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Abstract

Access to healthcare is a requirement for human well-being that is partly dependent
upon safe infrastructure. One of the UN Sustainable Development Goals regarding
healthcare is to achieve universal healthcare coverage, which includes access to qual-
ity essential health-care services. In many developing nations, roads are often vulner-
able to floods. Floods can cause roads (especially roads with a dirt or gravel surface
type) to become inaccessible for a long period of time. This inaccessibility can cause
many inhabitants to lose access to a healthcare facility within a crucial traveling time
span. Upgrading flood prone roads on which many households are dependent in or-
der to access a healthcare facility, could reduce this threat to healthcare accessibility
for many inhabitants. This research aims to use optimization techniques to reduce
the impact floods can have on healthcare accessibility, and apply a case study to the
country Timor-Leste. We formulate an optimization model that maximises the num-
ber of households that can access a healthcare facility within a 5 kilometer traveling
distance via a flood resilient route, given a specific budget. Alongside this formula-
tion, we provide a (simple) flood and costs model for the road as well as di↵erent
heuristics to find (near-)optimal solutions. Our research includes multiple tests to de-
termine which heuristic works best and which parameters and other settings increase
the computational performance of these heuristics for Timor-Leste. The heuristic that
performs the best is a dynamic greedy heuristic. This algorithm is able to generate an
optimal solution for all possible budgets within 4 hours.
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Introduction 1

1 Introduction

1.1 Context and relevance

Access to healthcare is a requirement for human well-being that is partly dependent upon safe
infrastructure. One of the UN Sustainable Development Goals regarding healthcare is to achieve
universal healthcare coverage, which includes access to quality essential health-care services.
Ensuring that inhabitants of developing countries have access to a healthcare facility within 5
kilometer traveling distance, could achieve this goal [1].

The World Bank Group is a financial institution that aims to decrease extreme poverty world-
wide by providing loans, grants and policy ideas to governments around the developing world.
Analytics for a Better World (ABW) is a research collaboration between the University of Ams-
terdam and Massachusetts Institute for Technology led by Dick den Hertog (UvA) and Dimitris
Bertsimas (MIT) that aims to stimulate research that applies analytics to societal issues. The
goal of the Analytics for a Better World collaboration with the World Bank is to create models
that allow policy makers to make more data driven choices within their projects.

The ABW collaboration with the World Bank started o↵ creating a facility location model for
placement of healthcare facilities in developing countries. This model took into account all
current infrastructure, regardless of flooding risks on the roads. Floods play a large role in dis-
rupting the accessibility of these healthcare facilities. As many roads in developing nations are
dirt and gravel roads and these are vulnerable to floods and seasonal precipitation, these roads
are most vulnerable to being inaccessible for a long period of time. This loss in infrastructure
forces people in need of healthcare to travel much longer distances over una↵ected roads to-
wards a healthcare facility, or disrupts all traveling routes towards any healthcare facility all
together. Thus, updating roads to be flood resilient while taking into account how this a↵ects
the healthcare accessibility of the population is an important addition to the healthcare facility
location model.

1.2 Focus and scope

This research aims to formulate a model that identifies links that must be upgraded in order
to increase civilian flood resilient access to healthcare facilities within a 5 kilometer traveling
distance. Alongside this formulation, it aims to develop and test di↵erent algorithms that can
find near-optimal solutions. The model will be applied to and tested on the country of Timor-
Leste as a case study.

The optimization model that will be formulated aims to solve the following:
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Maximize Number of households that are connected to a healthcare facility

Subject to Costs of upgrading the road segments does not exceed a given budget

Paths of households to healthcare facilities are no longer than 5 kilometers

Paths of households to healthcare facilities must be flood resilient

This research will touch on literature concerning road network optimization models and a back-
ground research regarding practical aspects of development aid and infrastructure modeling. It
will propose di↵erent formulations and algorithmic approaches to find (near-)optimal solutions,
and test which formulations and algorithms work best on the Timor-Leste dataset. We will also
analyze of the Timor-Leste data, and a flood model and a cost model for the roads. It is impor-
tant to mention that these flood and cost models are simplistic models and should be extended
upon by an infrastructure expert in order to represent reality better.

What is important to note about this research is that the facilities we aim to improve the accessi-
bility of are healthcare facilities. But these facilities could also be schools, markets, emergency
aid posts, et cetera. Also, we have chosen a travel distance threshold of 5 kilometers because
this is a threshold proposed by the World Bank, but our algorithms will also be applicable for
di↵erent distances.

1.3 Research questions and objectives

The main research question of this project was

How to minimize the impact that flood prone roads have on healthcare accessibility
in developing nations, using optimization techniques.

The subquestions were the following:

• Is there any (related) literature on this problem?

• What formulation suits our problem?

• How do we prepare the data we need as input for our optimization model, cq.:

– How to model flood risks on roads;
– How to model upgrading costs;
– How to identify the households that can not yet access a healthcare facility

within 5 kilometers via a flood resilient road;

• How to generate a suitable path set for our optimization model?

• Which algorithms could be useful to find (near-)optimal solutions for our model, es-
pecially for large scale practices?
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• How can we increase the computational performance of our heuristics?

• What heuristic performs best?

1.4 Structure of the thesis

This thesis contains nine chapters, a references section and an appendix. The structure of the
chapters and their functions are as follows:

(1) Introduction: Introduces the context, focus, scope, objectives and structure of this
thesis;

(2) Literature review and background research: Outlines the literature review and
background research that substantiates this research. This contains a review of math-
ematical models surrounding road network design and a background research on the
country of Timor-Leste, objectives and methods of the World Bank and infrastruc-
ture modeling in practice;

(3) Our formulations: Proposes an optimization objective and constraints. It intro-
duces the terminology that will be used within this project and the demands from
the World Bank that have to be taken into account. Furthermore, it proposes the two
di↵erent formulations and compares them in order to choose the most suitable one;

(4) Data preprocessing: Outlines the Timor-Leste data we work with and explains
the flood model, the cost model and the accessibility algorithm and analyzes their
results;

(5) Generating paths: Proposes two algorithms that are able to generate a set of paths
that can be used as input for the selected optimization model. It compares the per-
formance of these algorithms in order to select the most suitable one;

(6) Algorithms to find (near-) optimal solutions for Timor-Leste: Discusses di↵erent
heuristics that have been developed and compared to solve the optimization prob-
lem. Includes a proposed implementation of the branch and bound algorithm for
small scale, local scenarios and multiple heuristics that can be applied to the whole
nation of Timor-Leste. Two of which use this small scale implementation of the
branch and bound algorithm, and the other is a dynamic greedy algorithm;

(7) Considered configurations: Many di↵erent configurations have been considered
and tested for our di↵erent algorithms. The analyses about these considered con-
figurations are quite extensive and can distort the narrative. Therefore, they are
summoned in this chapter;

(8) Performance results of the main heuristics: Analyzes and evaluates the perfor-
mance of the two proposed heuristics that can be applied to the nation of Timor-
Leste;
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(9) Conclusions and discussion: Summarizes research and the results it has brought
forward, and lists recommendations for further research.

Lastly, it is advised to print this thesis in color because some images use a lot of color coding.
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Meaning of variables

Variable General meaning (might be specified alongside model in which it is used)
alr Binary variable indicating if link l is part of route r
A Set of healthcare facility areas in Timor-Leste
↵ A factor of a term that is flexible or not yet decided
B Budget
BS Set of budget scenarios
cl Flow costs of link l (could be minimum, maximum, for a specific commodity, etc)
di Demand between O-D pair i
Dk Number of routes terminating in zone k (could be for certain commodity or demand)
el Construction costs of link l
end(p) Function returning the node at the end of path p (which is the node on the road to

which a set of household clusters is connected)
E Set of links / edges
fl Flow on link l (could be for a certain commodity)
Hi(u) Function returning the demand for O-D pair i according to costs u
hr, hi Number of trips made on path r 2 P or O-D pair i
K Number of paths generated per O-D pair when generating relevant paths
 Set of commodities along with a demand for each demand
lp Length of path p (in kilometers)
N Set of nodes
Nhc f Subset of nodes that represent a healthcare facility
Nhc f ,n Subset of nodes that represent healthcare facilities that are within a 5 kilometer

range of node n
Nr Subset of nodes that represent the nodes on the road that connect at least one
Oj Number of routes originating from zone j (could be for certain commodity or de-

mand)
P Path set
Pi Paths between O-D pair i
� Generic objective value function
Rk Required flow of demand k to be shipped
S p, S n Number of households dependent upon path p, or number of households whom are

closest to roadnode n
ui Minimum costs of O-D pair i
xl Decision variable indicating if link l has been upgraded
yn Decision variable indicating if household cluster n is connected via a path
zp Decision variable indication if path p is fully flood resilient (due to upgrades on the

links that lie on it)
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2 Literature review and background research

In this chapter the literature review and background research is discussed. The literature review
and background research was essential for this project because it provided us with a better
insight into the mathematical and practical aspects of problems such as this one, which allows
us in provide the World Bank with a product that fit their needs.

First, we will elaborate on background information about Timor-Leste and activities of the
World Bank. Next, we will discuss the literature research that was done in order to inspire the
formulation for a model that is suitable for our purposes and to come up with an algorithmic
approach that is able to find a (near-) optimal solution within an acceptable running time. The
optimization that we looked into is the road network design problem. This problem di↵ers from
our problem, but does focus on connecting di↵erent parts of a network, which is a challenging
aspect of our problem. Lastly, we will discus practical aspects of infrastructure modeling.

2.1 Background information about Timor-Leste and activities of the World Bank

Timor-Leste is a small South-East Asian country right below Indonesia. Its geographical loca-
tion can be seen in Figure 1a. Timor-Leste gained the status of sovereign state on May 20th,
2002, after a long colonial history with Portugal and a territorial history with Indonesia [2]. It
has a population size of a little over 1.3 million inhabitants [3]. With an annual GDP of less
than $1500 per head of the population, it has 42% of its inhabitants living in poverty [3, 4].
The capital city of Timor-Leste is Dili, which lies in the mid-north of the country. Furthermore,
the country is divided into thirteen districts. The district of Oecussi does not lie attached to the
peninsula and the district of Dili is includes an island named Ataúro. The distribution of these
districts can be found in Figure 1b. The country has an area of 15007 squared kilometers, con-
taining 347 healthcare facilities and 7638.8 kilometers of road. Timor-Leste is often a↵ected
by heavy floods and landslides [5]. In Chapter 4 the statistics regarding spread of inhabitants,
healthcare facilities, roads and flooding data found in our data are described.

In November 2019, the World Bank Group approved the Country Partnership Framework for
Timor-Leste [3]. This strategy guides the World Bank Group’s program through the fiscal years
2020 and 2024. The framework aims to support the government of Timor-Leste to transform
its natural wealth into improved human capital and sustainable infrastructure in three key fo-
cus areas. One of these goals is to improve access and quality of connective infrastructure in
transport sectors. Infrastructure is a backbone for the economy, the food-supply chain and for
healthcare accessibility. With the growing threat of climate change, natural hazards like floods,
extreme heat and quick changes in temperature will disrupt and damage infrastructure systems
more often [6]. In Timor-Leste, the largest threat is floods from rivers and heavy precipitation
(especially cyclones) [5]. As the World Bank wants to take a much more data driven approach,
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(a) Location of Timor-Leste in South-East Asia

(b) Districts of Timor-Leste (and the island of Ataúro)

Figure 1 Geography of Timor-Leste

modeling the flooding risks on the roads, the costs to make the roads flood resilient, the acces-
sibility to healthcare facilities and the optimal road investments to increase this accessibility, is
essential [7].

2.2 Network Design Problems

This section addresses the mathematical theory that has inspired our optimization model. Our
problem, to the best of our knowledge, has not been studied before. Therefore, we began our
project with finding literature that was somewhat like our problem. The literature we studied
concerned the road network design problem (RNDP). This problem is similar because it takes
into account the network structure to make sure that there exists a connection between di↵erent
parts of the network. It is also similar because it decides whether a link must be accessible or
not.

Until 1984, the mathematical field of optimization had not yet played a big role within the
transportation sciences [8]. The pioneers that set optimization to be a standard within this
field, are Boyce and Magnanti and Wong. In this section, we will formulate and explain the
network design models they proposed. Alongside these models, we discuss algorithms that
were discussed in the literature to find (near-)optimal solutions to these optimization problems.
After we discuss the theory, algorithms that have been applied in order to find (near-)optimal
solutions for the road network design models will be discussed.

