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Canceling Fundamental Fractional Spurs Due
to Self-Interference in a Digital

Phase-Locked Loop
Zhong Gao , Robert Bogdan Staszewski , Fellow, IEEE, and Masoud Babaie , Senior Member, IEEE

Abstract— Parasitic coupling between the building blocks
within a fractional-N phase-locked loop (PLL) can result in
noticeable spurs in its output spectrum, thus affecting the PLL’s
usability in ultralow jitter applications. In this article, we focus
on a chief contributor—“self-interference” caused by coupling
from the PLL’s frequency-reference (FREF) clock buffer to the
RF oscillator, while exploiting the fact that the resulting phase-
disturbance pattern: 1) exhibits a sinusoidal shape and 2) is
synchronized with the PLL’s output clock phase. Accordingly,
we propose a digitally intensive pattern-aware approach to
suppress the fundamental fractional spur raised by this self-
interference mechanism. The proposed technique is applied to
a fabricated digital PLL chip and reduces the worst spur level
by 13 dB, thus proving its effectiveness.

Index Terms— Coupling, fractional spurs, phase-locked loop
(PLL), self-interference, spur cancellation (SC).

I. INTRODUCTION

FRACTIONAL spurs in a phase-locked loop’s (PLL)
output spectrum are largely attributed to a periodic error

pattern arising from its phase detector’s (PD) transfer-function
nonlinearity that cannot be attenuated by the subsequent
loop filter [1], [2], [3], [4], [5]. To tackle such spurs, many
strategies have been developed, e.g., adaptively eliminating
the periodic disturbance pattern by predistorting the phase
detection nonlinearity [6], [7], randomizing the periodic
disturbance pattern [8], [9], [10], [11], or improving the
phase detection linearity [1], [12], [13], [14], [15]. However,
fractional spurs can also arise from another interference
mechanism that involves parasitic coupling between the
various constituent PLL blocks, e.g., between the RF digitally/
voltage-controlled oscillator (DCO/VCO) and PD. Such a
coupling mechanism is now becoming prominent in
commercial system-on-chip (SoC) implementations, which
inevitably entail aggressive cost-down and area minimization
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by bringing closer the aggressor and victim circuitry while
sharing their supply/ground pads [8], [16].

The case where the PD is a victim and the RF oscillator
is an aggressor [16] results in spurs behaving similarly as
when induced by the PD’s nonlinearity, since both mecha-
nisms ultimately inject the interference into the loop filter.
Therefore, such spurs can be addressed by some of the
aforementioned spur-mitigation techniques, e.g., an adaptive
predistortion. However, these popular techniques are invalid
when the oscillator is a victim because the interference is
not injected into the loop filter and the spur behavior has a
completely different nature [17].

So far, some works [17], [18], [19], [20] have proposed
targeted techniques to address the fractional spurs when the
oscillator is a victim. However, their hardware cost is relatively
high. For example, Ho and Chen [17] need a large memory
to store the coupling pattern, and Chen et al. [20] require a
dedicated circuit to measure the coupling signal and to inject
the cancellation pattern. Considering that the exact strength
and effects of the coupling signals are nearly impossible
to predict during the design phase [16], it is thus difficult
to justify the effort of finalizing these coupling mitigation
methods until after the chip is measured.

The existing coupling-mitigation methods with the oscillator
being the victim require a high hardware cost mainly because
they intend to address the interference injected from outside
(e.g., Chen et al. [20] tackle the interference of supply ripple
raised by a dc–dc converter), whose frequency and pattern are
independent of the PLL operation. However, in many cases,
the most critical interference signals originate from within
the PLL itself and so this is termed “self-interference” [16].
In this article, we specifically study the self-interference signal
coupled from a PLL’s reference clock (FREF) to the RF oscil-
lator, while noting that the interference pattern is: 1) almost
sinusoidal and 2) synchronized with the oscillator phase (when
the PLL is locked).

Based on these two features of self-interference, we pro-
pose a new method to suppress such oscillator-victimized
fundamental fractional spurs by injecting a well-designed
cancellation pattern into the PD. Although this inject-and-
cancel behavior might look similar to the existing counterparts
addressing arbitrary spurs raised by external interference
(e.g., [17], [20]), there is a significant difference between
their respective starting points—The prior arts must blindly
learn the spur cancellation (SC) pattern, while the proposed
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method readily exploits the two aforementioned features of
self-interference to construct the desired SC pattern. This
pattern-aware design methodology benefits in a much lower
hardware overhead and higher flexibility, especially when used
in frequency hopping. First, by assuming a sinusoidal inter-
ference pattern, the large memory typically used for learning
the interference pattern becomes thus unnecessary and can be
straightforwardly replaced by a more compact sinusoidal gen-
erator. A simple sinusoidal waveform also makes it possible
to agilely adjust the amplitude and phase of the SC pattern
according to the precisely known PLL’s transfer function
when the PLL hops to nearby channels, thereby saving the
efforts on recalibration. Second, by exploiting the condition
that the self-interference signals are synchronized with the
PLL’s output-clock phase, injecting the canceling signal can be
achieved by simply reusing the same hardware as in some of
the aforementioned strategies mitigating the PD-nonlinearity-
raised spurs, e.g., a lookup table (LUT) predistorting the
PD’s nonlinearity according to the expected PLL output
phase [6], [7], [21].

Consequently, the proposed method requires no additional
hardware and can be applied as a firmware patch to fix
unexpected spurs on a fabricated chip, as an alternative to
a costly new retape-out cycle. For example, after the chip’s
fabrication, the firmware can perform a foreground calibration
of the desired sinusoidal SC pattern at the chosen frequencies
and temperatures, and then store the corresponding phase
and amplitude parameters in a parameter table. During the
chip’s regular operation, the firmware can read the temperature
and operating frequency information from the chip, and then
interpolate a suitable SC pattern according to the parameters
prestored in the parameter table. The timeline to complete this
parameter table depends on the chip’s application case. For
applications less sensitive to cost, the content table can be
completely measured and frozen during the factory testing;
for cost-sensitive applications, the table can be updated
incrementally during the chip’s idle time by the embedded
controlling software when the chip is experiencing a case
not yet covered by the existing table. Regardless of which
strategy is finally adopted to update the table, the spur issue
can be fixed without the additional chip redesign cycle. This
can significantly accelerate the time to market.

This article is organized as follows. Section II discusses
the characteristics of fractional spurs caused by interference
injected at two domains, i.e., through the PD and into the
oscillator, thus providing the foundation for distinguishing
the spur-raising mechanisms and to develop the proposed SC
method. Section III analyzes the features of self-interference,
especially that injected into the DCO, paving the way for
developing the SC strategy in Section IV. Section V discloses
how the proposed SC strategy was applied to a fabricated
digital PLL chip modified from [21]. Then, Section VI demon-
strates the measured cancellation performance.

II. FREQUENCY-DEPENDENT BEHAVIOR OF SPURS

Fig. 1(a) depicts a simplified diagram of a digital type-II
PLL,1 which generates a variable clock (CKV) at frequency f0

1Although the spur behavior is discussed within the framework of a digital
PLL, the conclusions are equally valid for analog PLLs.

Fig. 1. (a) Block diagram and (b) phase domain model of a type-II PLL.

according to a FREF clock with frequency fREF. The fre-
quency multiplication ratio of f0/ fREF is defined by the
frequency control word (FCW). During the PLL operation, the
PD constantly samples the CKV phase at the FREF timing
grid, then compares it with the normalized2 prediction, φR,
obtained by accumulating FCW and consisting of a fractional
part φR,frac and an integer part φR,int, in order to extract the
phase error of CKV. The detected error first feeds into the
digital loop filter (DLF), consisting of the parallel proportional
and integration paths, respectively, scaled by coefficients α

and ρ. Then, the filtered error is denormalized into the
oscillator tuning word (OTW) by fREF/K̂DCO, where K̂DCO is
the estimated gain (i.e., step size) of the DCO. Finally, OTW
tunes the DCO frequency to correct the phase error on the
output clock CKV.

