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Abstract

Fibre-reinforced composites have become increasingly attractive for many engineering applications
in the last decades. A very interesting aspect of these materials is that their mechanical properties can
be tailored for optimum strength and stiffness by controlling the orientation of the fibers embedded
in the matrix material. Composites are characterized by high strength properties, strong corrosion
resistance, improved damage tolerance and can lead to considerable weight and cost reduction when
compared to their metallic counterparts. However, accurate modelling of damage in composites is
still an active research topic, as their progressive failure involves the interaction of various intra- and
inter-laminar damage mechanisms, which often lead to complex fracture paths. To this regard, the
Floating Node Method (FNM) proved to be particularly suited for the modelling of complex cracking
scenarios within a finite element. This thesis work investigates the modelling of geometric non-linear
three dimensional fracture problems in composites using the Floating Node Method. A co-rotational
approach is proposed as a convenient, conceptually simple way to include geometric non-linear effects
in problems characterized by large rotations but small deformations. This approach allows re-use of
the conventional linear FEM formulation by separating rigid body and purely deformational motions at
the element level. The co-rotational procedure, first implemented and validated on a linear solid brick
element, is subsequently applied to the Floating Node (FN) element. Finally, a demonstration of the
element’s potential in capturing geometric non-linear effects is offered, addressing the modelling of
crush and impact loading on composite laminates.
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1
Introduction

Composites are very attractive materials, mainly due to their excellent strength-to-weight ratios, im-
proved damage tolerance, corrosion resistance and design flexibility. In the very beginning, their ap-
plication has been confined to secondary structures, as there was a poor understanding of the failure
mechanisms involved. However, in the last three decades, the use of composites has greatly increased
in many engineering fields, especially in aircraft structures, thanks to the advances in manufacturing
processes. As our understanding in this field is improving, there is still the need for novel, less compu-
tationally expensive and more accurate methods to address non-linear fracture modelling in composite
structures in order to increase reliability and reduce the cost given by destructive testing.

Efficient modelling of non-linear effects in FE formulations is a topic that has been addressed by
many researchers, but still deserves further developments. Even though the linear theory provides sat-
isfying results for most real-world applications, every structure exhibits a certain degree of non-linearity.
As reported by Belytschko et al., four different sources of non-linearity exist: material non-linearity, ge-
ometric non-linearity and non-linearities arising from either force or displacement boundary conditions
[2]. Considering the modelling of geometric non-linear effects, those characterized by small strains but
large displacements/rotations are particularly relevant to composite structures, as these materials are
known to experience small strains up to failure. Existing FE software packages already offer the pos-
sibility to account for geometric non-linear effects, even though the formulations currently embedded
in the software are expensive from a computational point of view [3].

In a similar fashion, modelling of fracture initiation and propagation is an active ongoing research
topic, especially in composite structures. Damage evolution in composites is far more complicated than
in other materials, since the former ones are characterized by several failure mechanisms that usually
occur simultaneously [4]. Among these, the most important ones are fibre breakage, delamination,
which refers to debonding of adjacent layers, and matrix cracks, the latter being the most common
failure mechanism [5]. The main challenge in FEM modelling consists in developing an approach that
accounts for mutual interaction between different failure mechanisms.

1.1. State of the art
1.1.1. Modelling of geometric non-linearities
In order to include geometric non-linear effects, three different approaches have been found to be
used in the literature: Total Lagrangian (TL), Updated Lagrangian (UL) and Co-rotational (CR).

In the TL approach , all the kinematic variables are referred to the initial or undeformed configura-
tion. Alternatively, these ones can be referred to the last converged configuration, which is assumed
as the new reference configuration in the UL approach. The latter was found to be preferred over
the former to account for geometric non-linear effects [6–13]. The main reason is that the strain-
displacement matrix, which describes the kinematic relations in the structure, has a more complicated

1



2 1. Introduction

form in the TL approach when compared to the UL approach, due to the presence of the term including
the initial strain effect [9].

However, the relatively new CR approach has been found to be particularly convenient for the
modelling of geometric non-linearities. The basic idea behind this approach is to define a local refer-
ence system for every element of the discretized structure, which is given the name of co-rotational
frame. This reference configuration translates and rotates with the element, without deforming, so
that orthogonality is maintained [14]. In this formulation, a decomposition of the total displacement
is performed at the element level. The total displacement is decomposed into rigid body motion and
deformational components using geometric methods. The mathematics involved in this procedure is
described by Argyris in his compendium on finite rotations [15]. The afore mentioned orthogonality of
the frame ensures exact decomposition of rigid body and deformational motions [3].

If deformational displacements and rotations are small, relative to the CR frame, the standard linear
formulation can be used. The geometric non-linearity is subsequently accounted for via the transfor-
mation of the results from the CR to the global frame [16]. In order to use the linear FE formulation,
deformational displacements and rotations must remain small relative to the element dimensions, there-
fore the CR frame is updated for each load increment [17]. The main advantage of this approach is
that only the conventional linear strain-displacement matrix is used and no further consideration has
to be made on the element [18].

This approach has been widely implemented by many researchers for beam and shell elements
[17, 19, 20]. Crisfield developed the concept of consistent linearization of the stiffness matrix, as a
true variation of the internal force vector, and extended the formulation to three dimensional solid
elements [16, 18, 21, 22]. This procedure was found to be particularly suitable in geometric non-linear
problems characterized by large rotations but small strain [3, 16, 17, 23–25].

A noteworthy contribution to the development of the co-rotational theory was brought by Rankin
and Brogan, who are considered to be the pioneers of the so called Element Independent Co-Rotational
procedure (EICR). These researchers developed a CR procedure that allows re-use of existing linear
finite elements [24]. As observed by Felippa et al. [3], the EICR formulation is particularly interesting
because it can be easily embedded in existing FEM programs. The EICR can be thought of as a front end
filter, which is lying in between the assembler/solver and the existing FE library. The filtering operation
is purely geometric and works by addition and removal of rigid body motion, as it is shown in Figure 1.1.

Co-rotational filters Finite element library

Assembler

Solver
Extract

deformational
motions

Incorporate
rigid body
motions

Form element
mass, stiffness
and forces

Evaluate
element
stresses

System equations of motion

Total displacements

Global element
equations

Deformational
element
equations

Deformational
displacements

Figure 1.1: Flowchart illustrating the EICR formulation

The CR procedure proved to have several advantages over the TL/UL approaches [3, 16, 26]. Due to
the fact that linear FE assumptions are valid in the CR frame, the resulting formulation is much simpler.
At the same time, when using co-rotated quantities, which are frame invariant, objectivity is satisfied,
so that the material constitutive relations remain unchanged due to a change of observer [2]. This
method is also directly providing the stress components oriented with the material, which are those of
main interest. As a result, the post-processing is simplified with this formulation [2]. Finally, the most
important advantage of this formulation, is its flexibility of use. Since it is an element independent
procedure, this technique offers a relatively simple way to embed geometric non-linear effects in the
”most complex” linear finite elements.
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1.1.2. Modelling of fracture
Numerical modelling of fracture experienced a fast advancement in the last decades, becoming more
and more reliable thanks to the development of several fracture modelling techniques. In a first in-
stance, the so called Discrete Crack Models were used (DCMs). In such approach, the crack is modelled
geometrically, in the idealization of the structure. On the other hand, in Smeared Crack Models (SCMs),
the damage is incorporated by deteriorating the local stiffness of the element when integration is car-
ried out at the integration point. A downside of the DCM is that crack initiation cannot be predicted,
as the crack is idealized as a geometric defect at the beginning of the analysis. Furthermore, a mesh
bias is introduced, because the crack is forced to grow along the element boundaries. Remeshing tech-
niques help to overcome the numerical difficulty arising from a continuous change in topology [27].
However, a draw back of remeshing in this case is given by the constant change of mesh connectivity.
Although these methods offer reliable results, they were found to have some difficulties in capturing
the interaction between different cracks, other than having a considerably high mesh dependency.
Therefore, they are inherently affected by limitations when it comes to model damage in composites,
where capturing the interaction between matrix cracks and delamination is particularly important [28].

Within the standard FEM framework, the Cohesive Zone Modelling approach (CZM) is a widely used
technique. In this approach, the non-linear fracture behavior is simplified specifying traction-separation
laws along fracture surfaces, through the use of purposely designed interface elements called cohesive
elements. The main advantage of this technique over the previous ones is that it may be used to model
crack nucleation. Regarding the crack propagation direction, this is still limited to follow the bound-
aries of the elements. Therefore, in order to have satisfying results, the crack path should be known
in advance, as cohesive elements have to be inserted a priori in the FE mesh [29, 30]. Concerning
composite laminates, this technique is widely used to capture the delamination damage, as it is known
that this is confined to the interfaces between the plies [29, 31].

All the previously introduced techniques are characterized by a severe drawback: mesh dependency.
The crack is forced to grow along the boundaries of the elements, so that the crack path cannot be
determined with a particularly high accuracy. An important tipping point in fracture modelling has
been reached through the development of the so called enriched methods. This class of modelling
techniques allow an arbitrary crack growth, potentially inside the elements, through the introduction of
additional nodes and degrees of freedom (DOFs) in the finite element. To this regard, three methods
are worth discussing: the eXtended Finite Element Method (XFEM), the Phantom Node Method (PNM)
and the Floating Node Method (FNM).

XFEM is a method based on the partition of unity concept and has been developed from the work
of Belytschko and Black [32] and Moës and Belytschko [33]. The key idea behind XFEM is to intro-
duce additional degrees of freedom for the nodes and to use special enrichment functions to better
approximate the displacement field given the presence of discontinuities in the structure. The enrich-
ment functions choice is made on the a priori solution to the problem. In the case of crack analysis,
the enrichment is aimed at higher accuracy in the numerical approximate solution, using information
extracted from the analytical solution in Linear Elastic Fracture Mechanics (LEFM) theory. In XFEM, the
enrichment is activated only at the nodes of the elements that are intersected by the crack or in its
neighbourhood, so that the standard FEM formulation is applied to the rest of the model. This method
may be used to model both fracture initiation and propagation without knowing a priori the crack path.
The main advantage is that, contrary to previously used fracture modelling techniques, the need for
re-meshing is eliminated and a discontinuity can propagate inside a finite element [32, 33]. A drawback
of this method is that standard Gauss integration cannot be used on the cracked sub-elements (SEs),
although purposely designed partial integration techniques are available. Moreover, an intrinsic error
exists in the method, because the crack geometry is approximated as straight when mapped from the
physical to the natural space of the element, even though it is generally not the case [34]. At the same
time, this method proved to have some difficulties in capturing the mutual interaction when dealing
with multiple cracks [35]. Since its early development, this technique has been used to model damage
in composite structures by many authors in literature. It proved to be able to capture the interaction
between matrix crack and interlaminar damage [36–38] and to be suitable for the modelling of damage
in micro-scale models [39, 40] as well as in multi-scale models [41].
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The Phantom Node Method (PNM) has been proposed for the first time by Hansbo and Hansbo
[42]. In this method the potential discontinuity is incorporated through insertion of additional phantom
nodes, located on top of the real nodes of the element. If a certain criterion is met, the discontinuity is
created and the element splits into two SEs. In such circumstances, the element displacement field is
replaced by two displacement fields related to the two newly defined SEs. Similarly to XFEM, numerical
integration is performed on the partially active sub-domains of the initial element. The PNM has proven
to be equivalent to the XFEM with only the Heaviside enrichment function, when modelling a strong
discontinuity [43]. On the other hand, the differences between the PNM and XFEM are [28, 34]:

• In the PNM the number of nodes is doubled, as two SEs are formed, while in XFEM the number
of nodes remains constant.

• The PNM is using only standard shape functions for the displacement field interpolation, while
XFEM is using extra enrichment functions.

• The PNM is relating only displacement DOFs to each node, while XFEM is introducing additional
DOFs at every node that do not have a proper physical meaning.

• The PNM is easier to implement in standard FEM packages when compared to XEFM due to the
fact that only standard shape functions for the displacement approximation.

The PNM is proven to have good accuracy in fracture modelling problems. Concerning damage mod-
elling in composite structures, this method has been applied to cohesive elements to better capture
delamination damage [44–47], but it has also been used to model the interaction between delamina-
tion and matrix cracks [28, 48, 49]. Although really satisfying results were obtained, the PNM is still
affected by the same error on the crack geometry when this one is mapped from the physical to the
natural space [34]. Similarly to XFEM, while the PNM proved to be suited to model a single discontinuity
in a finite element, it showed difficulties when dealing with multiple discontinuities [34].

The Floating Node Method (FNM) is a relatively new enriched method that was introduced by Chen
et al. [34]. This method shares some similarities with the previously introduced PNM. A finite element
in the FNM formulation is characterized by the standard FEM real nodes plus a convenient number of
floating nodes. The latter ones are given this name because they do not need an associated geometric
location before the discontinuity is predicted. The exact number of floating nodes to be used depends
on the number and type of discontinuities desired to be modelled [50]. This method arose from the
idea that, when an element is cut from a discontinuity, the nodal position associated with the phantom
DOFs is not the most suitable in terms of transformation to the natural coordinates, nor in terms of
integration [34].

Given a certain criterion for the discontinuity, if this one is not met, the FNM will function just as the
standard FEM formulation. In this case, the floating DOF sets are not used [51]. On the contrary, when
the criterion is satisfied, the element is partitioned into two or more SEs, depending on the nature of
the discontinuity. In such case, the floating nodes assume a specific location along the element edges
cut by the crack, in order to form the boundaries of the discontinuity and the domains of the SEs. At
the same time, the floating DOFs are directly used to represent the displacements at the crack nodes.
Since the partition domains are fully defined, thanks to the active role played by the floating nodes, no
partial integration is required on the element domain [34].

Cohesive cracks can also be modeled with the FNM. As a matter of fact, when the FN element is
partitioned into SEs, a cohesive element is inserted in between the SEs. This feature makes the FNM
very suitable for damage modelling in composites, since delamination and matrix cracks are explicitly
represented with cohesive elements. Furthermore, through the introduction of the novel edge status
variable in the element formulation, all the elements can share information regarding the location of
the discontinuity, allowing cohesive cracks to propagate and partitioning a specific element accordingly
[51]. A more accurate and simpler representation of the discontinuities is obtained with the FNM,
which is able to capture more complex cracking scenarios, such as T-cracks or an intersecting network
of cracks. At the same time, if a weak discontinuity is to be modelled, the FNM requires less DOFs
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compared to the PNM [34].

Most importantly, the equilibrium equations that are obtained through the FNM are exactly the ones
that would be obtained with an analogous FE mesh in which the discontinuities are included in the
idealization of the model. As a result, standard Gauss integration can be used, leading to improved
accuracy. Finally, as it is made direct use of the crack coordinates, the error in the approximation of
the discontinuity when mapping from physical to natural coordinates is mitigated compared to XFEM
and PNM [34].

1.2. Motivation and scope of the thesis
In conclusion to the literature research, it is believed that the development of an approach combining
the CR formulation with the FNM would be promising to address geometric non-linear fracture problems
in composites, such as low-velocity impacts and crushes.

The main reason for choosing the CR approach is that it is an element independent procedure. Once
the formulation is implemented for a finite element, it can be easily extended to elements belonging to
the same class. This feature is particularly convenient, as the FN element can split into different SEs.
Another advantage of this approach is that it uses the conventional linear FEM formulation, resulting
in an overall simplified implementation and a less complicated form of the element strain-displacement
matrix. Furthermore, the CR approach was found to be mainly used in problems characterized by small
strains but large rotations [3]. For this reason it is believed to be very suitable for composite struc-
tures, which do not undergo large deformations up to failure, but may experience large rotations. This
method is also preferred over the TL/UL approaches because it is using frame invariant strain/stress
quantities, so that objectivity is satisfied [2]. Finally, post-processing is simplified, as this approach is
directly providing the stress measures of main interest in the structure.

Comparing different fracture modelling techniques, the FNM proved to have considerable advan-
tages over the other enriched methods, especially when it comes to model fracture in composites. The
innovative use of edge status variables together with the integration of cohesive SEs in the formulation
allow the FN element to capture many different cracking scenarios and to better represent the mutual
interaction between matrix cracking and delamination [34].

As a result, the main research objective that has been set for this project is the following:

To implement a floating node element with geometric

non-linear capabilities via a co-rotational approach

Such element should be able to provide high-fidelity simulations of damage initiation and evolution
in composite laminates in geometric non-linear problems. To this regard, the following sub-objectives
have been set:

• To implement and validate a linear solid element.

• To embed such an element in a CR formulation and validate its geometric non-linear capabilities.

• To integrate the FN element in the CR procedure to model geometric non-linear fracture in com-
posites.
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1.3. Structure of the report
The content of the report has been divided into five different chapters, each containing several sections.

Chapter 2 is meant to provide the reader basic knowledge of continuum mechanics and Finite El-
ement Method theory. Starting with the description of motion, most used strain/stress measures and
conservation laws are presented, to end with a note on the concepts of material frame indifference and
frame invariance. From the strong form of the governing equations, a weak form is derived, leading
to the discretized form of the governing equations used in the Finite Element Method. The concept of
geometric non-linearity is introduced to the reader, reproducing a popular geometric non-linear bench-
mark to give more insight into the modelling of such problems in a FEM framework. At the end of the
chapter, the detailed implementation of the linear 8-node hexahedral element for static procedures is
illustrated and validated.

Following the implementation of the linear element, the CR procedure is reported in Chapter 3. In
this chapter, relevant theoretical background on finite rotations is first given to the reader. Next, the
CR implementation is presented in details and validated with popular geometric non-linear benchmarks.

Chapter 4 starts with an overview of the FNM, extensively describing its partitioning algorithm and
implemented damage initiation/propagation criteria. At the end of the chapter, the combination of the
FNM and the CR procedure is proposed, offering a demonstration of the element’s potential in address-
ing geometric non-linear problems such as crushes and impacts.

Finally, conclusions and recommendations are given in Chapter 5. At the end of the report, annexes
that are meant to give support to the main report can be found in Appendix A.



2
Theoretical background

Before digging into the content of the thesis, it is crucial to introduce the relevant theoretical back-
ground. First, fundamental concepts of continuum mechanics theory, needed to kinematically char-
acterize a continuous body, are given in Section 2.1. These are used to define the conservation laws
governing the motion of continua. At the end of the section, the concept of material frame indif-
ference and frame invariance are introduced to the reader. Secondly, the FEM formulation to obtain
approximate solutions to the field governing equations is outlined in Section 2.2. A popular geometric
non-linear benchmark problem is proposed at the end of the section, to highlight relevant features
regarding FEM modelling of such problems. Lastly, the 8-node linear hexahedral finite element is
presented in Section 2.3. This section gives the topological definition of the element, presents its
FE formulation and provides an insight on the implementation of a FE using the User ELement (UEL)
Abaqus subroutine. At the end of the section, the implemented user element is validated in comparison
to the C3D8 Abaqus element.

2.1. Continuum mechanics fundamentals
Continuum mechanics is a specific branch of mechanics that studies the behavior of continuous media.
The basic assumption of this theory is to consider a body as completely filled by matter, therefore
neglecting its atomic structure. In this section, relevant continuum mechanics notions are provided
to the reader, omitting their detailed derivations, which can be found in most famous academic books
on this matter [2, 52–54]. The section begins with a description of motion and deformation, with an
emphasis on the difference between the Lagrangian and Eulerian description. Next, the most common
strain and stress measures are presented, highlighting existing differences. Finally, conservation laws
for continua are presented, to end with a note on material frame indifference and frame invariance.

2.1.1. Description of motion
Continuum mechanics theory is used to describe the behavior of a body defined as continuous. A body
is considered as a set of particles connected to each other, with no or a limited number of discontinu-
ities. Due to the continuous nature of such a body, this one can be associated with a specific occupied
domain in the Euclidean space, often referred to with the term configuration. Hence, a material point
belonging to the body is related to a unique set of three real numbers (XᎳ, XᎴ, XᎵ).

To unequivocally describe the motion of a continuum, a certain configuration has to be assumed
as reference. Let us consider a body that undergoes motion from an initial undeformed configuration,
starting at the time tᎲ. After a certain time t, the body will occupy the current configuration, which is
generally deformed, as illustrated in Figure 2.1.

7
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Figure 2.1: Initial (undeformed) and current (deformed) configurations

The position of a material particle in the reference configuration is described by the vector:

XXX =
Ꮅ

∑
iᎾᎳ

Xieeei (2.1.1.1)

Where Xi are the components of the position vector and eeei are the base vectors of the Cartesian
coordinate system. In the current configuration, the same particle will occupy a position xxx, generally
different from XXX. The motion of the particle is a function of the particle material coordinates XXX and
time t:

xxx = Φ(XXX, t) (2.1.1.2)

Where xxx is the position of the particle in the current configuration and Φ is the function that
is mapping the initial configuration to the current configuration. The mapping function is assumed
to be invertible and differentiable, so that it is possible to describe the position XXX in the reference
configuration in terms of the current position xxx and time t:

XXX = Φ–Ꮃ(xxx, t) (2.1.1.3)

In continuum mechanics, two different approaches may be used to describe the motion of a body.
In the first one, the material or Lagrangian description, the material coordinates Xi and the time t are
taken as independent variables. In the second approach, the current coordinates xi and the time t are
used as independent variables and is given the name of spatial or Eulerian description. The Lagrangian
description is following the material particle through its motion and is typically used when dealing with
solids. It is indeed particularly useful to define an undeformed reference configuration, as the stresses
in solids may depend on the deformation history or path, for example when damage or plasticity oc-
curs [2]. On the other hand, with the Eulerian description, the current configuration coincides with the
reference configuration for every t greater than tᎲ. The spatial description is preferred to describe the
motion of fluids, since it is not really needed to define an initial configuration in this case. As the focus
will be on solid mechanics, only the Lagrangian description will be used in this project.

The displacement of a certain material particle undergoing motion is given by the difference between
current and reference position vectors:

uuu = xxx – XXX

= Φ(XXX, t) – XXX (2.1.1.4)
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The velocity u̇uu of the material particle is defined as the rate of change of its position vector. There-
fore, it is obtained by derivation of the position vector with respect to time:

u̇uu(XXX, t) = 𝜕uuu(XXX, t)
𝜕t (2.1.1.5)

In a similar fashion, the acceleration üuu of a certain particle is the rate of change of its velocity vector
with respect to time. Hence, it is given by:

üuu(XXX, t) = 𝜕u̇uu(XXX, t)
𝜕t (2.1.1.6)

2.1.2. Strain measures
Principal stretches can be intuitively used in order to quantify the amount of deformation to which a
structure is subjected. However, in order to unequivocally establish constitutive equations in a geo-
metric non-linear framework, it is necessary to adopt a specific strain measure.

Let us consider a particle indicated by the material point P, whose position is described in the ref-
erence configuration by the vector XXX as shown in Figure 2.2.

Figure 2.2: Motion of a continuum body

The same particle’s position in the current configuration is given by the vector xxx. Considering a
neighbouring point Q located at the position XXX+ dXXX, the same point’s position in the current configu-
ration is given by the vector xxx+ dxxx. The current position vectors of the two points may also be written
in terms of the displacement uuu as:

xxx = XXX+ uuu(XXX, t) (2.1.2.1)

xxx+ dxxx = XXX+ dXXX+ uuu(XXX+ dXXX, t) (2.1.2.2)

Hence, the distance between the two points in the current configuration is obtained by subtracting
the two vectors:

dxxx = dXXX+ uuu(XXX+ dXXX, t) – uuu(XXX, t) (2.1.2.3)

Which may also be written using the definition of gradient of a vector as:

dxxx = dXXX+ ∇uuu ⋅ dXXX (2.1.2.4)

This leads to the definition of the deformation gradient FFF, which is defined as:

FFF(XXX, t) = 𝜕xxx(XXX, t)
𝜕XXX (2.1.2.5)
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This one corresponds to the Jacobian matrix of the motion, which in three dimensions can be written
in matrix form as:

FFF =

⎡
⎢
⎢
⎢
⎢
⎣

ᒟxᎳ
ᒟXᎳ

ᒟxᎳ
ᒟXᎴ

ᒟxᎳ
ᒟXᎵ

ᒟxᎴ
ᒟXᎳ

ᒟxᎴ
ᒟXᎴ

ᒟxᎴ
ᒟXᎵ

ᒟxᎵ
ᒟXᎳ

ᒟxᎵ
ᒟXᎴ

ᒟxᎵ
ᒟXᎵ

⎤
⎥
⎥
⎥
⎥
⎦

(2.1.2.6)

The deformation gradient is an important variable that is used to describe the change in shape
experienced by a solid body. This is also used for the definition of different strain measures in continuum
mechanics theory. Indeed, the infinitesimal line segment dXXX in the undeformed configuration is related
to the line segment dxxx in the deformed configuration through the deformation gradient:

dxxx = FFF ⋅ dXXX or

⎡
⎢
⎢
⎢
⎢
⎣

dxᎳ

dxᎴ

dxᎵ

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1 + ᒟuᎳ
ᒟXᎳ

ᒟuᎳ
ᒟXᎳ

ᒟuᎳ
ᒟXᎵ

ᒟuᎴ
ᒟXᎳ

1 + ᒟuᎴ
ᒟXᎴ

ᒟuᎴ
ᒟXᎵ

ᒟuᎵ
ᒟXᎳ

ᒟuᎵ
ᒟXᎴ

1 + ᒟuᎵ
ᒟXᎵ

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

dXᎳ

dXᎴ

dXᎵ

⎤
⎥
⎥
⎥
⎥
⎦

(2.1.2.7)

Where the relation presented in Equation 2.1.2.4 was used in the derivation of the matrix form. Hence,
the deformation gradient may be expressed as a function of the displacement gradient:

FFF = III+ ∇uuu (2.1.2.8)

The determinant of the deformation gradient J is a measure of the volume change caused by the
deformation:

J = det(FFF) (2.1.2.9)

The conservation of mass implies that the Jacobian must always be bigger than zero. The Jacobian
is used to relate integrals in the current configuration Ω to integrals in the reference configuration ΩᎲ,
according to the integration by substitution theorem of calculus:

∫
ᐎ

f dΩ = ∫
ᐎᎲ

f J dΩᎲ (2.1.2.10)

Desirable characteristics of a strain measure are the following:

• It should be a continuous, monotonic and unique function of displacement gradients.