2.2.1 The work of Boyce

Boyce [9] outlines three di↵erent road network optimization models. All of these models work
with origin-destination pairs (O-D pairs), which refers to a commodity that has to be trans-
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min
P

i2I c+i di Total travel costs for all O-D pairs

s.t.
P

l2E elxl  B Construction costs stay within budget

c+i = minr2Pi

P
l2E clalr xl Costs of O-D i is the costs for a route

r 2 Pi

xl 2 {0, 1} 8l 2 E Integrality constraints
Input

alr =

8>><
>>:

1 If link l is part of route r
0 else

B Budget for the project
cl Fixed travel costs of link l
c+i Total minimum travel costs of O-D i
di Fixed demand between O-D i
el Construction costs of link l
E Set of all possible links
I Set of O-D pairs
Pi Set of routes for O-D i

Decision variables

xl =

8>><
>>:

1 Link l in E is included in the network
0 else

Model 1 Network design model of Boyce as formulated in [9].

ported from an origin to a destination in a certain quantity. In our case, such a commodity is a
household traveling from their house (Origin) to a healthcare facility (Destination). All possi-
ble routes for an O-D-pair i are included in the paths sets P, and thus contain links that can be
established or included. We will describe only the the road network design model because our
final model does not take any inspiration from the other models that is not also included in the
road network design model.

The network design problem

The network design problem aims to find the best set of links to construct, in order to minimize
the road user costs. These costs can also be interpreted as distances. It aims to ensure that all
O-D pairs are connected and also ensures that the construction costs stay within a set budget.
The model is is stated in Model 1.

This problem di↵ers from our problem because it ensures all O-D pairs are connected. This will
likely not be feasible for our case, especially because we bound the traveling distances. Besides
from that, the traveling costs are minimised in this formulation, while we need to maximise the
number of connected households.
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Remarks

What is important to mention about these models is that a set containing all the paths of the O-D
pairs has to be part of the input. Boyce [9] does not mention how to attain this set, which makes
the models quite abstract because generating a set of multiple possible paths between di↵erent
O-D pairs is an optimization problem on its own.

Furthermore, the definition of the c+i variable contains a min. This is not a proper way to
formulate a linear optimization model (and minimizing the costs for each path individually
probably does not yield an optimal overall solution). It is most likely that Boyce formulated
this model to describe an idea, rather than an applicable optimization model. The fact that
Boyce does not apply any algorithms to solve this model nor explains how to generate a set of
paths, also insinuates this.

This models is centered around demand of commodities and their transportation (or in proper
terms: flow) costs and benefits. Therefore, it does not apply exactly to our case. But, it does
serve as inspiration for our models. For example, the idea of using a set of paths as input was
very inspirational. As we want paths of at most 5 kilometers from a household (Origin) to
a healthcare facility (Destination), we can create a set of paths containing paths of at most 5
kilometers long. This will be one of the crucial factors of the final model.

2.2.2 The model of Magnanti and Wong (1985)

Magnanti and Wong [10] describe a general model that can result in many di↵erent optimization
problems. This general model sets a basis for many optimization problems on graphs. Among
these problems are the renowned Minimum Spanning Tree Problem, Shortest Path Problem,
Steiner Tree Problem, Traveling Salesman Problem, Budget Design Problem, Network Design
Tra�c Equilibrium Problem, et cetera. The objective function of the general model is not fixed,
because these di↵erent problems have di↵erent objectives.

This model also works with O-D pairs, but the paths for these O-D pairs are not an input
variable. The generation of these paths is part of the optimisation model. This makes the model
very di↵erent from Boyce’s model (Model 1) both conceptually and computationally. This is
due to the fact that besides from generating the optimal set of links to upgrade, it will also have
to generate the shortest paths, resulting in many more variables to optimize over.

First, the general model will be formulated and explained in Model 3. Afterwards, the appli-
cation of this model to the road network design problem will be formulated. In the Appendix,
Section A, an additional example of the general model applied to the minimum spanning tree
can be found.
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The general model of Magnani and Wong

The general model has a generic objective, but three fixed constraints. The first constraint
regards the generation of a path going from an origin to a destination. So, for example, within
the Network Design Problem, it allows the nodes that need to be connected to find a path within
the optimization process. The second constraint bounds the flow that can travel over a link.
This constraint does not apply to our case, because we assume our roads can take any number
of travelers. The third constraint restricts the construction costs by a certain budget. The fourth
constraint is a generic constraint that is added to leave room for any other needed constraints.
The fifth constraint ensures the variables are integer.

Road Network Design Problem based upon the general Magnanti & Wong model

The application of this model to the network design problem changes the general model in the
following way. First of all, the objective function is set. It aims to minimize the total flow costs
over all O-D pairs. Furthermore, the second constraint, regarding the capacity of the flow now
has a slightly di↵erent goal. It does not bound the capacity of a link anymore, but it ensures a
path only travels over a link that has been established. The constraints that have not changed
are the construction cost constraint and path generation constraint.
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min �( f , x) Generic objective function (0)

s.t.
P

j2N f k
i j �
P

l2N f k
li =

8>>>>><
>>>>>:

Rk if i = O(k)
�Rk if i = D(k)
0 otherwise

8k 2 , i 2 N

The flow of commodity k on its accom-
panying O-D pair must start with Rk

flow at its origin O(k) and end with Rk

flow at its destination D(k), and for all
the remaining nodes in the network the
flow must go in and out of said node,
or non must have gone in nor out.

(1)

fi j =
P

k2 f k
i j  Ki jxi j 8(i, j) 2 E Costs of O-D i is the minimal costs for

a route r 2 Pi

(2)

P
(i, j)2E ei jxi j  B Construction costs must be less or

equal to the budget
(3)

( f , x) 2 S Side constraint S (4)

f k
i j � 0, xi j 2 {0, 1} 8(i, j) 2 E, k 2  Integer constraints (5)

Input
B Budget for the project
ck

i j Per unit arc travel costs
D(k) Destination nodes of demand of commodity k
E (Potential) edge set
ei j Construction costs of arc (i, j)
 Set of commodity demands for di↵erent commodities
O(k) Origin nodes of demand of commodity k
Rk Required flow of demand of commodity k to be shipped
N Node set

Decision variables
fi

k
j = Amount of demand of k that flows via edge (i, j)

xi j =

8>><
>>:

1 Link (i, j) in E is included in the edge set
0 else

Model 2 General formulation Magnanti & Wong.
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min
P

i j2E
P

k2 ck
i j f k

i j Minimize road user costs
(0)

s.t.
P

j2N f k
i j �
P

l2N f k
li =

8>>>>><
>>>>>:

1 if i = O(k)
�1 if i = D(k)
0 otherwise

8k 2 , i 2 N

For any O-D pair k, the path should start
at the origin (O(k),) and end at the des-
tination (D(k)) and either pass through a
node on the way or not at all.

(1)

f k
i j  xi j 8(i, j) 2 E Costs of O-D i is the minimal costs for

a route r 2 Pi

(2)

P
(i, j)2E ei jxi j  B Construction costs must be less or equal

to the budget
(3)

f k
i j, xi j 2 {0, 1} 8(i, j) 2 E, k 2  Integer constraints (4)

Input
B Budget for the project
ck

i j Per unit arc travel costs
D(k) Destination nodes of demand k
E (Potential) edge set
ei j Construction costs of arc (i, j)
 Set of commodity demands for di↵erent commodities
O(k) Origin nodes of demand k
N Node set

Decision variables

fi
k
j =

8>><
>>:

1 link (i, j) is part of the path for O-D pair k
0 else

xi j =

8>><
>>:

1 link (i, j) in A is included in the edge set
0 else

Model 3 Road network design problem formulation based upon to Magnanti & Wong.
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2.2.3 Advised algorithmic approaches to find (near-)optimal solutions

For both Road Network Design models, two algorithmic methods to find (near-)optimal solu-
tions were repeatedly advised. These methods are decomposition methods and the branch and
bound method [9–11].

For the decomposition methods, the advised methods are Danzig-Wolfe decomposition [9] (col-
umn generation) and Benders decomposition [11] (row generation). The Danzig-Wolfe de-
composition was advised for the model of Boyce (Model 1), but an implementation was not
provided. For the Magnanti and Wong model (Model 3), an implementation of the Benders de-
composition [10] was provided. It was advised to iteratively generate routes for variables f (k)

i j ,
and using these to generate an optimal network configuration.

For small scale cases, a branch and bound algorithm is advised for the Magnanti and Wong
model (Model 3) [11]. Hoang [12] argues that when applying branch and bound to Model 3,
choosing a di↵erent lower bound function would decrease computations immensely. This lower
bound is defined as follows:

�(xP) +
X

(i, j)2ĀF

X

k2
(1 � xi j)Ik

i j(xP) (2.1)

Where AF is the set of edges that have been fixed in the branch and bound enumeration tree, and
ĀF is the set of edges that has not yet been fixed. The vector xP is the vector where all xl = 1
for all links l 2 ĀF and Ik

i j(xP) is the increase in travel costs for O-D commodity k if it travels
over the network defined by xP without link (i, j). The idea is that if the link (i, j) is removed
from the solution, then the costs from i to j must be at least Ik

i j(xP).

In addition to this lower bound, Magnanti and Wong [10] also advise to relax the x variable in
Model 3 to speed up calculations.

We also aimed to find literature that applied these models to large scale cases and see if they
proposed di↵erent heuristics. Heng et al. [13] applied a branch and bound algorithm on a
combined facility location and network design model formulated like the Magnanti and Wong
model (Model 2) to a small in Cambodia. The branch and bound algorithm (as implemented
in CPLEX) has a set maximum running time of 20minutes. They conclude that this model is
applicable to smaller districts with 130.000 O-D pairs and an area of 2000 squared kilometers
(thus too small for the case of the entire of Timor-Leste). The formulation of this model can be
found in [13].
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2.2.4 Infrastructure modeling in practice

In order to ensure that this model is realistic, it is important to get a grasp on the practical aspects
of the infrastructure modeling. This regards modeling the flood risk on the roads, interventions
to make roads flood resilient, and modeling the costs of these interventions. It is also important
to understand what data was necessary to be able to model these aspects.

flood risk on infrastructure modeling

Flood risks on road infrastructure can be modeled as realistically and detailed as is needed for a
project [14]. The basis for every flood model would be the road data and flooding risk statistics.
Incorporating surface type would be a next step. Factors like altitude, year of construction,
current state of the road, et cetera, add more detail to such a model. However, the interaction
of these aspects on the road quickly becomes more complex and could best be left to a more
specialized researcher. Therefore, it was most advisable to create a very simple model that
could be expanded upon by an expert. Our focus should be mostly on the optimisation.

Possible flood resiliency interventions

There are many interventions that can be made to make a road more resilient to floods. Some
interventions are installing drainage systems, asphalting a road and raising the level of the
road [6]. But, as stated in the section above, this is very hard to model and our models can
best be simple dummy models that leave room for expansions from an expert.

Cost modeling

The construction costs of di↵erent road interventions are impossible to model, especially this
much in advance, because the smallest unpredictable factors could be of great influence: the
weather on the day of construction, the value exchange rate for the currency in Timor-Leste,
the state of their economy, and so on [14]. Besides from that, there is such a broad range of
possible interventions, that modeling their flood e↵ect would need much more data than solely
the data provided by the World Bank.



Our formulations 15

3 Our formulations

In this chapter the final model and an alternative to that model are presented. Before we discuss
these models, it is important to define some terms and explain the demands we received from
the World Bank that we would need to give shape to.

Terminology

• When a road segment is considered to be at risk, this means that it is at risk of being
flooded to such an extent that it can heavily disrupt healthcare accessibility for the
households that depend upon that road segment.

• An upgraded road segment is a road segment that was at risk, but has now undergone
construction through which it can be considered to no longer be at risk.

• When we mention a household being connected, this household has access to a health-
care facility via a flood resilient path within 5 kilometer traveling distance.

• A healthcare facility area is the area of 5 kilometers around a specific healthcare
facility. (Examples of healthcare facility areas can be found in Figure 16).

Demands of the World Bank

Together with the World Bank, the following demands were established.

(1) The model should find a construction plan for the roads such that less households
are a↵ected by flood disruptions when traveling towards a healthcare facility;

(2) There should be a fixed budget for the construction costs, and if possible a Pareto
curve analysis (which is a graph that shows the benefit of an optimal solution for
di↵erent budgets);

(3) The paths from household (clusters) to healthcare facilities should abide traveling
thresholds as proposed in the UN Sustainable Development Goals. These distance
thresholds are 2, 5 and 10 kilometer distance. The 5 kilometer traveling distance
should be the main focus;

(4) Connecting more households to healthcare facilities should be more important than
connecting one household via multiple roads.

