maps. In case q = 1 or q = ∞ the counter example is given by triangular
truncation, see [10]. �

In particular we get the weaker statements that give non-inclusions of
bounded and completely bounded multipliers.

Corollary 3.3. Let either 2 ≤ p < q ≤ ∞ or 1 ≤ q < p ≤ 2. We have that
Mp � Mq and Mcb

p � Mcb
q .

We may in fact improve on this theorem in the following way.

Corollary 3.4. Let 2 ≤ p < ∞. There exists a symbol m ∈ Mcb
p such that for

any q > p we have have m �∈ Mq.

Proof. Let qn > p be a decreasing sequence with qn ↘ p. Let mn ∈ Mcb
p with

‖mn‖Mcb
p

= 1 be such that mn �∈ Mqn
. We copy-paste part of the symbols

mn to diagonal blocks of a new symbol m as follows. Let kn ∈ N be such
that there exist xn ∈ Skn

qn
with ‖xn‖q = 1 and ‖Mmn

(xn)‖qn
> n. Let m′

n :
[−kn, kn] × [−kn, kn] → C be the restriction of mn to a discrete interval. As
‖Mm′

n
(xn)‖q ≥ n we see that ‖Mm′

n
‖ ≥ n. Then let m : Z × Z → C be the

block symbol given by
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m =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . . . . .
0 m′

1 0 0 . . .
... 0 m′

2 0 . . .
... 0 0 m′

3 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

We find that Mm = Mm1 ⊕ Mm2 ⊕ Mm2 ⊕ . . .. So that ‖Mm‖Mcb
p

=
supk ‖Mmk

‖Mcb
p

≤ 1. And similarly,

‖Mm‖Mcb
q

= sup
k

‖Mmk
‖Mcb

q
≥ sup

k,qk≤q
‖Mmk

‖Mcb
q

= ∞.

�

Remark 3.5. The proof of Corollary 3.4 gives in fact a stronger result. It shows
that for any p0 > 2 there is a symbol m such that Mm : Sp → Sp is completely
contractive if p ∈ [2, p0] and unbounded if p ∈ (p0,∞).

4. Reduction of the variables. Let n, s ∈ N and consider Sn
p . Let ei,i be the

diagonal matrix unites of Mn(C) and consider the subgroup of Ms(C)⊗Mn(C)
given by all diagonal unitaries U1⊗e1,1+. . .+Un⊗en,n with Ui ∈ U(s) ⊆ Ms(C)
the unitary group. We denote this group by ⊕n

i=1U(s). Naturally ⊕n
i=1U(s) acts

isometrically on Ss
p ⊗ Sn

p by left and right multiplications.

Proposition 4.1. Let m ∈ Mn
p and let s ∈ N. Consider the set of maximum

points Cs
m consisting of all x ∈ Ss

p ⊗ Sn
p for which ‖x‖p = 1 and such that

‖(ids ⊗ Mm)(x)‖p = ‖ids ⊗ Mm‖Mp
. Then Cs

m is invariant for the left and
right action of ⊕n

i=1U(s). In particular, it follows that there exists an x ∈ Cs
m

such that for every 1 ≤ i ≤ n we have that xi,i := (ids ⊗ 〈 · ei, ei〉)(x) ∈ Ss
p is

a diagonal matrix with non-negative eigenvalues.

Proof. The first statement is a consequence of the fact that the Schur multiplier
(ids ⊗ Mm) commutes with the isometric action of ⊕n

i=1U(s). Therefore, for
U ∈ ⊕n

i=1U(s) we have ‖Ux‖p = ‖x‖p and ‖(ids ⊗ Mm)(Ux)‖p = ‖U(ids ⊗
Mm)(x)‖p = ‖(ids ⊗ Mm)(x)‖p = ‖ids ⊗ Mm‖Mp

.
The second statement follows from the polar decomposition. Indeed, take

x ∈ Cs
m. We claim first that we may assume that xi,i is a positive semi-

definite matrix. For each 1 ≤ i ≤ n consider the polar decomposition xi,i =
vi|xi,i| where vi is a partial isometry with ker(vi)⊥ = ran(|xi,i|). By dimension
considerations we may extend vi to a unitary ui ∈ U(s) that agrees with vi

on ran(|xi,i|) so that still xi,i = ui|xi,i|. Then put u = ⊕n
i=1ui ∈ ⊕n

i=1U(s).
Then u∗x ∈ Cs

m by the previous paragraph and (u∗x)i,i = |xi,i| is positive
semi-definite. Let wi ∈ U(s) be such that wi|xi,i|w∗

i is a diagonal matrix,
say di, with entries ≥ 0. Then put w = ⊕n

i=1wi ∈ ⊕n
i=1U(s). We find that

w∗u∗xw ∈ Cs
m and further (w∗u∗xw)i,i = di. �

Proposition 4.1 can be used to significatly speed up our computations in
Section 5.1.
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As a side remark we obtain the following corollary that shows that the
bounds and complete bounds of an infinite dimensional triangular truncation
agree. This result was already recorded in (the discussion before) [16, Propo-
sition 6.3]. In Corollary 4.2 we have that ‖h‖Mp

is finite by the stronger result
from [10, Theorem 1.4].