To assist with analyzing the PLL behavior in face of
disturbances, Fig. 1(b) sketches the phase-domain model of
Fig. 1(a). Signals φREF and φV are, respectively, the normalized
excess phase of FREF and CKV, which are additional phase
departure components from their respective carrier phase.3 All
phase signals in this model refer to the CKV period, except
for φREF, which refers to the FREF period. Consequently,
φREF is rescaled by multiplying FCW before subtracting φV.
In addition, K̂DCO is assumed to be well estimated so as to
perfectly cancel out with the DCO resolution, thereby invisible
in this phase domain model.

Generally, a PLL suffers from two types of interference
mechanisms which generate spurs in the DCO output spectrum
under the natural condition that the corresponding disturbance
signals are periodic. The first type may originate in the cir-
cuitry along the FREF path, but ultimately injects disturbance
into the loop through the PD, as φi,IB in Fig. 1(b). The transfer

2Generally, phase is 2π -periodic. However, for convenience sake, it is
preferred to utilize a normalized phase with a period of 1 in the phase-domain
model of digital PLLs [22]. In this article, φ represents a normalized phase,
and θ represents a 2π -periodic phase.

3Due to this consideration, the φR-related component, which predicts the
ideal CKV carrier phase in Fig. 1(a), is not visible in Fig. 1(b).
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function from φi,IB to φV reads as
φV(s)
φi,IB(s)

=
α · s/ fREF + ρ

(s/ fREF)
2
+ α · s/ fREF + ρ

(1)

which is low-pass and indicates the φi,IB-induced spurs can be
attenuated by lowering the PLL bandwidth, more specifically
through decreasing α. Therefore, such interference is named
“in-band interference” in this work. An example of this would
be an interference signal that superimposes on FREF and
disturbs the FREF clock buffer’s output delay [16]. Another
example would be a supply ripple, which modulates the output
time of a digital-to-time converter (DTC) [23], a subblock
inside the PD. From a behavioral perspective, the nonlinearity
of the phase detection blocks (e.g., DTC nonlinearity [6])
disturbs the PLL in the same way as φi,IB would. Thus, this
can also be categorized as a source of φi,IB for conceptual
convenience.

The second type of interference mechanism is the parasitic
coupling to the DCO, denoted as φi,DCO in Fig. 1(b). Such
interference can directly disturb (as a physical mechanism)
either the DCO phase or its frequency. However, both types
of influence can be time-averaged to a disturbing frequency for
the sake of simplifying the analysis [24]. Therefore, Fig. 1(b)
interprets φi,DCO as disturbing the DCO frequency by fi,DCO
which gradually affects φV by means of the DCO’s phase
integration property (described by 1/s). The resulting phase
error exhibits a bandpass frequency characteristic according
to the following transfer function from φi,DCO to φV, i.e.,

φV(s)
φi,DCO(s)

=
1

α + (s/ fREF + ρ · fREF/s)
. (2)

The peak value of this function is 1/α [reached at fre-
quency f = (ρ)1/2

· fREF/(2π)], indicating the φi,DCO-induced
spurs can be suppressed by increasing α or, in other words,
by widening the PLL bandwidth. This is the opposite trend
compared with the spurs raised by φi,IB. Therefore, these two
types of interference-induced spurs can be distinguished by
observing how the spur levels change with α (or generally
with the PLL bandwidth).

The above discussion considers φi,IB and φi,DCO inde-
pendently. However, if φi,IB and φi,DCO originate from
synchronized sources, i.e., at the same frequency and with
a fixed phase offset, φi,IB and φi,DCO will exhibit a fixed phase
and amplitude relationship, e.g.,

φi,IB(s) = λ · φi,DCO(s) (3)

where λ is a complex number. Interestingly, the effects of
synchronous φi,IB and φi,DCO ultimately imposed on φV may
cancel each other at a particular frequency according to

φV(s) =
φV(s)
φi,IB(s)

φi,IB(s) +
φV(s)

φi,DCO(s)
φi,DCO(s)

=
φV(s)
φi,IB(s)

· λ · φi,DCO(s) +
φV(s)

φi,DCO(s)
φi,DCO(s)

=
(αλ + 1) · s/ fREF + λρ

(s/ fREF)
2
+ α · s/ fREF + ρ

· φi,DCO(s) (4)

which contains a zero at

fz = −
λρ

αλ + 1
·

fREF

2π
. (5)

Fig. 2. In-band interference caused by the TDC-nonlinearity is synchronous
with φR,frac. (a) Hardware setup of using the TDC to detect the fractional part
of CKV’s phase error. (b) Waveforms illustrating the TDC-nonlinearity-in-
duced in-band interference pattern (φi,IB) being synchronous with the φR,frac
sequence.

Therefore, when φi,DCO gives rise to spurs in the PLL output
spectrum, we can design a synchronous φi,IB pattern for their
elimination.

III. THEORY OF SYNCHRONOUS SELF-INTERFERENCE

According to Section II, spurs can be readily canceled,
provided they are caused by synchronized sources. In a locked
PLL, most of the self-interference signals, which originate
from within the PLL, are synchronized, i.e., each showing
a fixed phase offset relative to the φR sequence, or more
accurately its wrapped version—the φR,frac sequence.4

This section will first explain the synchronicity with an
example of in-band self-interference, and then specifically
discuss the synchronicity of DCO-interference arising from
the aggressor being the FREF clock, thus paving the way for
developing a strategy of canceling the resulting spurs.

A. Example Illustrating Synchronicity

The synchronicity of self-interference can be understood
with an example of an in-band phase-error pattern caused
by the phase-detection nonlinearity (which is also categorized
as an in-band interference from the behavioral perspective):
In a fractional-N PLL shown in Fig. 1(a), the fractional
part of the sampled CKV phase is proportional to the time
difference between the significant (here, falling) FREF edge
and its preceding significant (here, falling) CKV edge, denoted
as 1tfrac. At the implementational level, such a fractional
phase can be obtained by quantizing 1tfrac with a time-to-
digital converter (TDC) and then normalizing the quantized
result [22], as shown in Fig. 2(a). In an ideal locked PLL,
i.e., without noise, TDC nonlinearity, and quantization error,
the measured fractional phase would be perfectly equal, and
thereby cancel out, the predicted value φR,frac. Consequently,
the fractional part of the detected phase error, i.e., 1φE,frac,
would always be zero and would not disturb the loop. How-
ever, if the TDC nonlinearity is present, the TDC output will
contain a 1tfrac-related error [see Fig. 2(b)]. This error results

4Note that the synchronized phase relationship is more general than
the narrow case of clock edge synchronization. The former requires the
aligned/synchronous clock edges to be constrained by a fixed phase offset,
while the latter requires the phase offset to be (nearly) zero.
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Fig. 3. Waveforms illustrating how FREF events can disturb the DCO phase
that is embedded in the waveform vDCO(t). This is by means of injecting
current iinj(t) into a locked PLL.

in a φR,frac-related pattern in 1φE,frac, acting as an in-band
interference. The interference pattern is a function of φR,frac,
naturally synchronized with it.

Regarding the other types of self-interference, as long as
the relationship between the victims and aggressors can be
described with φR,frac, the corresponding interference signals
are also synchronized. One noteworthy example would be the
DCO interference raised by FREF circuitry through parasitic
coupling paths.