• It should be a symmetric second-order tensor.

• It must identically vanish in case of rigid body motion.

• It should reduce to the infinitesimal strain measure if the deformations become ”small”.

In particular, the first two attributes are convenient from a mathematical point of view. The ability
to correctly represent a rigid body motion is a a crucial feature, since it is undesired to induce unrealistic
non-zero stress in case of rigid body motion. On the other hand, the last feature is not strictly neces-
sary, even though it is convenient for a smooth transition between the linear and non-linear regimes.
Another important criterion for the validity of a strain measure is that it needs to satisfy the condition
of objectivity, or frame-indifference. This one will be discussed more in detailed in Section 2.1.5. Given
the notions presented so far, the most popular strain measures used in continuum mechanics can be
introduced.
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Green strain tensor
The Green strain tensor EEE measures the difference between the square of the segment length in the
current configuration and the square of the same segment length in the reference configuration, and
it is defined as:

dxxx ⋅ dxxx – dXXX ⋅ dXXX = 2dXXX ⋅EEE ⋅ dXXX (2.1.2.11)

Using the relation between deformed and undeformed segments expressed in Equation 2.1.5.4 and
rearranging yields:

EEE = 1
2(FFF

T ⋅FFF – III) or Eij =
1
2(FkiFkj – 𝛿ij) (2.1.2.12)

Alternatively, it is possible to express the Green strain tensor as a function of the displacement
gradient through Equation 2.1.2.8:

EEE = 1
2(∇uuu+ ∇uuuT + ∇uuuT ⋅ ∇uuu) or Eij =

1
2(
𝜕uj

𝜕Xi
+ 𝜕ui
𝜕Xj

+ 𝜕uk
𝜕Xj

𝜕uk
𝜕Xi

) (2.1.2.13)

Where the third term in Equation 2.1.2.13 is negligible when dealing with infinitesimal strains, since
it represents the contribution of higher order terms. It is easy to verify that the Green strain is able to
correctly represent rigid body motion, returning a zero strain.

Almansi strain tensor
The Almansi strain tensor E∗E∗E∗ is obtained from the same equation of the Green strain tensor, expressing
all the quantities as a function of the spatial coordinates:

dxxx ⋅ dxxx – dXXX ⋅ dXXX = 2dxxx ⋅EEE∗ ⋅ dxxx (2.1.2.14)

Again, it is possible to express the strain tensor as a function of the deformation gradient:

EEE∗ = 1
2(III – (FFF–Ꮃ)T ⋅FFF–Ꮃ) or E∗ij =

1
2(𝛿ij – F–Ꮃ

ki F–Ꮃ
kj ) (2.1.2.15)

The Almansi strain tensor also satisfies the condition of zero strain in case of rigid body motion. It
is worth mentioning that, assuming infinitesimal strains, the Almansi strain tensor is equivalent to the
Green strain tensor, as the higher order terms can be neglected. However, the two strain tensors are
different in geometrically non-linear problems, where the higher order terms are not negligible.

Rate of deformation tensor
The rate of deformation tensor DDD is an alternative tool to measure deformation in a body. Let us first
introduce the velocity gradient LLL, defined as the spatial variation of the velocity vector:

LLL = 𝜕u̇̇u̇u
𝜕xxx = ∇u̇̇u̇u or Lij =

𝜕u̇i
𝜕xj

(2.1.2.16)

In particular, the symmetric/anti-symmetric decomposition can be applied to the velocity gradient,
which yields:

LLL = 1
2(LLL+LLLT) + 12(LLL – LLLT) or Lij =

1
2(Lij + Lji) +

1
2(Lij – Lji) (2.1.2.17)
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The rate of deformation tensor DDD is then defined as the symmetric part of the decomposition, while
its skew-symmetric part WWW is called spin tensor:

DDD = 1
2(LLL+LLLT) or Dij =

1
2(
𝜕 ̇ui
𝜕xj

+
𝜕 ̇uj

𝜕xi
) (2.1.2.18)

WWW = 1
2(LLL – LLLT) or Wij =

1
2(
𝜕 ̇ui
𝜕xj

–
𝜕 ̇uj

𝜕xi
) (2.1.2.19)

The rate of deformation tensor DDD measures the rate of stretching of material fibers in a deformed
solid, while the spin tensor WWW quantifies the angular velocity of material fibers passing through a
material point. Alternatively, the rate of deformation tensor can be expressed as a function of the
deformation gradient FFF as:

DDD = 1
2(Ḟ̇ḞF ⋅FFF

–Ꮃ +FFF–T ⋅ Ḟ̇ḞFT) (2.1.2.20)

2.1.3. Stress measures
In the study of continua, it is of main interest to determine how the forces are transmitted through a
medium. Considering a continuous body, the force distribution is represented through surface forces
and body forces. Surface forces are those forces applied to the external (real) or internal (imaginary)
boundaries of the body. On the other hand, body forces are acting throughout a volume, as an example
gravity or electromagnetic forces can be mentioned. In continuum mechanics, the concept of stress is
introduced to describe how forces are transmitted through a body. In this section, the most common
stress definitions are presented, highlighting their differences.

Cauchy stress
Let us consider a body as the one shown in Figure 2.3, which is cut in two parts by a plane passing
through an arbitrary point P. The plane is characterized by the outer normal vector nnn. The body is
assumed to be in equilibrium upon application of the forces FFFᎳ, FFFᎴ, FFFᎵ and FFFᎶ.

Figure 2.3: Visualization of the stress vector

Considering the bottom portion, an internal force ΔFFF, acting on a portion of area ΔA, will be present
in order to maintain equilibrium with the forces FFFᎳ and FFFᎴ. This leads to the introduction of a stress
vector at the point P, which is defined as:

tttn = lim
ᏺA→Ꮂ

ΔFFF
ΔA (2.1.3.1)

Where the subscript n refers to the fact that the force is acting on a surface with outward normal
vector nnn. According to the third Newton’s law on action and reaction, there must be a stress vector
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ttt–n at the same point on the top portion of the body, which is equal in magnitude but with an opposite
direction with respect to nnn:

tttn = –ttt–n (2.1.3.2)

The stress vector is a function of the position xxx, time t and the surface in terms of outward normal
vector nnn:

tttn = ttt(xxx, t,nnn) (2.1.3.3)

In particular, the dependence on the outward normal vector can be expressed as follows:

tttn = nnn ⋅ 𝜎𝜎𝜎(xxx, t) (2.1.3.4)

Where 𝜎𝜎𝜎 is called the Cauchy stress tensor. The Cauchy stress tensor completely describes the
forces acting on a deformed solid. Considering a basis of vectors eeeᎳ, eeeᎴ, eeeᎵ in the 3D Euclidean space,
and denoting with ti(eeej) the surface traction vector component in the j direction, acting on the plane
with normal in the i direction, the Cauchy stress tensor may be written in matrix form as:

𝜎𝜎𝜎 =

⎡
⎢
⎢
⎢
⎢
⎣

tᎳ(eeeᎳ) tᎳ(eeeᎴ) tᎳ(eeeᎵ)

tᎴ(eeeᎳ) tᎴ(eeeᎴ) tᎴ(eeeᎵ)

tᎵ(eeeᎳ) tᎵ(eeeᎴ) tᎵ(eeeᎵ)

⎤
⎥
⎥
⎥
⎥
⎦

(2.1.3.5)

The Cauchy stress tensor represents the components of the force per unit area of the deformed
solid. For this reason it is also called the true stress and is the most used stress measure. It can be
proved that, imposing the conservation of angular momentum, the Cauchy stress tensor turns out to
be symmetric.

Nominal (First Piola-Kirchhoff) stress
The Nominal or First Piola-Kirchhoff (PK1) stress PPP is defined in a fashion similar to the Cauchy stress,
with the exception that this one is defined in terms of the area and the normal of the undeformed
configuration. Denoting with dfff the force acting on the deformed configuration, the following relation
exists between the force, the surface traction ttt and the Cauchy stress tensor 𝜎𝜎𝜎:

dfff = tttdA = nnn ⋅ 𝜎𝜎𝜎dA (2.1.3.6)

Where dA is the deformed area of the element in the current configuration and nnn is the vector
normal to the deformed area. The force acting on the deformed area is related to the PK1 stress
through the following:

dfff = tttᎲdAᎲ = nnnᎲ ⋅PPPdAᎲ (2.1.3.7)

Where dAᎲ is the undeformed area of the element in the reference configuration and nnnᎲ is the
vector normal to the undeformed area. Due to the fact that this stress tensor measures the force
acting on the deformed configuration in terms of the area in the undeformed configuration, it does not
have any specific physical meaning. On the other hand, there may be situations in which it is more
convenient to express the equations of motion with respect to the reference configuration rather than
in the current one.

To express the PK1 stress in terms of the Cauchy stress tensor we need to introduce the Nanson’s
relation, which relates the current normal to the reference normal. This one is given as follows:

nnn ⋅ dA = JnnnᎲ ⋅FFF–ᎳdAᎲ (2.1.3.8)

Hence, using the latter, together with 2.1.3.6 and 2.1.3.7, yields:

nnn ⋅ 𝜎𝜎𝜎dA = nnnᎲ ⋅PPPdAᎲ → PPP = JFFF–Ꮃ ⋅ 𝜎𝜎𝜎 (2.1.3.9)

It is worth to note from Equation 2.1.3.9 that the nominal stress tensor is generally not symmetric.
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Material (Second Piola-Kirchhoff) stress
The Material or Second Piola-Kirchhoff (PK2) stress tensor SSS is measuring the force d ̃fff acting on the
undeformed body per unit of undeformed area. The force acting on the body in the reference configu-
ration is related to the one acting on the body in the current configuration dfff through the deformation
gradient FFF:

dfff = FFF ⋅ d ̃fff (2.1.3.10)

At the same time, the following relation exists between the force d ̃fff and the PK2 stress tensor:

d ̃fff = nnnᎲ ⋅ SSSdAᎲ (2.1.3.11)

Using Equation 2.1.3.10 and the relation found in Equation 2.1.3.9, the material stress tensor SSS can
be expressed in terms of the Cauchy stress tensor 𝜎𝜎𝜎:

FFF–Ꮃ ⋅ dfff = nnnᎲ ⋅ SSSdAᎲ → SSS = JFFF–Ꮃ ⋅ 𝜎𝜎𝜎 ⋅FFF–T (2.1.3.12)

The PK2 stress tensor is therefore symmetric.

Co-rotational Cauchy stress tensor
This stress is equivalent to the Cauchy stress tensor expressed in terms of components referred to a
coordinate system which rotates with the material but does not deform, given the name of co-rotational
system. The CR system is constructed at every material point and is defined by the base vectors êeei, as
shown in Figure 2.4

Figure 2.4: Visualization of the co-rotational reference system

A crucial aspect is to correctly define the rotation of the material in order to obtain such a coordinate
system. To this regard, the polar decomposition theorem is typically used, according to which the defor-
mation gradient can be decomposed into a product between a rotationRRR and right stretch tensorUUU [2]:

FFF = RRR ⋅UUU or Fij = RikUkj (2.1.3.13)

Where RRR is an orthogonal matrix and UUU is symmetric positive definite, so they are characterized by
the following properties:

RRR–Ꮃ = RRRT and UUU = UUUT (2.1.3.14)
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This theorem proves that the deformation gradient consists in a component that stretches the body
along a set of orthogonal axes, represented by the symmetric positive definite mapping UUU, and a rigid
body rotation represented by the orthogonal tensor RRR. Equivalently, it is proved that the deformation
gradient can be decomposed into a product of a left stretch tensor VVV and a rotation tensor RRR:

FFF = VVV ⋅RRR or Fij = VikRkj (2.1.3.15)

Once the material rotation is determined, the co-rotational Cauchy stress tensor is given by:

�̂�𝜎𝜎 = RRRT ⋅ 𝜎𝜎𝜎 ⋅RRR or �̂�ij = RT
ik𝜎klRlj (2.1.3.16)

Using the co-rotational stress �̂�𝜎𝜎 is convenient, as it provides the correct physical components of
stress in the portion of material that is considered. In a similar fashion, strain measures can also be
expressed in terms of co-rotational coordinates through the same transformation given in Equation
2.1.3.16.

For convenience, the transformation equations between different stress measures are reported in
Table 2.1.

Transformations between stress measures

Cauchy stress 𝜎𝜎𝜎 Nominal stress PPP 2nd Piola-Kirchhoff stress SSS Co-rotational Cauchy stress �̂̂��̂�𝜎

𝜎𝜎𝜎 𝜎𝜎𝜎 = J–ᎳFFF ⋅PPP 𝜎𝜎𝜎 = J–ᎳFFF ⋅ SSS ⋅FFFT 𝜎𝜎𝜎 = RRR ⋅ �̂�𝜎𝜎 ⋅RRRT

PPP = JFFF–Ꮃ ⋅ 𝜎𝜎𝜎 PPP PPP = SSS ⋅FFFT PPP = JUUU–Ꮃ ⋅ �̂�𝜎𝜎 ⋅RRRT

SSS = JFFF–Ꮃ ⋅ 𝜎𝜎𝜎 ⋅FFF–T SSS = PPP ⋅FFF–T SSS SSS = JUUU–Ꮃ ⋅ �̂�𝜎𝜎 ⋅UUU–Ꮃ

�̂�𝜎𝜎 = RRRT ⋅ 𝜎𝜎𝜎 ⋅RRR �̂�𝜎𝜎 = J–ᎳUUU ⋅PPP ⋅RRR �̂�𝜎𝜎 = J–ᎳUUU ⋅ SSS ⋅UUU �̂�𝜎𝜎

Table 2.1: Relations between different stress measures

These ones, together with the previously introduced strain measures, are used to formulate the
governing equations of a continuum.

2.1.4. Conservation laws
Conservation laws for continua consist in a set of fundamental equations that must be satisfied by every
physical system. When these laws are expressed in the form of differential equations, they are referred
to with the name of local principles or strong form. On the other hand, when these ones are presented
in the integral form, they are called global principles or weak form. Although it is mathematically
proven that the two forms are equivalent, the second form is referred as weak due to the fact that the
smoothness requirements on the solution are relaxed. In this section, only the strong form of the laws
is reported, omitting their detailed derivation for brevity.

Conservation of mass
Considering a body occupying a specific material domain Ω, its mass is defined as:

m(Ω) = ∫
ᐎ
𝜌(xxx, t)dΩ (2.1.4.1)
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Where 𝜌(xxx, t) is the density of the body, which in general is a function of position and time. The mass
conservation principle states that the mass belonging to a material domain must not change in time.

Denoting with ΩᎲ the material domain occupied by the body in the reference configuration:

∫
ᐎ
𝜌(XXX, t)dΩ = ∫

ᐎᎲ
𝜌Ꮂ(XXX)dΩᎲ (2.1.4.2)

Where 𝜌Ꮂ is the density of the body at the reference configuration, which is only a function of the
material coordinates. Using the Jacobian determinant, it is possible to relate the integral in the current
configuration to the one in the reference configuration:

∫
ᐎ
𝜌 dΩ = ∫

ᐎᎲ
𝜌J dΩᎲ → ∫

ᐎᎲ
(𝜌J – 𝜌Ꮂ)dΩᎲ (2.1.4.3)

Which, assuming the integrand to be smooth, is equal to:

𝜌(XXX, t)J(XXX, t) = 𝜌Ꮂ(XXX) (2.1.4.4)

Equation 2.1.4.4 represents the strong form of the principle of mass conservation.

Conservation of linear momentum
The conservation of linear momentum is the equivalent of Newton’s second law, which relates the forces
acting on a body to its acceleration. According to Newton’s second law, the material time derivative of
the linear momentum ppp has to be equal to the sum of the forces fff acting on the body:

dppp
dt = fff (2.1.4.5)

Adopting an Eulerian description, denoting with bbb the body forces acting on the body, elaborating
on Equation 2.1.4.5 yields the following:

𝜌𝜕u̇̇u̇u
𝜕t = 𝜌bbb+ ∇ ⋅ 𝜎𝜎𝜎 (2.1.4.6)

Equation 2.1.4.6 represents the strong form of the conservation of linear momentum. This one may
also be formulated adopting a Lagrangian description. Doing so, the conservation of linear momentum
is reduced to the following partial differential equation:

𝜌Ꮂ
𝜕u̇̇u̇u
𝜕t = 𝜌Ꮂbbb+ ∇Ꮂ ⋅PPP (2.1.4.7)

Conservation of the angular momentum
The principle of conservation of angular momentum states that the sum of the moments of all forces
acting on a body about a fixed point has to be equal to the rate of change of angular momentum about
the same point. Denoting with ttt the surface forces acting on the boundaries of the body Γ and with bbb
the body forces acting on the volume of the body Ω, the integral form of the principle is given by:

d
dt ∫ᐎ

xxx × 𝜌u̇̇u̇u dΩ = ∫
ᐎ

xxx × 𝜌bbb dΩ +∫
ᏹ

xxx × ttt dΓ (2.1.4.8)

Carrying out the derivation, associating the surface traction to the Cauchy stress tensor, the con-
servation of the angular momentum requires the Cauchy stress tensor to be symmetric:

𝜎ᎳᎴ – 𝜎ᎴᎳ = 0; 𝜎ᎴᎵ – 𝜎ᎵᎴ = 0; 𝜎ᎵᎳ – 𝜎ᎳᎵ = 0; → 𝜎𝜎𝜎 = 𝜎𝜎𝜎T (2.1.4.9)

On the other hand, adopting a material description and using the relations between the Cauchy, the
PK1 and PK2 stress reported in Table 2.1, it can be proved that the principle reduces to the symmetry
requirement for the PK2 stress tensor:

SSS = SSST (2.1.4.10)
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Conservation of energy
The principle of conservation of energy states that in a system, in which the only sources of energy
are mechanical work and heat, the rate of change of kinetic and internal energy in a system has to be
equal to the sum of the rate of work done by external forces plus the rate of work coming from the
heat flux or other heat supplies:

d
dt ∫ᐎ

(12𝜌u̇̇u̇u ⋅ u̇̇u̇u+ 𝜌wint) dΩ = ∫
ᏹ

ttt ⋅ u̇̇u̇u dΓ + ∫
ᐎ
𝜌bbb ⋅ u̇̇u̇u dΩ –∫

ᏹ
nnn ⋅ qqq dΓ + ∫

ᐎ
𝜌qs dΩ (2.1.4.11)

Where wint is the internal energy of the system per unit mass, qqq is the heat flux vector and qs is the
power supplied by the heat sources per unit mass. It is worth noting that the heat flux contribution is
characterized by a negative sign in front of it, according to the classical sign convention a positive heat
flux is transferred to a system. The principle of conservation of energy is also known as the first law
of thermodynamics. Developing Equation 2.1.4.11, the strong form of the principle of conservation of
energy is given by:

𝜌dwint
dt = 𝜎𝜎𝜎 ∶ DDD – ∇ ⋅ qqq+ 𝜌qs = 0 (2.1.4.12)

On the other hand, using material coordinates, the principle of conservation of energy becomes:

𝜌Ꮂ
dwint

dt = Ḟ̇ḞFT ∶ PPP – ∇Ꮂ ⋅ (FFF–Ꮃ ⋅ qqq) + 𝜌Ꮂqs (2.1.4.13)

By comparison of Equation 2.1.4.12 with Equation 2.1.4.13, let us consider the case in which only
mechanical energies are involved. In such circumstances, it is worth noting that different strain/stress
measures are used in order to calculate the internal power. The internal power is defined as the rate
of work involved in order to change the shape of a unit volume of material. In particular, the Cauchy
stress 𝜎𝜎𝜎 is conjugate in power to the rate of deformation DDD, while the nominal stress PPP is conjugate
in power to the material time derivative of the deformation gradient. In a similar fashion it can be
proved that the PK2 stress SSS is conjugate in power to the time derivative of the Green strain tensor ĖEE.
Power conjugates are used in the formulation of the weak forms of the conservation laws, which are
the starting point for the FE formulation.

Second law of thermodynamics
Let us denote with s(xxx, t) the specific entropy of a continuum body and with 𝜌 its density. The second
law of thermodynamics states that the entropy of a system can only increase over time, and it is always
greater or equal to the entropy inflow across its boundary surface plus the entropy supply throughout
the volume:

𝜌ds
dt ≥ –∇(qqq

Θ) +
𝜌qs
Θ (2.1.4.14)

Where qqq is the heat flux vector, qs is the power supplied by heat sources per unit mass and Θ is the
absolute temperature. This is known as the second law of thermodynamics, and it is also called Clau-
sius inequality. In particular, it can be proven that the first law of thermodynamics implies the second
law and vice versa. Although the second law of thermodynamics might seem to be quite irrelevant to
this project, it has an important implication when it comes to fracture mechanics. As a matter of fact,
the entropy inequality implies that when a structure undergoes damage, it is not possible to observe
healing further in time: the damage can either grow or keep stable.

These conservation principles constitute the necessary foundations to unequivocally describe the
motion of a continuum body. As previously mentioned, different strain and stress measures may be
used for this purpose. Before delving into the FE formulation, the validity of such measures has to be
considered, especially when these are used to specify the material constitutive relation.
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2.1.5. Material frame indifference and frame invariance
The principle of material frame indifference or objectivity states that the material response description
has to be independent of the observer. Objectivity is crucial, since the validity of the physical laws
describing a body must always hold, regardless of the adopted reference system. For the sake of this
project, it is of main interest how the involved physical quantities are behaving under a change of
reference frame.

Let us consider a set of physical quantities described in an inertial reference frame. It is here
desired to express these quantities in an observer’s reference frame, which translates and rotates with
respect to the inertial reference frame. Denoting with a star superscript the quantities in the observer’s
reference frame and using no superscript for the quantities defined in the inertial reference frame, the
motion in the observer’s frame is related to the one in the inertial frame by the following:

xxx∗(t) = QQQ(t) ⋅ xxx(t) + ccc(t) with QQQ–Ꮃ =QQQT (2.1.5.1)

WhereQQQ(t) is an orthogonal tensor representing the rigid rotation between the two frames and ccc(t)
the vector that represents the translation between the two. In particular, it is assumed that QQQ(0) = III
and ccc(0) = 0. In order to preserve objectivity, it is important that all physical quantities are measured
in a consistent way and that they do transform in a particular manner. Specifically:

• A scalar quantity, such as temperature or density, is objective only if it has the same value to all
observers. In this case the quantity is called frame invariant.

• A vector quantity uuu, such as a line element or the normal to a surface, must transform according
to:

uuu∗ = QQQ ⋅ uuu (2.1.5.2)

In such a case, the vector quantity is said to be objective or frame indifferent.

• A tensor quantity, that is mapping an objective vector quantity onto another objective vector
quantity is also said to be objective or frame indifferent. Such tensor has to transform according
to:

𝜎𝜎𝜎∗ = QQQ ⋅ 𝜎𝜎𝜎 ⋅QQQT (2.1.5.3)

To this regard, it is worth categorizing the previously introduced strains and stress measures. In
particular:

• The deformation gradient is not frame indifferent, and transforms as follows:

FFF∗ = QQQ ⋅FFF (2.1.5.4)

• The Green strain tensor is frame invariant. Indeed, applying the transformation given by Equation
2.1.5.4, and due to the fact that the rotation tensor QQQ is orthogonal:

EEE∗ = 1
2(FFF

∗T ⋅FFF∗ – III)

= 1
2(FFF

T ⋅QQQT ⋅QQQ ⋅FFF – III)
= EEE (2.1.5.5)

• The rate of deformation tensor DDD is frame indifferent and transforms according to Equation
2.1.5.3.

• The Cauchy stress tensor 𝜎𝜎𝜎 is frame indifferent and transforms according to Equation 2.1.5.3.
• The PK1 stress tensor PPP is not frame indifferent, and it transforms as follows:

PPP∗ = JFFF∗–Ꮃ ⋅ 𝜎𝜎𝜎∗

= J(QQQ ⋅FFF)–Ꮃ ⋅QQQ ⋅ 𝜎𝜎𝜎 ⋅QQQT

= PPP ⋅QQQT (2.1.5.6)



2.2. The Finite Element Method 19

• The PK2 stress tensor SSS is frame invariant, so that:

SSS∗ = SSS (2.1.5.7)

• The co-rotational Cauchy stress tensor �̂�𝜎𝜎 is frame invariant, as it can be proved that:

�̂�𝜎𝜎 = �̂�𝜎𝜎∗ (2.1.5.8)

As previously mentioned, objectivity is quite important when it comes to define the constitutive
laws for a material. These ones have to hold their validity under a change of reference. Hence, only
objective strain and stress tensors should be used to define constitutive relations.