Another wish of the World Bank was to create a Python tool that would be as computationally
e�cient as possible such that it could still be interactive. It is always di�cult to predict what is
feasible and what is not, but as a target we chose to aim for a computing time maximum of at
most half a day (12 hours).
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3.1 Facility Accessibility Road Network Upgrading Problem Models

The demands of the World Bank gave flexibility for di↵erent models. For the final model, the
Facility Accessibility Road Network Upgrading Model (FARNUM), the idea is as follows:

Maximize Number of households that are connected to a healthcare facility

Subject to Costs of upgrading the road segments does not surpass a set budget

Paths of households to healthcare facilities are no longer than 5 kilometers

Paths of households to healthcare facilities must be flood resilient

Two models for this problem have been designed, each with the same objective functions and
in essence the same constraints. The di↵erence between these two models is that one model
takes a set of paths as input (like Boyce’s model (Model 1)) and the other model generates
the paths for the O-D pairs during the optimization (like the models of Magnanti and Wong
(Subsection 2.2.2)). This di↵erence in how the paths are generated can make a big di↵erence in
performance and computational results. This will be analyzed later on.

For both models it is important to note that the updating costs of an at risk link will be the
cheapest update that ensures (near) flood resilient access (eg. if a link will be considered to be
flood resilient when updated to gravel, the updating costs for asphalt will not be considered).
How this is modeled, will be explained in Chapter 4. Lastly, these models use a maximum
distance of 5 kilometers, but this distance can be changed.

We will first discuss the model that takes the set of paths as input. Afterwards, we discuss the
model that generates the paths within the optimization.

3.1.1 Path pre-generated model, inspired by Boyces model

The Boyce-inspired model aims t maximize the number of connected households. This model
takes a set of paths going from household clusters to healthcare facilities of at most 5 kilometer
distance as input, and then finds an optimal combination of these path, such that if the at risk
road segments that lie on these paths would be upgraded, a maximum number of households
would become connected. What makes this model extra e�cient, is that it only takes into
account the road segments that are at risk of being flooded, which heavily decreases the number
of road segment variables to optimize over. The formulation of this model can be found in
Model 4.
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max
P

p2P S pzp Maximize the number of connected
households

(0)

s.t.
P

l2E elxl  B Budgetary restrictions (1)

zp  xl 8l 2 p \ E⇤, 8p 2 P A path can only exist if all edges on the
path are flood resilient.

(2)

P
p2Pend(n) zp  1 8n 2 Nr Each household cluster has at most one

flood resilient path leading towards it, in
order to not count households double.

(3)

zp, xl 2 {0, 1} 8p 2 P,8l 2 E⇤ Integer constraints (4)
Input
B Budget
el Costs of updating edge l to be flood resilient
E⇤ Edge set containing only the links that are at risk
N Node set
l, (i, j) 2 E Link l or (i, j) in edge set E, containing only the at risk roads
Nr ⇢ N Subsets of nodes that connect at least one household to the road
p 2 P A path in the set of all possible paths P
Pend(n) ⇢ P The set of all possible paths of a distance of at most 5 kilometers long ending

up in node n
S p Number of households that can access a healthcare facility during all seasons

within 5km via path p
Decision variables

xl =

8>><
>>:

1 If edge l is upgraded to be flood resilient
0 else

zp =

8>><
>>:

1 If path p is flood resilient
0 else

Model 4 The FARNUP where the path must be pre-generated. This model was the final model for the
problem.

3.1.2 Path generating model, inspired by Magnanti and Wongs model

The alternative to the former model, is a model that generates the paths during the optimization.
This idea stems from the model formulated by Magnanti and Wong (Model 2). The model
we have formulated, uses the formulation of Magnanti and Wong to generate paths for O-D
pairs within the optimization process. The generating of these paths is captured in the decision
variables f (n)

i j . How this works exactly will be explained after introducing the model.

In Model 5 the formulation is presented. Each formula will be accompanied by an explanation
of its meaning. The definition of the input and decision variables can be found below.
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Constraint 1.1-1.3 ensure a path for any O-D-pair is made up of connected edges. They corre-
spond to constraint 1 of Model 3, which is why they are bundled as a part of constraint 1. This
works as follows: any node k 2 N either lies on a path or it does not. If it does not, it has no
edges of the path entering nor leaving it. If node k does lie on a path, but is not the household
cluster n nor a healthcare facility in HCFh, it will have one edge entering and one edge leav-
ing. Say edge ( j, k) is entering, and (k, l) is leaving. Then f (n)

jk = 1 and f (n)
kl = 1. Therefore,

f (n)
jk � f (n)

kl = 0.

Now, if the household cluster we are analyzing is n, there will be no edge of the path entering
n, and only one leaving. In mathematical terms, f (n)

nk = 1 for some k 2 N and f (n)
jn = 0 for all

j 2 N. Therefore, f (n)
jh � f (n)

hk = �1. This argument works analogously for the case where the
node k 2 N is an element of HCFh.

Lastly, we can formulate constraint 1.3 in the way we do because we are in a fortunate situation.
All the healthcare facilities only have one edge connected to them: the edge that connects them
to the road. Therefore, a path can not pas through a healthcare facility node. This is why we can
simply exclude the set of healthcare nodes from the set of nodes that a path can pass through.

Constraint 2 bounds the path distance to 5 kilometers and constraint 3 bounds the construction
costs. Constraint 4 could alternatively have been written as f (n))

i j  xi j. But writing it as above,
reduces the number of constraints of the model from |Nr||E| to |E|. This works equally well
when formulated as

P
n2Nr f (n)

i j  |Nr|, which also ensures a route cannot contain edge (i, j) if
this edge has is not upgraded (in model terms, if xi j = 1).

Another remark will be on constraint 5. This constraint ensures that a household cluster can be
counted in the objective function. Because we are maximising over these yn’s, it is not necessary
to ensure that if a path exists, yn must equal 1.

The last remark will be on the fact that this model does not ensure that all household that
are considered to be connected, actually are connected. Because this model can not take into
account the distance from each household to the node on the road. Therefore, the number of
households counted per path are the number of households that access the road at a specific
node, not the households that have a traveling distance of 5 kilometers in total. This is also a
weak aspect of this model.
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max
P

n2N S nyn Maximize the number of connected
households.

(0)

s.t.
P

j2N f (n)
jn �
P

i2N f (n)
ni � �1, 8n 2 Nr The path for household cluster n can

only leave the cluster n once and at most
once.

(1.1)

P
nhc f 2Nhc f ,n

�P
j2N f (n)

jnhc f
�Pi2N f (n)

nhc f i
�  1,

8n 2 Nr

The path for household cluster n can
only enter a healthcare facility once, at
most once, and can not leave it. It can
also only end at one healthcare facility.

(1.2)

P
j2N f (n)

jk �
P

i2N f (n)
ki = 0,

8k 2 N \ {Nhc f ,n, n}, n 2 Nr

The path for household cluster n must
leave any node it enters, if this node is
not n or a healthcare facility in Nhc f ,n

(1.3)

P
(i, j)2E f (n)

i j li j  5km 8n 2 Nr All paths must be at most of 5 kilometer
length.

(2)

P
(i, j)2E ei jxi j  B Upgrade construction costs must be less

or equal to the budget
(3)

P
n2Nr f (n)

i j  |Nr|xi j 8(i, j) 2 E A path can only be on an edge that has
been upgraded

(4)

yn 
P

j2N f (n)
jn 8n 2 Nr A household cluster is connected to a

healthcare facility if there is a path go-
ing out of the node n

(5)

f (n)
i j , yn, xl 2 {0, 1}8(i, j), l 2 E, n 2 N Integer constraints (6)

Input
B Budget
ei j Costs of updating edge (i, j) to be all-seasons
E Edge set
li j Kilometer length of edge (i, j)
n 2 N Node in node set N
Nhc f ⇢ N Subset of nodes containing all the nodes that represent a healthcare fa-

cility
Nhc f ,n ⇢ Nhc f Subset of nodes representing healthcare facilities that are within 5 kilo-

meter range of node n
Nr ⇢ N Subsets of nodes that connect at least one household to the road
S n Number of households connected to road-node n
Decision variables

f (n)
i j =

8>><
>>:

1 if edge (i, j) is a part of the flood resilient path of household cluster n
0 else

xi j =

8>><
>>:

1 if edge (i, j) is (upgraded to) a flood resilient road
0 else

yn =

8>><
>>:

1 if household cluster n 2 Nr is connected
0 else

Model 5 Magnanti and Wong inspired formulation for the Road Network Upgrading Problem.
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3.1.3 Additional and alternative formulations

Alternative objective functions

• Maximize the number of connected households while minimizing of construction
costs

Formulation for Model 4
P

p2P S pzp � a↵
P

l2E elxl

Formulation for Model 5
P

n2Nr yn � ↵
P

l2E elxl

This objective function penalizes expensive links and thus makes a stronger trade-
o↵ between how many households are connected and how much this costs. This
objective function is very useful when the budget does not need to be spent entirely,
but the relevance of the solution needs to be very high. The factor ↵ weights the costs,
which can help balance out the importance of the number of households versus mini-
mizing the costs. A smaller ↵ will enforce more prioritization on connecting as many
households as possible, while a larger ↵ will weigh the connecting a new household
alongside how much it costs. One issue to look out for when using this objective func-
tion is that it might not add routes to household clusters that can be a↵orded, because
they are relatively very expensive.

• Maximize the number of connected households while minimizing the traveling
distances of the paths

Formulation for Model 4
P

p2P zp(S p � ↵lp)
Formulation for Model 5

P
n2Nr yn � ↵

P
n2Nr

P
(i, j)2E f (n)

i j li j

This objective function not only maximizes the number of connected households,
but also tries to minimize the distance of each included path (the length of a path is
what variable lp stands for). Routes will still be no longer than 5 kilometers, but the
solution with the shortest total traveling distance will be selected. As is also the case
for the above objective function, the factor ↵ serves to balance these two objectives.
A smaller constant ↵ will prioritize maximizing the number of connected households
and a larger constant ↵ will prioritize the shortening of the traveling distances. One
negative e↵ect of this objective function could be that might prioritize to connect
households that are closer to the healthcare facility because it penalizes longer links
and routes, resulting in households that already have di�culty with accessibility. Or,
even worse, not include any paths because this results in a smaller total traveling
distance.
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Alternative objective functions

• Setting a minimum percentage of households that must be connected

Formulation for Model 4 1P
n2Nr S n

P
p2P S pzp � PC

Formulation for Model 5 1P
n2Nr S n

P
n2Nr S nyn � PC

This constraint will ensure that at least PC% of the households are connected. This
constraint does not add anything if the objective function only maximizes the number
of connected households, because either the model already connects at least PC%
of the households, or the program is infeasible. Only when incorporating a distance
minimization or cost minimization to the model, could this constraint be of use (if the
percentage is feasible).

3.2 What model to use

The decision whether to generate the paths during or before the model is optimized can have a
big e↵ect on the computational results. It could a↵ect the running time, the quality of the so-
lution and the memory use. The hypothesis is that generating the paths during the optimization
takes a long time to run and uses a lot of memory.

For both models, the branch and bound algorithm (as implemented by Gurobi) was applied
on a small scale scenario. When the branch and bound algorithm was applied to Model 5, it
was not able to properly run and crashed, because there was not enough storage on the laptop
available. This was not an issue for Model 4 (regardless of how the paths were generated).
Proving the hypothesis that generating the paths before hand would be computationally much
more favorable. This could be explained because there is a much larger set of variables and
constraints to optimise over. In some cases this leads to a much shorter running time (these
scenarios are called extended formulation [15]), but this is not the case with our models.

The di↵erences in the number of variables are the following. For Model 5 there are

2|Nr||E||  {z  }
number of f variables

+ |E||{z}
number of x variables

+ |Nr||{z}
number of y variables

variables.

While the number of variables for x and y are quite trivial, the number of variables for f could
use some explanation. The number of variables for f is 2|Nr||E| because every household cluster
will have |E| links to find a path over. But, because the direction of these edges matters for the
path, resulting in a total of 2|Nr||E| decision variables
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For Model 4, the model that takes a set of paths as input variable, we only need

|P||{z}
number of z variables

+ |E⇤||{z}
number of x variables

variables.

We can assume that |P|  2|Nr||E|+ |Nr| because, in our case, we know that for every household
cluster there are less than |E � 1| paths of at most 5 kilometers long.