B. Synchronous Interference From FREF to DCO

The waveform diagram in Fig. 3 illustrates how FREF
can disturb the DCO phase that is embedded in the DCO
waveform vDCO(t) (i.e., before being rectified or sliced to
CKV by a DCO buffer). The FREF clock is typically input
to the chip as a sinusoidal waveform, but then its edges
are sharpened by an on-chip reference buffer [25], [26],
which consumes a large transient current.5 A tiny portion of
the current may be injected into the DCO through various
parasitic paths, in the end disturbing the vDCO(t) waveform
and, consequently, its phase. The injected current iinj(t) is
ideally represented as periodic impulses occurring around the
FREF’s significant (here, falling) edges. This is because the
transient current of the reference buffer, the root cause of
iinj(t), is predominantly consumed by a significant-FREF-edge
associated transistor, whose size is particularly increased to
minimize the jitter degradation [28]. Although the magnitude
of the iinj(t) impulses is the same at each FREF cycle, their
impact on the DCO phase varies and can be estimated by
the DCO’s impulse-sensitivity function (ISF), represented by
the 2π -periodic 0[θV(t)], where θV(t) is the instantaneous
DCO phase. If n is an integer index number assigned to the
iinj impulses, the phase disturbance due to the nth impulse

5One might argue that using a reference buffer to perform the sinusoidal-
to-square-wave conversion is not so common in commercial SoCs, which
typically have an on-chip circuitry directly providing a square-wave FREF.
However, this is not the typical case because most of the on-chip clock
generators still need an off-chip resonator, e.g., crystal. Such a resonator
features a high-quality (Q) factor, indicating strong frequency selectivity,
thereby producing a high-purity sinusoidal waveform. Therefore, a reference-
like buffer is nearly always needed on-chip to perform the sinusoidal-to-square
conversion. Consequently, the corresponding effects discussed with sinusoidal
input and reference buffers are always valid (a notable exception would be a
PLL using a divided-down DCO clock to directly oversample the sinusoidal
reference waveform [27]).

Fig. 4. PLL’s output spectrum with spurs caused by the reference interference
coupled into the RF oscillator.

can be expressed as θdis[n] = A00(θV[n]), where A0 is
the amplitude scaling factor related to the impulse’s DCO-
coupling strength, and θV[n] stands for the instantaneous DCO
phase when it is disturbed by the nth iinj impulse. Since the
PLL continuously tracks the DCO phase, θV[n] can be readily
estimated by φR,frac, which is θV[n] = 2π(φR,frac[n] + φ0),
where 2πφR,frac[n] is the expected instantaneous component
of the DCO phase at the nth significant FREF edge, which
raises the nth iinj impulse, and 2πφ0 is a constant phase offset
accounting for the propagation delay from the iinj impulse
generation to the actual moment the DCO phase is disturbed.
Consequently, the phase disturbance value becomes θdis[n] =

A00(2π(φR,frac[n] + φ0)), indicating the phase disturbance
pattern of the iinj impulse train resembles the 0(2πφR,frac[n])

sequence.
Considering φR,frac is generated by accumulating FCW at the

FREF rate [see Fig. 1(a)], the fluctuation frequency of φR,frac
can be precisely reconstructed with FCWfrac, the fractional
part of FCW, i.e., FCWfrac · fREF or (1 − FCWfrac) · fREF.6

Consequently, the DCO phase disturbance pattern resembling
0(2πφR,frac[n]) also fluctuates at the same frequencies, result-
ing in fractional spurs at the offset frequencies equal to (or of
integer multiples of) FCWfrac · fREF and (1 − FCWfrac) · fREF,
as shown in Fig. 4, where the spurs at higher order harmonics
are ignored for simplicity. Interestingly, the solid-line spurs at
the offsets of −FCWfrac · fREF and (1−FCWfrac)· fREF (relative
to the carrier at FCW · fREF) are located exactly at the absolute
FREF harmonics, i.e., FCWint · fREF, and at (FCWint+1)· fREF,
where FCWint is the integer part of FCW. Consequently, these
spurs may be intuitively attributed to the disturbance of FREF
harmonics, as in [8].

Since the fractional spurs that are closer to the carrier tend
to be stronger [due to the lower suppression by the PLL
dynamics, e.g., the low-pass filtering parts in (1) and (2)],
this work focuses on the spurs at the lower offset frequency,
i.e., either FCWfrac · fREF or (1 − FCWfrac) · fREF. In other
words, we concentrate on the fundamental fractional spurs at
the offset frequency of |FCWfrac,s| · fREF, where FCWfrac,s is
the signed fractional FCW and equals the difference between
FCW and its closest integer, i.e.,

FCWfrac,s = FCW − ⌊FCW⌉. (6)

To explore the possibility of canceling the fundamen-
tal fractional spurs by utilizing the zero indicated by (4),
the waveform of the DCO interference [φi,DCO or fi,DCO in

6Here, the digital replicas outside the range of [0, fREF) are not considered.
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Fig. 5. Phasor diagram illustrating how the in-band interference designed for
SC (φ⃗SC) is fed-forward by the loop filter (as φ⃗SC,FF) and then cancels with
the DCO interference (φ⃗DCO). Vectors representing these patterns are observed
in the coordinate with axes parallel/perpendicular with φ⃗R representing the
sin
(
2πφR,frac[n]

)
sequence.

Fig. 1(b)] should be first mathematically described as a means
of assisting with designing the required in-band anti-interferer
[φi,IB in (3)]. Therefore, the Appendix quantitatively analyzes
the DCO phase perturbation, leading to two important findings:
First, a sinusoidal waveform can well approximate the phase-
perturbation pattern. Second, the frequency of the phase inter-
ference and the corresponding SC pattern can be described by

fSC = −FCWfrac,s · fREF. (7)

These two findings provide in Section IV the foundation for
developing the proposed approach for canceling fundamental
fractional spurs.

IV. DIGITALLY INTENSIVE APPROACH FOR CANCELING
THE DCO-INTERFERENCE-INDUCED

FRACTIONAL SPURS

Section III-B explains how the DCO suffers from syn-
chronous interference by the FREF clock aggressor. As indi-
cated by the zero in (4), the effect of such DCO interference
can be canceled by a synchronous in-band interference signal
with the proper amplitude and phase. This section will develop
a procedure for designing such an in-band anti-interferer.

A. Principle of Designing the In-Band Interference Sequence

To illustrate how the DCO interference can be canceled,
its pattern is represented by a vector φ⃗DCO in the phasor
diagram in Fig. 5 (top-right). The phasor diagram is
observed in a coordinate system with axes parallel/orthogonal
to φ⃗R, a virtual unit vector representing the pattern of
sin
(
2πφR,frac[n]

)
. In such a coordinate system, φ⃗DCO is sta-

tionary, i.e., exhibiting a fixed phase offset relative to φ⃗R, since
φ⃗DCO is self-interfering and synchronous with φ⃗R (according
to Section III-B). To tackle the spurs raised by φ⃗DCO, an in-
band interference signal φ⃗SC is deliberately input through the
PD [see Fig. 5 (top-left)] for the purpose of SC. φ⃗SC is rescaled
and rotated by the loop filter and then fed-forward to the DCO
as φ⃗SC,FF (the rotation due to the loop filter will be explained

later in Section IV-B). To completely cancel the DCO inter-
ference, φ⃗SC should be well-constructed to ensure φ⃗SC,FF
exhibits the same amplitude as φ⃗DCO but with the 180◦ phase
difference.

Because the φ⃗DCO waveform resembles and is synchronous
with sin

(
2πφR,frac[n]

)
(according to Section III-B), the cor-

responding cancellation signal φ⃗SC should also be a similar
sinusoidal wave, i.e., φ⃗SC = ASC · sin

(
2πφR,frac[n] + θSC

)
,

where θSC is the phase offset relative to φ⃗R, and ASC is the
amplitude. Logically, θSC consists of two parts, i.e., θSC =

θSC,FF + θDLF. As shown in Fig. 5, θSC,FF is the angle between
φ⃗SC,FF and φ⃗R, thereby complementary with that between
φ⃗DCO and φ⃗R, which is determined by the physical coupling
characteristics; θDLF reflects the angle by which the DLF
rotates φ⃗SC to generate φ⃗SC,FF, and thereby is a function of
the loop parameters and operating frequency. Consequently,
the pattern of φ⃗SC is finally described as

φ⃗SC[n] = ASC · sin
(
2πφR,frac[n] + θSC,FF + θDLF

)
. (8)

Sections IV-B–IV-D will discuss how to calculate θDLF,
to measure θSC,FF, and to determine ASC.