Having this necessary background defined, it is possible to dig into the finite element formulation,
which is reported in the next section.

2.2. The Finite Element Method
To determine the motion of a continuum, the previously presented governing equations have to be
solved. As previously mentioned, these can be formulated referring the physical quantities to either
the material or spatial coordinates. When it comes to solid mechanics, a material description of the
motion is preferred. In such a way, the equations are evaluated always at the same material points,
which is especially useful for history-dependent materials. In the FE discretization for solid mechanics
two different approaches are mainly used: the Total Lagrangian (TL) and the Updated Lagrangian (UL)
formulations. In the TL formulation, all the quantities are referred to the reference configuration at
time tᎲ = 0, while in the UL formulation the quantities are referred to the last converged configuration,
which is assumed as the new reference configuration. The governing equations for the two approaches
are summarized in Table 2.2 for convenience.

Governing equations Total Lagrangian Updated Lagrangian

Conservation of mass 𝜌(XXX, t)J(XXX, t) = 𝜌Ꮂ(XXX) 𝜌(XXX, t)J(XXX, t) = 𝜌Ꮂ(XXX)

Conservation of linear momentum 𝜌Ꮂ
ᒟu̇̇u̇u
ᒟt = 𝜌Ꮂbbb+ ∇Ꮂ ⋅PPP 𝜌ᒟu̇̇u̇u

ᒟt = 𝜌bbb+ ∇ ⋅ 𝜎𝜎𝜎

Conservation of angular momentum FFF ⋅PPP = PPPT ⋅FFFT 𝜎𝜎𝜎 = 𝜎𝜎𝜎T

Conservation of energy 𝜌Ꮂ
dwint

dt – Ḟ̇ḞFT ∶ PPP+ ∇Ꮂ ⋅ (FFF–Ꮃ ⋅ qqq) – 𝜌Ꮂqs = 0 𝜌dwint
dt – 𝜎𝜎𝜎 ∶ DDD+ ∇ ⋅ qqq – 𝜌qs = 0

eeei ⋅ nnnᎲ ⋅PPP = eeei ⋅ tttᎲ on ΓᎲt,i eeei ⋅ nnn ⋅ 𝜎𝜎𝜎 = eeei ⋅ ttt on Γt,i

Boundary conditions or or

uuu = uuu on ΓᎲu uuu = uuu on Γu

uuu(XXX, 0) = uuuᎲ(XXX) and 𝜎𝜎𝜎(XXX, 0) = 𝜎𝜎𝜎Ꮂ(XXX)

Initial conditions u̇̇u̇u(XXX, 0) = u̇̇u̇uᎲ(XXX) and PPP(XXX, 0) = PPPᎲ(XXX) or

uuu(XXX, 0) = uuuᎲ(XXX) and u̇̇u̇u(XXX, 0) = u̇̇u̇uᎲ(XXX)

Traction continuity [[nnnᎲ ⋅PPP]] = 0 on ΓᎲint [[nnn ⋅ 𝜎𝜎𝜎]] = 0 on Γint

Table 2.2: Strong form of the governing equations for TL and UL approaches

The mass and energy conservation are scalar equations, assuming no transfer of heat. On the other
hand, the conservation of linear momentum consists in a system of partial differential equations, whose
number depends on the problem dimension ndim. The conservation of angular momentum does not
contribute in the number of equations characterizing the motion, as it is only translating into specific
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conditions on the involved stress tensor. The constitutive material relation is used to couple the stress
to the strain measures. Overall, the constitutive relation corresponds to nconst equations, with nconst
given by:

nconst = ndim(ndim + 1)/2 (2.2.0.1)

In addition to these, there is an additional equal number nconst of compatibility equations, used to
relate the strain measure to the displacements. Hence, to determine the motion, a total number of
2nconst + ndim + 1 equations must be solved.

Boundary conditions must be specified to solve the system of equations. Either the stress com-
ponents or the displacement are prescribed on the boundary of the body. In a similar fashion, initial
conditions can be imposed either on displacements and stresses or on displacements and velocities.
The first ones are more common in solid mechanics problems due to the fact that, in most cases, it is
easier to estimate the initial stresses in a body rather than the initial displacements.

A closed form solution to this system of partial differential equations can be obtained only for simple
initial boundary conditions and geometrically well defined problems. As a result, approximate methods
such as the Finite Element Method have been developed to obtain solutions for more complex cases.
The Finite Element Method is derived by formulating the governing equations in a weak form, which is
easier to solve from a computational point of view.

The steps involved in a FE analysis are the following:

• Discretization of the physical domain into elements and nodes.

• Assumption of a displacement model which approximates the real physical behavior. This is given
by the so called shape functions, which interpolate the displacement at every nodal point.

• Setting of the (discretized) governing equations for the single element.

• Assembling of the global stiffness matrix for the entire body from the individual element stiffness
matrices.

• Solution of the system of linear or non-linear equations, after application of load or displacement
boundary conditions and initial conditions. In such a way, unknown nodal displacement values
are obtained.

• Obtaining relevant information at nodal points, such as strains or stresses.

In particular, there is a crucial difference in the third and the fifth step depending on whether the
system of equations is linear or non-linear.

2.2.1. Finite element discretized governing equations
A weak form of the governing equations is obtained using the principle of virtual work, so that a sim-
plified system of equations is obtained. For the sake of brevity, the derivation is briefly outlined only
for the UL approach. However, the discretized equations for the TL approach can be easily obtained
using a transformation of coordinates.

Let us introduce the concept of virtual displacements. The space of virtual displacements 𝒰 is
defined as:

𝛿vvv(XXX) ∈ 𝒰 𝒰 = {𝛿vi|𝛿vi ∈ 𝒞Ꮂ(XXX), 𝛿vi = 0 on Γu} (2.2.1.1)

Such space contains all the kinematically admissible displacements 𝛿vi. By definition a virtual
displacement is vanishing on the boundary of the material domain Γu. The principle of virtual work is
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obtained by taking the product between the equation of conservation of linear momentum with the
virtual displacements 𝛿vvv and integrating over the current configuration Ω:

∫
ᐎ
𝛿vvv ⋅ (𝜌bbb+ ∇ ⋅ 𝜎𝜎𝜎 – 𝜌𝜕u̇̇u̇u

𝜕t ) dΩ (2.2.1.2)

Developing Equation 2.2.1.2 using Gauss’ theorem, the traction continuity condition and traction
boundary condition leads to the following:

∫
ᐎ
𝜖𝜖𝜖T(𝛿vvv)𝜎𝜎𝜎 dΩ

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
ᒉWint

–∫
ᐎ
𝛿vvv ⋅ 𝜌bbb dΩ –∫

ᏹt
𝛿vvv ⋅ t̄tt dΓ

⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝
ᒉWext

+∫
ᐎ
𝛿vvv ⋅ 𝜌𝜕u̇̇u̇u

𝜕t dΩ
⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝

ᒉWkin

= 0 (2.2.1.3)

Where 𝜖𝜖𝜖 is the virtual strain tensor, which is a function of the virtual displacements. Equation 2.2.1.3
is the final form of the principle of virtual work. This one states that the sum of the virtual internal work
𝛿Wint, virtual external work 𝛿Wext and virtual kinetic work 𝛿Wkin must be equal to zero. It is worth
noting that there is a substantial difference between the principle of virtual work and the strong form
of the governing equations. Equation 2.2.1.3 involves a fictitious work calculated on a set of forces,
stresses and kinematically admissible displacements. Therefore, there is no need for the forces and
stresses to actually occur in the physical system, as there is no need for the assumed displacements to
be actual displacements. Furthermore, the smoothness requirement on the virtual displacement func-
tions 𝛿vvv is relaxed, as they need only to be 𝒞Ꮂ. However, as the weak form and the strong form of the
governing equations are equivalent, a solution for the weak form is a solution for the strong form as well.

The FEM discretized equations are then derived by discretizing the domain Ω into ne elements with
sub-domains Ωe, leading to the following approximation:

Ω ≈⋃
ne

Ωe

The elements are topologically defined by their nodes as shown in Figure 2.5.

Figure 2.5: Visual example of FEM discretization

Let nN be the total number of nodes in the domain. Denoting by XXXI and xxxI, with I = 1, ...,nN, the
position vectors of the node I in the reference and current configuration respectively, the motion xxx(XXX, t)
in the FEM formulation is given by:

xxx(XXX, t) = xxxI(t)NI(XXX) or xi(XXX, t) = xiI(t)NI(XXX) (2.2.1.4)

Where i = 1, ...,ndim and NI(XXX) are the interpolating shape functions. Summation over the nodes
has to be taken in Equation 2.2.1.4, even though the summation sign was here omitted for convenience.
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In particular, it is required for the shape functions to satisfy the following condition:

NI(XXXJ) = 𝛿IJ where 𝛿IJ = 1 if I = J

𝛿IJ = 0 if I ≠ J (2.2.1.5)

The nodal displacement of the node I is given by the difference between current and reference
position of the single node:

uuuI(t) = xxxI(t) – XXXI or uiI(t) = xiI(t) – XiI (2.2.1.6)

In a similar fashion, the displacement field can also be expressed in terms of the shape functions
and the nodal displacements:

uuu(XXX, t) = xxx(XXX, t) – XXX

= uuuI(t)NI(XXX) (2.2.1.7)

The velocity and acceleration fields are obtained by taking the material time derivative of the dis-
placement:

u̇uu(XXX, t) = 𝜕uuu(XXX, t)
𝜕t

= u̇̇u̇uI(t)NI(XXX)

üuu(XXX, t) = 𝜕Ꮄuuu(XXX, t)
𝜕tᎴ

= ü̈üuI(t)NI(XXX) (2.2.1.8)

Given the arbitrariness of the virtual displacement functions, expressing the latter in terms of FE
shape functions, substituting in Equation 2.2.1.3 and writing the equations in a matrix form:

∫
ᐎ

BBBT𝜎𝜎𝜎 dΩ –∫
ᐎ

NNNT𝜌bbb dΩ –∫
ᏹt

NNNTttt dΓ + ∫
ᐎ

NNNT𝜌ü̈üu dΩ = 0 (2.2.1.9)

Where NNN is the shape functions matrix and BBB is the shape functions derivative matrix, also called
strain-displacement matrix, whose form depends on the finite element. Again, it is possible to physically
identify each term of Equation 2.2.1.9:

fffint = ∫
ᐎ

BBBT𝜎𝜎𝜎 dΩ (2.2.1.10)

fffext = ∫
ᐎ

NNNT𝜌bbb dΩ +∫
ᏹt

NNNTttt dΓ (2.2.1.11)

fffkin = ∫
ᐎ

NNNT𝜌ü̈üu dΩ (2.2.1.12)

Where fffint, fffext and fffkin are the internal, external and kinetic forces, respectively. The kinetic forces
are usually defined as a product between the mass matrix and the nodal accelerations. Expressing the
latter in terms of the shape functions and substituting in Equation 2.2.1.12 yields:

fffkin = ∫
ᐎ

NNNTNNN𝜌ü̈üuJ dΩ (2.2.1.13)
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The mass matrix is then defined as:

MMM = ∫
ᐎ
𝜌NNNTNNN dΩ (2.2.1.14)

In a similar fashion, the internal forces fffint can be expressed as a product between the element
stiffness matrix KKK and the nodal displacement vector uuu, with the stiffness matrix defined as such:

KKK = ∫
ᐎ

BBBTDDDBBB dΩ (2.2.1.15)

Where the Hooke’s law relation between the stress tensor 𝜎𝜎𝜎 and the strain tensor 𝜖𝜖𝜖 has been used,
with DDD being material constitutive tensor. Therefore, the set of discretized FEM equations is given by:

MMMü̈üu+KKKuuu = fffext → MMMü̈üu = fff (2.2.1.16)

Where the arbitrariness of the virtual nodal displacements was used on the nodes not belonging to
Γu and fff = fffext – fffint. This consist in a system of nDOF equations in the nodal displacements, where
nDOF is the number of nodal degrees of freedom not prescribed. For static problems, the inertial
forces are equal to zero since the accelerations are zero and the governing equations are reduced to
the equilibrium equations:

fffint = fffext (2.2.1.17)
It is worth mentioning that in FEM the system of equations is expressed in a residual form and

solved with an iterative solver. On the other hand, the exact integration is replaced by numerical inte-
gration. Gaussian quadrature rule is most commonly used for this purpose. This integration technique,
using an optimal choice of quadrature points and related weights, is able to give a very accurate ap-
proximation of the exact integral. The detailed procedure will be addressed more in detail in Section 2.3.

In the next section, the concept of geometric non-linearity will be introduced to the reader to
acquire familiarity with the topic. At the end of the section, a popular geometric non-linear benchmark
is reproduced to provide a deeper insight on the modelling of geometric non-linear problems in a FEM
framework.

2.2.2. Geometric non-linearity in FEM
Considering a general structural problem, if a linear FEM analysis is performed, the response of the
structure is assumed to be directly proportional to the applied load. The implicit assumptions of a linear
analysis are the following:

• Displacements/rotations and strains are small (deformed configuration is assumed equal to the
undeformed configuration throughout the analysis).

• Boundary conditions do not change during the analysis.

• The material laws do not change during the analysis (linear relation between stresses and strains).

• Applied loads are not changing directions throughout the analysis.

When geometric non-linear effects are considered, the first assumption does not hold anymore. In
such a case, geometric changes in the structure are so large that the deformed configuration cannot be
approximated to the undeformed one. As a result, if geometry changes are not considered, the load-
deformation behavior is not well captured. Under such circumstances, there is a difference whether
the problem variables are referred to the undeformed or to the deformed configuration [2, 52, 55]. To
this regard, Bathe defined two types of geometric non-linearities [54]:

• Geometric non-linearities characterized by small strains but large displacements and rotations.

• Geometric non-linearities characterized by both large strains and large displacements and rota-
tions.

The first class is of main interest for this project, as composite structures are known to experience
small strains up to failure, even though they can undergo large displacements and rotations.
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Cantilever beam with applied end shear load
In order to highlight relevant features regarding geometric non-linear FEM modelling, a popular bench-
mark problem proposed by many authors has been here reproduced using the FEM software Abaqus
[17, 24, 56]. The model consists in an isotropic cantilever beam subjected to an end shear load, as
illustrated in Figure 2.6a. A striking difference between the linear and non-linear case can be observed
in the load-displacement equilibrium path, which is illustrated in Figure 2.6b.

(a) Illustration of the benchmark model [56]
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Figure 2.6: Cantilever beam subjected to end shear load

In particular, a stiffening behavior is observed in the geometric non-linear model. This is due to the
fact that the geometry of the beam adapts to the applied load in order to withstand it more efficiently.
Above a certain load level, an increase in load will cause a smaller and smaller increase in displacement
at the tip of the beam. To provide an insight into the element performance, the same benchmark has
been reproduced using different element types, as proposed in the Abaqus Benchmarks Guide [57].
The results obtained with a coarse and a fine mesh are shown in Figure 2.7a and 2.7b, respectively.
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(a) Results for a coarse mesh
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Figure 2.7: Cantilever beam subjected to end shear load: element performance study

From the comparison it emerges that elements using a reduced integration scheme provide more
accurate results for the displacement, in close agreement with the analytical solution by Bisshopp and
Drucker [58]. On the other hand, elements using a full integration scheme, such as plane stress CPS4
and linear brick elements C3D8, are characterized by a very stiff behavior, due to a phenomenon called
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shear locking. Shear locking is a numerical phenomenon that affects first order full integration ele-
ments in bending problems. According to beam theory, the element should deform such that both
top and bottom surfaces acquire a curved shape. On the other hand, in FE analyses, first order full
integration elements are deforming as shown in Figure 2.8, as their edges are not able to bend. Con-
sidering the horizontal and vertical dotted lines on the surface of the element, these should ideally
maintain an angle equal to 90 degrees. However, the top part is subjected to a compressive stress,
while the bottom undergoes a tensile stress, resulting in a different angle. Therefore, a non-physical
shear strain, that should be theoretically equal to zero, is introduced in the element. For this reason,
it is also referred as parasitic shear strain. Such error arise from the fact that the displacement field is
incorrectly approximated by a linear interpolation, due to the positions of the integration points using a
full integration scheme. The magnitude of the error is observed to increase with increasing aspect ratio
of the element. The parasitic shear is related to a fictitious strain energy component that physically
does not exist. This increase in strain energy is responsible for the observed higher stiffness of the
element, leading to an underestimation of the deflection [59].

Figure 2.8: Shear locking in a linear full integration element

Many different strategies can be used in order to overcome the shear locking effect:

• Reduced/Selective integration linear elements: with these elements, the shear locking effect is
eliminated, as the transverse shear terms are integrated at the centroid of the element.

• Second-order elements: these elements are able to represent quadratic displacement fields, due
to their higher order interpolation. For this reason, they are more suitable for bending problems.

• Incompatible mode elements: these are first order fully integrated elements, which degrees of
freedom are enhanced in order to better capture bending.

2.3. The 8-node linear hexahedral element
In this section, the implementation of the 8-node linear hexahedral FE is presented, which is the
equivalent of the linear C3D8 element in Abaqus [59]. The topology of the element is illustrated in
Figure 2.9. This FE is one of the most used in three-dimensional analyses.

Figure 2.9: Topology of the 8-node hexahedral element
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2.3.1. Geometric features and node numbering
The hexahedral element is characterized by the following geometric features:

• Eight corners, which are the physical nodes of the element.

• Six faces, each of them being defined by four nodes.

• Twelve edges, each of them defined by two nodes.

Considering a single element, every single node is given a number from 1 to 8 in ascending or-
der. The numbering has to be such that the element volume is positive, which means the Jacobian
determinant, defined by Equation 2.1.2.9, must be positive at every point. Therefore, the number-
ing convention, in agreement with the Analysis User’s Abaqus Manual [59], is done according to the
following steps:

• Choice of a starting node, which is given the number 1, and an initial face having this node as
one of its corners.

• The other three nodes on the face are numbered counterclockwise (2, 3, 4) when this is looked
at from the opposite face.

• The nodes on the face opposite to the initial one are given the numbers 5, 6, 7, 8, respectively.

2.3.2. FE formulation
The isoparametric, or natural coordinates of the element are indicated by the greek letters 𝜉, 𝜂, 𝜁.
These ones vary from a value of –1 on one face to +1 on the opposite face. The specific values are
provided in Table 2.3.

Node # 𝜉𝜉𝜉 𝜂𝜂𝜂 𝜁𝜁𝜁 Node # 𝜉𝜉𝜉 𝜂𝜂𝜂 𝜁𝜁𝜁

1 –1 –1 –1 5 –1 –1 +1

2 +1 –1 –1 6 +1 –1 +1

3 +1 +1 –1 7 +1 +1 +1

4 –1 +1 –1 8 –1 +1 +1

Table 2.3: Natural nodal coordinates for the hexahedral element

Given the physical coordinates (xi, yi, zi) and the translational displacements of the nodes of the
nodes (ui, vi, wi), it is possible to express the position and the displacement in the element through
the use of interpolating shape functions:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

x

y

z

u

v

w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1

xᎳ xᎴ xᎵ xᎶ xᎷ xᎸ xᎹ xᎺ

yᎳ yᎴ yᎵ yᎶ yᎷ yᎸ yᎹ yᎺ

zᎳ zᎴ zᎵ zᎶ zᎷ zᎸ zᎹ zᎺ

uᎳ uᎴ uᎵ uᎶ uᎷ uᎸ uᎹ uᎺ

vᎳ vᎴ vᎵ vᎶ vᎷ vᎸ vᎹ vᎺ

wᎳ wᎴ wᎵ wᎶ wᎷ wᎸ wᎹ wᎺ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

NᎳ

NᎴ

NᎵ

NᎶ

NᎷ

NᎸ

NᎹ

NᎺ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3.2.1)
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Where Ni are the shape functions in terms of the physical coordinates. However, in the FE formu-
lation, it is convenient to express the shape functions in terms of the element natural coordinates. The
shape functions for the 8-node element are reported in Table 2.4.

NᎳ =
Ꮃ
Ꮊ(1 – 𝜉)(1 – 𝜂)(1 – 𝜁) NᎷ =

Ꮃ
Ꮊ(1 – 𝜉)(1 – 𝜂)(1 + 𝜁)

NᎴ =
Ꮃ
Ꮊ(1 + 𝜉)(1 – 𝜂)(1 – 𝜁) NᎸ =

Ꮃ
Ꮊ(1 + 𝜉)(1 – 𝜂)(1 + 𝜁)

NᎵ =
Ꮃ
Ꮊ(1 + 𝜉)(1 + 𝜂)(1 – 𝜁) NᎹ =

Ꮃ
Ꮊ(1 + 𝜉)(1 + 𝜂)(1 + 𝜁)

NᎶ =
Ꮃ
Ꮊ(1 – 𝜉)(1 + 𝜂)(1 – 𝜁) NᎺ =

Ꮃ
Ꮊ(1 – 𝜉)(1 + 𝜂)(1 + 𝜁)

Table 2.4: Shape functions of the hexahedral element

In order to obtain the derivatives of these with respect to the physical coordinates, the chain rule
for partial differentiation has to be applied:

𝜕Ni
𝜕x = 𝜕Ni

𝜕𝜉
𝜕𝜉
𝜕x +

𝜕Ni
𝜕𝜂

𝜕𝜂
𝜕x +

𝜕Ni
𝜕𝜁

𝜕𝜁
𝜕x

𝜕Ni
𝜕y = 𝜕Ni

𝜕𝜉
𝜕𝜉
𝜕y +

𝜕Ni
𝜕𝜂

𝜕𝜂
𝜕y +

𝜕Ni
𝜕𝜁

𝜕𝜁
𝜕y

𝜕Ni
𝜕z = 𝜕Ni

𝜕𝜉
𝜕𝜉
𝜕z +

𝜕Ni
𝜕𝜂

𝜕𝜂
𝜕z +

𝜕Ni
𝜕𝜁

𝜕𝜁
𝜕z (2.3.2.2)

These ones can also be expressed in matrix form as:

⎡
⎢
⎢
⎢
⎢
⎣

ᒟNi
ᒟx

ᒟNi
ᒟy

ᒟNi
ᒟz

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

ᒟᒓ
ᒟx

ᒟᒌ
ᒟx

ᒟᒋ
ᒟx

ᒟᒓ
ᒟy

ᒟᒌ
ᒟy

ᒟᒋ
ᒟy

ᒟᒓ
ᒟz

ᒟᒌ
ᒟz

ᒟᒋ
ᒟz

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

ᒟNi
ᒟᒓ
ᒟNi
ᒟᒌ
ᒟNi
ᒟᒋ

⎤
⎥
⎥
⎥
⎥
⎦

= [JJJ]
–Ꮃ
⎡
⎢
⎢
⎢
⎢
⎣

ᒟNi
ᒟᒓ
ᒟNi
ᒟᒌ
ᒟNi
ᒟᒋ

⎤
⎥
⎥
⎥
⎥
⎦

(2.3.2.3)

Where JJJ is the Jacobian matrix, which transforms quantities from the cartesian coordinate system
to the element natural coordinate system. On the other hand, the inverse of the Jacobian is relating
derivatives with respect to the natural coordinates to derivatives with respect to the cartesian coordi-
nates:

JJJ = 𝜕(x, y, z)
𝜕(𝜉, 𝜂, 𝜁) JJJ–Ꮃ = 𝜕(𝜉, 𝜂, 𝜁)

𝜕(x, y, z) (2.3.2.4)

Recalling Equation 2.3.2.1, the Jacobian matrix is obtained by differentiating the relation between
the cartesian and natural coordinates with respect to the natural coordinates. As a result, the Jacobian
matrix is given by:

JJJ =

⎡
⎢
⎢
⎢
⎢
⎣

∑i xi
ᒟNi
ᒟᒓ ∑i yi

ᒟNi
ᒟᒓ ∑i zi

ᒟNi
ᒟᒓ

∑i xi
ᒟNi
ᒟᒌ ∑i yi

ᒟNi
ᒟᒌ ∑i zi

ᒟNi
ᒟᒌ

∑i xi
ᒟNi
ᒟᒋ ∑i yi

ᒟNi
ᒟᒋ ∑i zi

ᒟNi
ᒟᒋ

⎤
⎥
⎥
⎥
⎥
⎦

(2.3.2.5)

In which i indicates the summation over all the nodes. The shape function derivatives are needed
to define the strain-displacement matrix BBB. As a matter of fact, the strain in the element is obtained by
deriving the displacement field, expressed in terms of the nodal displacements and shape functions in
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Equation 2.3.2.1. Therefore, expressing the strain 𝜖𝜖𝜖 in the element as a function of the BBB matrix and
the nodal displacements:

𝜖𝜖𝜖 = BBBuuu →
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(2.3.2.6)

The strain displacement matrix is used to build the stiffness matrix of the element. This one is
obtained using Equation 2.2.1.15, once the constitutive relation matrix DDD is defined. Following a trans-
formation from physical to parent element domain and applying Gaussian quadrature, the stiffness
matrix is evaluated as follows:

KKK =
nQ

∑
kᎾᎳ

BBBT(𝜉𝜉𝜉k)DDDBBB(𝜉𝜉𝜉k)detJJJ(𝜉𝜉𝜉k)w(𝜉𝜉𝜉k) where 𝜉𝜉𝜉k = (𝜉k, 𝜂k, 𝜁k) (2.3.2.7)

Where nQ is the number of quadrature points and 𝜉𝜉𝜉k are their natural coordinates in the element.
The internal force vector fffint, which is the element contribution to the residual force vector, is finally
obtained by multiplication of the stiffness matrix KKK with the nodal displacements uuu:

fffint =KKKuuu (2.3.2.8)

For the eight-node hexahedral element, the most used integration schemes in FEM are full and
reduced integration. These ones are illustrated in Figure 2.10. The full integration element uses eight
integration points. Their natural coordinates location and weights are reported in Table 2.5. On the
other hand, the reduced integration uses only one quadrature point, located at the centroid of the
element, with a weight equal to eight. The use of more integration points result in higher accuracy,
even though this comes at the expenses of a higher computational time. Depending on the application,
reduced integration might be preferred because it leads to considerable savings.

