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(Preprint) AAS 21-243

A RAPID TARGET-SEARCH TECHNIQUE FOR KBO
EXPLORATION TRAJECTORIES

Miguel Benayas Penas*, Kyle M. Hughes†, Bruno V. Sarli‡, Donald H. Ellison§,
and Kevin J. Cowan¶

A rapid, grid-based, target-search algorithm is presented to find candidate se-
quences of small-body encounters for mission design. The algorithm is espe-
cially relevant for cases with large combinatorial spaces. In this paper, the al-
gorithm is used to identify candidate flyby sequences of multiple Kuiper-Belt Ob-
jects (KBOs). Before reaching the first KBO in the sequence, the trajectories in
this paper first use gravity assists at one or more of the giant planets to pump-up
their orbital energy—reducing launch C3. The target-search algorithm consists of
four sequential steps: (1) parameter definition, (2) fine-tuned Lambert-based grid
search of ballistic trajectories visiting one KBO, (3) rapid, ∆V -based proximity
search for additional KBOs using the state transition matrices (STMs), and (4) tra-
jectory optimization of the most promising KBO sequences using the Evolutionary
Mission Trajectory Generator (EMTG). The paper also defines an empirical-based
process to characterize the maximum step size for the target arrival dates in the
Lambert grid search. Lastly, a candidate mission to two KBOs is presented. The
results indicate that the ∆V computed from the STM propagations is not repre-
sentative of the final ∆V computed in EMTG; however, it does serve as a useful
‘reachability’ metric to identify nearby KBOs.

INTRODUCTION

Identifying the possible sequences of body encounters for a spacecraft (pathfinding) is often im-
practical to compute exhaustively. This is particularly true for missions seeking multiple flybys of
some unknown set of bodies out of a large population— e.g. KBOs, main-belt asteroids, NEAs, and
Jupiter Trojans. Such large combinatorial spaces will dramatically slow down the trajectory search
process—potentially taking months of computation time. Using a pathfinding filter beforehand may
sharply reduce the computation time needed.

This paper presents a rapid target-search algorithm (TSA) for trajectories to multiple KBOs,
which make up a relatively unknown region formed by remnants of the original Solar System1 .
The TSA aims to spot a subset of flyable body encounter sequences with a small fraction of the time
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required to explore the whole combinatorial space. The TSA combines the grid search technique2–4

with the recent STM-linearization method for KBO5, 6 for maneuver calculation.

The TSA could be applied to other trajectory design problems with a large combinatorial number
for body encounters such as exploration missions to NEAs, Jupiter Trojans, or Jovian Moons.

TARGET-SEARCH ALGORITHM

The TSA consists of a four-step sequence. First, the mission constraints are specified. Second, a
Lambert-based grid search of ballistic trajectories visiting one KBO is fine-tuned and run. Third, a
rapid, ∆V -based proximity search for additional KBOs is conducted by linearizing the STMs from
Kepler’s problem. Finally, trajectory optimization of the most promising KBO sequences is applied
using EMTG for pathsolving.

1. Mission constraints

The parameters used in this study for KBO exploration trajectories are summarized in Table 1.
The high C3 bound used is intended to accommodate an increased C3 after a prior gravity-assist
sequence, to pump up the orbital energy before a final Earth flyby. Such a precedent gravity-assist
sequence is represented in these trajectory results as the initial departure body.

Table 1. Summary of key parameters used in the target search

Parameter Value

Earliest launch date 01/01/2026
Latest launch date 12/31/2041
Maximum TOF to reach first KBO [years] 15
Maximum TOF of the whole mission [years] 20
Maximum ∆V [km/s] 2
Maximum launch C3 [km2/s2] 500
Minimum launch C3 [km2/s2] 49

In addition, two assumptions regarding the number of revolutions and planet flyby sequences
were made for the Lambert-based grid search. These two assumptions are presented in Table 2.

Table 2. Number of revolutions and flyby sequences chosen for the KBO exploration trajectory search.

Parameter Value

Number of revolutions allowed for Lambert problem 0
Planet flyby sequences E-J, E-J-U, and E-J-N

The Table 2 values were set to minimize computation time while still considering a broad solu-
tion space. Not many multi-revolution trajectories were expected to happen for those chosen flyby
sequences, considering they have to reach the Kuiper Belt within 15 years. Regarding the flyby
sequences, E-J was included due to Jupiter’s enormous gravitational pull. Neptune and Uranus
were included to bend to the trajectory in the outer Solar System and thus provide a wider variety
of approach geometries as the spacecraft enters the Kuiper Belt, Figure 1, increasing chances of
encountering KBOs.
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Figure 1. Schematic illustrating the advantages of including Neptune (or similarly,
Uranus) for gravity assist in KBO search. Performing a flyby about Neptune bends
the black trajectory turning it into the ‘modified trajectory’ in red, changing the tra-
jectory’s approach into the Kuiper Belt and improving the odds of finding trajectories
that can encounter multiple KBOs.