B. Calculating θDLF

θDLF is incurred while propagating φ⃗SC to φ⃗SC,FF through
the two parallel paths of the PLL’s loop filter [see Fig. 1(b)].
One path linearly scales the input to α · φ⃗SC. The other
path, in addition to scaling, rotates the input by −90◦, i.e.,
(ρ · fREF/s) · φ⃗SC, where the rotation is attributed to the
imaginary factor (i.e., i) in s. The orthogonal components
of these two paths superimpose at the final output φ⃗SC,FF
[see Fig. 5 (top-right)], which naturally rotates from φ⃗SC by
θDLF = arctan[(ρ fREF)/(2πα fSC)]. Here, fSC represents the
fluctuation frequency of the φ⃗SC,FF pattern, which equals to
that of φ⃗DCO expressed in (7) because these two phasors
should always rotate at the same speed and be antiphase
with each other. Replacing fSC in the above θDLF expression
with (7) yields

θDLF = − arctan
(

ρ

α
·

1
2πFCWfrac,s

)
. (9)

This angle can be readily calculated in a digital PLL since
FCWfrac,s is easily derived from the system’s FCW and ρ/α

is easily obtained from the parameter settings of the DLF [see
Fig. 1(a)].

C. Measuring θSC,FF

In a nearly ideal PLL, i.e., without noise and in-band
interference, the PD output pattern, represented by φ⃗PD,
would be entirely determined by the DCO interference,
φ⃗DCO. Denoting the angle between φ⃗PD and φ⃗R as θPD [see
Fig. 6(a)], θSC,FF can be determined by measuring the curve of
θPD-versus-|FCWfrac,s|, whose positive and negative FCWfrac,s
branches cross at the point where θPD = θSC,FF [see Fig. 6(b)
(bottom-right)].

The principle of this θSC,FF-measurement method is
explained as follows: By definition, θSC,FF is an angle between
φ⃗R and φ⃗SC,FF, which is set antiphase with φ⃗DCO (see Fig. 5).
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Fig. 6. Principles of θSC,FF measurement. (a) Phasor diagram defining the
critical angles. (b) Mathematical principle behind the measurement.

Hence, θPD = θSC,FF when φ⃗PD is antiphase with φ⃗DCO. This
condition is mathematically described as θPD,DCO = π , where
θPD,DCO denotes the angle between φ⃗DCO and φ⃗PD. Considering
θPD can be measured by correlating φ⃗PD with φ⃗R (to be
explained later), searching for the point where θPD,DCO = π

becomes the key item in measuring θSC,FF. Actually, θPD,DCO is
a strong function of the DCO interference angular frequency ω

and can be expressed as

θPD,DCO = arctan

(
ω

fREF
−

ρ· fREF
ω

α

)
+ π (10)

according to the PLL’s phase-domain model in Fig. 1(b). This
equation is sketched in the top side of Fig. 6(b), where the
θPD,DCO-versus-ω curve splits into two branches in positive
and negative ω. If we fold this curve around the vertical axis,
i.e., plotting the θPD,DCO-versus-|ω| curve, the two branches
will cross at a point with ω = (ρ)1/2/(2π) [see Fig. 6(b)
(bottom-left)]. Interestingly, at this crossing point, θPD,DCO
exactly equals π , which is the case we are searching for.
Therefore, measuring θPD at this point directly yields θSC,FF.
In the realistic measurement, we use the θPD-versus-|FCWfrac,s|

curve to replace θPD,DCO-versus-|ω|, because ω (the frequency
of the DCO interference) is actually swept by tuning FCWfrac,s
[according to (7)]. Furthermore, θSC,FF is obtained by reading
the θPD value at the crossing point of the positive and negative
FCWfrac,s branches [see Fig. 6(b) (bottom-right)], assuming
φ⃗DCO does not rotate (relative to φ⃗R) significantly within a
narrow frequency range (e.g., ω/ fREF ∈ [−(ρ)1/2, (ρ)1/2

]).
The remaining question is how to measure θPD at each

FCWfrac,s. Basically, θPD can be measured by correlating
the detected phase error with the orthogonal φ⃗R, i.e., the
cos
(
2πφR,frac[n]

)
sequence. In practice, the PD output is

quantized into the DTDC[n] sequence by a TDC in a digital
PLL. Then, θPD theoretically equals the phase offset θx at
which the correlation function, i.e.,

Rcorr(θx) =

N∑
n=1

DTDC[n] · cos
(
2πφR,frac[n] + θx

)
(11)

Fig. 7. Phasor diagram showing the sinusoidal component (φ⃗PD) at the PD
output, which combines the acting stimulus vector φ⃗x for SC and the detected
phase error φ⃗DCO,fb due to the under-/overcompensation of φ⃗DCO. Here, the
case of fSC > 0.

is zero. N here equals the length of a complete φR,frac[n]

repetition pattern.7 The reason why θPD can be measured in
this manner lies in the fact that the φ⃗PD pattern in DTDC[n]

is proportional to sin
(
2πφR,frac[n] + θPD

)
, making Rcorr(θx −

θPD) ∝ sin(θx − θPD). In addition, considering sin(θx − θPD)

also crosses zero when θx = π + θPD, representing the cases
⟨φ⃗DCO, φ⃗PD⟩ = 0 instead of ⟨φ⃗DCO, φ⃗PD⟩ = π , the following
condition must be checked to exclude that improper solution,
i.e.,

R′

corr(θx) =

N∑
n=1

DTDC[n] · sin
(
2πφR,frac[n] + θx

)
> 0 (12)

where N is the same as that in Rcorr(θx). Note that the
θPD-measurement method is merely used to conceptually
demonstrate the concept. An implementation-oriented alterna-
tive can be realized with a gradient-decent algorithm [29].

D. Determining ASC

Once θDLF and θSC,FF are known, the direction of φ⃗SC (in the
φ⃗R-based coordinate) is fixed. Then, the optimum amplitude
ASC can be determined iteratively as the PLL operates with
the FCWfrac,s satisfying θPD ≈ θSC,FF, i.e., |FCWfrac,s| ≈

(ρ)1/2/(2π)8: A tentative version of φ⃗SC, i.e., φ⃗x, is added
as an acting stimulus to the PD. Since φ⃗x aligns with φ⃗SC,
it takes a form of φ⃗x = Ax · sin

(
2πφR,frac[n] + θSC,FF + θDLF

)
,

where Ax is the amplitude to be updated adaptively, and finally
converges to the optimum ASC. After rotated by the PLL’s
DLF, φ⃗x adds to the DCO a vector in exact antiphase with
φ⃗DCO to cancel the latter’s effects. If the amplitude of φ⃗x
is not large enough to cancel φ⃗DCO, i.e., Ax < ASC, the
undercompensated residual φ⃗DCO results in a feedback vector
φ⃗DCO,fb at the PD side. Hence, the detected phase error φ⃗PD is
dominated by the vector sum of the undercompensated φ⃗DCO,fb
and the deliberately added acting stimulus vector φ⃗x, assuming
other in-band interference sources are negligible. As shown in
the case of Ax < ASC in Fig. 7, the undercompensated φ⃗DCO,fb

7As explained in [18], the complete length of φR,frac[n] is determined by
the smallest bit of FCWfrac. For example, if FCWfrac = 2−5