Figure 2.10: Integration points location in the hexahedral element for full (left) and reduced (right) integration schemes
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Quad point # (𝜉, 𝜂, 𝜁) w Quad point # (𝜉, 𝜂, 𝜁) w

1 (–1/√3, –1/√3, –1/√3) 1 5 (–1/√3, –1/√3,+1/√3) 1

2 (+1/√3, –1/√3, –1/√3) 1 6 (+1/√3, –1/√3,+1/√3) 1

3 (–1/√3,+1/√3, –1/√3) 1 7 (–1/√3,+1/√3,+1/√3) 1

4 (+1/√3,+1/√3, –1/√3) 1 8 (+1/√3,+1/√3,+1/√3) 1

Table 2.5: Quadrature points natural coordinates and weights for the full integration hexahedral element

2.3.3. Implementation of the linear brick element
As reported in the Abaqus User Subroutines Reference Guide, it is possible for users to implement
several subroutines, which allow them to extend the software capabilities in order to meet certain
analysis requirements [60]. User subroutines are compiled and linked to the main Abaqus executable
prior the job execution. In this section, the implementation of the eight node linear hexahedral element,
via an UEL subroutine in FORTRAN coding language, is presented. For the purpose of this project,
the subroutine has been implemented for the Abaqus/Standard software interface. In the following
sections, the implementation for static procedures only is presented. However, the implementation
for dynamic procedures has also been investigated and can be found in Section A.1 in Appendix A.
To facilitate the reader in understanding how user subroutines are interfacing with the software, the
general structure of an Abaqus/Standard analysis is first presented. Next, the working scheme of the
UEXTERNALDB subroutine, used as mean of communication between the UEL and Abaqus, is explained.
Finally, a detailed description of the UEL subroutine is given.

Abaqus analysis flowchart
The UEL subroutine, which stands for UserELement subroutine, allows users to code finite elements in
Abaqus. The UEL is used in conjunction with the UEXTERNALDB subroutine, which is needed to access
user-defined external databases [60]. The general flowchart for the Abaqus/Standard procedure is
given in Figure A.6 in Appendix A. The flowchart is showing how the UEXTERNALDB and the UEL
subroutine are interfacing with the FE software.

UEXTERNALDB subroutine
The UEXTERNALDB subroutine is used as a means of communication between the UEL subroutine and
Abaqus. This one is called four times during the whole process, the call being controlled through the
use of the flag variable LOP:

• At the beginning of the analysis (LOP = 0).

• At the beginning of each increment (LOP = 1).

• At the end of each increment (LOP = 2).

• At the end of the analysis (LOP = 3).

By using this subroutine, it is possible to access purposely built external databases needed by the
UEL subroutine as inputs for the analysis as well as to write the output results to external files. The
working scheme of this subroutine is illustrated in Figure 2.11. At the beginning of the analysis, the
subroutine is used to initialize relevant time parameters and load the external data-lists. When the
increment starts, the analysis time parameters are updated. At the end of the increment, the output
results are written to external files, following the VTK file formats [61]. At the end of the analysis, all
the data-lists are cleaned to be ready for re-use.
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Beginning of analysis Start of increment End of increment End of analysis

Initialize analysis time
Initialize nodes
Initialize elements
Initialize materials

Update analysis time Write output Clean up the data-lists

Figure 2.11: UEXTERNALDB subroutine flowchart

UEL subroutine
The UEL subroutine is used in Abaqus to define an user-element, linear or non-linear, with arbitrary
complexity. Depending on the purpose of the element, the code must define the contribution of the
element to the residual force vector, define the Jacobian matrix of the element, the mass matrix, the
damping matrix and so on. The UEL subroutine interfaces with Abaqus each time element calculations
have to be performed. Abaqus is providing the subroutine with interface parameters, among which
the nodal coordinates and the nodal solutions (displacements, velocities, accelerations, etc.) for every
DOF in the element. The full list of parameters is reported in the Abaqus User Subroutines Reference
Manual [60]. In this section, the implementation of the element for static analyses is presented. Under
such circumstances, the element’s contribution to the Jacobian matrix and the element’s contribution
to the residual force vector must be coded by the user and returned to Abaqus through the parameters
AMATRX and RHS, respectively. The flowchart of the implemented code is illustrated in Figure 2.12.

UEL

Load
data-lists

Read
element
number

Extract
element

connectivity

Extract nodal
solutions
obtained
by Abaqus
solver

Integrate
the element
to obtain

KKK and fffint

u AMATRX
RHS

Figure 2.12: UEL subroutine flowchart

As previously mentioned, the UEXTERNALDB subroutine is used to access external databases. In
particular, these contains an elements list, a nodes list and a materials list. The data-lists are loaded
at the beginning of the UEL subroutine. Upon determination of the element number passed in by
the Abaqus solver, the nodal connectivity of the element is read, which is used to extract the nodal
coordinates and nodal solutions. This information is used to integrate the element and obtain its
stiffness matrix KKK and internal force vector fffint. Following the construction of the shape functions
listed in Table 2.4, shape function derivatives and weights, the stiffness matrix is calculated with a loop
over the integration points of the element:

• Obtain values of shape functions, shape functions derivatives and weights for the i-th integration
point.

• Calculate jacobian of the element using Equation 2.3.2.5.

• Calculate the strain-displacement matrix using Equation 2.3.2.6.

• Calculate the strain in the element using the nodal solutions from Abaqus solver and the strain-
displacement matrix.
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• Calculate the stress in the element using the material constitutive relation.

• Calculate the contribution of the i-th integration point to the element stiffness matrix, using
Equation 2.3.2.7.

Finally, the internal force vector of the element is obtained multiplying the stiffness matrix by the
nodal displacements. The element’s contribution to the Jacobian and to the residual force vector are
then stored in the Abaqus parameters AMATRX and RHS respectively, and turned back to the Abaqus
Solver. The system of equations is then solved by iterative Newton’s method.

It is here worth to remind that multiple user elements can be coded in the same UEL subroutine and
consequently used together. This particular feature come in handy for the FNM, and will be discussed
more in detailed in Chapter 4. The user element can be invoked from the Abaqus input file through
the following command:

*USER ELEMENT, TYPE=element_type, NODES=n

*ELEMENT, TYPE=element_type

Where an element type key has to be given in TYPE and n indicates the number of nodes in an
element. Once an element type key is assigned, it uniquely relates to the user-defined element. Within
an Abaqus UEL, the element can have an arbitrary number of nodes and degrees of freedom, provided
that these are following the Abaqus convention [57].

2.3.4. User-element validation
In this section, the implemented element is validated through two benchmark problems. The first
model consists in a single element uni-axial tensile test. The second, is the classical cantilever beam
problem, which provides a multi-element model validation.

Uni-axial tension single element test
The reference model built in Abaqus is shown in Figure 2.13. The element is subjected to an uni-axial
load in the positive y direction, while the following boundary conditions are applied:

• Nodes on the right face are constrained from moving in the x direction.

• Nodes on bottom left corner of the element are constrained from moving in the z direction.

• Nodes on the right corner of the right face are constrained from moving in the y direction.

  RP−1

X

Y

Z

Figure 2.13: Reference model for the uni-axial single element test

The uni-axial load is applied through specification of a displacement load UᎴ = 0.01mm to the refer-
ence node RP-1, which is kinematically coupled to the top surface nodes of the element. The total load
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has been applied in 100 equal time increments. The dimensions of the element are 0.1mm x 0.05mm.
An isotropic material with elastic modulus E = 100MPa and Poisson ratio 𝜈 = 0 is used for this model.

Since the topology of the element is hidden inside the subroutine, it is not possible to visualize
user elements with the standard post processing tool Abaqus/Viewer. For this reason, the third party
open-source software ParaView from VTK has been used for data visualization. The contour plot of
the vertical displacement for the user element is shown in Figure 2.14a. The comparison between the
linear C3D8 Abaqus element and the implemented linear brick element is plotted in Figure 2.14b. As
it can be observed, the two curves are superposing each other, showing the same structural response
of the element.

(a) Vertical displacement contour plot
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Figure 2.14: Output results for the uni-axial single element model

Cantilever beam subjected to end shear load
In order to further validate the element, the cantilever beam model presented in Section 2.2.2 has
been used as benchmark problem. The reference model built in Abaqus is reported in Figure 2.15. The
beam has length ℓ = 10m, width b = 100mm and height h = 147.8mm. An isotropic material with
elastic modulus E = 100MPa and Poisson ratio 𝜈 = 0 is used for this model.
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Z

Figure 2.15: Reference model for the beam subjected to end shear load
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The part has been meshed with 10 elements along the longitudinal direction of the beam and 1
element in the thickness direction of the beam. In the model, the right end has fixed boundary condi-
tions, so that all the translations and rotations are constrained. A concentrated force CFᎴ = 269.35N
is applied at the reference node RP-1, which is kinematically coupled to the left end. The material
properties assigned to the part are the same as the ones used in the previous single element uni-axial
tensile test. The deformed shape of the model is shown in Figure 3.11a, while the applied load as a
function of the vertical displacement of the tip of the beam is plotted in Figure 2.16b, in comparison
with the standard C3D8 Abaqus element.

(a) Vertical displacement contour plot
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Figure 2.16: Output results for the cantilever beam model

As it can be observed, the implemented brick element appears to have a slightly stiffer structural
response. Nevertheless, the UEL can be considered to be in close agreement with the standard Abaqus
element.



3
Co-rotational formulation

In this chapter, the CR formulation is presented in details. In the first part of this chapter, fundamental
mathematical concepts on finite rotations are introduced to the reader. In a second instance, the CR
approach is derived for a 3D solid brick element, starting from the involved kinematics to the derivation
of the nodal force vector and tangent stiffness matrix used in the formulation. Finally, the formulation
is applied to the hexahedral element implemented in Section 2.3 to extend its capabilities for geometric
non-linear analysis. The co-rotational element is then validated reproducing three popular geometric
non-linear benchmark problems.

3.1. Mathematics of finite rotations
In the 3D co-rotational approach, finite spatial rotations are considered. Hence, it is important to first
introduce some relevant mathematical concepts, highlighting the difference between infinitesimal and
finite rotations. The most important theorem for this subject is Euler’s theorem [3]:

In three dimensions, the general displacement of a rigid body with one

fixed point is a rotation about an axis that passes through that point

While it is possible to assign a vectorial identity to infinitesimal rotations in space, this is not the
case for finite rotations [15]. As a matter of fact, if we consider two or more finite rotations in space,
these violate the commutative property of vectors, as changing their order leads to different results.

Let us consider the geometric construction illustrated in Figure 3.1. It will be shown that a finite
rotation 𝜃 about an axis defined by the unit vector eee consists in a one-to-one vector transformation, or
a matrix. For the derivation it is useful to introduce the notion of axial vector or pseudo-vector 𝜃𝜃𝜃:

𝜃𝜃𝜃 = 𝜃eee 𝜃 = (𝜙Ꮄ + 𝜒Ꮄ + 𝜓Ꮄ)Ꮃ/Ꮄ (3.1.0.1)

Where 𝜙, 𝜒 and 𝜓 are its components in the cartesian system. The pseudo-vector is so called be-
cause it is a quantity that transforms as a vector but violates certain properties, such as the composition
rule. In Figure 3.1, a point P with initial position vector xxx moves to occupy the position xxx∗ indicated by
the point P∗, so that:

xxx∗ = xxx+ΔPΔPΔP (3.1.0.2)

The displacement of point P can also be written as:

ΔPΔPΔP = PDPDPD+DPDPDP∗ (3.1.0.3)

34
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Figure 3.1: Finite rotation about an axis in space

Where DPDPDP∗ has direction (eee × xxx), so that it is normal to both PCPCPC and eee. From Figure 3.1, it can be
deduced that:

DPDPDP∗ =𝜌sin𝜃 (3.1.0.4)
|eee × xxx| =𝜌 (3.1.0.5)

Using these relations, the vector DPDPDP∗ can be written as:

DPDPDP∗ = sin𝜃(eee × xxx)

= sin𝜃
𝜃 (𝜃𝜃𝜃 × xxx) (3.1.0.6)

On the other hand, it is clear from Figure 3.1 that the vector PDPDPD is normal both to eee and DPDPDP∗. As
a result, its direction is given by eee × (eee × xxx). Noting that the modulus of the latter is also 𝜌, the vector
PDPDPD can be expressed as:

PDPDPD = (1 – cos𝜃)(eee × (eee × xxx))

= 2sinᎴ
𝜃
2(eee × (eee × xxx))

= 1
2

sinᎴ(𝜃/2)
(𝜃/2)Ꮄ (𝜃𝜃𝜃 × (𝜃𝜃𝜃 × xxx)) (3.1.0.7)

Hence, the final position vector of P is given by the following:

x∗x∗x∗ = xxx+ sin𝜃
𝜃 (𝜃𝜃𝜃 × xxx) + 12

sinᎴ(𝜃/2)
(𝜃/2)Ꮄ (𝜃𝜃𝜃 × (𝜃𝜃𝜃 × xxx)) (3.1.0.8)
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Introducing the auxiliary skew-symmetric matrix SSS containing the components of the pseudo-vector,
often referred to with the name of spinor, it is possible to re-write the external products as follows:

SSS =

⎡
⎢
⎢
⎢
⎢
⎣

0 –𝜓 𝜒

𝜓 0 𝜙

–𝜒 –𝜙 0

⎤
⎥
⎥
⎥
⎥
⎦

→ 𝜃𝜃𝜃 × xxx = SSSxxx and 𝜃𝜃𝜃 × (𝜃𝜃𝜃 × xxx) = SSSᎴxxx (3.1.0.9)

Using the results derived so far, the final position vector of P can be expressed as:

x∗x∗x∗ = xxx+ sin𝜃
𝜃 SSSxxx+ 12

sinᎴ(𝜃/2)
(𝜃/2)Ꮄ SᎴSᎴSᎴxxx

= RRR(𝜃𝜃𝜃)xxx (3.1.0.10)

Where we have established the transformation rotation matrix RRR, which is a non-linear function of
the pseudo-vector 𝜃𝜃𝜃:

RRR(𝜃𝜃𝜃) = IIIᎵ +
sin𝜃
𝜃 SSS+ 12

sinᎴ(𝜃/2)
(𝜃/2)Ꮄ SSSᎴ (3.1.0.11)

This is also referred to in literature with the name of rotator. Such constructed matrix is orthogonal.
This follows from the fact that SSS is an antisymmetrical matrix, so that:

RRRT = IIIᎵ –
sin𝜃
𝜃 SSS+ 12

sinᎴ(𝜃/2)
(𝜃/2)Ꮄ SSSᎴ = RRR(–𝜃𝜃𝜃) (3.1.0.12)

Furthermore, let us consider a series of n consecutive rotations 𝜃𝜃𝜃i, each of them characterized by
their specific axis of rotation in space:

𝜃𝜃𝜃Ꮃ, 𝜃𝜃𝜃Ꮄ, ..., 𝜃𝜃𝜃i, ..., 𝜃𝜃𝜃n–Ꮃ, 𝜃𝜃𝜃n

It has been shown that it is possible to associate a transformation matrix to every individual rotation.
Nevertheless, these sequence of rotations can be associated to a single transformation matrix RRR given
by:

RRR = RRRnRRRn–Ꮃ...RRRi...RRRᎴRRRᎳ
On the other hand, if the inverse order of multiplication is considered:

RRR = RRRᎳRRRᎴ...RRRi...RRRn–ᎳRRRn

The rotation matrix RRR will correspond to a sequence of rotations applied in the following order:

𝜃𝜃𝜃n, 𝜃𝜃𝜃n–Ꮃ, ..., 𝜃𝜃𝜃i, ..., 𝜃𝜃𝜃Ꮄ, 𝜃𝜃𝜃Ꮃ
Hence, Equation 3.1.0.11 represents the linear one-to-one vector transformation that is associated

to a finite rotation. It is worth noting that, if infinitesimal angles are considered (𝜃 → 0), this one
reduces to the standard equation for small rotations:

RRR = IIIᎵ + SSS (3.1.0.13)

With Equation 3.1.0.11, it has been proved that it is possible to represent a finite rotation through
a rotator which is a function of the pseudo-vector 𝜃𝜃𝜃. Another possibility is to express the rotator in a
series in SSS.
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In order to do that, the trigonometric functions appearing in Equation 3.1.0.11 are expanded in a
Taylor series in 𝜃:

RRR = IIIᎵ + (2 –
𝜃Ꮅ
3! +

𝜃Ꮆ
5! + ...+ (–1)n 𝜃Ꮄn

(2n+ 1)! ± ...)SSS

+ ( 12! –
𝜃Ꮄ
4! +

𝜃Ꮆ
6! – ...+ (–1)n 𝜃Ꮄn

(2n+ 2)! ± ...)SSSᎴ (3.1.0.14)

Next, observing that the powers of SSS can be calculated through the followings:

SSSᎴn = (–1)n–Ꮃ𝜃Ꮄ(n–Ꮃ)SSSᎴ

SSSᎴn–Ꮃ = (–1)n–Ꮃ𝜃Ꮄ(n–Ꮃ)SSS (3.1.0.15)

Combining Equation 3.1.0.14 and 3.1.0.15 the following expression of RRR is obtained:

RRR = IIIᎵ + SSS+ 1
2!SSS

Ꮄ + 1
3!SSS

Ꮅ + ...+ 1
n!SSS

n + ...

= eSSS (3.1.0.16)

In literature, this one is often referred as Rodrigues’ formula or exponential map. In this section,
it has been shown that a finite rotation in space may be given different mathematical representations.
The first one that has been introduced is the axial vector or pseudo-vector. Secondly, it has been
proved that a finite rotation can also be described by an orthogonal matrix, which is given the name
of rotator. Lastly, a finite rotation can be associated to a skew-symmetric matrix, referred to with the
name of spinor. These ones are illustrated in Figure 3.2.

Pseudovector
𝜃𝜃𝜃

Spinor
SSS

Rotator
RRR

spin(𝜃𝜃𝜃)

axial(SSS)

eSSS

loge(RRR)

Figure 3.2: Relations between different representations of finite spatial rotations

In order to pass from a certain representation to another, specific operations exist, even though
these ones will not be reported as they are not relevant to this work. It is worth mentioning that the
rotator representation is the only one which is uniquely defined, as several normalizations can be used
for the pseudo-vector and spinor [3]. An alternative parametrization often used in multi-body dynamics
and robotics is the quaternion parametrization [62]. This one proved to be able to avoid singularities,
making it numerically more stable, and can be obtained from the rotator representation through the
Spurrier’s quaternion extraction algorithm [63].

For the sake of this project, the rotator representation is relevant. This one will be used in the CR
formulation to track the rigid body motion of the element. In particular, it will be shown that the rotator
representation is intrinsically linked to the polar decomposition of the deformation gradient matrix.

3.2. Co-rotational approach for 3D solid hexahedral elements
In this section, previously introduced concepts are used to develop a CR procedure for 3D solid hex-
ahedral elements in order to address geometric non-linear problems characterized by large displace-
ments/rotations but small strains. The formulation outlined here follows the work by Moita and Crisfield
[18, 21]. As previously anticipated, the CR approach, being an element-independent formulation, pro-
vides a relatively easy way to account for geometric non-linear effects retaining considerable flexibility
[24]. The element-independent attribute refers to the fact that this technique allows re-use of already
implemented linear elements and, once implemented for a certain element, it takes little effort to ex-
tend the formulation to elements belonging to the same class.
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3.2.1. Co-rotational framework for geometric non-linear analyses
In this approach, an arbitrary motion is decomposed into two steps: one characterized by rigid body
motion only and one by pure relative deformation. In a FEM framework, the decomposition is achieved
through the definition of an embedded co-rotated frame for every element of the discretized domain.
Such frame translates and rotates with the element but does not deform, so that orthogonality is
maintained. The latter is fundamental in order to achieve an exact decomposition of rigid-body and
deformational motions [3].

In order to obtain the orientation of the CR frame, the polar decomposition theorem is applied at the
centroid of the element. Using the polar decomposition, the deformation gradient, which represents
the arbitrary motion of the element, is decomposed into an orthogonal matrix representing the rigid
body motion and a symmetric positive definite matrix, which represents the stretches in the element.
In Section 2.1, it has been shown that this one can be performed using either the left stretch tensor VVV
or the right stretch tensor UUU definition. In the first case, the element is first rotated and then strained,
while in the second it is first strained and later rotated. It is clear from Figure 3.3, where the two-
dimensional case is illustrated for simplicity, that there is no difference between the two as they lead
to the same final configuration. Throughout this work, the right stretch tensor definition will be used.

Figure 3.3: Polar decomposition of an arbitrary motion: left stretch tensor definition (on the left) and right stretch tensor
definition (on the right)

Generally, in a geometric non-linear formulation the higher order terms of the strain tensor have
to be taken into account. Nevertheless, by removal of rigid body displacements, if the strains are
sufficiently small, linear assumptions are still valid in the CR reference frame. As a result, only the
conventional linear strain-displacement matrix can be used in the formulation, neglecting the higher
order terms.

In the derivation, three different configurations are considered: the base or undeformed configura-
tion, the co-rotated configuration and the deformed or final configuration. It is worth to note that the
CR configuration is a fictitious configuration, not really occupied by the element at any time during its
motion. At the same time, two reference systems are considered: the global reference system and the
element local or CR reference system. The latter is defined by the base of vectors (êeeᎳ, êeeᎴ, êeeᎵ), and it is
assumed to be aligned with the global reference system at the beginning of the analysis. By defining
such local frame, it is possible come up with an expression for the local nodal displacements uuuℓ in the
form:

uuuℓ = f (êeeᎳ, êeeᎴ, êeeᎵ,uuug) (3.2.1.1)

Where uuug are the global nodal displacements. The such obtained local nodal displacements are



3.2. Co-rotational approach for 3D solid hexahedral elements 39

then used to calculate the local stiffness matrix KKKℓ and the local internal force vector fffint
ℓ using the

followings:

KKKℓ = ∫
ᐎe

BBBT
ℓ DDDBBBℓ dΩe (3.2.1.2)

fffint
ℓ =KKKℓuuuℓ (3.2.1.3)

Where the subscript ℓ refers to quantities in the element local reference frame. Differentiating Equa-
tion 3.2.1.1, a transformation matrix TTT will be obtained, which relates the global nodal displacement
variations to the local nodal displacement variations:

𝛿uuuℓ = TTT𝛿uuug (3.2.1.4)

From the equivalence of the principle of virtual work between the local and global frame, it follows
that such obtained transformation matrix also relates the local internal force vector to the global internal
force vector:

fffint
g = TTTTfffint

ℓ (3.2.1.5)

In order to obtain a consistent global tangent stiffness matrix, the differentiation of Equation 3.2.1.5
is needed. In a FEM framework, a consistent tangent stiffness means that the tangent stiffness is the
gradient of the internal forces with respect to the global DOFs [3]. Even though an inconsistent tangent
stiffness matrix does not change the equilibrium path, it is preferred to improve the convergence rate
in an incremental-iterative solution. Therefore, differentiating Equation 3.2.1.5, the expression for the
tangent stiffness matrix will be in the form:

𝛿fffint
g = TTTT𝛿fffint

ℓ + 𝛿TTTTfffint
ℓ

= TTTTKKKtℓ𝛿uuuℓ +KKKtg𝛿uuug

= (TTTTKKKtℓTTT+KKKtg)𝛿uuug (3.2.1.6)

Where KKKtℓ is the local tangent stiffness matrix of the element, and KKKtg is the geometric stiffness
contribution to the tangent stiffness matrix. Regarding the first contribution to the tangent stiffness,
assuming a linear elastic constitutive law and small strains KKKtℓ is given by Equation 3.2.1.2. On the
other hand, the geometric contribution to the tangent stiffness will be derived in the following section.

3.2.2. Derivation of transformation matrix and tangent stiffness matrix
Given the implementation of the linear hexahedral element defined in Section 2.3, the CR procedure
outlined in this section serves to extend its validity to geometric non-linear analyses. Let us consider
Figure 3.4. It is worth mentioning that such figure is illustrating the separation of rigid body motion
using the left stretch tensor for visualization purposes, even though the right stretch tensor definition
is used in the derivation.