Corollary 4.2. Let h : Z
2 → C be the symbol of triangular truncation given by

h(i, j) = δ≥0(i − j). Then for every 1 < p < ∞ we have ‖h‖Mp
= ‖h‖Mcb

p
.

Proof. We use the notation of Proposition 4.1. Let πs : Ss
p ⊗ Sp → Sp :

ei,j ⊗ ek,l �→ esk+i,sl+j be the isometric isomorphism that re-indexes matrix
units. Let x ∈ Cs

h, s ∈ N≥2. By Proposition 4.1 we may assume that each
xi,i = (ids⊗〈·ei, ei〉)(x) ∈ Ss

p , i ∈ Z is a diagonal matrix. Then (ids⊗Mh)(x) =
Mh(πs(x)) and therefore,

‖(ids ⊗ Mh)(x)‖p = ‖Mh(πs(x))‖p ≤ ‖Mh‖Mp
‖πs(x)‖p = ‖Mh‖Mp

‖x‖p.

�

5. Approximation. In this section we argue that if Conjecture 1.1 is true, then
we should be able to find computer based evidence for it, which we make precise
in the following way. Consider the following three statements:

1. For every 1 < p �= 2 < ∞ there exists a bounded Schur multiplier that is
not completely bounded.

2. For every 1 < p �= 2 < ∞ there exists a completely bounded Schur
multiplier m ∈ Mcb

p such that ‖Mm‖Mcb
p

�= ‖Mm‖Mp
.

3. For every 1 < p �= 2 < ∞ and every m ∈ Mp we have m ∈ Mcb
p and

moreover ‖Mm‖Mcb
p

= ‖Mm‖Mp
.

Statement 1 is Pisier’s Conjecture 1.1. 2 is weaker than 1, and 3 is just the
negative of 2. If 2 is already true, then it is possible to show this by sampling
dense sets of Schur multipliers on finite dimensional Schatten classes and by
approximating their norms with finite sets. The problem however is that it
is not clear how much computations and computational power is needed in
order to obtain a symbol m that witnesses statement 2 above. We state a
quantitative statement in this direction in the next proposition.

Proposition 5.1. Let 2 ≤ p < ∞. Fix n ∈ N and let ε > 0, δ > 0. Let Aε be
the set of all symbols m : {1, . . . , n}2 → εZ ∩ [−1, 1] and let A be the set of all
symbols m : {1, . . . , n}2 → [−1, 1]. Let Bδ ⊆ Sn

p be the set of all x ∈ Sn
p with

�(xi,j) ∈ δZ ∩ [−1, 1] and �(xi,j) ∈ δZ ∩ [−1, 1]. For any symbol m ∈ A we
have that for δ < (

√
2n1+ 1

p )−1,

Δm := ‖Mm‖Mp
− sup

y∈Bδ

‖Mm(y)‖p

‖y‖p
≤ ‖Mm‖Mp

2δ
√

2n1+ 1
p

1 − δ
√

2n1+ 1
p

. (5.1)

Further, for every m ∈ Aε we have,

inf
m′∈Aε

‖Mm − Mm′‖ ≤ nε. (5.2)
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Proof. Take x ∈ Sn
p be such that ‖x‖p = 1 and ‖Mm‖Mp

= ‖Mm(x)‖p. Let
xδ ∈ Bδ be such that for each coefficient at entry i, j we have |xi,j−xδ

i,j | < δ
√

2.
Let xi and xδ

i be the i-th off-diagional of x and of xδ, respectively. That is,
xi(k, l) = x(k, l) if k − l = i mod n and xi(k, l) = 0 otherwise. By the triangle
inequality,

‖x − xδ‖p ≤
n∑

i=1

‖xi − xδ
i ‖p ≤ n(δ

√
2n

1
p ).

Further ‖xδ‖p ≤ 1 + ‖x − xδ‖p ≤ 1 + δ
√

2n1+ 1
p and similarly ‖xδ‖p ≥ 1 −

δ
√

2n1+ 1
p . We have

‖Mm(xδ)‖p ≥ ‖Mm(x)‖p − ‖Mm(xδ − x)‖p ≥ ‖Mm‖Mp

−‖Mm‖Mp
‖x − xδ‖p.

So combining these estimates yields

‖Mm‖Mp
− ‖Mm(xδ)‖p

‖xδ‖p
=

‖Mm‖Mp
‖xδ‖p − ‖Mm(xδ)‖p

‖xδ‖p

≤ ‖Mm‖Mp
‖xδ‖p − ‖Mm‖Mp

+ ‖Mm‖Mp
‖x − xδ‖p

‖xδ‖p

≤ ‖Mm‖Mp

1 + δ
√

2n1+ 1
p − 1 + δ

√
2n1+ 1

p

1 − δ
√

2n1+ 1
p

= ‖Mm‖Mp

2δ
√

2n1+ 1
p

1 − δ
√

2n1+ 1
p

.