2. Lambert-based grid search of ballistic trajectories

A Lambert grid search of ballistic trajectories to a single KBO is computed, using a patched-conic
model for planetary gravity assists and a Kepler propagator for interplanetary cruise7 . The gravity
assists are computed using a C3-matching algorithm8 . Given an incoming flyby trajectory, the C3-
matching algorithm computes all the possible outgoing flyby ballistic trajectories to the target body
through its discretized orbit. Then, the C3-matching algorithm outputs the outgoing trajectories that
match the incoming flyby trajectory’s C3 with a feasible bending angle.

To fine-tune the step size for the target-body arrival dates in the Lambert grid search, a systematic,
empirically-based process is previously implemented to minimize both computations and missing
solutions. This process supposes, along with the TSA, the key contribution of this paper. There is
a plethora of literature using grid search for mission design9–13 . Despite the abundance of work,
publications usually do not discuss how the orbital time step values were assigned. The process
hereunder explained tries to bridge the gap between algorithm design and actual implementation in
this regard.

The empirical process consists of finding the minimum radius of curvature from all the C3-TOF
curves for each adjacent pair of bodies in a flyby sequence. The minimum radius of curvature is
used as a representative minimum step size to characterize the curve; and thus, is used as the target
arrival date step size in the Lambert grid search to avoid any missed solutions in the C3-matching
algorithm. The radius of curvature (R) is defined in Eq. (1)14 .

R =
|C̈3|(

1 + C2
3

)3/2 ; C3 = C3(TOF ) (1)
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In order to compute the minimum radii of curvature, outcoming C3-TOF curves are defined using
ultra-fine time steps for the planetary orbits. Then, trajectories of every C3-TOF curve are sorted
into the different solution families. Finally, radii of curvature are calculated from localized fifth-
order polynomial curve fits in sets of 10 points across the entire curve.

It is noteworthy that one complication in this approach is that, for 180-degree transfers between
bodies, a spike appears in the C3-TOF curve, which seems to be representative of a vertical asymp-
tote. Such locations would have very low radius of curvature, which is not a useful minimum for
the grid search step size. Thus, trajectories with transfer angles within 2 degrees of 180 degrees are
ignored.

The parameter values used to define the ultra-fine arrival orbit discretizations for all the flyby-
target body couples are summarized in Table 3. Launch and arrival C3 were calculated with the aid
of a Tisserand graph15 .

Table 3. Parameter values used for the the ultra-fine arrival orbit discretizations.
Earth-Jupiter Earth-Saturn Earth-Uranus Earth-Neptune Earth-Pluto Jupiter-Saturn Jupiter-Neptune

Minimum Relative Launch C3 [km2/s2] 49 81 100 100 121 1 9
Minimum Relative Arrival C3 [km2/s2] 25 25 9 9 25 1 1
Launch Window [yrs] 1.5 1.5 1.5 1.5 1.5 12 12
Maximum TOF [yrs] 10 15 20 20 20 20 20
Orbit Resolution [days] 1,0.43 1,1 1,1 1,1 1,1 12,1 12,1
Max ∆V [km/s] 0 0 0 0 0 0 0

Jupiter’s step size was set to 0.43 days (corresponding to 10,000 grid points per orbit) for the E-J
scenario in Table 3 since Jupiter is much closer to Earth than the rest of the bodies, and having the
same 1-day value would lead to a coarser orbit discretization.

The J-S and J-N scenarios were included to compare with E-S and E-N, respectively, and check
whether or not varying the departure may affect the minimum radius of curvature value for the
target-body orbit. The 12-day discretization was chosen to have the same number of grid points as
the E-J and E-S scenarios.

All of the C3-TOF curves obtained from Table 3 are classified into different families using the
parameters provided in Table 4 . The reason is to avoid false low radius of curvature in the vicinity
of a 180-degree transfer angle when computing the radii of curvature. In that region, solutions
belonging to the two different sides of the asymptote could be wrongly interpreted as a single curve
if no sorting criterion is applied.

Table 4. Trajectory sorting criteria. The k parameter is an universal variable defined in16 .