Besides, Model 4 has less constraints than Model 5. For Model 4 we have

1|{z}
constraint 1

+
X

p2P
|p \ E⇤|

|        {z        }
constraint 2

+ |Nr||{z}
constraint 3

constraints. While for Model 5 we have

|Nr||{z}
constr 1.1

+ |Nr||{z}
constr 1.2

+ |Nr|(|N| � 1 � |Nhc f |)|                   {z                   }
constr 1.3

+ |Nr||{z}
constr 2

+ 1|{z}
constr 3

+ |E||{z}
constr 4

+ |Nr||{z}
constr 5

= |Nr|(|N| � |Nhc f | + 3) + |E| + 1

constraints. Provided our tests, and the possible explanation as discussed above, we can con-
clude that Model 4 is a more e�cient choice.

It must be noted that generating a set of paths of at most 5 kilometer long for each household
beforehand can cost a lot of memory as it must save the all the edges on the path and generating
the paths will cost some computational time as well. How much computational time this saves
is dependent on how these algorithms work. This will be discussed in Chapter 5.
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4 Data preprocessing

This chapter will elaborate on how the data was prepared in order to be able to apply the FAR-
NUP model (Model 4) to Timor-Leste. The model needs a broad set of input data. This data
is:

• A road set, expressed as a graph with nodes and edges;
• A flood analysis (with binary indications) for each road segment;
• An upgrading cost indication for each road segment;
• A set of possible paths of at most 5 kilometers long each;
• An indication of how many households can be connected for each path.

In order to obtain the needed input variables, we need to model the flood risk and the upgrading
costs. In order to generate paths, we need to identify the households that are a↵ected by floods.
Therefore, we need an accessibility analysis for the entire nation. This chapter will focus on
the flood risk model, the cost model and the accessibility analysis. The generation of paths
will be discussed in Chapter 5 because this was a di�cult aspect of the research that deserves a
thorough explanation.

We will first present the data we have worked with, what the sources are of this data and some
observations we have made of our data. Afterwards, we will discuss the flood model and the
cost model. Afterwards, we describe how we analyzed the healthcare accessibility.

What is important to emphasize about the flood and the cost model is that modeling flood risks
and upgrading costs is a very di�cult task that requires thorough, specialised research [14].
Simple dummy models have been be developed in order to test the optimization models, because
we are a team of mathematicians with no background in infrastructure and because it is essential
in order to apply and test our optimization models. The optimization models have been designed
to be generic such that the flood and cost models can be expanded upon or replaced.

4.1 The used data

In order to apply the optimization model and all the other models to Timor-Leste, we needed
data from this area. This data was provided by The World Bank. These were 5 sets of data:

• Topographic data for Timor-Leste.
Source: The World Bank;

• Geospatial road data for Timor-Leste.
Sources: eStrada and OSM, combined via an algorithm created by Valentijn Stienen.
The paper has yet to be published;
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• Geospatial household data from Timor-Leste.
Source: Census;

• Geospatial healthcare data from Timor-Leste.
Source: World Health Organisation;

• Geospatial flood hazard data for Timor-Leste.
Source: Fathom Flood Risk Intelligence.

4.1.1 Observations of the Timor-Leste data

This subsection will get into some oberservations we have made about our data. For the road,
household and healthcare facility dataset we will show the spread per district, and visualise the
data. Afterwards some details about the flooding data is shown.

In Figure 2 we see the di↵erent districts of Timor-Leste.

Figure 2 Districts of Timor-Leste (and the island of Atáuro that is a part of the district of
Dili).

There were two sources of road data: eStrada and OSM. We used a dataset that mapmatched
these two data sets, because the symmetric di↵erences between these roadsets was very large.
The paper on how this mapmatch algorithm worked exactly is still being written by Valentijn
Stienen from Tilburg University.

The road data has been split into segments of 50 meters. This is done because it makes it easier
to identify the flooding risks on parts of a road and in order to be able to connect households
more realistically to the road.

Because the district of Oescussi and the island of Ataúro are not present in the Fathom data, and
are not areas of interest for the World Bank at the moment, they are excluded from all the other
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data sets as well. But if these areas were to be included, the models can easily be applied to
these areas separately because their road networks are isolated from the rest of the Timor-Leste
data.

The data of the healthcare facilities comes from the World Health Organization and the data of
the household distribution comes from Census Bureau. In Table 1 the most important statistics
of in our data are shown for each district separately. In Figure 3, the distribution of these datasets
is visualised.

Province Kilometers
of road

Number of
healthcare
facilities

Percentage
of total
population

Aileu 12194km 23 4.2%
Ainaro 13030km 19 5.77%
Baucau 16363km 48 12.37%
Bobonaro 18109km 30 10.12%
Covalima 15323km 21 6.83%
Dili 13465km 22 18.14%
Ermera 16088km 31 12.01%
Lautém 12071km 26 6.73%
Liquiça 13074km 28 6.49%
Manatuto 10665km 24 4.16%
Manufahi 9205km 22 5.06%
Viqueque 12437km 27 8.13%
Total 162031km 321 100%

Table 1 Distribution of roads (in kilometers), healthcare facilities (in numbers) and population
distribution (in percentage of total population).
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(a) Road distribution (b) Healthcare facility distribution

(c) Household distribution (d) All together

Figure 3 Visualisation of the road data, healthcare facility data and household data. Shown
separately and all together.

4.1.2 Flooding data

The flooding data was provided by Fathom [16]. The Fathom flood-hazard model is a global
gridded dataset of flood hazard produced at the global scale. It provides pluvial and fluvial
hazard scenarios, expressed in return periods, which indicates the probability of occurrence
(i.e. once in 5, 10, 20, 50, 75, 100, 200, 250, 500, 750 and 1000 years).

Each country set includes three subsets:

• Fluvial Undefended (FU): fluvial floods (floods from rivers, lakes or streams) hazard
data, without defence estimation;

• Fluvial Defended (FD): fluvial flood hazard data, with defence estimation;

• Pluvial (P): pluvial flood (floods from percipitation) hazard data.

The defended version of the fluvial hazard maps accounts for the e↵ect of flood defense mea-
sures in lowering the hazard intensity; Fathom notes that this is based on a statistical estimate
of flood protection standards (FloPros) and does not account for the presence of physical struc-
tures (e.g. dikes, barriers). The undefended version is recommended for general risk assessment
purpose.
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For our purposes we have used the fluvial defended and the pluvial layer with a 1 in 500 years
return period. We chose to use the defended layer rather than the undefended layer, because this
is not a general risk assessment. A visualisation of these layers can be found in Figure 4.

(a) Fluvial Defended

(b) Pluvial

Figure 4 Visualisation of 1 in 500 flooding risk data. Data has been partly rounded in order
to make the visualisation clearer.

4.2 Flood model

The flood model aims to identify whether a road segment is at risk of being inaccessible due to
floods. In order to identify this, the model takes two aspects of a road segment into account:

(1) Flooding risk on segment (sum of fluvial and pluvial both with a return period of 1
in 500 years, the highest value on the segment);

(2) Surface type of the road segment;

The model assumes that there are three types of road surfaces: dirt, gravel and asphalt. The
assumption is that dirt is less flood resilient than gravel, and that asphalt is always flood resilient.
Every road surface type has a threshold under which a road segment is assumed not to be at
risk of heavy flooding. These thresholds can be found in Table 2. These values are selected
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randomly. Thus, for example, a gravel road with a flooding risk of 0.75 is at risk, but a dirt road
with a flood risk of 0.12 is not.

Road type Flood risk threshold
Dirt 0.15
Gravel 0.25
Asphalt Always flood resilient

Table 2 The chosen flood risk thresholds for a road surface type. If the flood risk quantity on a road
segment (which is a sum of the Fathom fluvial and pluvial quantities) surpasses this threshold, a

segment is considered to be at risk, and thus in need of an upgrade in order to be all-seasons accessible.

4.2.1 Constructing road surface data

It was necessary to construct road surface data because only 10% of the mapmatched road data
contained an indication of a road surface type. Because there were 11 types of road surfaces
among this labeled dataset, they were divided into three groups and assigned to be either asphalt,
gravel or dirt. For the remaining 90% of the unmarked data, 78% had an highway indication.
This indication was used to generate a surface type. The remaining 22% was generated ran-
domly. For this generation, it was ensured that the whole road was assigned the same surface
type, rather than that di↵erent segments on a road had di↵erent surface types. This was done
because roads are most likely to be entirely of the same surface type, rather than segments of
di↵erent surface types.

The enumeration below shows how di↵erent indications were mapped to the three used road
surface types.

(1) Simplify the 10% of the data that does have a surface type assigned. The mapping
is as follows:

final surface type OSM surface type classification
asphalt asphalt, paved, concrete
gravel gravel
dirt dirt, compacted, Travessa De Ai-

Kakau, sand, mud, ground, unpaved

(2) Map the data that has not yet been labeled, that has an indication for the column
highway as follows:
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final surface type OSM highway classification
asphalt primary, primary_link, motorway,

motorway_link
gravel service, secondary, secondary_link,

steps, tertiary
dirt unclassified, residential, foot-

way, construction, tertiary_link,
living_street

(3) For the remaining data that has not yet been labeled by the past two steps, assigning
a surface type was just done randomly.

4.2.2 Results flood model

When this model was applied to Timor-Leste, 22% of the roads appeared to be at risk of being
flooded. The results are visualised in Figure 5, the quantitative results for each district can be
found in Table 3. What is important to keep in mind about this model is that it is a dummy
model and thus the result does not portray the actual flooding risks on the road well.

Figure 5 Visualisation of the results of the flood model
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Region Kilometers at risk Percentage
of district

Ainaro 94.3km 15.29%
Aileu 76.86km 13.49%
Baucau 119.11km 15.47%
Bobonaro 184.51km 21.62%
Covalima 152.04km 21.8%
Dili 245.46km 41.88%
Ermera 111.76km 14.44%
Liquiça 171.39km 28.25%
Lautém 135.76km 23.23%
Manufahi 146.8km 32.71%
Manatuto 132.91km 25.53%
Viqueque 143.12km 23.6%
Total or average 7570.25km 22.46%

Table 3 The results of the flood model per region. For each district, this table sets out how many
kilometers of road are at risk and the percentage of all the roads in this region are at risk.

4.3 Cost model

The cost model calculates per road segment how much it will cost to make the segment flood
resilient. This is dependent upon the flood model, because the flood model shows what is
needed for a link to become flood resilient. The costs of upgrading a segment are assumed to be
dependent upon the length of the segment and the upgrade that is needed. Each type of upgrade
has a cost per kilometer. The costs of this upgrade per kilometer are then multiplied with the
length. There are three types of upgrades possible, they are listed in Table 4.

Upgrade type Cost per km
Dirt to gravel 2
Dirt to asphalt 15
Gravel to asphalt 12

Table 4 The di↵erent types of upgrades for a road segment and the costs per kilometer.

The formula for the costs is as follows:

coste = upgrade_type ⇥ lengthe
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4.3.1 Results cost model

A visualisation of the costs can be found Figure 6. The results per province are shown in Table 5.

Figure 6 Visual result of upgrading costs on edges

Region Km road Upgrading
costs

Percentage
of total
costs

Aileu 567.56 976.61 4.54%
Ainaro 614.47 1200.06 5.58%
Baucau 767.43 1366.11 6.35%
Bobonaro 852.49 2253.05 10.48%
Covalima 697.37 1895.09 8.81%
Dili 576.74 3155.94 14.68%
Ermera 773.02 1375.76 6.4%
Lautém 584.33 1694.61 7.88%
Liquiça 606.69 2192.91 10.2%
Manatuto 520.26 1697.08 7.89%
Manufahi 448.61 1908.63 8.88%
Viqueque 606.44 1784.75 8.3%
Total 7615.71 21502.4 100.0%

Table 5 Results of upgrading costs per area

4.4 Accessibility model

The accessibility analysis aims to analyze which households are connected to a healthcare facil-
ity and which are not. Our model can do this with and without taking into account the flooding
risk. For the convenience of the reader we will repeat the following definition: a household is
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considered to be connected if there is a path from a household to a healthcare facility via a flood
resilient route that is no longer than 5 kilometers.

In order to e�ciently compute the accessibility statistics, households are clustered according to
where they access the road. Because the road has been split into segments, households can be
attached to the ends of these segments. If a healthcare facility is closer to a household than a
road, the household is mapped to the healthcare facility. An example of how these connections
and clusters are made can be seen in Figure 9. This clustering is done because otherwise the
same route would be computed for every household in the cluster separately, which costs a lot
of computational time. The distance from a household to the road can be bounded, which means
that if a household does not live within an x kilometer range of any node on a road, it will not
be attached to the road. In our case, we have set the maximum distance from a household to the
road of at most 5 kilometers.