This proves (5.1). For (5) take m ∈ A. Let mε ∈ Aε be a symbol such that
for each coefficient at entry i, j we have |mi,j − mε

i,j | ≤ ε. Let mε
i be the i-th

off-diagional of the symbol mε; that is, mε
i (k, l) = mε(k, l) if k − l = i mod n

and mε
i (k, l) = 0 otherwise. Similarly, let mi be the i-th off-diagonal of m. We

find that

‖Mm − Mmε‖Mp
≤

n∑

i=1

‖Mmi
− Mmε

i
‖Mp

≤ nε.

�

Proposition 5.1 shows that we can approximate the norms of Schur multi-
pliers on Sn

p . Naturally also the norms of each of the individual matrix ampli-
fications ids ⊗ Mm, s ∈ N can be approximated by viewing them as Schur
multipliers on Ssn

p . Note that shows that we may limit ourselves to Schur mul-
tipliers taking values in discrete intervals, i.e. with symbol in Aε. If Statement
2 above would be true, then by approximation we would be able to find counter
examples for every 1 < p �= 2 < ∞. However, our computer simulations exhibit
the behaviour of the converse statement 3.

5.1. Approximation with gradient descent methods. We have used the
Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS algorithm, see [2]), which
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Table 1. Approximations of the symbol m of (5.3)

s Approximation of ‖M (s)
m ‖B(S3s

4 )

1 3.0491549804518234
2 3.0491549802194102
3 3.0491549798442240
4 3.0491549798208277
5 3.0491549794012864

Table 2. n = dimension of the symbol, N = number of
random sample multipliers m, second and third column =
approximation of the 2nd and 3rd amplification of m

n N maxm(‖M (2)
m ‖B(S2n

4 ) − ‖Mm‖B(Sn
4 )) maxm(‖M (3)

m ‖B(S3n
4 )) − ‖Mm‖B(Sn

4 )))
2 500 0.000000000000000 −8.881784197001252 · 10−16

3 100 −3.841578721797134 · 10−9 −3.735681430860893 · 10−9

4 20 −2.227329432002989 · 10−12 −5.260509805538049 · 10−10

is a gradient descent algorithm to find local minima/maxima of a function. We
apply it here to find local maxima of

fm(x) =
‖Mm(x)‖p

p

‖x‖p
p

=
Tr

(
(Mm(x)∗Mm(x))p/2

)

Tr
(
(x∗x)p/2

) .

In case p ∈ 2N≥1, so that the p/2-powers are integer powers, this expres-
sion is faster to compute as it avoids determining eigenvalues of x∗x and
Mm(x)∗Mm(x). The precise algorithm is available on [5] and it makes use
of the reductions in Section 4. Note that the sample sets Aε in Proposition
5.1 scale exponentially with the dimension and therefore we are bound to use
faster algorithms that only allow us to compute local maxima.

5.2. Approximation for a fixed Schur multiplier. In order to illustrate our
larger computations we start with the example (fixed) Schur multiplier,

m =

⎛

⎝
1 2 2

−2 1 3
0 2 −2

⎞

⎠ . (5.3)

The following table shows the approximation of the norm of

M (s)
m := idSs

p
⊗ Mm = Mm(s) , with symbol m(s)(i, j) =

([
i

s

]
,

[
j

s

])
,

where [r] is the largest integer k with k ≤ r (Table 1).

5.3. Approximations for random Schur multipliers. Next we sample random
symbols m of Schur multipliers. In the next table N is the number of random
samples m ∈ Mn(C) and to each of these we approximate its norm in essentially
the same way as we did to the single example of Section 5.2. We then take the
maximum over all samples m over the difference of the norms (Table 2).
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Table 3. n = dimension of the symbol, N = number of ran-
dom sample multipliers m, remaining columns = approxima-
tion over the random sample set of maxm(‖M

(3)
m ‖p −‖Mm‖p)

n N p = 3 p = 3.5
2 100 −1.965094753586527 · 10−13 −2.632338791386246 · 10−13

3 10 −2.616529215515584 · 10−10 −2.0181634141636096 · 10−10

n N p = 4.5 p = 5
2 100 −1.9551027463649007 · 10−13 −3.397282455352979 · 10−13

3 10 −3.2847524700230224 · 10−10 −5.515231604746873 · 10−9

Note that the values in this table are negative because it is harder to
approximate ‖M

(2)
m ‖B(S2n

4 ) than ‖Mm‖B(Sn
4 ). Therefore if it would be true

that ‖M
(2)
m ‖B(S2n

4 ) = ‖Mm‖B(Sn
4 ), then the approximation of ‖M

(2)
m ‖B(S2n

4 )

is smaller than the approximation of ‖Mm‖B(Sn
4 ).

5.4. Different values of 2 ≤ p < ∞. For arbitrary p we may still approximate
the norm by the same algorithm except that ‖x‖p is computed by determining
the eigenvalues λ1, . . . , λn of x∗x so that then ‖x‖p

p =
∑n

i=1 |λi|p/2. Though
that this is computationally more involved we can still carry out our approxi-
mations which are displayed in the following figure (Table 3).
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