Sorting Criterion Key Parameter

Launch Date Launch Date
Type of Conic Specific Energy
Number of Revolutions TOF/Orbit Period
Prograde/Retrograde Cross Product Sign of r,v
High/Low Energy k Parameter
Type I or II Transfer Angle Over/Below 180 degrees

The results of the ultra fine-tune phase lead to an empirical law for semi-major axis versus time
step size, summarized in Table 5 and illustrated Figure 2.
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Table 5. Results attained from the E-J, E-S, E-U, E-N and E-P scenarios in the parameter fine-tuning
phase.

Jupiter Saturn Uranus Neptune Pluto

Orbit Period [Years] 11.86 29.45 84.02 164.80 247.74
Orbit Period [Days] 4333 10756 30687 60190 90487
Semi-major Axis [AU] 5.20 9.54 19.19 30.07 39.49
Step Size [Days] 7.04 39.58 79.02 371.02 1297.09
Grid Points Per Orbit 615.46 271.75 388.35 162.23 69.76
Log Step Size 0.84 1.59 1.90 2.57 3.11

Figure 2. Fine-tuned time step with respect to semi-major axis.

Furthermore, the computed step sizes for Jupiter-Saturn and Jupiter-Neptune scenarios of Table 3
were 40.40 and 378.87 days respectively, quite close to the 39.58 and 371.02 days for E-S and E-N
of Table 5. Thus, for this work, it was assumed the departure does not significantly affect the arrival
body discretization.

The Lambert grid search of ballistic trajectories to one KBOs was run based on the empirical law
of fine-tuned orbit step sizes provided in Figure 2. Earth step size was set to the conservative value
of 1 day. The results are presented in Figure 3.
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Figure 3. Launch C3 versus launch date plot for the first grid search results. Red
dots stand for E-J trajectories, while green and blue dots represent E-J-U and E-J-N
scenarios respectively.

3. Rapid, ∆V -based proximity search using STMs

The addition of extra KBO encounters in the vicinities of the ballistic trajectories coming from
the Lambert grid search is evaluated with a proximity search. Linear propagations of the STMs
assuming a Keplerian, two-body propagator5, 6 were used to calculate maneuvers. The resulting
total ∆V s are interpreted in the TSA as a reachability metric, as the linearized ∆V is not always an
accurate representation of the true ∆V . The algorithm is depicted in Figure 4.

Figure 4. Conceptual image of the proximity search to add a second KBO. The base-
line trajectory is depicted in purple. The modified part of the baseline to reach the
second KBO is given in green. Maneuvers are illustrated as red stars, KBOs as blue
dots. The black dot represents the last planetary flyby.

Figure 4 represents the case where a second KBO encounter is searched for, to be appended to a
baseline trajectory that encounters one KBO. First, both the baseline trajectory and the additional
KBO trajectory are discretized in time (maneuver date for the baseline trajectory and arrival date for
the additional KBO trajectory). Second, the linearized ∆V is calculated for every pair of maneuver
and additional KBO arrival epochs. Trajectories with lower ∆V than the chosen threshold are saved,
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see Table 1. The time span to seek a new KBO goes from the last KBO encounter to the end of the
baseline trajectory.

It is noteworthy that constraining the search to just the end of the baseline does not prematurely
prune out KBO sequences as permutations are considered. Regarding time steps, the step size for
the KBO orbit is set according to Figure 2. The step size of the baseline trajectory was set to 60
days to reduce computation time at expense of increasing ∆V . As may be seen in Figure 4, the
spacecraft only applies one maneuver and never gets back to the baseline.

The TSA can also accommodate for the situation where extra KBOs are sought in the middle of
an already established baseline trajectory (rather than purely at the end of a baseline). That is, the
case of a trajectory with a fixed flyby sequence but there is some extra propellant to seek bodies
in the interim. This TSA variation requires three maneuvers to make the spacecraft return to the
baseline trajectory, Figure 5. The third maneuver was set to happen at the next baseline flyby or
maneuver epoch to reduce computation time. In Figure 5, the third maneuver occurs at the second
flyby epoch.

Figure 5. Conceptual image to add an extra (third) KBO out of the baseline trajec-
tory. The baseline trajectory is depicted in purple. The modified part of the baseline
to reach the third KBO is given in red. Maneuvers are depicted as red stars, KBOs as
blue dots. The black dot represents the last planetary flyby.

This STM-based proximity search may be preceded by a KBO filter to dismiss unreachable
KBOs. Such a filter is particularly recommended in problems with large combinatorial spaces and
it is applied to every baseline trajectory.