As previously mentioned, two reference systems are considered: the global reference system, to
which all the element calculations have to be referred and a local reference system which is embedded
with the element. Let us denote with eeeᎳ,eeeᎴ,eeeᎵ the set of base vectors defining the global reference
system, and with (êeeᎳ, êeeᎴ, êeeᎵ) the set of base vectors defining the element local reference system. At
the beginning of the analysis the element is occupying the configuration 𝒞Ꮂ and it is assumed that
the element local axes are aligned with the global axes. As a result, the two set of base vectors
are coincident. However, as the element undergoes motion, a procedure is needed to determine the
orientation of the element local base vectors. Adopting a right stretch tensor definition, the deformation
gradient FFF can be decomposed using the polar decomposition theorem as:

FFF = RRRUUU (3.2.2.1)
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Figure 3.4: Visual illustration of initial (𝒞Ꮂ), co-rotated (𝒞R) and deformed (𝒞D) configurations

Where the deformation gradient, defined by Equation 2.1.2.6, is evaluated at the centroid of the
element. The such obtained orthogonal matrixRRR is a rotator that transforms the base vectors (eeeᎳ,eeeᎴ,eeeᎵ)
into (êeeᎳ, êeeᎴ, êeeᎵ). The rotation matrix can also be written as follows:

RRR =

⎡
⎢
⎢
⎢
⎢
⎣

êᎳx êᎴx êᎵx

êᎳy êᎴy êᎵy

êᎳz êᎴz êᎵz

⎤
⎥
⎥
⎥
⎥
⎦

(3.2.2.2)

Since the local axes are aligned with the global ones at the beginning of the analysis, if the local
frame is located at the centroid of the element, the initial local coordinates for the node i are given by:

XXXi
ℓ = XXXi

g – XXXc
g (3.2.2.3)

Where XXXc
g refers to the initial global coordinates of the centroid of the element. On the other hand,

using the rotation matrix RRR, the deformed or final local coordinates for the node i are given by:

xxxi
ℓ = XXXi

ℓ + uuui
ℓ

= RRRT(xxxi
g – xxxc

g)
= RRRTxxxic

g (3.2.2.4)

Where xxxc
g are the deformed global coordinates of the centroid, and xxxic

g is used to indicate the
difference between the deformed global coordinates of the i-th node and those of the centroid. From
Equation 3.2.2.4, it is possible to deduce an expression for the local displacements of node i:

uuui
ℓ = RRRTxxxic

g – XXXi
ℓ (3.2.2.5)

These ones represent the pure deformational displacements in the element, expressed in the co-
rotated or local reference frame. In order to obtain the transformation matrix which relates the variation
of global to the variation of local displacements, Equation 3.2.2.5 has to be differentiated.
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Hence, since the initial coordinates are constant, the following is obtained:

𝛿uuui
ℓ = 𝛿RRRTxxxic

g +RRRT𝛿uuuic
g

= 𝛿RRRTxxxic
g +RRRT𝛿uuui

g (3.2.2.6)

Where RRRT𝛿uuuc
g has been added to the variation of local displacement vector in order to simplify the

equations. Such modification does not change the results, if the zero strain condition in case of rigid
body motion is satisfied [21]. Considering the variation of the rotation matrix RRR, this one is obtained
by differentiation of 3.1.0.16:

𝛿RRR = SSS(𝛿𝜃𝜃𝜃)RRR (3.2.2.7)

Where SSS(𝛿𝜃𝜃𝜃) is the skew-symmetric matrix containing the components of the pseudo-vector 𝛿𝜃𝜃𝜃,
which can be written in matrix form as:

SSS =

⎡
⎢
⎢
⎢
⎢
⎣

0 –𝛿𝜃Ꮅ 𝛿𝜃Ꮄ

𝛿𝜃Ꮅ 0 –𝛿𝜃Ꮃ

–𝛿𝜃Ꮄ 𝛿𝜃Ꮃ 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.2.2.8)

Hence, using the properties of transpose matrices together with the properties of skew-symmetric
matrices the following is obtained:

𝛿RRRT = –RRRTSSS(𝛿𝜃𝜃𝜃) (3.2.2.9)

Substituting this result in 3.2.2.6:

𝛿uuui
ℓ = –RRRTSSS(𝛿𝜃𝜃𝜃)xxxic

g +RRRT𝛿uuui
g

= RRRTSSS(xxxic
g )𝛿𝜃𝜃𝜃 +RRRT𝛿uuui

g

= zzzi𝛿𝜃𝜃𝜃 +RRRT𝛿uuui
g (3.2.2.10)

Where the properties of cross-product between vectors has been used to obtain the last expression
and where zzzi is defined as such:

zzzi = RRRT

⎡
⎢
⎢
⎢
⎢
⎣

0 –(zi
g – zc

g) (yi
g – yc

g)

(zi
g – zc

g) 0 –(xi
g – xc

g)

–(yi
g – yc

g) (xi
g – xc

g) 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.2.2.11)

Writing Equation 3.2.2.10 for all the element nodes:

𝛿uuuℓ = col(zzzi)𝛿𝜃𝜃𝜃 + diag(RRRT)𝛿uuug

= zzz𝛿𝜃𝜃𝜃 + diag(RRRT)𝛿uuug (3.2.2.12)

Where the col(zzzi) is a matrix with dimensions 24× 3 formed by placing the matrices zzzi in a column
matrix zzz and diag(RRRT) is a diagonal matrix formed by placing the matrix RRRT along its diagonal. At this
point, it is necessary to express the variation 𝛿𝜃𝜃𝜃 as a function of the variation of global displacements
𝛿uuui

g. In order to do that, the procedure given by Jetteur and Cescotto is followed [64]. Hence, the
local spin ΩΩΩℓ evaluated at the centroid of the element is forced to be zero:

ΩΩΩℓ = 000 (3.2.2.13)



42 3. Co-rotational formulation

This enforcement allows the element to pass the large strain patch test [21]. The local spin vector
can also be written as:

ΩΩΩℓ = AAAT
ℓ uuuℓ (3.2.2.14)

Where AAAℓ = row(AAAi
ℓ) is a row matrix with dimensions 3×24 formed using the matrices AAAi

ℓ, defined
as follows:

AAAi
ℓ =

⎡
⎢
⎢
⎢
⎢
⎣

0 –(JJJ–Ꮃ
ᎵᎳN

i
ᒓ + JJJ–Ꮃ

ᎵᎴN
i
ᒌ + JJJ–Ꮃ

ᎵᎵN
i
ᒋ) (JJJ–Ꮃ

ᎴᎳN
i
ᒓ + JJJ–Ꮃ

ᎴᎴN
i
ᒌ + JJJ–Ꮃ

ᎴᎵN
i
ᒋ)

(JJJ–Ꮃ
ᎵᎳN

i
ᒓ + JJJ–Ꮃ

ᎵᎴN
i
ᒌ + JJJ–Ꮃ

ᎵᎵN
i
ᒋ) 0 (JJJ–Ꮃ

ᎳᎳN
i
ᒓ + JJJ–Ꮃ

ᎳᎴN
i
ᒌ + JJJ–Ꮃ

ᎳᎵN
i
ᒋ)

–(JJJ–Ꮃ
ᎴᎳN

i
ᒓ + JJJ–Ꮃ

ᎴᎴN
i
ᒌ + JJJ–Ꮃ

ᎴᎵN
i
ᒋ) –(JJJ–Ꮃ

ᎳᎳN
i
ᒓ + JJJ–Ꮃ

ᎳᎴN
i
ᒌ + JJJ–Ꮃ

ᎳᎵN
i
ᒋ) 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.2.2.15)

Where JJJ–Ꮃ
ij represents the entry in the i-th row and j-th column of the inverse of the Jacobian matrix

of the element evaluated at the centroid, while Ni
ᒓ,N

i
ᒌ,Ni

ᒋ are the shape function derivatives for the
i-th node with respect to the natural coordinates. Therefore, differentiating Equation 3.2.2.14:

𝛿ΩΩΩℓ = AAAT
ℓ 𝛿uuuℓ

= AAAT
ℓ diag(RRRT)𝛿uuug +AAAT

ℓ zzz𝛿𝜃𝜃𝜃 (3.2.2.16)

From which it derives:

𝛿𝜃𝜃𝜃 = –(AAAT
ℓ zzz)–ᎳAAAT

ℓ diag(RRRT)𝛿uuug

= vvvT𝛿uuug (3.2.2.17)

Where vvv is a 24 × 3 matrix. Using these results in Equation 3.2.2.12:

𝛿uuuℓ = (diag(RRRT) + zzzvvvT)𝛿uuug

= TTT𝛿uuug (3.2.2.18)

Therefore, TTT is the transformation matrix relating the global nodal displacement variations to the
local nodal displacements variations. The next step is to derive a consistent global tangent stiffness.
Recalling the equivalence of the principle of virtual work in the local and global frame, which implies
Equation 3.2.1.5, and substituting the transformation matrix TTT in Equation 3.2.1.6, the second term
becomes:

KKKtg𝛿uuug = 𝛿TTTTfffint
ℓ

= 𝛿(diag(RRR) + vvvzzzT)fffint
ℓ

= 𝛿diag(RRR)fffint
ℓ⏝⎵⎵⎵⏟⎵⎵⎵⏝

term I

+𝛿vvvzzzTfffint
ℓ⏝⎵⏟⎵⏝

term II

(3.2.2.19)

Let us consider the two terms in Equation 3.2.2.19 separately. For the i-th node, term I can be
written as:

𝛿RRRfffint,i
ℓ = 𝛿RRRRRRTRRRfffint,i

ℓ

= SSS(𝛿𝜃𝜃𝜃)fffint,i
ℓ (3.2.2.20)

Where Equation 3.2.2.7 has been used and where fffint,i
ℓ = RRRfffint,i

ℓ .
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Using the properties of cross-products and skew-symmetric matrices:

𝛿RRRfffint,i
ℓ = –SSS(fffint,i

ℓ )𝛿𝜃𝜃𝜃
= –SSS(fffint,i

ℓ )vvvT𝛿uuug

= SSS(fffint,i
ℓ )TvvvT𝛿uuug (3.2.2.21)

On the other hand, term II in Equation 3.2.2.19 is given by:

𝛿(vvvzzzT)fffint,i
ℓ = vvv𝛿zzzTfffint,i

ℓ⏝⎵⎵⏟⎵⎵⏝
term III

+𝛿vvvzzzTfffint,i
ℓ⏝⎵⎵⏟⎵⎵⏝

term IV

(3.2.2.22)

Considering term III in Equation 3.2.2.22:

vvv𝛿zzzTfffint,i
ℓ = vvv𝛿

nN

∑
iᎾᎳ
(RRRTSSS(xxxic

g ))
T

fffint,i
ℓ

= –vvv𝛿
nN

∑
iᎾᎳ
(SSS(xxxic

g )RRR)fffint,i
ℓ

= –vvv
nN

∑
iᎾᎳ
𝛿SSS(xxxicg )RRRfffint,i

ℓ
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

term V

–vvv
nN

∑
iᎾᎳ

SSS(xxxicg )𝛿RRRfffint,i
ℓ

⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
term VI

(3.2.2.23)

Elaborating on term V of Equation 3.2.2.23:

vvv
nN

∑
iᎾᎳ
( – 𝛿SSS(xxxic

g ))RRRfffint,i
ℓ = –vvv

nN

∑
iᎾᎳ

SSS(𝛿uuug)RRRfffint,i
ℓ

= vvv
nN

∑
iᎾᎳ

SSS(fffint,i
ℓ )𝛿uuug (3.2.2.24)

On the other hand, expanding term VI making use of Equation 3.2.2.7:

vvv
nN

∑
iᎾᎳ
( – SSS(xxxic

g )𝛿RRR)fffint,i
ℓ = –vvv

nN

∑
iᎾᎳ

SSS(xxxic
g )SSS(𝛿𝜃𝜃𝜃)RRRfffint,i

ℓ

= vvv
nN

∑
iᎾᎳ

SSS(xxxic
g )SSS(fffint,i

ℓ )𝛿𝜃𝜃𝜃

= vvv
nN

∑
iᎾᎳ

SSS(xxxic
g )SSS(fffint,i

ℓ )vvvT𝛿uuug (3.2.2.25)

It is worth noting that the expression obtained for term VI in Equation 3.2.2.25 is a non-symmetric
term. However, it can be proven that the anti-symmetric part of Equation 3.2.2.25 vanishes at equi-
librium. In order to do that, it is sufficient to observe that the anti-symmetric part of the central block
of Equation 3.2.2.25 is given by:

asym(SSS(xxxic
g )SSS(fffint,i

ℓ )) = 1
2

nN

∑
iᎾᎳ
(xxxic

g fffint,i
ℓ

T
– xxxic

g
Tfffint,i
ℓ ) (3.2.2.26)
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Equation 3.2.2.26 represents the three rotational equilibrium equations for the element and it is
equal to zero at equilibrium. The last term that should be addressed is term IV in Equation 3.2.2.22.
However, it can be observed that this is also including the rotational equilibrium equations, which at
equilibrium are zero. Hence, at equilibrium, the element tangent stiffness matrix becomes symmetric,
resulting in quadratic convergence for the incremental iterative Newton-Raphson algorithm [3, 26].
Furthermore, it has been proved by Nour-Omid and Rankin that, even if the anti-symmetric terms are
neglected in the element tangent stiffness formulation, there is no deterioration of the quadratic rate
of convergence [26].

As a result, combining Equation 3.2.2.21, 3.2.2.24 and 3.2.2.26, the geometric stiffness contribution
to the element tangent stiffness is given by:

KKKtg = –col(SSS(fffint,i
ℓ ))vvvT + vvvrow(SSS(fffint,i

ℓ )) + vvvsym(
nN

∑
iᎾᎳ

SSS(xxxic
g )SSS(fffint,i

ℓ ))vvvT (3.2.2.27)

3.2.3. Implementation of the co-rotational technique
In the previous section, the transformation matrix and the tangent stiffness matrix were derived using
a variational approach. Furthermore, it has been described how the CR approach can be applied to the
hexahedral element implementation presented in Section 2.3. In this section, a more detailed overview
is given regarding the implementation of the co-rotational approach.

The CR approach can be thought as a filtering operation, working by extraction and addition of
rigid body motion in the element. In order to extract the rigid body displacements, it is necessary to
obtain the rotation matrix RRR, transforming quantities from global to co-rotated reference system. Such
rotation matrix must be orthonormal, i.e. it must satisfy the followings:

• RRRTRRR = III

• det(RRR) = +1

The first property translates into the orthogonality of the desired matrix, as every column is a unit
length vector perpendicular to the others. On the other hand, the second property implies that the
third column is given by the cross product between the first two. Orthogonality alone is not sufficient
as the determinant of an orthogonal matrix can be either +1 or -1. The second case will result in a
reflection in the rotation matrix, leading to an incorrect determination of the rigid body rotation.

As anticipated in the previous section, the desired rotation matrix is equivalent to the orthogonal
polar factor of the the deformation gradient matrix, evaluated at the centroid of the element. Therefore,
from a computational point of view, this translates into an eigenvalue problem. Indeed, starting from
Equation 3.2.2.1, it is clear that:

FFFTFFF = UUUTUUU (3.2.3.1)

Furthermore, it is known that the eigenvalues of a real symmetric matrix are real and they can be
used with the eigenvectors to diagonalize such matrix. Denoting with vvvᎳ,vvvᎴ,vvvᎵ the eigenvectors of UUU
and with 𝜆Ꮃ, 𝜆Ꮄ, 𝜆Ꮅ the associated eigenvalues, the followings are true:

UUU =QQQT

⎡
⎢
⎢
⎢
⎢
⎣

𝜆Ꮃ 0 0

0 𝜆Ꮄ 0

0 0 𝜆Ꮅ

⎤
⎥
⎥
⎥
⎥
⎦

QQQ UUUTUUU =QQQT

⎡
⎢
⎢
⎢
⎢
⎣

𝜆ᎴᎳ 0 0

0 𝜆ᎴᎴ 0

0 0 𝜆ᎴᎵ

⎤
⎥
⎥
⎥
⎥
⎦

QQQ (3.2.3.2)

WhereQQQ is the matrix whose columns are the eigenvectors ofUUU. Equation 3.2.3.2 is also referred to
as spectral decomposition of a matrix. As a result, it is possible to obtain the matrixUUU by calculating the
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eigenvalues and eigenvectors of UUUTUUU and taking the square root of the diagonal eigenvalues matrix.
Next, the desired rotation matrix is given by:

RRR = FFFUUU–Ꮃ (3.2.3.3)

However, in the present implementation, the existing relation between polar decomposition and
Singular Value Decomposition (SVD) has been used to obtain the rotation matrix. Using the SVD, the
deformation gradient FFF is factorized into the product of three matrices [65]:

FFF =WWWΣΣΣPPPT (3.2.3.4)

Where WWW and PPP are orthogonal matrices, while ΣΣΣ is a diagonal matrix with positive real entries. In
particular, the decomposition is characterized by the following:

• WWW is the matrix containing the eigenvectors of FFFFFFT.

• PPP is the matrix containing the eigenvectors of FFFTFFF.

• ΣΣΣ is a diagonal matrix containing the square root of the eigenvalues associated with the eigen-
vectors of WWW and PPP, also referred to as singular values.

Starting from Equation 3.2.2.1, let us consider the right stretch tensorUUU. Since this one is symmetric
positive definite, the SVD of UUU is equal to its spectral decomposition. Denoting with ΛΛΛ the diagonal
matrix containing the eigenvalues of UUU, it is clear that ΛΛΛ = ΣΣΣ and PPP = QQQT. Therefore, using these
results and combining Equation 3.2.2.1 with 3.2.3.4:

RRRQQQTΛΛΛQQQ =WWWΣΣΣPPPT → RRR =WWWPPPT (3.2.3.5)

In order to avoid the above mentioned reflection case, the algorithm to extract the rotation matrix
RRR has been modified according to the following:

RRR =WWW

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 1 0

0 0 det(WWWPPPT)

⎤
⎥
⎥
⎥
⎥
⎦

PPPT (3.2.3.6)

Such modification ensures the orthonormality of the rotation matrix. Finally, once the rotation ma-
trix RRR is obtained, the procedure to embed the hexahedral element in the co-rotational approach is
illustrated in Figure A.7 in Appendix A.

It is worth mentioning that the formulation presented in Section 3.2.2 has been successfully vali-
dated with only the first two benchmark problems that are proposed in Section 3.3. In particular, the
inaccuracy of the solution for the third case is believed to be associated with a flaw in the implemen-
tation of the transformation matrix TTT. As a result, a modified version of the formulation presented in
Section 3.2.2 has been retained, which has been successfully validated with all the three benchmark
problems proposed in Section 3.3. In the present implementation, the transformation matrix is given
by the rotation matrix only and the tangent stiffness matrix is formed only with the first contribution
appearing in Equation 3.2.1.6. Hence, the present implementation does not result in a fully consistent
tangent stiffness matrix. An inconsistent tangent stiffness matrix is known to affect only the conver-
gence rate of the solution, while not altering the accuracy of the solution [3]. However, in order to
reach the full potential of the method, all the contributions to the tangent stiffness matrix should be
included.
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3.3. Validation of the non-linear 3D hexahedral element
In order to validate the performance of the element, three popular geometric non-linear benchmarks
found in literature have been reproduced [56]. The obtained results are compared to the Abaqus
standard non-linear elements, which are using an UL formulation [59]. In some of the models, selective
integration has been used to eliminate the shear locking effect, typical of full integration schemes.

3.3.1. Beam subjected to end shear load
This validation model is the same as the one presented in Section 2.3.4. One thing to keep in mind
when comparing the UEL results to the Abaqus C3D8 standard element is the influence of the shear
locking effect, already described in Section 2.2.2. In the linear benchmark, the part was meshed using
1 element through the thickness and 10 along the longitudinal direction for simplicity. However, in the
geometric non-linear case, mesh refinement is important to obtain reliable results. A mesh refinement
study has been performed in the Abaqus reference model, illustrated in Figure 3.5a. For comparison
the solution obtained using C3D8I elements and 40 elements in the longitudinal direction has been
taken as reference, as it proved to give the closest results to the analytical solution [58]. On the other
hand, it can be observed how the geometric stiffening effect becomes clearly visible in C3D8 elements
using at least 40 elements along the length of the beam. The same behavior has been observed also in
the full integration CR user element, where the deformed shapes obtained with different mesh seeds
are reported in Figure 3.5b.
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Figure 3.5: Cantilever beam model: influence of mesh seeds in the longitudinal direction

Using only one element through the thickness, a stiff element behavior is observed due to the
shear locking phenomenon. In order to alleviate this effect, a selective integration scheme has been
implemented. According to this scheme, a full integration is used for the stress calculation of all terms
except the transverse shear terms, for which a reduced integration scheme is used. The results are
shown in Figure 3.6. From the comparison it can be observed that the full integration CR element has
a slightly stiffer response when compared to the Abaqus C3D8 element. However, it is worth reminding
that also the linear UEL has been found to be slightly stiffer compared to the C3D8 standard element,
as reported in Section 2.3. On the other hand, using the selective integration scheme improves the
results, that are in close agreement with the C3D8I elements taken as reference.
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Figure 3.6: Output results for the beam subjected to end shear load

Regarding the element performance, it has been observed that the CR full integration element takes
55 iterations, exactly as the Abaqus C3D8 standard element, but requires less increments to complete
the analysis (15 compared to 21). At the same time, the CR element proved to be more stable, as
there were less warning messages during the analysis. Using selective integration, the CR element
requires 16 increments with 64 iterations, compared to the 21 increments with 59 iterations for the
C3D8R standard element. On the other hand, the computational time required to complete the analysis
has been found to be much higher for the user element compared to Abaqus standard elements.

3.3.2. Beam subjected to end moment load
In this model, which is reported by Sze et al. [56], a cantilever beam is subjected to an end moment
load, until it is bent into a circle. This one is illustrated in Figure 3.7. The beam has fixed boundary
conditions at the right end, while a 2𝜋 rotation is imposed on a reference node coupled to the left end.
An isotropic material with elastic modulus E = 1.2MPa and Poisson ratio 𝜈 = 0 is used for this model.
The beam has length ℓ = 12m, width b = 1m and thickness h = 0.1m.
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Figure 3.7: Reference model for the cantilever beam subjected to an end moment

In order to draw a comparison between the Abaqus C3D8 element and the CR UEL, the end moment
is plotted against the vertical and horizontal tip deflections in Figure 3.8. As it can be observed, there
is very close agreement between the CR element and the reference solution. In this benchmark,
the selective integration scheme has not been used, as the solution obtained with the full integration
scheme was found to be already in good agreement with the reference. Concerning the element
performance, a considerable computational saving has been observed in this model. Using the CR
element, the analysis completes in 27 increments with 126 iterations. On the other hand, by using the
standard C3D8 element, the analysis requires 52 increments and 221 iterations. The deformed shape
of the beam throughout the analysis is illustrated in Figure 3.9.
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Figure 3.8: Output results for the beam subjected to end moment load

Figure 3.9: Deformed shape of the cantilever beam throughout the analysis

3.3.3. Slit ring subjected to a line force
This model has been extensively used as benchmark for geometric non-linear codes and has also been
reported by Sze et al. [56]. The model is illustrated in Figure 3.10.

Z

Y

X

  RP−1

X

Y

Z

Figure 3.10: Reference model for the slit ring subjected to a line force
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The ring has an internal radius Ri = 6m, an external radius Re = 10m and height h = 0.03m.
An isotropic material with elastic modulus E = 21MPa and Poisson ratio 𝜈 = 0 has been assigned to
the part. The ring is characterized by a small cut, so that two ends are present. One end is clamped
and it is kinematically coupled to a reference node located at the center of the ring, while a line load
P = 0.8N/m is applied to the other end. Denoting with A and B the points at the innermost and
outermost locations of the loaded end, respectively, the interest is in determining the large rotation
response of the ring by tracking the vertical displacement of these points.

The model was meshed with 10 elements in the radial direction and 80 in the circumferential
direction. The comparison with Abaqus standard elements is reported in Figure 3.11. As it can be
observed in Figure 3.11a, there is good agreement between the CR full integration element and the
C3D8 Abaqus element. However, both of them are not close to the reference solution, which is provided
by S4R elements [56], due to shear locking . As a result, the selective integration scheme has been
used. The results are compared in Figure 3.11b, where it can be observed that there is close agreement
with the reference. Considering the element performance in this model, the CR full integration element
completed the analysis in 22 increments, with 184 iterations, compared to 21 increments and 55
iterations for the C3D8 element. The deformed shape for P = Pmax can be visualized in Figure 3.11c.
Using the selective integration scheme, the analysis completed in 55 increments with 4093 iterations,
while it required 43 increments and 260 iterations for the Abaqus C3D8R element.
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Figure 3.11: Output results for the slit ring subjected to a line force



4
The Floating Node Method

In this chapter, a comprehensive overview on the Floating Node Method (FNM) and its combination
with the CR formulation is presented. Section 4.1 introduces the reader to the concept of floating node,
enriched solid ply element and enriched cohesive interface element. These elements are subsequently
used to construct an enriched laminate element. Next, the section gives a detailed explanation of the
FNM partitioning algorithm, through which it is possible to explicitly represent multiple matrix cracks
and widespread delamination in a composite laminate. Damage initiation/propagation criteria used in
this method are described in Section 4.2. Finally, the integration of the FN element in the co-rotational
approach is presented in Section 4.3, where some test models are reported to show the element’s
potential in addressing geometric non-linear fracture problems in composites.