+ 2−7, φR,frac[n]

starts to repeat after 27 consecutive data samples.
8Operating at such a frequency simplifies the convergence analysis, as will

be explained later.
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Fig. 8. Phasor diagram illustrating the φ⃗DCO cancellation residue due to the
phase offset error in φ⃗SC, i.e., θerr.

is almost antiphase with φ⃗DCO, considering ⟨φ⃗DCO, φ⃗DCO,fb⟩ ≈

π when the PLL operates with |FCWfrac,s| ≈ (ρ)1/2/(2π)

(see Section IV-C). Consequently, the angle between φ⃗R and
φ⃗PD is smaller than that with φ⃗x, i.e., θPD < θSC,FF + θDLF.
On the contrary, if the amplitude of φ⃗x is larger than the
optimum, i.e., Ax > ASC, the PD will get an overcompensated
φ⃗DCO,fb, which is antiphase with the undercompensated one
and finally results in θPD > θSC,FF + θDLF (see the case of
Ax > ASC in Fig. 7). Consequently, Ax can be iteratively
updated by accumulating the error between θPD and θSC,FF +

θDLF, i.e., θE,PD = θSC,FF + θDLF − θPD. As a result, Ax should
finally converge to the point θPD = θSC,FF + θDLF, indicating
φ⃗x perfectly cancels the effect of φ⃗DCO so that φ⃗DCO,fb = 0⃗.
At that moment, Ax = ASC.

Note that the example in Fig. 7 merely demonstrates the case
with a positive frequency of DCO interference, i.e., fSC > 0.
When fSC < 0, both φ⃗x and φ⃗DCO,fb would be mirrored
from the φ⃗DCO vector, since the associated angles are
inverted according to (9) and (10). Consequently, the cases of
Ax < ASC and Ax > ASC would, respectively, result in nega-
tive and positive θE,PD. This is opposite to the situation with
fSC > 0. Therefore, Ax needs to be updated by accumulating
−θE,PD, and can still converge to Ax = ASC.

E. Residual Spur Level Due to Calibration Inaccuracy

The accuracy of the designed φ⃗SC pattern determines
the spur-suppressing performance. After applying the
cancellation technique, the error in φ⃗SC amplitude ASC
directly determines the residual spur level. Because φ⃗SC is
injected as the PLL’s in-band interference, its error (i.e.,
the portion that cannot be canceled by φ⃗DCO) can directly
add to the PLL’s output phase and show up as spurs when
within the loop’s low-pass characteristics (this fact will
be further exploited in Section V-C). The spur level can be
estimated by inspecting (22) in the Appendix, which describes
the oscillator’s output waveform in the presence of phase
interference. There, Ak can be treated as the amplitude error of
φ⃗SC strictly due to the inaccurate ASC. Equation (22) indicates
the resulting spur level is 20 log10(Ak/2) dBc, where Ak

represents the error of ASC in the unit of 2π -periodic phase.
The error in the φ⃗SC phase offset, i.e., θSC,FF + θDLF, deter-

mines the extent to which the original spur can be suppressed.
A qualitative analysis is given below. In an ideal case with
perfect φ⃗SC, the SC pattern fed-forward to the DCO, i.e.,
φ⃗SC,FF, should be exactly antiphase with the DCO interference
φ⃗DCO, as shown in Fig. 5 (top-right). However, when the phase
offset term of φ⃗SC,FF, i.e., θSC,FF + θDLF, contains the error of
θerr, as shown in Fig. 8, φ⃗SC,FF will misalign with φ⃗DCO. As a

Fig. 9. PLL diagram emphasizing the details related to SC.

result, the φ⃗DCO component parallel with φ⃗SC,FF, i.e., φ⃗DCO,||,
can be properly canceled; but the component orthogonal to
φ⃗SC,FF, i.e., φ⃗DCO,⊥, will remain uncompensated, thus causing
spurs. The amplitude ratio between φ⃗DCO,⊥ and φ⃗DCO is
determined by |φ⃗DCO,⊥|/|φ⃗DCO| = sin(θerr), indicating the spur
level cannot be suppressed better than −20 log10(sin(θerr)) dB.

V. IMPLEMENTATION OF THE SPUR
CANCELLATION STRATEGY

The SC strategy proposed in Section IV is applied in an
off-line manner to a fractional-N digital PLL chip modi-
fied from [21], which exhibits fractional spurs due to the
FREF-induced DCO interference. The PLL operational infor-
mation, i.e., sequences representing φ⃗R and φ⃗PD, is stored in
an on-chip memory for debugging. The information is then
read out and processed by MATLAB to design the SC pattern
φ⃗SC. Next, the φ⃗SC pattern is written to an on-chip LUT,
whose content is added to the appropriate phase-detection
block signals according to the instantaneous φR,frac value.
This guarantees that the injected φ⃗SC pattern is synchronous
with φ⃗R and is able to cancel the fractional spurs raised by
the synchronous DCO interference. This section will disclose
the PLL chip details and the procedure for determining the
φ⃗SC parameters.

A. Details of the PLL Chip

Fig. 9 sketches a system diagram of the PLL. Similar to the
simplified PLL in Fig. 1(a), the implemented PLL constantly
samples the CKV phase at the grid of FREF clock. Then, the
sampled CKV phase is compared with the ideal one predicted
by accumulating FCW in order to extract the CKV phase
error 1φE. The extracted 1φE passes through the DLF and
tunes the DCO to correct the CKV phase error. Considering
the predicted CKV phase consists of the fractional and integer
parts, respectively, φR,frac and φR,int, the phase error extraction
is performed in two parallel paths.

On the φR,int-related branch, the number of CKV’s signif-
icant (falling) edges is constantly monitored by the counter.
At the rising edge of the update clock CKU, which aligns
with the fifth CKV falling edge after FREF, the counter value
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is sampled to obtain the integer part of the CKV phase at
the FREF grid [22]. The sampled phase cancels with φR,int to
extract the integer part of 1φE.

Regarding the φR,frac-associated path, CKV’s fractional
phase reflects on 1tS, which is the instantaneous time offset
between the FREF and the first subsequent CKV falling edges.
In an ideal case without any noise and interference, 1tS =

(1−φR,frac) ·TCKV, in which TCKV is the nominal CKV period.
Hence, the CKV’s fractional phase error reflects on the time
error, 1tE = (1 − φR,frac) · TCKV − 1tS, which is extracted
by the time-mode arithmetic unit (TAU) proposed in [1]. The
TAU samples TCKV, conceptually scales it with (1 − φR,frac),
cancels it with the sampled 1tS, and outputs the residue as
the time offset 1tE. At the implementation level, φR,frac splits
into φcrs and φfine, used for the coarse and fine TCKV scaling,
respectively. The realized 1tE extraction expression is adapted
accordingly (see Fig. 9).

The extracted 1tE is quantized by a TDC and then nor-
malized to the fractional phase error by multiplying with the
factor of KTDC. The fractional phase error finally adds to the
integer part (extracted by the φR,int-related branch) to arrive at
the overall phase error 1φE.

In the implemented PLL, the TAU scales TCKV with
10-b accuracy, where φcrs and φfine, respectively, tune the
highest 3 and lowest 7 bits. Considering the φcrs-associated
TCKV-scaling error dominates the TAU’s overall integral
nonlinearity (INL), an LUT tackles this issue by adding a
φcrs-dependent compensation signal φLUT to φfine. To prevent
the TAU resolution from limiting the compensation accuracy,
φLUT is noise-shaped by a first-order 16-modulator before
adding it to φfine.

The content of the LUT is calibrated by a least mean squre
(LMS)-based algorithm [21] sketched in Fig. 9 (bottom-left):
After the φcrs code is used, the resulting TDC output DTDC is
scaled by the step-control factor µcrs and then demultiplexed
to the accumulator associated with the φcrs code. The scaled
DTDC is accumulated to update the corresponding offset com-
pensation word, i.e., OS. When this φcrs code is used next time,
the corresponding OS value is multiplexed out to φLUT, finally
tuning the TAU for the ultimate purpose of reducing the time
error. In the end, the resulting DTDC reduces in magnitude and
updates the OS accumulator less significantly. The OS value
finally converges to a point that ensures the average DTDC to
be 0. Since φcrs has 3 bits, only eight accumulators and OS
values are needed in the LUT.