Figure 7 An example of how households cluster according to how they access the road.

The shortest path could only be calculated from one node to one other node. Therefore, we
could not just calculate one shortest path from a household cluster to set of healthcare facilities.
It was necessary to calculate the shortest distance to each individual healthcare facility, and
then save the shortest distance of the found distances. In order to speed up these computations,
the shortest paths for a household cluster are only calculated towards the healthcare facilities
that are within a 5 kilometer radius. The shortest path from a cluster to any of the healthcare
facilities is then saved.
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After the shortest traveling distance from a household cluster to any healthcare facility is found,
the shortest traveling distance can be attributed to the individual households within the house-
hold cluster. For this, the distance from the household to the node on the road is added to the
found shortest distance of the road node to the healthcare facility.

The distinction between the analysis that takes into account the flood risk and the analysis that
does not, is that the at risk road segments are dropped from the road data after the households
have been clustered according to where they access the road. When it comes to analyzing
the flood a↵ected accessibility, the households are first assigned to the nearest road node (or
healthcare facility), no matter if the road is at risk or not. Once these households have been
assigned, the road segments that are at risk of being flooded are dropped from the edge set.
Over the remaining edges the shortest paths are being computed.

Once these shortest distances to a healthcare facility have been calculated, the households are
split into a group having traveling distance of at most 5 kilometers, and a group having a trav-
eling distance longer than 5 kilometers.

The accessibility analysis has been applied with and without taking into account the flooding
risks. First we elaborate on the accessibility analysis regardless of flooding risks. Afterwards
we discuss the accessibility taking into account the flooding risk.

4.4.1 Results accessibility analysis regardless of flooding risks

We find that a total of 79% of the households of Timor-Leste is able to travel to healthcare
facility within 5 kilometers. The 5 kilometer accessibility potential is especially high in Dili,
where 98% of the households is able to access a healthcare facility within 5 kilometer traveling
distance. The areas where the accessibility is the lowest are Ainaro, Bobonaro and Ermera,
where at most 67% is able to access a healthcare facility. The results can be found in Figure 8a.

4.4.2 Results accessibility analysis taking into account flooding risks

The accessibility analysis that takes into account the flooding risks shows that only 36% of all
households in Timor-Leste can access a healthcare facility within 5 kilometer traveling distance
via a flood resilient route. This is 45% of the households that are actually able to access a
healthcare facility within 5 kilometer traveling distance (which 79% of all households).

We see that especially Dili is heavily a↵ected by floods, as only 16.8% of the households that
would be able to access a healthcare facility can access a healthcare facility during floods. The
district that seems least a↵ected by floods is Ermera, where 71% of the households that would
be able to be connected, is. The results are shown in Figure 8b.
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Region Households Households
with access

Percentage
with access

Ainaro 10064 6547 65.05%
Aileu 7339 5701 77.68%
Baucau 21584 17225 79.8%
Bobonaro 17670 11514 65.16%
Covalima 11917 9284 77.91%
Dili 31662 31085 98.18%
Ermera 20959 13936 66.49%
Liquiça 11320 8681 76.69%
Lautém 11739 9685 82.5%
Manufahi 8836 6762 76.53%
Manatuto 7256 5844 80.54%
Oecussi 0 0 0.0%
Viqueque 14198 10910 76.84%
Total 174545 137174 78.59%

(a) Accessibility analysis of households that can access a healthcare facility within 5 kilometer traveling distance
when taking into account all edges, regardless of flood risk on edge.

Region Households Households
connected

Percentage
connected

Percentage
connectable

Ainaro 10064 4181 41.54% 63.86%
Aileu 7339 3425 46.67% 60.1%
Baucau 21584 10079 46.7% 58.51%
Bobonaro 17670 5332 30.18% 46.31%
Covalima 11917 3666 30.76% 39.49%
Dili 31662 5208 16.45% 16.75%
Ermera 20959 9945 47.45% 71.36%
Liquiça 11320 3580 31.63% 41.24%
Lautém 11739 4957 42.23% 51.18%
Manufahi 8836 2498 28.27% 36.94%
Manatuto 7256 3544 48.84% 60.64%
Viqueque 14198 5804 40.88% 53.2%
Total 174545 62219 35.65% 45.36%

(b) Accessibility analysis of households that are connected when taking into account flooding risks.

Figure 8 Results of the accessibility analyses.
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5 Generating paths

One of the most important input of the FARNUP model (Model 4) is the set of paths. The paths
must be no longer than 5 kilometers long (but this parameter can be changed if desired). The
paths should originate at a healthcare facility and terminate at a household cluster node (which
is a node on the road). To remind the reader, a household cluster is a cluster of households
that is clustered according to where they access the road. As stated before, the road dataset
is split into road segments of at most 50 meters. A household can access the roads at to the
ends of these segments. When households access the road at the same ends (or nodes) of a road
segment, they are clustered. A visual example of this can be seen in Figure 9.

Figure 9 An example of how households cluster according to how they connect to the road.
All households that connect to the same node on the road are clustered together. Each cluster in
this image has its own color.

Two di↵erent algorithms were developed to generate a set of paths. Initially, an algorithm
was created that would generate all possible paths using a state space search method. This
algorithm is explained in Section 5.1. It works well for healthcare facility areas where the
infrastructure is sparse, but for more complex healthcare facility areas it could take very long
and will sometimes not terminate. Therefore, a new algorithm was created. This algorithm
would generate only relevant seeming paths, which means that the path is a balance between
short or cheap to upgrade. This algorithm will be explained in Section 5.2. In Section 5.3 the
two methods are compared and the results are elaborated upon.
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5.1 Algorithm to generate all paths

The algorithm that generates all paths is a state space search algorithm [17]. Such an algorithm
makes use of an search tree and a set of active nodes that are are processed at every state in
order to attain new (partial) solutions from earlier found (partial) solutions. One example of a
famous state space search algorithm is the branch and bound algorithm.

In the case of our path generating algorithm, an active node is paths that is shorter than 5
kilometers that can still be expanded with road segments to create a longer path. The initial
path starts o↵ at the main healthcare facility. At every state, the algorithm chooses one active
node (thus: a path) and seeks all the edges that are connected to the end node of the path. Every
edge that is connected to the last visited node (whose end node is not yet visited via the path),
generates a new path if it is added to the path that is being processed. The algorithm saves the
newly found paths that are shorter than 5 kilometers and can still be expanded to the set of active
nodes. If a path ends at a household cluster node, it is saved to the final set of paths. Thus, all
final paths start at the central healthcare facility, end at a road node that has a household cluster
attached to it and are no longer than 5 kilometers.

The algorithm uses a depth first search. In this context, that means that the newest path in the set
of active paths will be the first path that will be expended in the next iteration(s). This method
was chosen because it uses less memory because the set of active nodes will not expand to the
maximum amount possible, before cutting o↵ branches.

The pseudocode of this algorithm can be found in Listing 1.

A visual example of this algorithm can be found in Figure 10. Here we see how, at iteration
1, we generate all paths that start at the healthcare facility (which in our case are two paths).
At the next iteration, we expand the southern path. The expansion of this path continues on to
iteration 4, after which the path is 5 kilometer, and can not be expanded. It then continues on
with the path to the south eastern side, because this was the last found path. In iteration 9, all 5
kilometer paths in this area have been found. Note that this example is not representative when
it comes to segment length, segments are made longer in order to portray the example better.

Results

This algorithm works well for healthcare facility areas with a sparse infrastructure, but for more
infrastructure dense healthcare facility areas it could take very long and would sometimes not
terminate. Examples of a sparse and a dense scenario of a healthcare facility area can be found
in Figure 11. In Section 5.3, the computational results of this algorithm will be elaborated on
more extensively.
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final_paths = []
for hcf in healthcare_facilities:

first_path = [main_hcf]
active_paths = [first_path]
while active_paths not empty:

current_path = newest(active_paths)
last_visited_node = last_visited_node(current_path)
for all nodes n connected to last_visited_node:

if n not in current_path and path_dist(current_path + n) <= 5:
add (path + n) to active_paths
if n household cluster node :

add (path + n) to final_paths
remove current_path from active_paths

Listing 1 Pseudocode of algorithm that generates all possible 5 kilometer paths from all the
healthcare facilities to all surrounding household clusters.

(a) Sparse scenario
(b) Dense scenario

Figure 11 Examples of a thin and a dense healthcare facility scenario

5.2 Algorithm to generate relevant paths

An algorithm that is less computationally demanding is the algorithm that generates only rel-
evant seeming paths. A path is considered to be relevant when it is cheap to upgrade or has
a short distance, or is a combination of both. Therefore, this algorithm generates K paths for
each healthcare facility and any healthcare facility within a 5 kilometer radius (removing the
duplicates). The edge weights are some convex combination of the length of the edge and the
upgrading costs.

The algorithm calculates the shortest path using the Pandana shortest path package [18]. This
package uses Dijkstra’s algorithm [19] to find the shortest path and combines this with contrac-
tion hierarchies. Contraction hierarchy methods are a form of pre-processing a network such
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that a distance matrix can be computed where junctions are ordered according to their cruciality
in the network [20]. It then computes the shortest distance between the important junctions in
order to create shortcuts such that it does not have to compute these distances every time it tries
to find an individual shortest path.

The pseudocode of this algorithm can be found in Listing 2.
for k in K:

� = k/(K-1)
edges.weights = � * edges.upgrade_costs + (1-�) * edges.km_length
find shortest paths with above weights for all unconnected households
calculate km_length for every path
drop all paths longer than 5km
add new paths to set of paths

drop all duplicate paths

Listing 2 Pseudocode of algorithm that potentially generates a smaller set of relevant paths
from any node to the healthcare facility.

In order to establish which value for K would yield an e↵ective balance between optimal results
and low running time, the algorithm was ran for di↵erent values of K. From our empirical test,
we concluded that the best choice is K = 4. The full analysis can be found in Section 7.4.

5.3 Comparing these algorithms

One algorithm has to be chosen for our final implementation. Therefore, we ran an empirical test
to conclude which algorithm to chose. When comparing these two algorithms with each other,
two performance aspects were taken into account: the computational time and the quality of the
solution that was obtained from inputting these paths into the branch and bound optimization
algorithm. It was applied to n = 75 arbitrary healthcare facility areas. The hypothesis is that the
algorithm that generated all paths would generate better solutions (if it was able to terminate)
and that the algorithm that generates the relevant paths would have a much shorter running time,
both in terms of path generation running time and the optimization algorithm running time. The
running time of the optimization algorithm would be shorter because there were less variables
to optimize over.

The algorithms were compared using the branch and bound implementation. For n = 75 di↵er-
ent healthcare facility areas both algorithms were applied, that each generated a path set for the
area. The branch and bound algorithm was then ran twice, once for every path set. The running
time and results were then saved. We set a MIP gap of 5% in order to make the total running
time of this test shorter. Because the algorithm that generates all paths could sometimes run
endlessly long, we bounded the running time of this algorithm to be at most 5 minutes. If it had
not finished within 5 minutes, the algorithm would be cut o↵ and another healthcare facility area
would be selected. We used K = 4 for the number of paths to generate between each O-D pair.



Generating paths 40

The budget for each healthcare facility area was set to be 10% of the total cost of upgrading the
entire area.

The hypothesis about how the algorithms would perform compared to each other appeared to
be true, as we can see in Table 6. But there is still a good argument to be made in favor of the
algorithm that generates the relevant paths. We see that the di↵erences in computational times
is much larger than the di↵erences in objective values. The algorithm that generated all paths
was on average 19 times slower than the relevant path algorithm, while there were barely any
di↵erences in the objective value.

All paths Relevant paths
Mean objective value 110.79 109.87
Mean path generation running time (sec) 20.46 2.08
Mean optimization running time (sec) 6.06 0.086
Mean number of paths found 444 63
Cases with same objective value 75.81 %
Cases where all path generation surpassed 5min 14.67%
Table 6 Quantitative results of path generation comparison test applied to n = 75 healthcare facility

areas. The averages are taken over n = 56 cases that were able to generate all paths within 5 minutes.
The number of path generated per O-D pair is K = 4.

IN Figure 12 and Figure 13 we have plotted the results of every single test (ordered according to
the results of the all path method). We can see in Figure 12 that there are barely any di↵erences
between the objective values.