4.1. Overview of the approach
In Section 2.3, the implementation of a standard three-dimensional finite element has been discussed.
Even though we can identify several geometric features, it might have been noticed that, in a FEM
framework, the element is merely defined through its physical nodes, its nodal connectivity and asso-
ciated shape functions. The reason behind is that the domain is assumed to be continuous throughout
the analysis, so that only the solution values at the physical nodes are needed. However, in order
to have an accurate representation of the crack geometry, it is crucial to not impose any a priori re-
striction on the crack initiation location and crack propagation direction, as this is known to follow the
most energetically favourable path. This is the key motivation that lead to the formulation of the so
called enriched methods, which allow discontinuities to be modelled inside the element domain. When
a crack propagates inside an element, new DOFs and shape functions are required to represent its
boundaries and interpolate the solution over its physical nodes to track its motion.

In order to allow crack propagation inside the element domain, the FNM uses an enriched element
definition. While maintaining the same nodal connectivity, the single FN element is able to split itself
into two or more sub-elements (SE) using information about its edge connectivity and by introduction
of an appropriate number of floating nodes. The floating nodes are so called because they are not
assigned any position vector at the beginning of the analysis. However, when a fracture criterion is
met, these will assume a specific location along the element edges cut by the crack to form the crack
boundaries to represent the displacement solution at the crack nodes.

Considering the complexity of fracture modelling in composites, the enriched element formulation
is applied to obtain ply and cohesive interface elements, purposely designed to model matrix cracks,
delamination and the interaction between the two. Furthermore, these ones are embedded in a single
FN laminate element, which allows different ply and interface SEs within such element to share infor-
mation with each other. The implementation procedure outlined in the following sections is based on
the work of Chen et al. [28, 34, 50, 51, 66, 67].

50
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4.1.1. FN ply element definition
The FN ply element is an 8-node hexahedral element with enriched topological definition. An FN ply
element is purposely designed to represent a matrix crack within its initially intact domain. The element
definition is illustrated in Figure 4.1.

Figure 4.1: Topological definition of the FN ply element

As it can be observed, the element is characterized by 24 nodes, 8 of which are the standard nodes,
while the other 16 are floating nodes. Furthermore, an edge list is created for the element, where the
bottom and top surface edges are numbered according to Figure 4.1. These ones are the only relevant
edges, as it is assumed that the matrix crack is perpendicular to the top and bottom surface of the
element. The floating DOFs are initially associated to such edges.

If the FN element is intact, this one will behave as a standard hexahedral element. Denoting with
Ω the physical domain and with Γt the boundary of such domain, the discretized system of equilibrium
equations for the element, derived in Section 2.2.1 but reported here for convenience, is given by:

∫
ᐎ
𝜖𝜖𝜖T(𝛿vvv)𝜎𝜎𝜎 dΩ = ∫

ᐎ
𝛿vvvT𝜌bbb dΩ +∫

ᏹt
𝛿vvvTttt dΓ (4.1.1.1)

As a result, the same element calculations described in Section 2.3 are performed, where the only
difference is in the number of DOFs, as the element has now 16 additional floating nodes. However, in
such a case, the floating DOFs are not yet active and therefore useless. Since it is important to avoid
singularities in the stiffness matrix to help convergence, the diagonal entries corresponding to floating
DOFs can be assigned a dummy stiffness value, or it can be decided to remove the rows and columns
corresponding to these DOFs. Hence, by defining the element position vector xxxᐎ and the displacement
solution uuu as:

xxxᐎ = [xxxᎳ,xxxᎴ, ...,xxxᎺ]T; uuu(xxx) = NNN(xxx)uuuᐎ (4.1.1.2)

It is possible to write Equation 4.1.1.1 as:

KKKᐎuuuᐎ = fffext
ᐎ (4.1.1.3)

Where KKKᐎ and fffext
ᐎ are defined by:

KKKᐎ = ∫
ᐎ

BBBTDDDBBB dΩ; fffext
ᐎ = ∫

ᐎ
NNNT𝜌bbb dΩ +∫

ᏹt
NNNTttt dΓ (4.1.1.4)

On the other hand, if a certain fracture criterion is met, the element domain is partitioned. Let us
assume eᎳ, eᎵ, eᎷ, eᎹ being the four broken edges cut by the matrix crack, as illustrated in Figure 4.2.
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Figure 4.2: Partitioning of the FN ply element due to matrix crack

In this case, the matrix crack creates four pairs of initially coincident nodes, c±I , c
±
III, c

±
V, c

±
VII, on the

four edges respectively. The coordinates of these nodes are obtained by the intersection of the matrix
crack with the four edges, as it is known that the matrix crack propagates along the fiber direction.
The floating DOFs allocated to the edges at the beginning of the analysis are in such case used to
represent the displacements at the crack nodes:

uuucᎼI
= uuuᎻ; uuucᎼIII

= uuuᎳᎶ; uuucᎼV
= uuuᎳᎹ; uuucᎼVII

= uuuᎴᎴ;
uuuc–

I
= uuuᎳᎲ; uuuc–

III
= uuuᎳᎵ; uuuc–

V
= uuuᎳᎺ uuuc–

VII
= uuuᎴᎳ (4.1.1.5)

Where uuuc±i
denotes the displacements at the crack node i. With the presence of the matrix crack,

the original element domain Ω is divided into two sub-domains ΩA and ΩB. Furthermore, denoting
with Γc the crack boundaries, assuming that the crack is a cohesive crack, the discretized system of
equilibrium equations for the element becomes:

∫
ᐎA∪ᐎB

𝜖𝜖𝜖T(𝛿vvv)𝜎𝜎𝜎(uuu)dΩ +∫
ᏹc
[[𝛿vvv]]T𝜏𝜏𝜏c([[uuu]])dΓ = ∫

ᐎA∪ᐎB
𝛿vvvT𝜌bbb dΩ +∫

ᏹt
𝛿vvvTttt dΓ (4.1.1.6)

Where [[•]] represents the discontinuity jump of a function across the crack surfaces and 𝜏𝜏𝜏c is the
traction resisting the separation [[uuu]] between the cohesive surfaces, related to the latter through the
following:

𝜏𝜏𝜏c = DDDCE[[uuu]] (4.1.1.7)
Where DDDCE incorporates the cohesive constitutive law, given in Section A.2. Therefore, the un-

damaged element is partitioned into three SEs, two hexahedral elements and a cohesive element
representing the matrix crack, utterly defined by floating nodes. The nodal position vectors of the
three elements are:

xxxᐎA = [xxxᎳ,xxxcᎼI
,xxxcᎼIII

,xxxᎶ,xxxᎷ,xxxcᎼV
,xxxcᎼVII

,xxxᎺ]T

xxxᐎB = [xxxc–
I
,xxxᎴ,xxxᎵ,xxxc–

III
,xxxc–

V
,xxxᎸ,xxxᎹ,xxxc–

VII
]T

xxxᏹc = [xxxc–
I
,xxxc–

V
,xxxc–

VII
,xxxc–

III
,xxxcᎼI

,xxxcᎼV
,xxxcᎼVII

,xxxcᎼIII
]T (4.1.1.8)

On the other hand, the nodal displacements associated with the elements are:

uuuᐎA =[uuuᎳ,uuuᎻ,uuuᎳᎶ,uuuᎶ,uuuᎷ,uuuᎳᎹ,uuuᎴᎴ,uuuᎺ]T

uuuᐎB =[uuuᎳᎲ,uuuᎴ,uuuᎵ,uuuᎳᎵ,uuuᎳᎺ,uuuᎸ,uuuᎹ,uuuᎴᎳ]T

uuuᏹc =[uuuᎳᎲ,uuuᎳᎺ,uuuᎴᎳ,uuuᎳᎵ,uuuᎻ,uuuᎳᎹ,uuuᎴᎴ,uuuᎳᎶ]T (4.1.1.9)
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Hence, the displacement solution can be interpolated over the bulk SEs nodes using the standard
shape functions for hexahedral elements:

uuu(xxx) = NNNᐎA(xxx)uuuᐎA for xxx ∈ ΩA

= NNNᐎB(xxx)uuuᐎB for xxx ∈ ΩB (4.1.1.10)

Where NNNᐎA and NNNᐎB are the shape functions matrices for the two SEs, expressed in physical
coordinates. On the other hand, the displacement jump between the cohesive surfaces is related
to the nodal displacements uuuᏹc through the standard shape functions for cohesive elements NNNᏹc , as
reported in Section A.2:

[[uuu]](xxx) = NNNᏹc(xxx)uuuᏹc for xxx ∈ Γc (4.1.1.11)

As a result, the terms on the LHS of Equation 4.1.1.6 lead to the definition of the SEs stiffness
matrices:

KKKᐎA = ∫ᐎA
BBBT

ADDDBBBA dΩ

KKKᐎB = ∫ᐎB
BBBT

BDDDBBBB dΩ

KKKᏹc = ∫ᏹc
NNNT
ᏹcDDDCENNNᏹc dΓ (4.1.1.12)

Where BBBA and BBBB are the strain-displacement matrices for the bulk SEs. It is worth noting that
each bulk SE has its own Jacobian matrix as opposed to the PNM. Assuming no external loading on the
crack surfaces (fffext

ᏹc = 000), the external force vectors for the bulk SEs are given by:

fffext
ᐎA

= ∫
ᐎA

NNNT
ᐎA𝜌bbb dΩ +∫

ᏹt∩ᏹᐎA

NNNT
ᐎAttt dΓ

fffext
ᐎB
= ∫

ᐎB
NNNT
ᐎB𝜌bbb dΩ +∫

ᏹt∩ᏹᐎB

NNNT
ᐎBttt dΓ (4.1.1.13)

However, an external load may be introduced on the crack surface by simply apply the desired load-
ing directly on the floating nodes at the beginning of the analysis. Finally, the system of discretized
equilibrium equations for the initial element is obtained through assembly of the SEs contributions to
the system of equations. Again, in order to avoid singularities, upon assembly it can be decided to
either remove the contribution of non active floating DOFs or to assign dummy stiffness values to their
corresponding diagonal entries.

In the above illustrated cracking scenario, it has been assumed that the element is partitioned into
two hexahedral SEs. However, depending on the fibers orientation in the element, the matrix crack
can be such that a triangular prism and a pentagonal prism are created, as illustrated in Figure 4.3.
The pentagonal prism can in turn be considered to be composed of three triangular prisms. As wedge
elements are supported as potential SE in the FNM, this and many other cracking scenarios can be
captured. It is worth noting that, after the original element is partitioned, the system of discretized
equilibrium equations to be solved is equivalent to a standard FEM mesh representing explicitly the
partition.
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Figure 4.3: Partitioning of a pentagonal prism into three wedge elements to perform numerical integration

4.1.2. FN cohesive element definition
In this section, the formulation of the FN cohesive element with enriched topological definition is pre-
sented. The FN cohesive element is characterized by an evolving topology as the FN ply element, such
that it is able to represent the boundaries of a crack explicitly, capturing the stress concentration at
the crack tip. The enriched cohesive element topology is given in Figure 4.4.

Figure 4.4: Topological definition of the FN cohesive element

Similarly to the FN ply element, the FN cohesive element is defined by 8 physical nodes and 16
floating nodes, together with a list of all its edges. In addition to these, other 8 internal nodes are
introduced in the element definition, the purpose of which will be explained later. If the FN cohesive
element is intact, this one will behave as a standard 8-node cohesive element, described in Section
A.2. Similarly to the FN ply element, since the floating nodes are not active, the contribution of the
floating DOFs is removed from the system of equations. Therefore, the nodal position vector of the
intact FN element and the nodal displacement vector are given by:

xxxCE = [xxxᎳ,xxxᎴ, ...,xxxᎺ]T

uuuCE = [uuuᎳ,uuuᎴ, ...,uuuᎺ]T (4.1.2.1)
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The displacement jump between the top and bottom surface of the cohesive element in global
coordinates is related to the nodal displacements through the following:

[[uuu]](xxx) = NNNCE(xxx)uuuCE (4.1.2.2)

Denoting with ΓCE the domain of the cohesive element, the stiffness matrix of the cohesive element
is given by:

KKKCE = ∫
ᏹCE

NNNT
CEDDDCENNNCE dΓ (4.1.2.3)

The element calculations are in this case performed in a standard way, as outlined in Section A.2.

On the other hand, if a certain fracture criterion is met, the cohesive element domain undergoes
partitioning. Let us assume the top surface of the cohesive element to be cut by a matrix crack, with
the crack nodes located on the edges eᎷ and eᎹ respectively, as illustrated in Figure 4.5.

Figure 4.5: Partitioning of the FN cohesive element due to a matrix crack on its top surface

In this case, two pairs of initially coincident crack nodes are created, denoted with c±V and c±VII. At
the same time, two extra internal nodes, initially coincident with the previously defined crack nodes,
are located at the bottom surface of the cohesive element, cI and cIII respectively. With these nodes
defined, the initial element is partitioned into two SEs, SEtop

Ꮃ and SEtop
Ꮄ , with the following nodal

position vectors:

xxxSEtop
Ꮃ
= [xxxᎳ,xxxcI ,xxxcIII ,xxxᎶ,xxxᎷ,xxxcᎼV

,xxxcᎼVII
,xxxᎺ]T (4.1.2.4)

xxxSEtop
Ꮄ
= [xxxcI ,xxxᎴ,xxxᎵ,xxxcIII ,xxxc–

V
,xxxᎸ,xxxᎹ,xxxc–

VII
]T (4.1.2.5)

Similarly to the FN ply element, the floating DOFs allocated to the edges at the beginning of the
analysis are used to represent the displacements at the crack nodes, while the internal auxiliary nodes
are used to represent the crack tip:

uuucᎼV
= uuuᎳᎹ; uuuc–

V
= uuuᎳᎺ; uuucᎼVII

= uuuᎴᎴ
uuuc–

VII
= uuuᎴᎳ; uuucI = uuuᎴᎷ; uuucIII = uuuᎴᎸ (4.1.2.6)
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However, since the bottom edges, where the nodes representing the crack tip are located, are still
intact, an interpolation of the displacement solution is needed to obtain the nodal displacements of
these nodes:

uuuᎴᎷ = NᎳ(xxxcI)uuuᎳ +NᎴ(xxxcI)uuuᎴ
uuuᎴᎸ = NᎵ(xxxcIII)uuuᎵ +NᎶ(xxxcIII)uuuᎶ (4.1.2.7)

Hence, the nodal displacement vectors for the SEs are defined as:

uuuSEtop
Ꮃ
=[uuuᎳ,uuuᎴᎷ,uuuᎴᎸ,uuuᎶ,uuuᎷ,uuuᎳᎹ,uuuᎴᎴ,uuuᎺ]T

uuuSEtop
Ꮄ
=[uuuᎴᎷ,uuuᎴ,uuuᎵ,uuuᎴᎸ,uuuᎳᎺ,uuuᎸ,uuuᎹ,uuuᎴᎳ]T

The displacement jump across the surfaces of the two SEs is given by:

[[uuu]](xxx) = NNNSEtop
Ꮃ
(xxx)uuuSEtop

Ꮃ
for xxx ∈ SEtop

Ꮃ

= NNNSEtop
Ꮄ
(xxx)uuuSEtop

Ꮄ
for xxx ∈ SEtop

Ꮄ (4.1.2.8)

Where NNNSEtop
Ꮃ

and NNNSEtop
Ꮄ

are the shape function matrices for the two SEs expressed in physical
coordinates. The stiffness matrices of the two SEs are given by:

KKKSEtop
Ꮃ
= ∫

ᏹ
SEtop

Ꮃ

NNNT
SEtop

Ꮃ
DDDCENNNSEtop

Ꮃ
dΓ

KKKSEtop
Ꮃ
= ∫

ᏹ
SEtop

Ꮄ

NNNT
SEtop

Ꮄ
DDDCENNNSEtop

Ꮄ
dΓ (4.1.2.9)

Since the internal auxiliary nodes are located on intact edges, it is necessary to remove their DOFs
from the system of equations. This is achieved by using the relations given in Equation 4.1.2.7, so
that their contribution is condensed onto the DOFs of the end nodes of the intact edges. If damage is
already present in the element before the partition, the damage variables are passed to the SEs and
are used to degrade the cohesive constitutive law.

In the above considered cracking scenario, the matrix crack was assumed to be located at the top
surface of the cohesive element. However, if it is located at the bottom surface, the same procedure is
followed so that two SEs, SEbot

Ꮃ and SEbot
Ꮄ , are created. Another possible case is the one in which both

the top and bottom surface of the cohesive element contain a matrix crack. In such circumstances,
both the top SE and the bottom SE are integrated separately. However, following this procedure will
result in the element being integrated twice over its original domain. As a result, the final solution is
assumed to be a weighted average of the two SEs:

KKKCE =
1
2(KKKSEtop +KKKSEbot)

fffint
CE =

1
2(fff

int
SEtop + fffint

SEbot)
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4.1.3. FN laminate element definition
With the FN ply and FN cohesive elements defined, these are used as SEs to give birth to a FN laminate
element. Let us consider a two-ply laminate element as the one illustrated in Figure 4.6. This laminate
element will contain two enriched ply SEs and one enriched cohesive SE representing the interface
between the plies.

Figure 4.6: Construction of the FN laminate element

In order to define the FN laminate element connectivity, a Python script is used for the pre-
processing of the Abaqus input file. The Python script takes as input an Abaqus input file, where
the part to be meshed with FN laminate elements is meshed with standard C3D8 elements, oriented
such that all the elements are laying on the xy plane and having one element only in the thickness
direction, i.e. the z direction. The part is assigned a specific keyword in order to be recognized by the
Python script. The script prepares a new Abaqus input file where the part is meshed with FN laminate
elements and generates relevant data-lists to be read by the UEL through the UEXTERNALDB subrou-
tine. By specification of the stacking sequence for the laminate and the single ply thickness, the new
nodal coordinates for the ply and interface SEs are calculated.

At the same time, the DOFs for the laminate element are allocated as follows. Let us denote with
NDOF,ply the DOFs of a single FN ply element and with NDOF,coh the DOFs of a single FN cohesive
element. If the FN laminate element contains n plies, its total number of DOFs is given by:

NDOF,lam = n ⋅NDOF,ply (4.1.3.1)

The i – th ply SE has its j DOF allocated in its arrayDOF,plyi
DOF array according to:

arrayDOF,plyi
(j) = (i – 1) ⋅NDOF,ply + j with j = 1, 2, ...,NDOF,ply (4.1.3.2)

Considering the i – th cohesive SE, let us denote with NDOF,coh its number of DOFs. As the FN
laminate element is assembled from top to bottom, the i – th cohesive SE has its top surface DOFs
coincident with the bottom surface of the i – th ply, and its bottom surface DOFs coincident with the
top surface of the (i+ 1) – th ply. Hence its DOF array arrayDOF,cohi

is given by:

arrayDOF,cohi
(k) = arrayDOF,plyi

(k+NDOF,ply)
arrayDOF,cohi

(k+NDOF,coh/2) = arrayDOF,plyiᎼᎳ
(k) (4.1.3.3)

Where k = 1, 2, ...,NDOF,coh. As previously mentioned, the hierarchical structure implemented
in the FNM allows all the SEs to share information with each other, as they are part of the same
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laminate element. This feature of the FN laminate element is particularly convenient for the modelling
of phenomena such as delamination migration [51].

4.1.4. Partitioning strategy and crack propagation in the FNM
In the previous sections, it has been described how, once a fracture initiation criterion is met, the
floating nodes are directly used to explicitly represent the boundaries of a matrix crack. Further-
more, it has been illustrated how the tip of a crack can be closed through the introduction of internal
nodes in the FN cohesive element formulation, obtaining the crack tip DOFs through interpolation
from the DOFs of neighbouring nodes. In particular, the variables that dictate the partitioning strat-
egy and assist crack propagation through the elements are the element and edge status variables.
As a matter of fact, every element is associated a flag value which represents its status (”INTACT”,
”TRANSITION_ELEM”, ”REFINEMENT_ELEM”, ”CRACK_TIP_ELEM”, ”CRACK_WAKE_ELEM”, etc.). In
a similar fashion, an edge status variable (”INTACT”, ”TRANSITION_EDGE”, ”REFINEMENT_EDGE”,
”CRACK_TIP_EDGE”, ”CRACK_WAKE_EDGE”, etc.) is associated to every edge. In addition to this, in-
formation about potential crack tip coordinates xxxc is also allocated to every edge. Such status variables
depend on the location of a certain element/edge with respect to the discontinuity. As an example, let
us consider the situation illustrated in Figure 4.7.

Figure 4.7: Crack propagation example using the edge status variable approach: before propagation across element A (left);
after propagation across element A (right)

In such circumstances, the crack tip is located at edge eᎳ, which is belonging to element A. As
a result, the status variable of edge eᎳ is ”CRACK_TIP_EDGE”. At the same time, edge eᎳ is storing
information about the planar coordinates of the crack xxxcI . On the other hand, the status of element
A is ”TRANSITION_ELEM”. In the FNM, a transition element allows partition, independently from the
crack propagation direction, even though it is not cut by a crack yet. Due to such partition, the crack
tip DOFs are not interpolated from adjacent nodes anymore, but are represented by floating nodes,
so that a more accurate representation of the crack tip is obtained. To further improve the repre-
sentation of the crack tip and to make direct use of the Virtual Crack Closure Technique (VCCT), the
FNM can introduce a refinement element between the cracked element and the transition element [34].

Upon satisfaction of a certain fracture propagation criterion, element A updates its status variable
from ”TRANSITION_ELEM” to ”CRACK_WAKE_ELEM”, changing its partition according to the crack an-
gle. At the same time, the coordinates of the new crack tip xxxcII are calculated and stored to edge eᎴ.
Edge eᎳ updates its status variable from ”CRACK_TIP_EDGE” to ”CRACK_WAKE_EDGE”, as it is now cut
by the crack. On the other hand, edge eᎴ changes its status from ”INTACT” to ”CRACK_TIP_EDGE”, as
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it is hosting the crack tip. In a similar manner, element B becomes a transition element and partition
itself accordingly.

If it is desired to prevent a discontinuity from propagating inside a certain element set, this can
be achieved by using the ”tie” keyword in the input file. Upon preparation of the input file for the
FNM part, the edges of such elements will be assigned a specific flag which gives them the label of
unbreakable edges. The use of element and edge status variables provides an efficient way to carry
out partitioning and crack propagation. As a matter of fact, every element is required to read only a
limited amount of information to partition itself accordingly or allow propagation of the discontinuity
[51].

4.2. Damage initiation and propagation criteria
In order to initiate and propagate damage in the laminate element, specification of fracture criteria is
needed. These will serve to assess whether to carry out the partitioning and/or to degrade the stiffness
of the laminate according to the type and extent of damage present.

4.2.1. Fibre damage
The damage initiation, as the name suggest, refers the the starting point of degradation of the structural
response. Such degradation begins when the stresses/strains satisfy a specific criterion. In the current
FNM implementation, a maximum stress criterion is used as damage initiation criterion for the fibres.
Hence, considering both the tensile and compressive failure of the fibres, the failure index ff is given
by:

ff =
𝜎ᎳᎳ
Xt
; if 𝜎ᎳᎳ > 0

= 𝜎ᎳᎳ
Xc
; if 𝜎ᎳᎳ < 0 (4.2.1.1)

Where 𝜎ᎳᎳ is the stress in the fibre direction, Xt is the fibre tensile strength and Xc the fibre com-
pressive strength. If the damage initiation criterion is satisfied (ff ≥ 1), a bi-linear cohesive traction-
separation law is used to model the damage propagation. The typical trend of such law is illustrated
in Figure 4.8.

Figure 4.8: Traction-separation bi-linear cohesive law

Such law is characterized by a linear response up to damage initiation. Up to this point, there is no
accumulation of damage, so that if unloading occurs the same stiffness curve is followed. After onset,
a linear softening due to accumulation of damage is assumed up to complete failure. The softening is
characterized by a damage parameter d, as pictured in Figure 4.8. In such case, the reduced stiffness
path will be followed upon unloading. The damage parameter can assume values ranging from 0 (no
damage) to 1 (complete failure), but it can never decrease.
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Considering fibre damage, if failure onset is reached, the separation 𝛿f
Ꮂ and traction 𝜏f

Ꮂ at failure
initiation are calculated as:

𝛿Ꮂ =
|𝜀ᎳᎳ|

ff
ℓe;

𝜏Ꮂ =
|𝜎ᎳᎳ|

ff
; (4.2.1.2)

Where 𝜀ᎳᎳ and 𝜎ᎳᎳ are the strain and the stress components in the fibre direction, while ℓe is the
element characteristic length. In particular, the element characteristic length is defined as the length
of the line segment parallel to the fibre angle, which passes through the element centroid and crosses
two edges of the element. On the other hand, from LEFM it is known that the area under the traction-
separation curve represents the energy absorbed by the material prior to complete failure, given the
name of fracture toughness Gc. As a result, since a bi-linear cohesive law is used, the fibre fracture
toughness Gfc is given by the following:

∫
ᒉf

Ꮂ
𝜎ᎳᎳ d𝛿 = 1

2Xt𝛿f = Gfc,T if 𝜎ᎳᎳ > 0;

= 1
2Xc𝛿f = Gfc,C if 𝜎ᎳᎳ < 0 (4.2.1.3)

Where 𝛿f indicates the separation at complete failure for the fibre damage. Thus, separation at
complete failure can be calculated from Equation 4.2.1.3, where all the other quantities are known.
In particular, in the FNM implementation it is assumed that the fibre fracture toughness scales with
respect to ply blocking:

Gn
fc = n ⋅GᎳ

fc (4.2.1.4)

Where n is the number of plies and GᎳ
fc is the fibre fracture toughness value for a single ply. The

scaling is based on the empirical observations in [68], where ply blocking has been found to be linked
to a higher energy dissipation per unit area of projected crack propagation, due to the occurrence of
more fibre pull-out upon fracture [51].