The realized chip utilizes a FREF of 40 MHz to synthesize
frequencies from 2.6 to 4.0 GHz. It is fabricated in 40-nm
CMOS and its micrograph is shown in Fig. 10.

B. Procedure to Determine the Spur Cancellation Pattern

To tackle the fundamental fractional spurs due to DCO
interference, the cancellation pattern φ⃗SC is injected into the
loop filter by means of reusing the LUT shown in Fig. 9. The
LUT values are selected by φcrs (the three MSBs of φR,frac
with the values of i/8, i ∈ 0, 1, . . . , 7), and then added to
the PD via φLUT. This way, the reconstructed waveform of
φ⃗SC is always synchronized with φ⃗R. To distinguish the LUT
content that addresses the in-band interference (e.g., due to

Fig. 10. Chip micrograph.

Fig. 11. Steps to determine the SC content of the LUT (in Fig. 9), i.e.,
the waveform of φ⃗SC which is logically stored in the SC-LUT. (a) Step 1:
Estimating θSC,FF (red). (b) Step 2: Calculating θDLF (green). (c) Step 3:
Determining ASC (blue).

TAU nonlinearity) and DCO interference, the LUT is logically
divided into two parallel sub-LUTs—one, SC-LUT, stores the
φ⃗SC pattern for the purpose of SC; while the other, AIB-
LUT, compensates the analog in-band interference, as shown
in Fig. 11(a).
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The AIB-LUT content should be fixed before estimating the
SC-LUT content because the processes determining the φ⃗SC
parameters (i.e., θSC,FF and ASC) assume that the PLL in-band
interference is negligible (e.g., already suppressed by the
AIB-LUT). The AIB-LUT is calibrated with the LMS-based
algorithm shown in Fig. 9 when the PLL is provisioned with
|FCWfrac,s| ≈ 11/16. The large |FCWfrac,s| ensures the DCO
interference is located at an offset frequency (i.e., | fSC|) high
enough to be suppressed by the 1/s filtering of the DCO.

Regarding the SC-LUT content, the key parameters of φ⃗SC,
i.e., θSC,FF, θDLF, and ASC, are sequentially determined through
the three steps, with each shown as a subfigure in Fig. 11.
In these steps, measuring θPD is a common procedure because
θSC,FF and ASC are estimated based on observing θPD [as can be
found in both steps shown in Fig. 11(a) and (c)]. To measure
θPD, an on-chip SRAM collects the sequences of φR,frac[n] and
quantized phase error DTDC[n] in the background, after the
PLL is locked. These two sequences are read out by software
and correlated to estimate θPD as discussed in Section IV-C.

During the first step of determining φ⃗SC, i.e., estimating
θSC,FF [see Fig. 11(a)], the θPD-versus-|FCWfrac,s| curve is mea-
sured with all SC-LUT registers remaining at zero. Likewise,
θSC,FF equals θPD at the crossing point of this curve’s positive
and negative FCWfrac,s branches.

Next, θDLF is calculated according to (9), where the required
parameters can be obtained from the PLL settings—ρ/α from
the configurations of the DLF, and FCWfrac,s from the FCW
to be used for the ASC optimization in the next step [see
Fig. 11(b)]. After this step, the angle between φ⃗SC and φ⃗R
[controlled by θSC,FF + θDLF in (8)] is readily calculated.

The last step is to determine the optimum amplitude of φ⃗SC,
i.e., ASC, with the iteration process shown in Fig. 11(c):
A φ⃗SC-aligned acting stimulus vector φ⃗x with an arbitrary
initial amplitude Ax is written into the SC-LUT. Then, θPD is
measured to extract the error θE,PD = θSC,FF + θDLF − θPD. The
extracted error is accumulated to update Ax, so is the acting
stimulus vector φ⃗x in SC-LUT. With the updated SC-LUT,
θPD is measured again to correct Ax. Such an iterative process
finally converges at a point where the detected phase error
vector φ⃗PD aligns with the acting stimulus vector φ⃗x (i.e.,
θE,PD = 0), indicating that Ax achieves the optimum value,
i.e., Ax = ASC. During the iterations, the convergence speed
is controlled by the θE,PD-scaling factor µA, and the polarity
of accumulating θE,PD is controlled by the sign of FCWfrac,s.

C. Adjusting the Spur-Cancellation Pattern Across
Frequencies

The process described in Section V-B determines φ⃗SC at
a single frequency point where ASC is optimized because:
1) the DCO phase disturbance due to interference corre-
lates with the DCO’s ISF, which is frequency dependent,
and 2) φ⃗SC experiences a frequency-dependent rotation and
rescaling by the loop filter. Therefore, φ⃗SC should theoretically
be recalibrated once the PLL hops to a different frequency.
However, a single φ⃗SC, mathematically adjusted for N from
a single-point calibration, can sufficiently suppress the spurs
for the entire FCW range of [N − 0.5, N + 0.5], where
N is an arbitrary integer. The simplification comes from

the observation that φ⃗SC only needs to be accurate when
FCWfrac,s is in a subrange of [−(ρ)1/2/(2π), (ρ)1/2/(2π)].
This is because the FREF-to-DCO-interference-induced spur
peaks at |FCWfrac,s| = (ρ)1/2/(2π), which corresponds to the
fractional frequency of (ρ)1/2 fREF/(2π) [according to (2)],
and requires accurate φ⃗SC to cancel the spurs. The FCWfrac,s
range of [−(ρ)1/2/(2π), (ρ)1/2/(2π)] corresponds to quite a
narrow frequency range, e.g., less than 1 MHz in Fig. 13(b)
shown later in Section VI. Since this range is so narrow
compared to the DCO frequency (e.g., several GHz in this
case), the DCO phase disturbance pattern φ⃗DCO will hardly
change. Hence, we assume the amplitude and phase of φ⃗DCO
to be constant in the FCW range of [N − 0.5, N + 0.5],9 and
then recalculate the φ⃗SC parameters according to PLL loop
dynamics: θSC,FF does not need any adjustment because it
is purely determined by the φ⃗DCO phase, which is assumed
constant. θDLF can be recalculated with (9). Regarding ASC,
it should guarantee that φ⃗SC perfectly cancels φ⃗DCO after
getting rescaled by the loop filter, i.e.,

|φ⃗DCO|
2

=
(
α2

+ ρ2 f 2
REF/(2π fSC)2)

· ASC( fSC)2. (13)

Considering |φ⃗DCO| as constant and inserting (7), ASC should
be rescaled across FCWfrac,s as

ASC
(
FCWfrac,s|op

)
= ASC

(
FCWfrac,s|meas

)
·

√√√√1 + β
(
FCWfrac,s|meas

)2

1 + β
(
FCWfrac,s|op

)2 (14)

where

β
(
FCWfrac,s

)
=

ρ

α
·

1
2πFCWfrac,s

. (15)

FCWfrac,s|meas is the FCWfrac,s with which ASC is calibrated,
and FCWfrac,s|op is the FCWfrac,s with which the PLL operates
in a new frequency.

VI. MEASUREMENT RESULTS

This section presents the measurement results of the pro-
posed SC strategy. Since it is only effective for the spurs
raised by the DCO interference, we first identify the DCO’s
interference-induced fundamental fractional spurs, and then
apply the proposed techniques to demonstrate the efficacy of
the proposed scheme.