The filter consists of discretizing the baseline trajectory and applies for every resulting grid point a
high ∆V * in different directions using spherical coordinates. Then, for those perturbed trajectories,
the maximum and minimum spacecraft position norm and angles are computed from the center of
the reference frame. Those six values define the envelope of positions the spacecraft can be in for
the set time range, Table 1. Finally, KBOs trajectories are evaluated whether or not they intersect
the position envelope. KBOs that do not intersect the envelope in the time range are not considered
for the proximity search.

The results provided by the proximity search may be seen in Figures 6 and 7.

*A 5-km/s ∆V was applied in this paper.

7



Figure 6. Launch C3 vs total delta-v for all trajectories which encounter three KBOs.
Colors refer to the last planet flyby, corresponding green to Uranus and blue to Nep-
tune respectively.

Figure 7. Launch C3 vs TOF for all trajectories encountering three KBOs. Colors
refer to the last planet flyby, corresponding green to Uranus and blue to Neptune
respectively.

4. Trajectory optimization of the most promising KBO sequences using EMTG

Trajectories with the lowest ∆V values are used as seeds for pathsolving in EMTG to compute
the actual total ∆V value. EMTG performs a stochastic optimization combining Monotonic Basin
Hopping and the NLP solver SNOPT17 .
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RESULTS

As a proof of concept, the three-KBO trajectory with the minimum ∆V in Figure 6 was chosen
to run on EMTG. The details of this chosen trajectory are given in Tables 6 and 7.

Table 6. Chosen three-KBO trajectory to run in EMTG. Units: JD, km2/s2, km/s.
Launch Date Launch C3 Total ∆V Jupiter Flyby Uranus Flyby 1st Maneuver 3755735 Flyby 2nd Maneuver 3rd Maneuver 3027724 Flyby 4th Maneuver 2019255 Flyby

2464156.5 156.36 1.40 2464720.90 2466619.99 2467879.98 2468839.98 2468899.98 2469576.76 2469576.76 2469619.98 2470219.98

Table 7. Maneuver positions of the chosen three-KBO trajectory to run in EMTG. Units: km.

Maneuver number X Y Z

1 -2762720645 2618574361 1424368596
2 -3527389871 3038108348 1901295415
4 -4167919628 3307363487 2058777002

The EMTG results seeded from the chosen three-KBO trajectory are provided in Figure 8. Re-
garding its baseline two-KBO trajectory, Table 6 removing the last two columns, EMTG outputs
Figure 9.

Figure 8. SA output trajectory with three KBOs, total ∆V 12.29 km/s. Seeded from
a trajectory with a total ∆V of 1.40 km/s.
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Figure 9. SA output trajectory encountering two KBOs, total ∆V is 2.69 km/s.
Seeded from a trajectory with a total ∆V of 1.00 km/s.

As may be seen, the larger the STM-based ∆V results the more misaligned the KBO sequences
are. Adding more KBOs tends to increase TSA’s ∆V , reducing the chances of getting a feasible
trajectory due to a higher misalignment. The two-KBO solution provided by TSA, Figure 9, might
be considered for a mission despite the relatively high ∆V of 2.69 km/s.

CONCLUSIONS

The TSA presented in this paper provides a pathfinding workflow for missions to large families
of small bodies such as KBOs, NEAs, Jupiter Trojans, or Jovian Moons. An empirical law for the
discretization of the target arrival epoch is provided for the outer planets and KBOs. Figures 8 and
9 show the TSA’s linearized STM propagation in effect may be interpreted as a reachability metric.

A two-KBO candidate mission is presented using gravity assists at Jupiter and Uranus, which
may be flyable with current technology. More KBOs could be encountered if a search is performed
in the trajectory vicinities as it was done with New Horizons.

The ∆V values obtained from the proximity search differ from the ones computed with EMTG
and have to be interpreted as a reachability metric. Such a difference in ∆V is due to the STM
linearization, which may only provide accurate results with very close KBOs. That is why the TSA
is expected to find lower ∆V s in regions with a higher density of bodies like missions to NEAs.
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FUTURE WORK

Three studies on the TSA are to be conducted and will be included in the journal version of this
work. These two studies are:

• Compare the TSA with more traditional distance-based bubble-search heuristic. Likewise the
TSA, bubble search is another reachability metric applied to find extra bodies in the vicinity of
a baseline trajectory. The bubble search consists of, at every epoch in the baseline trajectory,
setting a maximum distance the spacecraft can deviate from the baseline and only focus on
the bodies that are within that boundary5 .