The fibre damage parameter df at the onset of damage is calculated as follows:

df = 1 –
1
ff

(4.2.1.5)

Once the fibre damage parameter is determined, the elastic constants that are related to the fibres
are degraded:

Ed
Ꮃ = EᎳ(1 – df);

𝜈d
ᎳᎴ = 𝜈ᎳᎴ(1 – df);
𝜈d
ᎳᎵ = 𝜈ᎳᎵ(1 – df); (4.2.1.6)

(4.2.1.7)

Where the d superscript is used to refer to the damaged elastic constants values. In the assessment
of onset of damage for the fibres, it is assumed that fibre damage will also cause fibre-matrix debonding
and matrix cracking. As a result, in the implemented damage algorithm, the onset of damage for the
fibres corresponds to an onset of damage for the matrix. If fibre damage is already present in the
element, the damage parameter is updated according to:

df = (
𝛿f

𝛿eff
)(𝛿eff – 𝛿Ꮂ

𝛿f – 𝛿Ꮂ
) (4.2.1.8)

Where 𝛿eff is the effective separation for the fibre damage cohesive law.
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4.2.2. Matrix/delamination damage
If there is no fibre damage in the element, a quadratic traction criterion is used to assess the damage
onset for the matrix in the element. In the current FNM implementation, only tensile failure is considered
and matrix cracks are assumed to be perpendicular to the plane of the laminate. As a result, in plane
stress components are used for to assess damage onset in the matrix. Damage is initiated in the matrix
when the failure index fm, to which a quadratic interaction function is associated, reaches a value of
one:

fm = ( 𝜏n
Yt
)
Ꮄ

+ ( 𝜏t
St
)
Ꮄ

+ ( 𝜏ℓSℓ
)
Ꮄ

(4.2.2.1)

Where 𝜏n, 𝜏t and 𝜏ℓ refer to the normal, transverse shear and longitudinal shear traction components
acting on the matrix crack surface, respectively, while Yt, St and Sℓ represent the tensile, transverse
shear and longitudinal shear strength allowables for the matrix. Since matrix cracks are known to
develop along the fiber direction and it is assumed that these are perpendicular to the plane of the
laminate, the traction components are given by the followings:

𝜏n = 𝜎ᎴᎴ;
𝜏t = 𝜏ᎳᎵ;
𝜏ℓ = 𝜏ᎳᎴ; (4.2.2.2)

Where 𝜎ᎴᎴ, 𝜏ᎳᎵ and 𝜏ᎳᎵ refer to the stress components in the local material direction of the ply.

According to the partitioning procedure outlined in the previous sections, once matrix damage is
initiated, a cohesive SE is formed to explicitly represent it but no stiffness degradation of the ply
element is applied upon partition. For the new cohesive SE, the same damage initiation criterion is
used. If damage onset is satisfied in the cohesive SE, the penalty stiffness values defining the cohesive
constitutive law, Kn, Kt and Kℓ are degraded as follows:

Kd
n = Kn(1 – dm);

Kd
t = Kt(1 – dm);

Kd
ℓ = Kℓ(1 – dm); with dm = 1 –

1
fm

(4.2.2.3)

Where dm is the matrix damage parameter. On the other hand, damage evolution for a matrix
crack in the FNM uses an energy based power law mixed-mode criterion. The mixed-mode damage
initiation and propagation can be visualized in Figure 4.9, where the s and n subscripts refer to the
shear and normal contributions, respectively.

Figure 4.9: Mixed-mode bi-linear traction separation curve
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This criterion determines propagation of a crack under mixed loading conditions assuming a power
interaction function between the fracture toughness in the normal, transverse shear and longitudinal
shear directions. Let 𝛿n, 𝛿t and 𝛿ℓ be the separation components and 𝜏n, 𝜏t and 𝜏ℓ the traction
components in the cohesive element representing the matrix crack. To describe the damage evolution
under mixed loading conditions, it is useful to introduce the effective separation 𝛿eff and effective
traction 𝜏eff:

𝛿eff = √⟨𝛿n⟩Ꮄ + 𝛿Ꮄt + 𝛿Ꮄℓ ;

𝜏eff =
𝜏n⟨𝛿n⟩ + 𝜏t𝛿t + 𝜏ℓ𝛿ℓ

𝛿eff

= Gn +Gt +Gℓ
𝛿eff

; with ⟨𝛿n⟩ = max(0, 𝛿n) (4.2.2.4)

Where Gn, Gt and Gℓ represent the normal tensile, transverse shear and longitudinal shear strain
energy density. The bi-linear trend of the cohesive law implies:

∫
ᒉf

eff

Ꮂ
𝜏eff d𝛿eff =

1
2𝜏

max
eff 𝛿f

eff = Gmc (4.2.2.5)

Where 𝜏max
eff is the value of 𝜏eff at damage onset, similarly to the single mode case. The power law

mixed-mode fracture toughness Gmc is then defined as:

Gmc = [(
𝜆n

Gnc
)
ᒆ

+ ( 𝜆t
Gtc

)
ᒆ

+ ( 𝜆ℓGℓc
)
ᒆ

]
– Ꮃᒆ

(4.2.2.6)

Where Gnc, Gtc and Gℓc are the fracture toughness in the tensile normal, transverse shear and
longitudinal shear directions, 𝛼 is a material dependent exponent and where 𝜆n, 𝜆t and 𝜆ℓ are given
by:

𝜆n =
Gn
Gm

; 𝜆t =
Gt
Gm

; 𝜆ℓ =
Gℓ
Gm

; with Gm = Gn +Gt +Gℓ (4.2.2.7)

Upon damage propagation, the matrix damage parameter dm is updated to further degrade the
stiffness according to the following:

dm = ( 𝛿
f

𝛿eff
)(𝛿eff – 𝛿Ꮂ

𝛿f – 𝛿Ꮂ
) (4.2.2.8)

Where 𝛿Ꮂ and 𝛿f, which are the separation at failure onset and complete failure respectively, are
calculated from the power law mixed-mode fracture toughness relation upon damage initiation.

In a similar fashion, delamination is modeled in the FNM with the same damage initiation and prop-
agation criteria used for matrix cracks. The cohesive crack propagation criterion illustrated so far works
in conjunction with the partitioning strategy described in Section 4.1.4. Hence, a crack is propagating
from one edge to the other, allowing elements to share informations about the status of their common
edges. Intact elements have the ability to partition themselves prior damage onset, in order to improve
the representation of the crack tip.

4.2.3. Viscous regularization of damage
A viscous regularization has been implemented for both fibre and matrix crack/delamination damage
parameters in order to help convergence. As a matter of fact, convergence difficulties are not un-
common when dealing with problems involving non-linear effects. Regarding damage propagation, an
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abrupt change of stiffness due to contact, or extensive propagation of damage might occur in a specific
time increment. Considering the bi-linear cohesive law illustrated in Figure 4.8, convergence issues are
caused by the sudden change in stiffness at the peak between the two linear parts of the curve. A
common technique to overcome this problem in Abaqus is the use of viscous regularization for the
damage variables used to degrade the elastic constants [59]. By specification of a viscous parameter
𝜇v, traction and separation values outside the cohesive law limits are allowed, in order to return a
positive tangent stiffness matrix. The regularized damage dv is related to the un-regularized damage
d through the following law:

d(dv)
dt = 1

𝜇v
(d – dv) (4.2.3.1)

To obtain the regularized damage parameter dv to be used at the time increment k+ 1, the above
equation in integrated with respect to time. Hence, the following is obtained:

dv
kᎼᎳ =

Δt
𝜇v + ΔtdkᎼᎳ +

𝜇v
𝜇v + Δtdv

k with Δt = tkᎼᎳ – tk (4.2.3.2)

Where dkᎼᎳ is the un-regularized damage parameter at increment k+1, calculated according to the
cohesive softening law and dv

k is the regularized damage parameter from the previous time increment.
It is easy to verify that setting 𝜇v = 0 in Equation 4.2.3.2 returns the un-regularized damage parameter.
A rule of thumb to estimate an upper limit to be set for the viscous parameter 𝜇v is the following:

𝜇v <
𝛿Ꮂ
u̇ (4.2.3.3)

Where 𝛿Ꮂ is the separation at damage onset according to the cohesive law of the material and u̇ is
the typical amplitude of nodal velocity in the mesh, which can be considered to be given by the loading
rate. The use of viscous regularization with a small value of viscosity parameter 𝜇v has been observed
to help convergence without compromising the results [59].

4.3. Combination of FNM and co-rotational formulation
In this section, the integration of the FN laminate element in the CR procedure outlined in Chapter 3 is
proposed. In order to understand how it is possible to embed such element in the CR approach, it is
worth to further consider the implementation scheme of the FN laminate element. This one is outlined
in Figure 4.10.

As previously explained, the FN laminate element is defined such that an arbitrary number of FN
ply and FN cohesive interface elements can be allocated as objects of such element. Every element is
integrated separately and the individual contributions are assembled to build the stiffness matrix and
internal force vector of the FN laminate element accordingly. Let us consider a single FN ply element
which is part of the FN laminate element. Similarly to the FN laminate element, different types of
elements can be allocated as objects of this element. If partition is triggered, integration will not be
carried out on the standard 8-node solid element, but on the ”abstract” solid sub-bulks and on the
cohesive SE representing the matrix crack. The cohesive FN element representing the interface works
in a similar fashion. If the FN cohesive element is partitioned, integration will be performed on the top
and/or bottom cohesive SEs, rather than on the ”abstract” intact cohesive element.

In either case, integration is performed on elements which are completely equivalent to standard
brick/wedge solid and cohesive elements, highlighted in red in Figure 4.10. As a result, it suffices to
apply the CR procedure to these elements to include geometric non-linear effects in the FN laminate
element. Integration of the solid wedge element in the CR procedure proved to be straightforward, as
this element belongs to the same element class to which the hexahedral element is belonging. The
computational scheme used for the CR-wedge element does not change and follows the procedure
illustrated in Figure A.7, where the only difference is in the number of nodes of the element.
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FN laminate
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FN ply
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standard
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solid element

standard
8-node/6-node
cohesive element

standard
8-node/6-node
cohesive element

standard
8-node/6-node
cohesive element

Figure 4.10: Hierarchical structure of the FN laminate element

On the other hand, cohesive elements have a substantial different formulation, so that the same
CR approach developed for solid elements cannot be applied. However, a particularly cheap procedure
to include geometric non-linearities in these elements is to refer all the element calculations to the last
converged mid-plane configuration, rather than to the undeformed mid-plane configuration. The two
are pictured in Figure 4.11 for convenience.

Figure 4.11: Visual illustration of undeformed (left) and last converged (right) mid-plane configuration for the cohesive element

As a matter of fact, it is worth reminding that the cohesive element is sharing its top and bottom
surface with the solid FN elements, which already include geometric non-linearities via the CR approach.
The last converged nodal coordinates of the cohesive element for the k-th iteration are calculated as:

xxxk = xxx+ uuuk – Δuuuk (4.3.0.1)
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Where the nodal incremental displacements Δuuuk, which are passed in to the UEL by Abaqus, are
removed from the total displacements to obtain the last converged configuration. Finally, the last
converged mid-plane coordinates xxxmid,k are given by:

xxxmid,k =
1
2(xxx

bot
k + xxxtop

k ) (4.3.0.2)

The suitability of such approach for cohesive elements has been determined through testing of the
single cohesive element UEL, in comparison with the Abaqus standard cohesive element. A simple
model in which the cohesive seam, attached to solid elements, is subjected to excessive out of plane
deflection has been built in Abaqus. While the results from the linear formulation were found not to be
in agreement with the Abaqus reference, the formulation using last converged mid-plane coordinates
for element calculations proved to be equivalent to the Abaqus non-linear cohesive formulation. As a
matter of fact, it can be observed that the two contour plots of the displacement magnitude corresponds
to each other, as shown in Figure 4.12
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Figure 4.12: Displacement contour plot comparison between the Abaqus reference model and the cohesive UEL

Most importantly, the two models were found to be characterized by the same delamination growth
pattern throughout the analysis, as illustrated in Figure 4.13, proving that the implemented cohesive
formulation is able to correctly represent damage evolution in the model. Figure 4.13 compares the
stiffness degradation variable (SDEG) in Abaqus to the delamination damage (dd) in ParaView, showing
very close agreement between the two.

As a result, a new element has been formed, which is given the name of CR-FN laminate element.
Such FN element includes the geometric non-linearities in its solid SEs via the CR approach presented
in Chapter 3, while it uses the above described modified cohesive formulation for the FN interface SEs.
With such element, the modelling of crushing and low-velocity impacts phenomena has been addressed
and it is presented in the next section.
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Figure 4.13: Delamination growth comparison between the Abaqus reference model and the cohesive UEL
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4.3.1. Towards the modelling of axial crushing and low-velocity impact phe-
nomena

Structural crashworthiness is known to be a crucial requirement in many engineering sectors, especially
in the aerospace and automotive industry [69]. Initially, metals have been used to manufacture energy
absorption tubular components. As a matter of fact, metals were found to be convenient due to their
progressive plastic folding behavior [70]. Nevertheless, in the last decades Fiber Reinforced Polymers
(FRP) became particularly attractive for applications where energy absorption and weight saving are
the main design drivers. However, these materials are known to experience very little or no plasticity
at all. On the contrary, when subjected to axial crushing, they undergo several fracture mechanisms
in order to absorb energy. In particular, experimental findings in [71] suggest that most of the energy
absorption is obtained through the Mode I splitting of the plies, bending of the fronds, Mode II driven
delamination, fibre fracture and friction at and within the fronds. The typical damage pattern observed
is illustrated in Figure 4.14.

(a) 5 mm of crushing (b) 20 mm of crushing

(c) 40 mm of crushing

(d) Final deformation

Figure 4.14: Axial crushing of a [+ኻ኿/-ኻ኿/+ኻ኿/ኺᎵ/+ኻ኿/-ኻ኿/+ኻ኿] circular CFRP tube [1]

In order to test the element performance in capturing such a phenomenon a reduced test model
has been developed. Assuming an axis-symmetric damage pattern, a small strip in the composite tube
is modelled to capture the frond bending behavior. The strip has length ℓ = 5mm, width b = 1mm
and layup [0/90]. The assumed material properties are given in Table 4.1. In particular, the penalty
stiffness used for the cohesive interface elements has been estimated according to [72]:

K ≈ 50EᎵ
h (4.3.1.1)

Where EᎵ is the out of plane elastic modulus and h the total thickness of the laminate.

The reference model built in Abaqus is shown in Figure 4.15. In the two-plies model, the transla-
tional displacements are constrained at the left end. At the right end, a velocity load VᎳ = –1mm/s is
applied to the outer nodes of the 0 ply, which are also constrained from moving in the y direction. The
part has been meshed with 5 elements along its length direction and 1 element in the width direction.
The velocity load is applied in a total time of ttot = 2s, with a fixed time increment Δt = 2 ⋅ 10–Ꮅs.
Imposition of a compressive load on the 0 ply causes the laminate to deflect due to the difference in
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Property Value Units

Longitudinal modulus EᎳ 120.2 [GPa]

Transverse modulus EᎴ, EᎵ 8.724 [GPa]

Shear modulus GᎳᎴ, GᎳᎵ 4.556 [GPa]

Shear modulus GᎴᎵ 3.980 [GPa]

Poisson ratio vᎳᎴ, vᎳᎵ 0.32 [–]

Poisson ratio vᎴᎵ 0.436 [–]

Longitudinal tensile strength Xt 2060 [MPa]

Longitudinal compressive strength Xc 1400 [MPa]

Transverse tensile strength Xt 41.50 [MPa]

Transverse compressive strength Xt 185 [MPa]

Shear strength St, Sℓ 90 [MPa]

Single ply fibre fracture toughness GᎳ
fc,T, GᎳ

fc,C 112.7 [kJ/mᎴ]

Mode I matrix/interfacial fracture toughness Gnc 0.212 [kJ/mᎴ]

Mode II matrix/interfacial fracture toughness Gtc, Glc 0.774 [kJ/mᎴ]

Power law exponent 𝛼 1 [–]

Penalty stiffness Kn, Kt, Kℓ 2 ⋅ 10Ꮈ [MPa/mm]

Single ply thickness tply 0.125 [mm]

Table 4.1: Material properties used for the composite model
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Figure 4.15: Reference 2-plies model to simulate frond bending

modulus between the plies in the longitudinal direction. A comparison with the linear version of the
code is given in Figure 4.16. As it can be observed, the load-displacement curve is far from linear in
the non-linear version of the FN laminate element. The softening observed in the non-linear model is
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due to the complete failure of the interface and occurrence of matrix cracks, formed at the left end
at an early stage compared to the linear counterpart. These features can be explicitly visualized in
ParaView, as shown in Figure 4.17
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Figure 4.16: Comparison between linear and geometric non-linear FN laminate element output results

Figure 4.17: Visualization of delamination damage (dd) and matrix damage (dm) in ParaView

The development of transverse matrix cracks in the 90 ply due to shear is qualitatively a faithful
representation of the phenomenon. On the other hand, little delamination damage and matrix damage
has been observed in the linear model. In particular, the latter showed an excessive amount of fibre
damage, present also in the non-linear model but in a smaller amount. By increasing the mesh seed
in the longitudinal direction a higher matrix crack density has been obtained in the 90 ply.

As an example of the element potential in explicitly representing matrix cracks and delamination
damage in impact phenomena, a small test model, illustrated in Figure 4.18, has been developed. This
one consists in a squared plate, where a velocity load is incrementally imposed to its center nodes. The
plate has simply supported boundary conditions applied at its vertical edges, while the horizontal edges
are free, and has stacking sequence [0/90]s. The material properties reported in Table 4.1 have been
used for this model, where the penalty stiffness of the cohesive elements has been modified according
to Equation 4.3.1.1. The damage propagation in the model can be visualized in Figure 4.19. The
damage pattern developed in a symmetric manner, as it would be expected for a symmetric laminate.
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Figure 4.18: Test model to simulate impact loading on a composite laminate

(a) Matrix/delamination damage at t ዆ ኺ.ኼ኿ttot (b) Matrix/delamination damage at t ዆ ኺ.኿ttot

(c) Matrix/delamination damage at t ዆ ኺ.዁኿ttot (d) Matrix/delamination damage at t ዆ ttot

Figure 4.19: Visualization of matrix (dm) and delamination (dd) damage with the FNM
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4.3.2. Quasi-static crushing of a cross-ply laminate
This model refers to the work of Huang et al. [73] and has been chosen as benchmark due to the
explicit mentioning of geometric non-linear effects. In their research, two CFRP rectangular plates are
tested in quasi-static crushing up to failure. The laminates, both with a total number of 16 plies, have
stacking sequence [0/90]Ꮆs and [-45/45]Ꮆs, and are named cross-ply and angle-ply, respectively. In
the model, the 0 fiber direction is defined as the one in the longitudinal direction of the plates. The
crush test fixture is such that it offers simply supported boundary conditions on the two shorter edges,
leaving the two longer edges free. The experimental setup is illustrated in Figure 4.20a. In the exper-
iment, the hemispherical steel impactor loads the composite plate up to ultimate failure. The recorded
load displacement curve shows a significant drop in the force due to sudden failure of the laminates.

In an attempt to reproduce the original 16-plies model, high computational efforts have been ob-
served. These are believed to be linked to the not fully consistent tangent stiffness matrix in the CR
formulation and to the occurrence of multiple damage softening mechanisms. As a result, a reduced
model of the cross-ply laminate with 4 plies only has been developed in order to draw a qualitative
comparison. The main interest is in capturing the geometric non-linear trend, with and without failure,
of the load-displacement curve and to compare the obtained damage pattern to the one observed in
the experiments. The reduced 4-plies model built in Abaqus is illustrated in Figure 4.20b.

(a) Experimental setup [73]
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(b) Reduced 4-plies reference model

Figure 4.20: Quasi-static crushing of a cross-ply laminate

In the reference model, the laminate has lenght ℓ = 20mm, width b = 10mm and stacking sequence
[0/90/90/0], with a single ply thickness tply = 0.125mm. The reference model has been meshed with
800 elements, with only 1 element through the thickness as requested by the Python pre-processing
script. As only part of the material properties needed for the model were given in [73], the material
properties reported in Table 4.1 have been used.

In the model, the part is constrained from moving in the z and y directions at the two shorter edges.
The steel impactor has been modeled as a 3D discrete rigid part, and associated to the reference point
RP-1 using a rigid body constraint. A displacement load of 4.5mm in the negative z direction has been
applied on the reference point RP-1. It is worth to remind here that, since Abaqus does not recognize
the UEL topology, only node-based surface definitions could have been used. As a result, it has not
been possible to define the indentor as an analytical rigid body, which is often used in contact problems.

Surface-to-surface contact has been specified, with the master surface being the impactor and the
slave surface a set of preselected contact nodes at the center of the laminate. A node-to-surface
discretization algorithm has been used as it was possible to specify only node-based surfaces for the
contact definition. On the other hand, a finite sliding formulation has been used, since this one is the
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one suggested in the Abaqus User’s Manual for geometrically non-linear analyses [59]. In the contact
property definition, a tangential behavior with friction coefficient 𝜇t = 0.23, based on [74], and a
hard contact pressure-overclosure for the normal behavior has been specified, with a penalty contact
algorithm. As a matter of fact, the latter results in a less stringent enforcement of contact and it has
been observed to facilitate convergence. A viscous parameter 𝜇v = 1 ⋅ 10–Ꮇ has been used for both
the fiber and matrix/delamination damage. Convergence has been obtained without specification of
contact damping. However, contact damping can be specified in the Interaction Properties module to
help convergence, through definition of a damping coefficient 𝜇d. As a rule of thumb, an estimation
for the damping coefficient can be obtained using information from the contact pressures and nodal
velocities in the model before inclusion of damping, considering the following relation [59]:

fvd = 𝜇dAu̇el
rel (4.3.2.1)

Where fvd are the damping forces, A the nodal area and u̇el
rel the relative motion between the two

surfaces, which can be obtained examining the message (.msg) file. A comparison between the results
reported in the reference and ones obtained in the 4-plies model is given in Figure 4.21b.

(a) Reference load-displacement curves for the cross-ply
laminate [73]
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(b) Obtained load-displacement curves for the reduced
cross-ply laminate model

Figure 4.21: Qualitative comparison of the load-displacement curve

From the comparison with the reference it can be observed that a similar geometric non-linear trend
is captured by the UEL. However, a much higher loss of stiffness is observed in the reduced model, due
to an abrupt evolution of damage. At the same time, good agreement with the experiment is observed
in Figure 4.22, which illustrates the damage pattern on the front of the laminate. As a matter of fact,
a similar butterfly-like shape for the fibre damage has been obtained, as reported in Figure 4.22b,
with the formation of longitudinal matrix cracks as pictured in Figure 4.22c. Good agreement with the
experiment can also be observed considering the back view of the damaged laminate, given in Figure
4.23.



4.3. Combination of FNM and co-rotational formulation 73

(a) Front view of the damaged cross-ply laminate [73] (b) Front view of the fibre damage (df) contour plot

(c) Front view of matrix damage (dm) and delamination damage (dd)

Figure 4.22: Qualitative comparison of the damage pattern on the front of the cross-ply laminate

(a) Back view of the damaged cross-ply laminate [73] (b) Back view of the fibre damage (df) contour plot

Figure 4.23: Qualitative comparison of the fiber damage pattern on the back of the cross-ply laminate
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Conclusions

5.1. Conclusion
Fibre-reinforced composites have become increasingly attractive for many engineering applications in
the last decades. A very interesting aspect of these materials is that their mechanical properties can
be tailored for optimum strength and stiffness by controlling the orientation of the fibers. At the same
time, they are characterized by high strength properties, strong corrosion resistance, improved dam-
age tolerance and can lead to considerable weight and cost reduction when compared to their metallic
counterparts. However, the accurate modelling of damage in composites is still an active research
topic, as their progressive failure involves the interaction of various intra- and inter-laminar damage
mechanisms which often lead to complex fracture paths. In particular, the modelling becomes even
more challenging in phenomena where geometric non-linear effects are not negligible, such as a crush
or impacts.

Concerning the modelling of damage, enriched methods such as XFEM and PNM proved to have
several advantages over standard FEM fracture modelling techniques, as they allow to model a discon-
tinuity inside a FE domain. However, these also present some drawbacks, among which the inability
to explicitly represent discontinuities, their difficulty in modelling complex cracking scenarios and the
intrinsic error in the mapping of a straight crack to the parent element domain [34]. The novel FNM,
implemented by Chen et al. [34], offers an element formulation which proved to overcome these is-
sues. The peculiarity of this approach is that its formulation leads to the exact same solution as that
obtained through a local remeshing explicitly representing the discontinuities. Furthermore, the FNM
proved to be particularly suited for the modelling of damage in composite structures.