A. Identifying Sources of the Fundamental Fractional Spurs

Fig. 12(a) shows the measured spectrum at the PLL output
before applying the LUT compensation at a near-integer
channel with FCWfrac,s ≈ 0.00025. The highest fractional
spurs lie at the offset frequency of around ±10 kHz from the
carrier. The magnitude of the offset frequency coincides with
FCWfrac,s · fREF, so the spurs are the fundamental fractional
spurs in this channel and can be caused by both in-band

9Although φ⃗DCO might slightly change within FCW ∈ [N − 0.5, N + 0.5]

but FCWfrac,s /∈ [−(ρ)1/2/(2π fREF), (ρ)1/2/(2π fREF)]. This does not raise
critical issues because the corresponding spurs exhibit relatively low levels
and do not require accurate φ⃗SC for cancellation purpose.
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Fig. 12. CKV Spectra (a) before and (b) after utilizing the LUT to suppress
the in-band interference.

Fig. 13. Measured fundamental fractional-spur levels versus FCWfrac,s
(a) before and (b) after canceling the in-band interference with the LUT in
Fig. 9.

and DCO interference.10 To confirm the dominant source, the
fundamental fractional spur level is observed while sweeping
the FCW range of (69, 69.5). Assuming the strength of the
dominant interference is constant (which is reasonable in
the narrow FCW range), the curve of the fundamental-spur-
versus-FCWfrac,s reflects the PLL’s frequency response to the
interference. As shown in Fig. 13(a), each fundamental-spur-
versus-FCWfrac,s curve exhibits a low-pass characteristic, and
the bandwidth increases with the DLF’s proportional coeffi-
cient α (shown in Fig. 9), which equals to 0.5 ∼ 2 times α0, the
default α value adopted to measure Fig. 12. This trend agrees
with (1), indicating that the in-band interference dominates the
fundamental fractional spurs.

Afterward, the LUT is calibrated to cancel the effects of
in-band interference. Upon applying the LUT compensation,
the fundamental fractional spurs in Fig. 12(a) are suppressed
to below −62.5 dB, as shown in Fig. 12(b), indicating that
the residual in-band interference almost practically vanishes.
However, the spur-suppression performance tends to be less
effective when the fractional channel frequency increases (but
still within the loop bandwidth). As shown in Fig. 13(b),
the fundamental fractional-spur curve exhibits a bandpass

10Although the phase-detection nonlinearity can also raise fundamental
fractional spurs, this mechanism is categorized as in-band interference for
conceptual convenience (see Section II).

Fig. 14. Spectrum of the free-running DCO with spurs caused by FREF.

Fig. 15. (a) Measured θPD-versus-|FCWfrac,s| curve used for searching θSC,FF.
(b) Convergence curve of Ax to determine ASC.

characteristic and peaks at FCWfrac,s close to 2−7. In addition,
the peak value decreases as α increases. This trend matches (2)
and confirms that the DCO interference remains the dominant
spur contributor after the in-band interference gets resolved
with the LUT.

The DCO interference is thus presumed to be coupled
from FREF. Evidence can be found in the output spectrum
of the free-running DCO shown in Fig. 14. The spectrum
contains spurs at the fREF harmonics (i.e., 69× and 70×

of 40 MHz) and their mirrors relative to the main carrier. These
spur positions agree with those caused by the mechanism of
FREF-to-DCO coupling explained in Fig. 4. The spectrum is
measured after disabling all the blocks in Fig. 9 except for
the DCO (with buffer) and FREF buffer chain (till the TAU
input), so that FREF is the only possible aggressor of DCO.
Note that although the reference buffer is placed relatively far
from the DCO (see Fig. 10), and also the PD and DCO have
separated power domains, the coupling from the FREF to the
RF oscillator still limits the PLL’s spur performance.

B. Spur Cancellation Performance

After confirming that the fundamental fractional spur is
dominated by the synchronous DCO-interference coupled
from the FREF buffers, the proposed SC strategy is applied
to tackle these spurs.11 During the process of determining

11One might doubt whether it would be worthwhile to adopt the proposed
SC strategy because Fig. 13 suggests that the DCO-victimized spur can be
simply suppressed by increasing the PLL bandwidth, which is proportional
to the loop filter’s α coefficient. However, an excessive PLL bandwidth,
beyond the optimal point, will increase the in-band noise contribution and
eventually degrade the overall phase noise performance. In addition, a couple
of factors can also limit the spur-suppression performance. First, the PLL
bandwidth cannot be arbitrarily large due to the stability considerations (e.g.,
the PLL bandwidth is usually less than 1/10 of the reference frequency [30]).
Second, the in-band-interference-induced spurs get less attenuated as the PLL
bandwidth increases and could finally dominate the PLL’s output spur levels.
Therefore, suppressing the spurs by increasing the PLL bandwidth does not
appear so attractive, given the alternative options.
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Fig. 16. PLL’s output spectrum (a) before and (b) after applying the proposed SC technique at FCW ≈ 69.01, and (c) and (d) corresponding phase noise
profiles.

the parameters for φ⃗SC, the behavioral AIB-LUT holds the
same LUT content as that in measuring Fig. 13(b), where the
spur levels in the near-integer channels are below −62 dB,
indicating that the uncompensated in-band interference is
sufficiently suppressed and would not significantly degrade the
accuracy in the θSC,FF and ASC estimation. Next, we determine
the parameters of φ⃗SC, i.e., θSC,FF, θDLF, and ASC.

To search for θSC,FF, the θPD-versus-|FCWfrac,s| curve is
measured and plotted in Fig. 15(a). θSC,FF equals θPD at the
crossing point of the positive and negative FCWfrac,s branches,
i.e., 0.627 × 2π .

Then, ASC is optimized at the frequency corresponding to
FCWfrac,s ≈ 2−7, which is close to (ρ)1/2/(2π fREF) [i.e.,
|FCWfrac,s| value at the crossover of the θPD-versus-|FCWfrac,s|

curve in Fig. 15(a)] and guarantees the convergence for the
ASC search. At this frequency, the corresponding θDLF is
−0.049×2π according to (9), and ρ/α ≈ 2−6. The procedure
explained in Fig. 11 (see Step 3) is employed to search for
the optimum amplitude of φ⃗SC. Fig. 15(b) plots the transient
of the acting stimulus amplitude Ax, which starts from 0 and
settles at 1.2 after 20 iterations. Since φ⃗SC is injected into the
PLL through the LUT related to the φR,frac processing (see
Fig. 9), the unit of Ax is the LSB of φR,frac, i.e., 0.001 of the
normalized phase.

After setting ASC to 1.2, the final Ax value in Fig. 15(b),
φ⃗SC is now fixed for the channel of FCWfrac,s ≈ 2−7.
According to the PLL output spectra before and after applying
φ⃗SC, respectively, shown in Fig. 16(a) and (b), the fundamental
fractional spur is suppressed by as much as 13.1 dB, i.e., from
−47.5 to −60.6 dB. One may notice that the second harmonic
fractional spur grows to the level close to the fundamental one
after applying φ⃗SC. The rise of harmonics may be attributed to
the nonlinearity of the phase detection blocks, e.g., the TAU
subsystem and TDC in Fig. 9, in response to the injected φ⃗SC.

We note that although the dominant fundamental spur is
substantially suppressed by deliberately adding the in-band
interference φ⃗SC, the phase noise does not degrade. This
is supported by the unchanged value of integrated jitter
in the case without and with φ⃗SC, respectively, shown in
Fig. 16(c) and (d).

To showcase the SC performance over the fractional chan-
nels, the worst-spur-versus-FCWfrac,s curve is swept across

Fig. 17. Comparison of (a) worst fractional spur and (b) integrated jitter
versus FCWfrac,s before and after applying the proposed SC technique.