• Run TSA’s scenario 2 to find extra targets in the middle of an existing baseline trajectory,
such as searching for additional targets along the Lucy trajectory, the first mission to explore
the Trojan Asteroids18 .

• Conduct an in-depth analysis on the ∆V differences between the proximity search and the
EMTG results.

REFERENCES
[1] L.-A. McFadden, T. Johnson, and P. Weissman, Encyclopedia of the solar system. Elsevier, 2006.
[2] A. E. Petropoulos, J. M. Longuski, and E. P. Bonfiglio, “Trajectories to Jupiter via gravity assists from

Venus, Earth, and Mars,” Journal of Spacecraft and Rockets, Vol. 37, No. 6, 2000, pp. 776–783.
[3] R. P. Russell, “Global search for planar and three-dimensional periodic orbits near Europa,” The Journal

of the Astronautical Sciences, Vol. 54, No. 2, 2006, pp. 199–226.
[4] D. Izzo, V. M. Becerra, D. R. Myatt, S. J. Nasuto, and J. M. Bishop, “Search space pruning and global

optimisation of multiple gravity assist spacecraft trajectories,” Journal of Global Optimization, Vol. 38,
No. 2, 2007, pp. 283–296.

[5] B. V. Sarli and Y. Tsuda, “Hayabusa 2 extension plan: Asteroid selection and trajectory design,” Acta
Astronautica, Vol. 138, 2017, pp. 225–232.

[6] B. V. Sarli and Y. Kawakatsu, “Orbit Transfer Optimization for Multiple Asteroid Flybys,” Proceedings
of SICE Annual Conference.

[7] D. H. Ellison, Robust preliminary design for multiple gravity assist spacecraft trajectories. PhD thesis,
University of Illinois at Urbana-Champaign, 2018.

[8] M. R. Patel, Automated design of Delta-V gravity-assist trajectories for solar system exploration. PhD
thesis, Purdue University, 1993.

[9] S. W. Napier, J. W. McMahon, and J. A. Englander, “A Multi-Objective, Multi-Agent Transcription
for the Global Optimization of Interplanetary Trajectories,” The Journal of the Astronautical Sciences,
Vol. 67, No. 4, 2020, pp. 1271–1299.

[10] T. Crain, R. H. Bishop, W. Fowler, and K. Rock, “Interplanetary flyby mission optimization using a
hybrid global-local search method,” Journal of Spacecraft and Rockets, Vol. 37, No. 4, 2000, pp. 468–
474.

[11] M. Vasile and M. Ceriotti, “8 incremental techniques for global space trajectory design,” Spacecraft
Trajectory Optimization, Vol. 29, 2010, p. 202.

[12] M. Vasile and M. Locatelli, “A hybrid multiagent approach for global trajectory optimization,” Journal
of Global Optimization, Vol. 44, No. 4, 2009, pp. 461–479.

[13] J. T. Olympio and D. Izzo, “Designing optimal multi-gravity-assist trajectories with free number of
impulses,” International Symposium on Space Flights Dynamics, Toulouse, France. ESA ESTEC, 2009.

[14] H. S. Coxeter, Introduction to geometry. New York, 2nd ed., 1989.
[15] N. J. Strange and J. M. Longuski, “Graphical method for gravity-assist trajectory design,” Journal of

Spacecraft and Rockets, Vol. 39, No. 1, 2002, pp. 9–16.
[16] N. Arora and R. P. Russell, “A fast and robust multiple revolution Lambert algorithm using a cosine

transformation,” Paper AAS, Vol. 13, 2013, p. 728.
[17] R. T. Beeson, J. A. Englander, S. P. Hughes, and M. Schadegg, “An Automatic Medium to High Fidelity

Low-Thrust Global Trajectory Toolchain; EMTG-GMAT,” 2015.

11



[18] J. A. Englander, D. H. Ellison, J. A. Englander, D. H. Ellison, K. Williams, J. McAdams, J. M. Knittel,
B. Sutter, C. Welch, D. Stanbridge, et al., “Optimization of the Lucy Interplanetary Trajectory via Two-
Point Direct Shooting,” 2019.

12


	Introduction
	Target-Search Algorithm
	1. Mission constraints
	2. Lambert-based grid search of ballistic trajectories
	3. Rapid, V-based proximity search using STMs
	4. Trajectory optimization of the most promising KBO sequences using EMTG

	Results
	Conclusions
	Future Work