In Figure 13, we see that the running time (both to generate the paths and to optimize over them)
of the all path generating algorithm is generally much larger than the relevant path generating
algorithm.

Therefore, we can conclude that the relevant path heuristic is more useful than the heuristic that
generates all paths.
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Figure 12 The (ordered) objective values for the two di↵erent path generation algorithms.

(a) Generating paths. (b) Optimizing the model (5% gap).

Figure 13 Running times between the two path generation algorithms (ordered).
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6 Algorithms to find (near-)optimal solutions for Timor-Leste

Multiple algorithms have been developed in order to find a (near-)optimal solution for the Fa-
cility Accessiblity Road Network Upgrading Model (as formulated in Model 4). The test case
for these algorithms was the country of Timor-Leste. This a↵ected the development process,
because many healthcare facilities in Timor-Leste have an overlapping healthcare facility area.
Therefore, this is a factor that has been taken into account in all algorithms. We will start o↵
with the analysis about this overlap.

Afterwards, we will discuss the di↵erent algorithms that have been developed and tested. Due
to the vast majority of papers recommending branch and bound, we started o↵ applying and im-
plementing that (using the Gurobi software). We were able to apply it to a small scale instances,
these were the healthcare facility areas. The branch and bound algorithm was not applicable to
the whole nation of Timor-Leste. Therefore, we needed to create heuristics that would be able to
find a national solution for Timor-Leste. We started o↵ creating heuristics that used the branch
and bound algorithm applied to healthcare facility areas and combine them. We came up with
two heuristics that did this, of which only one was able to produce a solution. Sadly, the al-
gorithm that could produce a solution, did not satisfy our running time demands (a maximum
of 12 hours). Therefore, a third method was developed that did not use the branch and bound
method. This method is called the dynamic greedy method and it produces good solutions and
satisfies our running time demands.

Taking into account overlap between healthcare facility areas

What is important to take into account when finding a national solution for the country of
Timor-Leste, is that 75.4% of the households in Timor-Leste fall within multiple healthcare
facility areas. Approximately 5% of the households even fall within 5 kilometer radius of more
than 14 healthcare facilities. This data was acquired through an analysis of the Timor-Leste
data. The quantitative results can be found in Figure 14.

Figure 15 shows the di↵erent healthcare facilities with the 5 kilometer radii around them. This
figure also shows the households, and colors them according to how frequent they appear in
healthcare facility area.

From this analysis we can conclude that it is important to take this overlap into account when
finding local and national solutions.
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(a) Plot frequency households live within number of healthcare
facilities range

(b) Statistics

Figure 14 Results for overlap research of healthcare facility 5 kilometer radii

Figure 15 Visualisation of the healthcare facility areas. This image shows the overlap of
these areas as well as the household distribution. The households are colored according to the
frequency of which they fall within a healthcare facility area.
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6.1 Branch and bound algorithm for small scale instances (healthcare facility areas)

We were able to apply the branch and bound algorithm to all healthcare facility areas. To remind
the reader once more, this means a healthcare facility and the data that lies within a 5 kilometer
radius around the healthcare facility. In order to provide the reader with some intuition for these
healthcare facility areas, some examples can be found in Figure 16. This figure shows three
healthcare facility areas. Each image is shown twice, above we see the areas with only the
roads, households and the central healthcare facility and below we see this data alongside an
indication of whether the households are connected and which segments of the road are at risk.

The branch and bound algorithm [15] is a algorithm that can find the optimal solution of an
mixed integer optimization problem. It is a state space search method that creates a rooted
tree in order to find the optimal solution. Suppose the problem is a maximization problem.
At every iteration, the branch and bound algorithm solves an LP relaxation to find local upper
bound and keeps account of the lowest bounds for the found integer solutions. Once this is
done, the algorithm chooses a variable from the LP solution (usually according to some sort
of prioritization of the variables) that is non integer, and splits the LP program into two new
LP programs. To one program it adds the constraint that the selected variable must be larger
or equal to the found decimal value, and to the other program it adds the constraint that the
selected variable must be smaller or equal to the found decimal value. It saves the new LP
programs to the set of active nodes, and updates the global optimum if the solution to the LP
is integer. The branches of the tree are pruned due to three criteria: if the LP subproblem is
infeasible, if the LP subproblem is integral or if the the lower bound obtained from the LP
solution in a subproblem is less than or equal to the global lower bound. Therefore, the branch
will not be further explored, because the optimal solution will not lie within this branch. The
tree can be explored until an optimal solution is found, but, it can also be stopped according to
some stopping criterion. Such a stopping criterion is generally either a certain gap percentage
between the upper and lower bounds (the MIP gap) or a maximum running time.

We applied the branch and bound method using the Gurobi solver. Many choices could be
made in order to optimize this implementation. The parameters and settings that were tested are
summed up below. The full analysis can be found in Chapter 7.

• Can the LP solution with some postprocessing provide an optimal solution? Conclu-
sion: no. Analysis can be found in Section 7.1;

• Can we relax the x or z variable by allowing them to take on real values and still
attain a MIP answer and will it speed up the optimization process? Conclusion: no.
Analysis can be found in Section 7.2;
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• Which MIP gap yields an e�cient trade-o↵ between (near-)optimality and fast run-
ning time? Conclusion: 1%. Analysis can be found in Section 7.3;

• Could optimizing separately on grids be usefull? Conclusion: no. Analysis can be
found in Section 7.6.

The frequency of certain cutting planes has also been examined, but it has not contributed to the
final branch and bound implementation. The findings can be found in the Appendix, Section D.

6.1.1 Locally taking into account the overlap between healthcare facility areas

In order to find a more representative optimal solution on healthcare facility level, it was con-
cluded that it was important to also take other healthcare facilities in the area into consideration.
As explained above (Figure 14), 75,4% of the households live within a 5 kilometer radius of
more than one healthcare facility. When looking more closely into this, it appeared that a solu-
tion for a healthcare facility level will not be representative for the area if we do not take into
account the other healthcare facilities within the area.

This is best explained using an example. If we look at the healthcare facility area in Figure 17,
we can see that there are three more healthcare facilities within this area. Now, if we were to
only take into account at the healthcare facility in the centre, the most productive investment
would be in road R1 (above the healthcare facility) and road R2 because this road segment
connects the many households along R2. If the northern healthcare facility is taken into account,
only R2 is updated in order to connect this group. Updating R1 to connect the 4 households
alongside that road is one of the least interesting investments in this area. This example shows
why taking into account the surrounding healthcare facilities in a healthcare facility area is
important to get a more representative solution.
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Figure 17 Example of healthcare facility level area where taking into account surrounding
healthcare facilities provides a better solution.

6.1.2 Example of a local solution found by branch and bound

An example of di↵erent solutions for di↵erent budgets for a certain healthcare facility area are
shown in Figure 18 (this is the same area as example 2 from Figure 16). We chose to include
this to provide the reader with some intuition as to how these optimal investments changed as
the budget increased. The three di↵erent budgets are 2.5%, 5%, 7.5% and 15% of the costs of
upgrading the entire area. What we can clearly see in this figure is that the most viable area to
invest in, is towards the south of the healthcare facility area. This holds because that is the area
where the smallest budget makes the largest di↵erence. We can see that as the budget increases,
investing in the southern area stays prioritized, because at that spot the most households are
dependent upon the cheapest upgrading costs. Only when that area has been upgraded, will the
four households near the north of the healthcare facility to gain flood resilient access.
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(a) 2,5% of area costs, con-
nects 23 households more

(b) 5% of area costs, con-
nects 38 households more

(c) 7,5% of area costs, con-
nects 90 households more

(d) 15% of area costs, con-
nects 92 households more

Figure 18 An example of optimal solutions for one healthcare facility area found by branch
and bound. Three budget scenarios are shown, these budgets are a certain percentage of the
total updating costs of the entire healthcare facility level.

6.2 Large scale heuristics that use branch and bound

This section will address how the model was applied to find a near-optimal solution for the
entire nation of Timor-Leste using the branch and bound implementation for healthcare facility
areas. The branch and bound algorithm could not be applied to the entire nation of Timor-Leste
at once because this model would optimize over

36530|{z}
number of at risk road segments

+ 103368|  {z  }
number of paths

= 139898

variables. Therefore, a heuristic had to be invented that could e�ciently find a near-optimal
solution. We knew we could apply the model on a healthcare facility level. Therefore, two
heuristics were developed to find a large scale solution that used this implementation for the
healthcare facility areas of the branch and bound algorithm. The initial solution was the multiple
budget scenarios knapsack method. Sadly, this method was infeasible due to the extremely long
running time. Because of this, the pre-assign budget method was developed. This method was
surely an improvement on the running time, but could not satisfy our desires. First, we will
explain the multiple budget scenarios knapsack method and then we will discuss its successor,
the pre-assign budget method.

6.2.1 The multiple budget scenario knapsack method

The idea behind the multiple budget scenario knapsack method is that it combines di↵erent
local solutions to find a national solution. For each healthcare facility area it calculates the
optimal solution for a few di↵erent budget scenarios. Afterwards, these solutions are combined
using a multiple-choice knapsack model [21] as formulated in Model 7. This would be done
using the branch and bound method again. The pseudo-code for this algorithm can be found in
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Listing 3. One example of a possible list for BUDGET_PERCENT AGES is [50%, 30%, 20%,
15%, 10%, 7.5%, 5%].

#find a solution for every healthcare facility
for every healthcare facility h:

demarcate roads, unconnected households and healthcare facilities
within 5km radius of h

cluster unconnected households based on where they access the road
find all relevant paths between the healthcare facilities and the

household clusters
for budget_percentage in BUDGET_PERCENTAGES:

budget = budget_percentage * total costs of updating all at risk
roads in area

find optimal solution for area given budget
save:
- budget
- connected households (number and index of connected households)
- upgraded roads (indexes)

#combine found solutions using a multi knapsack problem
combine solutions using a Gurobi implementation

*Apply local search technique to enhance global solution (not yet thought
out)*

Listing 3 Pseudocode for multiple budget scenario knapsack method.

This method would need some postprocessing because, as we have seen before, the overlap of
households and roads between healthcare facility areas is high. Because of this, a road segment
could be upgraded multiple times in di↵erent solutions, and included multiple times. Since this
would imply that certain investment are accounted for multiple times, the budget projections
could be o↵ and the multiple-choice knapsack solution could also be far o↵ from the actual
solution. Thus, a postprocessing heuristic would need to be invented.

Before we developed a local search technique, it was already clear that calculating all scenarios
was far beyond our computational restrictions. The algorithm was ran with only one budget
percentage for each healthcare facility area (so only running the Gurobi optimization once for
every healthcare facility with one budget). It took more than 8 days for only about a third
(121 or the 347) of all the healthcare facility scenarios to just find one solution, afterwards the
computer crashed. Which means that calculating for multiple budgets could easily take 9 times
longer. This does not satisfy our running time goals. We could have restricted the running time
of the optimization, but because we wanted to develop a better method rather than allow this
method to produce solutions that would be far from optimal, we chose to invest time in other
algorithms.

One of the aspects that causes this calculation to take so long is the optimization over the
infrastructure dense areas (as shown in Figure 11b). These areas have a huge amount of road
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max
P

a2A
P

s2BS S asyas Maximize the number of connected
households

(0)

s.t.
P

a2A
P

s2BS easyas  B Budgetary restrictions for upgrading
costs

(1)

P
s2BS yas  1 8a 2 A Every area can only have one sce-

nario included in the solution.
(2)

yas 2 {0, 1} 8a 2 A, s 2 BS integer constraints (3)
Input variables
A Set of di↵erent healthcare facility level areas
B Budget
BS Set of di↵erent budget scenarios
eas The costs of including scenario s or area a
S as The number of households that are connected due to the solution of

scenario s for area a
Decision variables

yas =

8>><
>>:

1 if secnario s of area a is included in the final solution
0 else

Model 6 The formulation for the knapsack model used in the multiple budget scenario knapsack
method. This will be used to combine local solutions in order to find a national solution.

segments and most nodes in these local networks have a high degree, which leads to an immense
amount of possible paths. This results in a very large amount of variables to optimize over. This
number could be reduced if the overlap between areas was taken into account. The problem that
comes with this is that multiple budget scenarios per healthcare facility cannot be calculated,
and thus a multiple knapsack model can not be applied to the situation.