TABLE I
PERFORMANCE SUMMARY AND STATE-OF-THE-ART IN

LOW-SPUR DIGITAL PLLS

the channels with FCW ∈ (69, 69.5). During this process,
ASC and θDLF are adjusted as per (9) and (14). According to
the measurement results in Fig. 17(a), applying φ⃗SC suppresses
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the worst spur levels to below −57.8 dB across the fractional
channels, proving the effectiveness of the proposed strategy.
Meanwhile, the integrated jitter does not degrade either, as per
Fig. 17(b).

Table I summarizes the performance of this work as well as
the state-of-the-art in low-fractional-spur digital PLLs which
demonstrates the low spur level that a well-designed PLL can
achieve. We need to point out that it is difficult to fairly
compare this work with the majority of the prior arts (e.g.,
[12], [31], [32]). This is because those works mainly address
spurs raised by the phase-detection nonlinearity, while this
work (as well as [17] and [20]) addresses the spurs due to
parasitic interference (e.g., via magnetic, capacitive, substrate,
common ground paths) coupled to the RF oscillator, which
nowadays is becoming more problematic, especially in tightly
packed RF-SoCs [8], [16]. Compared with the few works
also focusing on DCO-victimized spurs, i.e., [17] and [20],
this work improves upon the spur and jitter-power FoM
performance, mostly thanks to the proposed strategy featuring
low overhead in noise, area, and power consumption.

VII. CONCLUSION

This article analyzed the characteristics of the PLL’s self-
interference raised by the coupling from the PLL’s FREF
buffer to the DCO. Based on two features of the self-
interference, i.e., sinusoidal pattern and synchronicity with the
predicted DCO phase, we developed a digitally intensive strat-
egy that cancels the DCO-interference-induced fundamental
fractional spurs utilizing a well-designed pattern injected to
the PD, i.e., an in-band interference. The proposed approach
reuses the same hardware that was originally designed to
eliminate the in-band interference (e.g., the nonlinearity of
the phase-detection blocks), thus can be readily applied to a
fabricated chip without the need for the chip redesign in order
to mitigate the unexpected spurs due to self-interference. More
importantly, based on the concept of synchronous-interference
cancellation, more strategies can be developed to suppress the
impacts of mutual coupling between the blocks inside the PLL.
This may help to relax the isolation specifications of each
block, reduce the system complexity, and improve the power
efficiency of the overall system.

APPENDIX
QUANTITATIVE ANALYSIS OF THE SYNCHRONOUS

INTERFERENCE FROM FREF TO DCO

The 2π -periodic total phase of the DCO is represented as

θV = 2π f0t + θV,init + θR2V(t) (16)

where f0 is the DCO oscillation frequency, θV,init is the DCO’s
initial phase at t = 0, and θR2V is the excess phase due to
the iinj(t) disturbance. According to [24], the instantaneous
angular frequency of θR2V can be represented by

dθR2V(t)
dt

= 0̃[θV(t)]iinj(t) (17)

where 0̃(θ) is the 2π -periodic 0(θ) (DCO’s ISF) normalized
by the maximum charge displacement across the correspond-
ing node capacitor. Considering that θV(t) is constantly tracked

by the PLL, θR2V(t) can be regarded as a tiny perturbation on
the ideal DCO phase (2π f0t + θV,init). Hence, 0̃[θV(t)] can be
approximated as 0̃(2π f0t + θV,init). Moreover, the periodicity
of 0̃(t) and iinj(t) allows us to expand these two functions
with a Fourier series and rewrite (17) as

dθR2V(t)
dt

=

[
0̃0

2
+

∞∑
m=1

|0̃m| cos
(
2πm f0t + mθV,init + ̸ 0̃m

)]

·

[
Iinj,0

2
+

∞∑
k=1

|Iinj,k| cos
(
2πk fREFt+ ̸ Iinj,k

)]
(18)

where 0̃m and Iinj,k are, respectively, the complex Fourier coef-
ficients of 0̃(t) and iinj(t). Abundant intermodulation terms
in this equation result in all the sinusoidal phase-modulation
components in θR2V(t). According to [30], these sinusoidal
components can be regarded as baseband signals that mix
with the ideal DCO carrier (at the frequency of f0) and
finally become spurs at the corresponding offset frequencies.
Therefore, only the low-frequency components in dθR2V(t)/dt
could constitute the root cause of the fundamental fractional
spurs at ±|FCWfrac,s| · fREF, and so this is the focus in this
work. In addition, noticing that |0̃1| is usually the largest
among |0̃m|’s (e.g., ISF of a conventional LC oscillator is
almost sinusoidal [33], thus dominated by the fundamental
term with coefficient |0̃1|), we only search for the root cause
of the fundamental fractional spurs among the low-frequency
(LF) intermodulation terms containing |0̃1|, and find two
candidates represented by

dθR2V(t)
dt

∣∣∣∣
LF,k

=

∣∣∣∣ 0̃1 Iinj,k

2

∣∣∣∣
×cos

[
2π fim(k)t+ ̸ Iinj,k−θV,init− ̸ 0̃1

]
(19)

where fim(k) is the intermodulation frequency, i.e.,

fim(k) = k fREF − f0 (20)

and k = FCWint, FCWint + 1. These two fim(k)’s coincide
with the offset frequencies of the solid-line spurs in Fig. 4,
i.e., −FCWfrac · fREF and (1 − FCWfrac) · fREF. Therefore, the
corresponding dθR2V(t)/dt |LF,k term could aptly represent the
pattern of DCO interference frequency [proportional to fi,DCO
in Fig. 1(b)], which causes fractional spurs at ±FCWfrac,s· fREF.

Considering FCW = f0/ fREF, the time-varying phase of
dθR2V(t)/dt |LF,k observed at the FREF grid (e.g., at t = n ·

TREF, where n is an arbitrary integer) can be represented by

2π fim(k)t = 2π · n · (k − FCW)

= 2π
(

p − φR,frac[n]
)

(21)

where p is an integer. Therefore, dθR2V(t)/dt |LF,k resembles
and is synchronous with the sequence of sin

(
2πφR,frac[n]

)
.

Hence, it is possible to cancel such dθR2V(t)/dt |LF,k-induced
spurs by adding in-band interference of a scaled and phase-
shifted sin

(
2πφR,frac[n]

)
sequence.

One might notice that the fractional spurs are always
present in pairs, i.e., equally spaced on both sides of the
carrier in Fig. 4, and wonder whether the pair can be can-
celed by a single-frequency in-band anti-interferer. In fact,
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the DCO phase perturbation merely fluctuates at a single fre-
quency fim(k), according to θR2V(t)|LF,k = Ak sin[2π fim(k)t +
θk], which is obtained by integrating dθR2V(t)/dt |LF,k over
time [24] with Ak and θk conceptually representing the
amplitude and phase offset, respectively. This single-frequency
phase error shows up in the total phase of DCO [see (16)] as
a tiny perturbation, so the DCO waveform is proportional to

sin
[
2π f0t + θV,init + θR2V(t)|LF,k

]
≈ sin

(
2π f0t + θV,init

)
+

Ak

2
sin
{
2π
[

f0 + fim(k)
]
· t + θV,init + θk

}
−

Ak

2
sin
{
2π
[

f0 − fim(k)
]
· t + θV,init − θk

}
(22)

where the first term stands for the ideal carrier, and the last
two terms represent the double-sided spurs around the carrier.
Therefore, the double-sided spurs result from a single-side
phase perturbation, as predicted by the frequency modulation
theory [30]. In other words, once we have canceled the
interference component at the frequency of fim, the spurs on
both sides of the carrier (with the offset frequency of ±| fim|)
will automatically disappear. In addition, because this work
focuses on canceling the fundamental fractional spurs, it cares
only about the perturbation at frequency fim = −FCWfrac· fREF
or fim = (1 − FCWfrac) · fREF [according to (20)], depending
on which one exhibits a smaller absolute value. These two
possible frequencies are finally unified as the SC frequency of

fSC = −FCWfrac,s · fREF. (23)
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