The objective that has been set for this thesis was to extend the capabilities of the FN laminate
element by including geometric non-linear effects in the element formulation, in order to address com-
plex fracture phenomena such as crushes or impacts. To this end, following the literature study, the
relatively new CR approach was considered to be a very suitable option. As a matter of fact, the CR ap-
proach has been found to provide a convenient way to incorporate geometric non-linear effects in a FE,
while retaining element independence in terms of implementation. This formulation essentially consists
in a front end filtering operation, lying between the assembler/solver and the existing finite element li-
brary. In order to fulfill the final objective of the thesis, the problem has been tackled into several steps.

An eight-node linear hexahedral element has first been implemented and validated in comparison
to the standard C3D8 Abaqus elements through development of test models. As the final scope of this
project was to potentially model dynamic problems, the extension of the element implementation to
dynamic procedures has also been investigated. To facilitate the verification, a simplified implemen-
tation reduced to a Newmark scheme using trapezoidal rule has been developed. The procedure has
been tested through a simple dynamic benchmark problem, which yielded results in agreement with a
proposed analytical solution implemented in Matlab, as reported in Appendix A.

74
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In a second stage, the CR procedure has been implemented and applied on the eight-node linear
solid element. Even though the present implementation does not result in a fully consistent tangent
stiffness matrix, the procedure has been successfully validated with three popular geometric non-linear
problems reported by Sze et al. [56]. In two of the three models that were reproduced, it has been
necessary to use a selective integration scheme in order to achieve the same degree of accuracy pro-
vided by the reference solutions and avoid the shear locking effect. In regard to convergence, the CR
user element has been found to require less increments in two models out of three when compared
to the C3D8 element. However, the use of selective integration has been observed to negatively af-
fect convergence and increase the number of iterations needed to complete the analysis. In the third
model, the CR element has been found to require a particularly high number of iterations. This is
believed to be linked to the high aspect ratio of the elements in the mesh, as in the reference S4R
elements were used [56]. Despite the good accuracy of the results, the CR user element has been
observed to be characterized by a high computational time in comparison to standard Abaqus elements.

Finally, the extension of the FN laminate element to geometric non-linear analyses has been ad-
dressed. As integration in the FN laminate element is reduced to standard Gauss integration on the
SEs domains, it has been judged theoretically sufficient to embed its ”standard” solid and cohesive
SEs in the CR formulation to incorporate geometric non-linear effects. Although the CR procedure has
been successfully applied to include geometric non-linear effects in the solid hexahedral/wedge SEs,
it has been verified that the same approach could have not been applied to the cohesive SEs, due to
substantial differences in terms of implementation. However, upon testing of the single cohesive UEL,
a convenient approach has been found to include geometric non-linearities in the cohesive formulation.
The approach consists in referring the cohesive element calculations to the last converged mid-plane
coordinates. As a matter of fact, the cohesive top and bottom surface nodes are shared with the CR
solid SEs, which already includes geometric non-linear effects. Upon comparison with an Abaqus ref-
erence cohesive model, this approach was found to provide the same results and to correctly capture
the damage initiation/propagation. During testing of the so formed CR-FN laminate element, this one
has been found to be characterized by a particularly high computational time. This is believed to be
associated to the not fully consistent tangent stiffness matrix in the present implementation and the
multiple, simultaneous damage softening occurring in the element. To this regard, a viscous regular-
ization has been implemented for the damage parameters, which was observed to ease convergence.
The CR-FN laminate element has been used to reproduce some geometric non-linear test models. Sub-
stantial differences have been observed in the comparison with the linear FN laminate element and a
qualitative comparison suggests that the element has an interesting potential in addressing geometric
non-linear fracture problems.

5.2. Recommendations
Further work is certainly needed for this research to reach the full potential of the method. In particular,
the following recommendations are made:

• The implemented CR formulation is currently using a SVD algorithm to obtain the orthogonal
polar factor of the deformation gradient of the element. Although SVD is a well established and
validated algorithm, it is also known to be computationally expensive. This might be linked to the
high computational time required by the CR user element to complete the analysis. As a result,
other algorithms to obtain the orthogonal polar factor should be considered.

• The accuracy of the results obtained with the CR formulation proves that the internal force vector
of the element is calculated correctly. However, the present CR formulation does not result in
a fully consistent tangent stiffness matrix. This is believed to be associated to the high compu-
tational efforts observed for the element. Furthermore, it is known that an inconsistent tangent
stiffness matrix may provide inaccurate results in buckling problems. Therefore, further work is
needed to implement a fully consistent tangent stiffness matrix.

• In the implemented implicit dynamic procedure, the control parameters have been set to values
equivalent to a Newmark scheme with trapezoidal rule, to facilitate the verification of the solution
with the proposed analytical solution. However, this set of values is often not the most appropriate
one, depending on the amount of energy dissipation involved in the physical phenomenon to
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be modeled. At the same time, the damping matrix contribution has been neglected. As a
result, further improvements of the implementation are needed if it is desired to address dynamic
problems.

• Concerning the high computational efforts required by the CR-FN laminate element, it is believed
that the simultaneous occurrence of different types of damage in the element makes it difficult for
the solver to find equilibrium. As a result, a more in depth investigation regarding the influence of
damage softening on the rate of convergence of the analysis is required to improve the element
performance.
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Appendix

A.1. Extension of element validity for dynamic implicit analyses
In this section, the extension of the linear brick element for dynamic implicit analyses is investigated.
The section starts with an introduction to the dynamic problem. Next, the main differences between
explicit and implicit time integration schemes are outlined to the reader. In conclusion, a detailed
overview of the implementation of this procedure in the Abaqus UEL subroutine is given at the end of
the section, to end with a verification example.

A.1.1. The dynamic problem
The dynamic implicit procedure is typically used in Abaqus/Standard to investigate the non-linear dy-
namic response of the structure. In Section 2.3, a static analysis procedure was considered. This one
implies that all the loads are static or quasi-static, which means they are either constant over time or
they do vary with such a slow rate that there is no substantial variation in the structural response. If
these assumptions are not valid anymore, a dynamic analysis should be performed.

For dynamic problems in FEM, a set of discretized equilibrium equations that include the inertial and
damping terms is solved, which can be written as:

MMMü̈üu(t) +CCCu̇̇u̇u(t) +KKKuuu(t) = fffext(t) (A.1.1.1)

Where MMM is the mass matrix, CCC the damping matrix, KKK the stiffness matrix and fffext the external
forces applied to the system. The presence of the damping term is accounting for the presence of
different kinds of damping forces, which resist the dynamic motion. Even though it is difficult to quantify
these forces, it is reasonable to assume that these are velocity-dependent. On the other hand, the
damping matrix CCC does not depend on geometric and material properties of the system. Among the
existing methods to construct such matrix, the most used is the Rayleigh damping. According to this
method, the damping matrix is given as a combination of the mass and stiffness matrices of the system,
multiplied by suitable constants 𝛼 and 𝛽 which are problem dependent:

CCC = 𝛼MMM+ 𝛽KKK (A.1.1.2)

To facilitate the verification, the damping contribution has been neglected in the present implemen-
tation so it will not be considered hereafter. The solution to a dynamic problem can be obtained either
by modal analysis method or by direct integration method [75, 76]. However, when there is a high
degree of non-linearity in the system, only the use of direct integration methods is suitable. In order
to obtain a set of algebraic equations, a discrete approximation in time is assumed for the solution, so
that:

uuu(tn) ≈ uuun; u̇̇u̇u(tn) ≈ u̇̇u̇un; ü̈üu(tn) ≈ ü̈üun (A.1.1.3)
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As a result, the equilibrium equation at each discrete time can be written in the residual form as:

ΔRΔRΔRn = fffext
n – MMMü̈üun – KKKuuun

= fffext
n – MMMü̈üun – fffint

n (A.1.1.4)

A.1.2. Explicit/Implicit time integration schemes
In order to solve the system given in Equation A.1.1.4, two categories of existing approaches can be
found in literature, namely explicit and implicit methods. Abaqus/Explicit is using the former. With this
method, if the mass matrix is diagonal and the damping is considered to be only mass-proportional,
the entire system of equations can be decoupled and solved without resorting to matrix factorization.
Hence, choosing the nodal accelerations as single unknown:

ü̈üun =MMM–Ꮃ(fffext
n – fffint

n ) (A.1.2.1)

The nodal displacements and velocities are then obtained using the central difference time integra-
tion scheme [22]. As a result, the solver does not have to iterate to obtain the solution. This feature
makes the explicit solver computationally efficient. However, a severe drawback, of this method is that
a mass-proportional damping affects mainly the low-frequency response of the structure, which is usu-
ally the one of main interest for design purposes. Another disadvantage of the explicit method is that
the central difference scheme is conditionally stable, which means that the solution becomes unstable
and rapidly diverges when the time increment is too large. In particular, the following limitation applies
to the time increment Δt to be used in an explicit analysis:

Δt ≤ Δtcrit =
ℓe
c (A.1.2.2)

Where ℓe is the characteristic element length and c is the stress wave speed of the material. As
a result, the time increment should be smaller than the time that a stress wave takes to propagate
through an element.

On the other hand, the implicit procedure solves a system of non-linear equations, dependent on
quantities at time tn as well as on quantities at time tnᎼᎳ. Such feature makes this method computa-
tionally more expensive compared to the explicit method. However, the aforementioned limitation on
the time increment size does not apply to the implicit method, which is unconditionally stable. Further-
more, this one proved to be more suitable to investigate the low-frequency response in a system [76].

In order to solve this system of non-linear equations, the problem could be formally re-formulated as
a first order system and solved through the application of multi-step methods. However, in structural
dynamics it is preferred to use single-step methods, directly applied to the second-order system of
equations. The most popular is the Newmark method [22]. This one relates the quantities at time tnᎼᎳ
to the quantities at time tn through the following:

uuunᎼᎳ = uuun + Δtu̇̇u̇un + (
1
2 – 𝛽)ΔtᎴü̈üun + 𝛽ΔtᎴü̈üunᎼᎳ (A.1.2.3)

u̇̇u̇unᎼᎳ = u̇̇u̇un + (1 – 𝛾)Δtü̈üun + 𝛾Δtü̈üunᎼᎳ (A.1.2.4)

Where 𝛽 and 𝛾 are parameters selected to control accuracy, stability and frequency dissipation in
the system. By substituting Equation A.1.2.3 in Equation A.1.1.4, it is possible to solve the system
by choosing the displacement at the tnᎼᎳ as primary unknown. As a result the residual equilibrium
equation at time tnᎼᎳ is given in the following form:

ΔRΔRΔRnᎼᎳ = fffext
nᎼᎳ – MMM

1
𝛽ΔtᎴ

(uuunᎼᎳ – uuun) – fffint
nᎼᎳ (A.1.2.5)

Where uuun indicates all the contributions of the quantities at time tn. The Abaqus/Standard implicit
solver is using the Hilber-Hughes-Taylor time integration scheme (HHT). This one is an extension of
the Newmark method that improves the numerical dissipation and has second order accuracy, not
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achievable with the regular Newmark method [77]. The HHT scheme can also be found in literature
as 𝛼-method, as a new control parameter 𝛼 is introduced modifying the residual equilibrium equation
according to the following:

ΔRΔRΔRnᎼᎳ = (1 + 𝛼)fffext
nᎼᎳ – 𝛼fffext

n – MMM
1

𝛽ΔtᎴ
(uuunᎼᎳ – uuun) – fffint

nᎼᎳ (A.1.2.6)

The system is solved by iterative Newton method. The previously introduced control parameters
are then related to the single control parameter 𝛼 through the following:

𝛽 = 1
4(1 – 𝛼Ꮄ) (A.1.2.7)

𝛾 = 1
2 – 𝛼 (A.1.2.8)

The three control parameters can be tuned simultaneously to achieve a certain degree of energy
dissipation in the system, even though by default 𝛽 and 𝛾 are expressed in terms of 𝛼. In particular,
three categories of dynamic applications are considered in the Abaqus manual [59]:

• Transient fidelity applications: this category is used when there is particular interest in the vi-
brational response of the structure. Therefore the control parameters should be tuned to have
minimum energy dissipation.

• Moderate dissipation applications: this category includes a wide range of problems which can
have either a monotonic or non-monotonic structural response. Since the vibrational behavior of
the structure is not of main interest in these applications, some energy dissipation is inserted to
improve convergence.

• Quasi-static applications: in this category are falling all those problems in which the main interest
is the static response of the structure, but may exhibit unstable behavior. As a result, this can be
characterized by relatively higher energy dissipation to improve the convergence.

A.1.3. Implementation of the dynamic procedure
For the dynamic implicit procedure, the mass matrixMMM of the element needs to be calculated, which is
defined by Equation 2.2.1.14. However, in the FE formulation, the mass matrix is calculated resorting
to numerical integration, so that:

MMM =
nQ

∑
kᎾᎳ

NI(𝜉𝜉𝜉k)NJ(𝜉𝜉𝜉k)detJJJ(𝜉𝜉𝜉k)w(𝜉𝜉𝜉k) (A.1.3.1)

Where nQ is the number of integration points and 𝜉𝜉𝜉 are the natural coordinates of the integration
points. It is worth mentioning that reduced quadrature should not be used to calculate the mass ma-
trix, as spurious results can be obtained due to loss in rank of the mass matrix [78]. Furthermore,
diagonalization of the mass matrix can significantly reduce the computational efforts, while not com-
promising the results in an irreversible way. In order to diagonalize the mass matrix, the three most
used methods that can be found in literature are the following:

• Row sum method: M̃ii = ∑j Mij

The diagonal mass matrix is constructed by setting the diagonal entry equal to the sum of the
terms of the whole row.

• Diagonal scaling: M̃ii = cMii c = Mtot
tr(M)

The diagonal entry of the newly constructed matrix is set equal to the diagonal entry of the
original mass matrix, scaled by a factor c.

• Evaluation of MMM at the physical nodes
The mass matrix is evaluated by performing numerical integration at the physical nodes, yielding
a diagonal matrix. However, this method often leads to loss of positive definiteness, so it is not
preferred.



80 A. Appendix

Among these, the row sum method has been used in the present implementation. In order to
extend the validity of the element to dynamic implicit procedures, the LFLAGS array has been used.
This one is an array provided to the UEL by Abaqus, which contains the flag parameters that define the
solution procedure to be used and the element calculations to be performed. As a result, the dynamic
procedure has been coded by extending the original implementation with additional if statements. The
implemented if/else if structure is illustrated in Figure A.8. For completeness, an explanation is given
here below:

• LFLAGS(1)=1 or LFLAGS(1)=2
This flag corresponds to the static procedure. The same calculations as in the previous section
are carried out at the element level. The jacobian matrix KKK and internal force vector fffint have to
be returned to Abaqus in the AMATRX and RHS variables respectively.

• LFLAGS(1)=11 or LFLAGS(1)=12
This flag indicates the dynamic implicit procedure with half-incremental residual tolerance or fixed
time increments respectively.

• LFLAGS(3)=1
Flag for dynamic implicit procedure characterized by normal time increment. In this case, both
the jacobian matrix and the internal force vector need to be specified.

RHS =MMMü̈üutᎼᏺt + 𝛼fffst,t – (1 + 𝛼)fffst,tᎼᏺt (A.1.3.2)

AMATRX = (1 + 𝛼)KKK+ (1 + 𝛼)CCC+MMM( 1
𝛽ΔtᎴ

) (A.1.3.3)

• LFLAGS(3)=5
Flag for dynamic implicit procedure with half-incremental residual calculation, which has to be
defined for automatic time incrementation. In this case only the internal force vector has to be
returned to Abaqus.

RHS =MMMü̈üutᎼᏺt
Ꮄ

– (1 – 𝛼)fffst,tᎼᏺt
Ꮄ
+ 𝛼2 (fffst,t + fffst,tᎲ) (A.1.3.4)

Where fffst,tᎲ is the static residual at the beginning of the previous increment.

• LFLAGS(3)=4
Flag corresponding to velocity jump calculation, which is performed at the beginning of the dy-
namic step or when there is a velocity jump due to change in contact. These calculations are
necessary to obtain velocities that are consistent with the constraints applied to the model. In
such circumstances, the jacobian is equal to the mass matrix and the internal force vector is set
to zero.

AMATRX =MMM (A.1.3.5)
RHS = 0 (A.1.3.6)

• LFLAGS(3)=6
Flag corresponding to the initial acceleration calculation. This is similar to the velocity jump
calculation, as it is performed at the beginning of the dynamic step or after a change in contact.
In order to satisfy equilibrium, the jacobian should be equal to the mass matrix and the internal
force vector should contain only static and damping terms.

AMATRX =MMM (A.1.3.7)
RHS = fffst (A.1.3.8)
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A.1.4. Stress wave propagation in a beam
In order to verify the implemented dynamic implicit procedure, a stress wave propagation problem in
a beam was chosen as benchmark. The model is illustrated in Figure A.1. In the problem, a beam
with length ℓ = 1m and a cross-sectional area A = 1 ⋅ 10–ᎶmᎴ is subjected to a compressive axial
load F = 10N at its left end, while it is clamped at its right end. The beam is assumed to be at rest
at time t = 0. The beam is made out of an isotropic material with elastic modulus E = 70GPa and
density 𝜌 = 2700Kg/mᎵ. A fixed incrementation scheme with increment Δt = 2 ⋅ 10–Ꮈs is used, while
the total time of the analysis is ttot = 5 ⋅ 10–Ꮆs. The part has been meshed with 50 elements along its
longitudinal direction and with 1 element in the thickness direction.

Z

Y

X

  RP−1

X

Y

Z

Figure A.1: Reference model for the stress wave propagation in a beam

To verify the solution, a Newmark time integration scheme was implemented in Matlab with trape-
zoidal rule. This scheme corresponds to the following values of control parameters:

𝛼 = 0 (A.1.4.1)
𝛽 = 0.25 (A.1.4.2)
𝛾 = 0.5 (A.1.4.3)

By substitution of Equation A.1.2.3 and A.1.2.4 in Equation A.1.1.4, a system of Equations having
the accelerations at time tnᎼᎳ as single unknown is obtained:

AAAnᎼᎳü̈üunᎼᎳ = bbbnᎼᎳ (A.1.4.4)

Where the matrix AAA indicates the terms multiplying the acceleration ü̈üunᎼᎳ while bbbnᎼᎳ indicates the
other terms. The implemented scheme to obtain the solution at every time increment is shown in
Figure A.2.
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Build KKK and MMM

Set initial conditions

Solve AAAnᎼᎳü̈üunᎼᎳ = bbbnᎼᎳ

Calculate uuunᎼᎳ and u̇̇u̇unᎼᎳ with
Equation A.1.2.3 and A.1.2.4

Figure A.2: Implemented Newmark scheme with trapezoidal rule in Matlab

The strain in the elements has been then calculated through the following:

𝜀𝜀𝜀n =
uuunᎼᎳ – uuun

ℓe
(A.1.4.5)

Where ℓe is the characteristic element length.

The output stress contour plot at time t = 0.5ttot is shown in Figure A.3. In the figure it is possible
to see the stress wave as it moves to the left after being reflected at the fixed end. On the other hand,
the comparison between the implemented approach in Matlab and the UEL are shown in Figure A.4.
As it can be observe, there is good agreement between the two.

Figure A.3: Stress wave propagation in the beam contour plot
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Figure A.4: At the top: horizontal displacement at time t ዆ ኺ.኿ttot (a) and at time t ዆ ttot (b); At the bottom: horizontal
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A.2. The 8-node linear cohesive element
In this section the implementation of the 8-node linear cohesive element is presented. The element
topology is illustrated in Figure A.5.

Figure A.5: Topology of an 8-node cohesive element

The element position vector and displacement vector are given by:

xxxCE = [xxxᎳ,xxxᎴ, ...,xxxᎺ]T = [xxxbot,xxxtop]T

uuuCE = [uuuᎳ,uuuᎴ, ...,uuuᎺ]T = [xxxbot,xxxtop]T (A.2.0.1)

In cohesive elements, element calculations are referred to the mid-plane coordinates. The mid-
plane coordinates are calculated as:

xxxmid =
1
2(xxx

bot + xxxtop)
= [xxxm

Ꮃ ,xxxm
Ꮄ ,xxxm

Ꮅ ,xxxm
Ꮆ ]T (A.2.0.2)

Using the mid-plane coordinates, the normal eeen, tangent transverse eeet and tangent longitudinal eeeℓ
vectors to the mid-plane surface of the cohesive element can be obtained as follows:

eeeℓ =
xxxm
Ꮄ – xxxm

Ꮃ
|xxxm
Ꮄ – xxxm

Ꮃ |

eeet =
xxxm
Ꮆ – xxxm

Ꮃ
|xxxm
Ꮆ – xxxm

Ꮃ |

eeen =
eeet × eees
|eeet × eees|

Once these are determined, the transformation matrix QQQ between global and mid-plane planar
system is given by:

QQQ = [eeen eeet eeeℓ] (A.2.0.3)

The main calculations are then carried out in the planar coordinate system. The mid-plane coordi-
nates in the planar reference system xxxmid are calculated as follows:

xxxmid =QQQxxxmid (A.2.0.4)
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The Jacobian matrix is obtained using only the planar tangential mid-plane coordinates, hence:

JJJ =
⎡
⎢
⎢
⎣

∑i xm
it
ᒟNi
ᒟᒓ ∑i xm

it
ᒟNi
ᒟᒌ

∑i xm
iℓ
ᒟNi
ᒟᒓ ∑i xm

iℓ
ᒟNi
ᒟᒌ

⎤
⎥
⎥
⎦

(A.2.0.5)

The displacements of the bottom surface and of the bottom surface in global coordinates are given
by:

uuubot = NᎳuuuᎳ +NᎴuuuᎴ +NᎵuuuᎵ +NᎶuuuᎶ
uuutop = NᎳuuuᎷ +NᎴuuuᎸ +NᎵuuuᎹ +NᎶuuuᎺ (A.2.0.6)

Where the shape functions for the surface element, expressed in parent element coordinates, are
given as follows:

NᎳ(𝜉, 𝜂) =
1
4(1 – 𝜉)(1 – 𝜂); NᎴ(𝜉, 𝜂) =

1
4(1 + 𝜉)(1 – 𝜂);

NᎵ(𝜉, 𝜂) =
1
4(1 + 𝜉)(1 + 𝜂); NᎶ(𝜉, 𝜂) =

1
4(1 – 𝜉)(1 + 𝜂); (A.2.0.7)

As a result, the displacement jump between top and bottom surface is calculated as:

[[uuu]] = uuutop – uuubot

= NNNCEuuuCE (A.2.0.8)

With NNNCE defined as such:

NNNCE = [–NNNᎳ –NNNᎴ –NNNᎵ –NNNᎶ NNNᎳ NNNᎴ NNNᎵ NNNᎶ] (A.2.0.9)

Where NNNi is a 3 × 3 matrix with Ni along its diagonal, with i = 1, .., 4. The separation vector in
planar coordinates is obtained through transformation of the displacement jump according to:

𝛿𝛿𝛿 = QQQ[[uuu]] (A.2.0.10)

The traction 𝜏𝜏𝜏 is then calculated from the separation through the constitutive matrix of the cohesive
element DDDCE:

𝜏𝜏𝜏 = DDDCE𝛿𝛿𝛿 (A.2.0.11)

Where DDDCE is given by:

DDDCE =

⎡
⎢
⎢
⎢
⎢
⎣

Kn 0 0

0 Kt 0

0 0 Kℓ

⎤
⎥
⎥
⎥
⎥
⎦

(A.2.0.12)

With Kn, Kt and Kℓ being the penalty stiffness in the normal, transverse tangential and longitudinal
tangential directions, respectively.
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Finally, the element’s stiffness matrix and internal force vector are calculated according to the
followings:

KKKCE =
nQ

∑
kᎾᎳ

(QQQNNNCE(𝜉𝜉𝜉k))
T

DDDCE(QQQNNNCE(𝜉𝜉𝜉k))detJJJw(𝜉𝜉𝜉k)

fffint =
nQ

∑
kᎾᎳ

(QQQNNNCE(𝜉𝜉𝜉k))
T𝜏𝜏𝜏detJJJw(𝜉𝜉𝜉k) where 𝜉𝜉𝜉k = (𝜉k, 𝜂k) (A.2.0.13)

Where nQ is the number of integration points and 𝜉𝜉𝜉 are the natural coordinates of the integration
points.
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A.3. Flowcharts

Start of analy-
sis of analysis
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tial conditions
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Start of iteration

Definition of KelKelKel
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Converged solution?

Write output

End of step?

End of analysis
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UEXTERNALDB
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Figure A.6: Flowchart for the Abaqus/Standard procedure
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Co-rotational UEL

Get global displacements uuug from Abaqus solver

Use SDV to obtain polar decomposition at the
centroid FFF = RRRUUU and get rotation matrix RRR

Remove rigid body motion and calcu-
late deformational displacements uuuℓ

Calculate the local linear element stiffness
matrix KKKℓ and local internal force vector fffint

ℓ

Calculation the geometric stiffness contri-
bution to the tangent stiffness matrix KKKtg

Assemble the element tangent stiffness matrix
KKKe = (TTTTKKKℓTTT + KKKtg) and rotate the internal force
vector to global coordinate system fffint

g = TTTTfffint
ℓ

Solve
KKKeΔuΔuΔu = ΔRΔRΔR
Converged
solution?

Write output

yes

no

Figure A.7: UEL flowchart for the co-rotational procedure
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