6.2.2 Pre-assing budget method

From the research shown in the last section (Subsection 6.2.1), calculating multiple solutions for
all the healthcare facilities is computationally demanding and needs a local search heuristic and
improves the overlap between areas in the found solution. The idea that could solve this issue
is incorporating all previously found solutions into the healthcare facility area that is currently
being optimized over. This can be done by making a clear order in relevance between areas,
assigning them a certain budget and finding an optimal solution for them while taking into
account earlier found solutions. Due to this, roads that are updated in one solution will not be
optimized over again in later solutions. The same holds for households that have already been
connected. This decreases the number of variables in of the models of healthcare facilities that
are optimized over later on in the algorithm.
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In order to apply this idea, we can only calculate an optimal solution for one budget for every
healthcare facility. We would also need to order the healthcare facilities in a way that the areas
that could be invested into most e↵ectively would be upgraded first, and the areas with the least
beneficial investments at the end.

Therefore, two things needed to be established:

(1) How to order the households from (likely) most e↵ective investment area to least?
(2) How to assign the budgets?

1. How to order the households from (likely) most e↵ective investment area to least
The ordering of the households is done according to the relevance ratio of the healthcare facility
area. To remind the reader of the concept relevance ratio, the relevance ratio is the ratio between
the number of households that (can) benefit from an intervention and the costs of the interven-
tion. Because we did not know the exact optimal intervention, this was calculated by counting
all the unconnected households within the area and summing up the costs of upgrading all the
roads in the area.

2. How to assign budgets
Two methods were tested to assign budgets. The one that worked the best was the method that
assigns budgets according to the relevance ratio of a healthcare facility area. If the relevance
ratio falls within a certain interval, the budget would be a certain percentage of the total costs
to upgrade a certain area.

The other method is via a knapsack problem based on the unconnected households in the area
and the costs of upgrading all the at risk roads within the area. The knapsack solution turns out
not to be useful because it would just assign a value of 1 to the areas with the highest relevance
ratio, and 0 to the lower ones. More details about this can be found in Section 7.5.

The budget assigning according to the relevance ratio is done on the basis of intervals. Each
interval is assigned a percentage, and the final budget of the healthcare facility will then be
that percentage of the total costs to upgrade the area. The intervals and their corresponding
percentages are shown in Figure 19 alongside the distribution of the relevance ratio. This figure
also contains the exact intervals and their assigned percentage.

In order to be able to constraint the total budget for a national budget, these local budgets are
being compensated by a factor that ensures that the sum of all the local budgets sum up to the
set national budget. This factor is calculated as follows:

f actor =
national_budget

P
h2HCF ratio_percentage ⇤ total updating costs for area h
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� < %
5 1 75%
2.2 5 50%
0.5 2.2 35%
0 0.5 10%

Figure 19 How the budget percentages are distributed according to relevance ratio of an area.

From which logically follows

national_budget = f actor ⇤
X

h2HCF

ratio_percentage ⇤ total updating costs for area h

The pseudocode for the algorithm can be found in Listing 4. The results of this method will be
discussed in Chapter 8.

Remarks

What is most important to remark about this method is that there has not been a thorough
analysis of how these percentages corresponding to the intervals are best established. This is
due to shortage in time. We preferred to invest in the heuristic we will discuss next at that point
in the research. Also, this method only provides one solution for one budget scenario. In order
to calculate a Pareto curve (the graph that sets out how many households can be connected for
di↵erent budgets), many runs must be made which will cost a much larger amount of time.
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#calculate relevance ratios for all hcf areas, assign budget percentages
and order the hcfs

for h in hcfs:
relevance ratio of h = total number of unconnected households within 5km radius of h

cost of updating all at risk roads within 5km radius of h
if relevance ratio � 5: budget for h = 0.75 * costs of updating all

roads within area
if relevance ratio � 2.2 and < 5: budget for h = 0.5 * costs of

updating all roads within area
if relevance ratio � 0.5 and < 2.2: budget for h = 0.35 * costs of

updating all roads within area
if relevance ratio < 0.5: budget for h = 0.1 * costs of updating all

roads within area
order hcf areas according to relevance ratio

#reset budgets to not surpass national budget
factor = national budget / sum of all assigned budgets for hcfs
reset budget for hcfs to factor * initial budget

for every healthcare facility h in descending order:
demarcate roads, unconnected households and healthcare facilitieswithin

5km radius of h
find all 5km paths healthcare facilities and households within area
find optimal solution for 5km range area using Gurobi
save:

- connected households index
- number of connected households
- updated healthcare facilities index
- upgrading costs

update the road dataset with the newly updated and no longer at risk
roads

mark all households that are now served as connected

Listing 4 Pseudocode for global solution algorithm where budgets are assigned before the
optimization, refered to as the budget asign method.

6.3 Dynamic greedy heuristic

The last heuristic that was developed and tested is the dynamic greedy heuristic. A greedy
heuristic is a heuristic that assembles a solution by adding the locally optimal addition at each
stage of the algorithm. The heuristic we have developed adds new paths to the solution accord-
ing to relevance ratios. Because the paths are so interdependent upon each other, it is important
to take the results of the formerly added paths into consideration. Therefore, after every new
path has been added, the number of dependent households, at risk edges, and the upgrading
costs of the remaining paths are updated and the relevance ratio is recalculated. We chose to
refer to this heuristic as dynamic because of the interdependence and constant need for updating
makes it a bit more complex than a general greedy heuristic. The psuedo-code can be found in
Listing 5.
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#prepare the paths data set
cluster households according to where they enter the road
find for each cluster all healthcare facilities within 5km radius
find all relevant paths between the household clusters and nearby hcfs

for every path:
calculate the costs of upgrading the at risk roads on the path
calculate how many unconnected households are in the dependent clusters

#apply dynamic greedy algorithm
spent = 0
while there are still unconnected households and paths left and budget >

spent:
for every path calculate the relevance ratio: number dependent, unconnected households

costs of upgrading at risk links

find path with highest relevance ratio whose costs  budget - spent

spent = spent + costs of this path
save:
- added path
- households connected by adding of this path
- costs of adding path
- spent
- computational time so far

mark all at risk links on this path as no longer at risk
mark the households dependent on this path as connected
for all remaining paths:

recalculate upgrading costs of all still at risk links on path
recalculate number of dependent , unconnected households
if costs of adding path are 0:

add path, update road and household dataset and save
information

Listing 5 Pseudo code for the dynamic greedy heuristic that finds (near-)optimal local solution
for a healthcare facility

The idea of the algorithm is that it iteratively adds the path with the highest relevance ratio. But
because the paths are so interdependent upon each other, it is important to take the results of the
formerly added paths into consideration as well. If there is a set budget, the algorithm checks
for every path it is considering to add, if its addition does not surpass the total budget spent.

This algorithm can be applied to the entire nation of Timor-Leste at once. It is able to produce
a Pareto curve on its findings. A Pareto curve is a graph that sets out how beneficial an invest-
ment is alongside the costs of the investment. This allows all possible budget scenarios to be
calculated and compared.

The results of this algorithm applied to Timor-Leste can be found in Chapter 8.

We would like to note that this algorithm fits the wishes of the World Bank very well. From
a policy perspective, a Pareto curve provides a lot of insight in to how to chose a budget for a
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project. This would not have been possible with the multiple budget scenario knapsack method
nor with the pre-assing budget method.
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7 Considered configurations

When developing our algorithms, there were often many implementation options and parame-
ters needed to be used. Therefore, theoretical and empirical research was needed to substantiate
these choice. The analyses of these tests could disrupt the narrative of this thesis, because they
can be quite extensive. Therefore, some of these analyses are discussed in this separate chapter.

The first two sections (Section 7.1 and Section 7.2) of this chapter regards analyses regard
relaxing variables of the FARNUP model (Model 4). Afterwards, two empirical parameter tests
are discussed. These parameters are the MIP gap (Section 7.3) and how many relevant paths to
generate between each O-D pair (K) (Section 7.4). The section after that, discusses why using a
knapsack-like approach to assign budgets to healthcare facility area does not work (Section 7.5).
The last section (Section 7.6) explains why working with grids would not work for this problem.

7.1 Can solving the LP relaxation with some postprocessing yield an integer solution
faster than the branch and bound algorithm?

One hypothesis that was formed during the implementation of the branch and bound algorithm,
was the hypothesis that the LP relaxation could yield solutions that would easily convert to
(near-)optimal integer solutions. This could hold because the problem is somewhat like a knap-
sack problem: the most relevant links and paths will be fully included and the least beneficiary
links and paths will not. Therefore, the LP relaxation with some postprocessing could work.

We were sadly not able to prove that this problem could yield solutions like a knapsack problem
would. Therefore, we chose to approach this more empirically. We ran n = 48 test cases where
the LP solution and the MIP solution were computed using the branch and bound implementa-
tion applied to healthcare facility areas, and compared the performance measures. We bounded
the running time of the branch and bound algorithm such that the running time would not take
too long. This is why we only have results for 48 cases rather than the initial 50 random samples
we selected.

The average results of these 48 cases can be found in Table 7. We see that the objective value of
the LP solution is on average 134% larger than the MIP solution and that the objective values
were only equal in only 32% of the cases. Based on this, we can already conclude that the LP
relaxation does not yield a solution that is very alike the MIP solution. This can also be seen
very clearly in Figure 20, where all the di↵erent objective value results of all the 48 cases are
plotted alongside each other (ordered according to the MIP objective value).

To finalize our understanding of the untranslatableness of the LP solution to a MIP solution, we
have a look at the solutions for one healthcare facility area. In Figure 21 we see the solution
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Average LP case MIP case
Objective value 1016,71 757,72
Optimization time (seconds) 0,56 28,5
LP solutions generates MIP solution 32% 100%

Table 7 Quantitative results LP relaxation test

Figure 20 Objective value results of the MIP results versus the LP results (logarithmic scale,
ordered according to MIP value)

for the same healthcare facility area, one portraying the MIP solution, the other the LP solution.
Two big di↵erences that can be see in Figure 21 are:

• di↵erent areas are invested in;
• a large share of variables of the LP solution are fractional.

We have come up with an postprocessing heuristic, and applied it to the case shown in Figure 21
to see if it could get us anywhere near an answer. When we applied the heuristic the budget was
heavily surpassed by (187%). Therefore, this heuristic is not useful. The algorithm and the idea
behind it can be found in the Appendix, Section B.

Therefore, we can conclude that the LP relaxation does not provide a solution that can be
(easily) converted to an integer solution.
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(a) MIP solution for example scenario

(b) LP solution for example scenario

Figure 21 Visual example of the MIP solution and the LP solution for the same healthcare
facility area.
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7.2 Does relaxing exactly one variable speed up computations while providing proper
MIP solutions?

We have also executed a test that tested if we could relax just one of the two variables, and if
this provided us with a useful solution faster. We can show that this results in useful solutions
by means of mathematical proof. We have also carried out an empirical test. We will first show
the mathematical proofs, and afterwards discuss the results of the empirical test.

Theorem 1 Relaxing the x variables in the FARNUP model (Model 4) yields a MIP solution.

Proof
As we can see in constraint (2) of Model 4: if the x variables are relaxed, they are still forced
to take on the value 1 if a path it is a part of has taken on the value 1 (because a path must still
be binary). Also, an x value will not be fractional in the solution if all paths it is a part of are 0,
because this will only drive up the budget, but does not increase the objective value. Therefore,
the x values will be minimized (and thus be 0) if they are not included in activated paths.

Theorem 2 Relaxing the z variables in the FARNUP model (Model 4) yields a solution where
households dependent upon a path with a non-zero decision value are connected.

Proof
Assume that in the optimal solution there is a zp with a fractional value and assume zp is the
only active path ending at end(p). Then, there exists a better solution. This solution is the
same solution we have assumed to be optimal, except this specific zp is now 1. Because zp

can be set to be 1 and still abide the second and third constraint due to the integrality of the x
variables, yet the objective value will be higher. So, if zp is fractional, there must be at least
one other path p0 ending at end(p). If this path p0 has exactly the same number of households
dependent upon it, than zp can be set to 1 and zp0 to 0 (or the other way around) and the objective
value would be the same. If we assume that path p0 has less households dependent upon it, this
solution is also not optimal. Because, for all paths ending in end(p), we can take the path (or
a path) with the highest S p value, and set this path to 1, and the other to 0. This way we still
satisfy all constraints, especially constraint 3, yet our objective value because we know that
P

i2I �iS pi  max{S pi | i 2 I if
P

i2I �i = 1. Therefore, we can assume that all zp will also be
binary.

7.2.1 Running tests

A test was ran that compared n = 48 random cases. This test showed that relaxing the x or the
z variables does not provide us with a faster optimization algorithm.
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In Table 8, we can see that the objective values are near the same, and the computational time
is as well. The results for the relaxed z variables are the fastest, but the objective value is the
lowest. Therefore, we can conclude that relaxing a variable does not provide us a faster method
to find a MIP solution.

Average X relaxed Z relaxed MIP
Objective value 1085,2 1085 1085,2
Optimization time (seconds) 1,61 1,12 1,72

Table 8 Averages of the results for the test where di↵erent variables were relaxed.

7.3 What MIP gap to choose?

In order to make a well educated decision on the choice of the MIP gap termination criteria,
di↵erent MIP gaps must be tested. For this test, we wanted to find the MIP gap that provided
us with the proper balance between running time and optimality of the solution. In order to do
this, the branch and bound algorithm was applied with four di↵erent MIP gap stopping criteria
for n = 80 di↵erent healthcare facility areas. These MIP gaps were 5%, 1%, 0.5% and 0.1%.
All scenarios were run with a budget that is 10% of the costs to upgrade the entire healthcare
facility area.

We compared these results on the base of running times, objective values and upgrading costs.
The first two were the most important. In Table 9 we can see the averages of these factors. We
can conclude from these results that the 1% gap has the best balance between speediness and
near-optimality. It is the fastest and its objective value lies very close to the highest objective
values compared to 5%.

Average 5% 1% 0.5% 0.1%
Running time (sec) 1.278 1.212 1.228 1.362
Objective value 469.775 475.75 476.088 476.3
Upgrade costs 24 23.91 23.9 23.92

Table 9 Average results for the test runs with di↵erent MIP gaps. Tested on n = 80

7.4 How many paths to generate per O-D pair (K) when generating the relevant
paths?

In Section 5.2, we have established that the algorithm that generates the relevant paths is a
more suitable method to generate paths than the method that generates all paths (Section 5.1).
When applying the relevant path generating algorithm, the choice for the number of paths that
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is generated per O-D pair (K) could a↵ect the quality of the solution and the running time of
the algorithm. Not only will it a↵ect the running time of the path generation algorithm, but it
can also a↵ect the running time of the optimization algorithm because it a↵ects the number of
decision variables. Therefore, an empirical test was carried out to test how di↵erent values of
K a↵ect the optimization algorithm.

We applied our empirical test to the dynamic greedy algorithm because this algorithm per-
formed best out of all the large scale heuristics (which will be discussed in Chapter 8), and
would therefore give a better understanding of how di↵erent K-values a↵ect the running time
and performance.

The hypothesis is that a higher value of K would attain better optimal values because there are
more paths to choose from. But a higher K-value would theoretically also run for a longer time
because it would take longer to generate and process these paths, and there would also be more
variables to iterate over.

The dynamic greedy algorithm is run for eight di↵erent values of K, these values are 2, 3, 4, 5,
7, 9, 11 and 13. For every K-value, a set of Pareto curve coordinates is saved. These coordinates
are selected according to how much of the maximum possible budget had been spent. These
budget percentages are 1%, 2.5%, 5%, 7.5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%,
50%, 55%, 60%, 70%, 80% and 100% of the total costs to upgrade all at risk roads. The exact
budgets for those di↵erent solutions are also saved because they di↵ered slightly, and will give
a better view of the optimality of a solution.

The running time analysis alongside the number of generated paths is shown in Figure 22. This
figure shows how the running time is made up. This is the time it takes to generate the paths
(dark blue) and the time it takes to optimize over this set of paths (light blue). Here we see
that the running times increase linearly as K increases. This motivates a preference for a lower
K-value rather than a higher one.

In Figure 23 we see the di↵erent Pareto curves for the di↵erent K-values. These curves do not
provide an obvious best choice because the curves are very much alike. Therefore, a better
quantification of performances is needed. The following two methods are applied:

(1) The sum of the relevance ratios of the coordinate samples. Thus for each coordinate
the relevance ratio, number of households

budget , has been calculated. This quantifies how many
households can be connected per unit of currency, which makes the value of an
investment comparable. Because every test run for each K has the same number of
samples, the sums of these relevance ratios can be compared, because they express
the benefit of the currency units.
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Figure 22 Running times and total number of paths generated for each value of K. Running
times are split into running time to generate paths (dark blue) and to apply the greedy algorithm
(light blue).

(2) The (logarithmic) area under the curve (AUC). The area under the curve quantifies
beautifully how high the overall investment value is. When we applied the regular
AUC, all values were still very much alike. This is due to the fact that in the AUC,
the higher values weight more heavily. Because all the roads in Timor-Leste will
not be upgraded, we do not want the results to become heavily influenced by the
higher budget values. Therefore, we chose to use the logarithmic values of both
the budget and the number of households. This ensured that the highest budgets
do not entirely make up the AUC. Therefore, we chose to apply the log-AUC. The
log-AUC is calculated as follows

P n�1

i=1

1
2
⇥ (log(budget[i + 1]) � log(budget[i])) ⇥ (log(hhds[i + 1]) + log(hhds[i]))

.

The results of the test statistics for every K value can be seen in Figure 24. A table with the
results of our two test statistics and the regular AUC can be found in Section C of the Appendix.
We chose to visualise our results because the table seemed very chaotic. We see that K = 4
scores high for both the sum of the relevance ratios and (log)-AUC, while still having a very
low running time. Therefore, K = 4 is the advised parameter.
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Figure 23 Pareto curve for each K.

Figure 24 Plot of the sum of the relevance ratios and the area under the curve for every K.
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7.5 How to pre-assigning budgets?

Two methods have been developed and compared in order to establish how to assign budgets to
healthcare facility areas. These two methods are:

(1) On the basis of relevance ratios of the area (so not the calculated cost-benefit, but
just on the number of unconnected households and costs to upgrade all roads within
a healthcare facility area). This method has been thoroughly elaborated on in Sub-
section 6.2.2;

(2) By means of a knapsack-like problem.

The idea of the knapsack-like problem is to assign budgets (or budget percentages, to be a
percentage of the costs to upgrade all at risk roads) based on the number of unconnected house-
holds in the area, and the costs of updating all the roads in the area. The issue with this is that
the algorithm assigns the areas with the highest relevance ratio to have 100% of the budget (or
the maximum possible budget percentage). Furthermore, one area is assigned a fractional value
(because it is unable to assign 100% of the budget without surpassing the budget constraint) and
the rest 0. This is exactly what you expect from an LP relaxation of a knapsack problem.

We have experimented with di↵erent settings in order to avoid this. We have tried setting a
lower and an upper bound to these values and we have tested adding a binary variable v that
would address if a healthcare facility area had been assigned a budget(percentage) larger than
0. This would be added to the objective value

max
X

a2A

X

s2BS

S asyas + ↵
X

h2HCF

vh

resulting in the incentive to assign as many healthcare facility areas a budget percentage that is
larger than 0.

This resulted in the healthcare facilities being assigned either the highest possible value, or the
lowest possible value. Sadly, we could not attain a smart method to use the knapsack LP to
assign these budgets.
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max
P

a2A
P

s2BS S asyas Maximise the number of connected
people

(0)

s.t.
P

a2A
P

s2BS Easyas  B Budgetary restrictions (1)

P
s2BS yas  1 8a 2 A Every area can only have one sce-

nario included in the solution.
(2)

yas 2 {0, 1} 8a 2 A, s 2 BS integer constraints (3)
Input variables
A Set of di↵erent healthcare facility level areas
B Budget
BS Set of di↵erent budget scenarios
Eas The costs of including scenario s or area a
S as The number of households that are connected due to the solution of

scenario s for area a
Decision variables

yas =

8>><
>>:

1 if secnario s of area a is included in the final solution
0 else

Model 7 The formulation for the knapsack model used in the multiple budget scenario knapsack
method.

7.6 Why not optimize on grids?

The idea to apply the branch and bound algorithm on grids has been considered. The idea was
to split the country up in grids of 5 kilometer by 5 kilometer. This way, the overlap between
healthcare facility areas could be avoided. But, it would lead to problems when it comes to
including all households within a 5 kilometer reach of the healthcare facilities. Because a
healthcare facility could be part of one grid cell, but the households that can travel to this
healthcare facility within 5 kilometers could be part of another grid. An example of this can be
seen in Figure 25.

A few methods had been considered to work around this:

• Add a margin around a grid that overlaps with other grids. The problem with this is
that you would need to have a margin of 5 kilometers around every grid cell, which
means that an area is optimized upon multiple times and that an postprocessing heuris-
tic is needed. This would be computationally very demanding and thus not useful;

• Add to the data within the grid the data outside the grid that corresponds to the paths
of a household cluster that travels to one of the healthcare facilities within the grid.
This would also mean that the number of variables that need to be optimized over
increases heavily, and that a lot of postprocessing is needed.

Therefore, the conclusion was drawn that working with grids is not useful.
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Figure 25 An example of how grids could break up an O-D pair.
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8 Performance results of main heuristic

In this section, the performances of the two large scale algorithmic approaches proposed in
Chapter 6 will be analyzed. The performances are measured in two di↵erent ways. The first
performance aspect is the quality of the found solution. This is measured in terms of the number
of households that can be connect and at what price. Another performance aspect that will be
considered is the computational time that is needed to run the algorithm. To remind the reader,
we have chosen a maximum running time of 12 hours. We will not review the multiple budget
scenario algorithm because we were unable to run it nor have we invested time in developing a
postprocessing heuristic to attain a proper solution.

First, the results of the pre-assigned budget method are discussed and afterwards we discuss the
results of the dynamic greedy heuristic. For both heuristics, we list the parameters and settings
we have chosen. Afterwards, we discuss the quality of the solution and finally we show the
results that regard the running time.

8.1 Pre-assigned budget method

Parameters and other settings

The parameters and settings that we have chosen when running the pre-assigned budget method
are as follows:

Budget (B) 4879.49
Maximum running time for branch and bound 3 hours
MIP gap 2.5%
Number of paths per O-D pair (K) 4

When we were developing this algorithm, it was initially able to meet our running time de-
mands. When we ran it later on to finalize the results for this thesis, it suddenly ran for days.
This could be due to the changes in datasets, but is still a strange phenomenon. This could also
indicate that the algorithm is unstable.

In order to still be able to evaluate the algorithm, we have chosen to bound the running time
and increase the MIP gap to 2.5% rather than 1%, in order to be able to compare the algorithm.
Therefore, these parameter values that di↵er from the advised parameter values are chosen.

Quality of the solution

The results for the solution can be found in Table 10. We see that, for a budget of 4879.49,
the algorithm is able to increase the percentage of connected households from 35% to 70%. As
we have seen in Section 4.4, for only 79% of the households there exists a path of at most 5



Performance results of main heuristic 68

kilometers traveling distance from a household cluster towards a healthcare facility. Therefore,
70% of the households is 89% of all the households that could be connected.

Before After Gain
Amount of households connected 62219.0 122390.0 60171.0
Percentage of all households 35.65% 70.12% 34.47%
Percentage of connectable households 45.36% 89.22% 43.86%
Amount of households unconnected 74955 14784 14784

Table 10 Results of the found solution for the pre-assign budget with a budget of 4879.49.

Running time performance

The running time performance is shown in Table 11. We can see that the total calculation time
for this heuristic is 3845.85 minutes, which is approximately 64 hours. This heavily surpasses
our time limit. Therefore, this algorithm does not satisfy our demands.

Calculation time (min)

Generating paths 22.82
Optimization 3823.03
Total calculation time 3845.85

Table 11 Running time of budget pre-assign method for a set budget of 4879.49

8.2 Dynamic greedy

The dynamic greedy algorithm is evaluated in two ways. We ran it in such a way that we can
compare it to the pre-assign budget method. But, we also want to compare it to more accurate
solutions. Therefore, we compare it to the branch and bound algorithm on small scale areas.
First, we discuss the statistics that we have attained in order to compare it to the pre-assign
budget method. Afterwards, we discuss the performance of the dynamic greedy heuristic when
compared to the branch and bound method.

Parameters and other settings

Budget (B)  4879.49
Number of paths per O-D pair 4

Quality of the solution

The statistics of the solution that the dynamic greedy was able to find for a budget of 4879.49
are shown in Table 12. For this budget, the heuristic is able to increase the number of connected
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households from 36% to 74%. This is a very good result, because from the accessibility analysis
in Section 4.4 we know that for only 79% of the households there exists a path towards a
healthcare facility of at most 5 kilometers. Therefore, we can conclude that this algorithm
connects 94% of all the households that could be connected. The Pareto curve for this heuristic
can be seen in Figure 26.

Before After Gain
Number connected 62219.0 129612.0 67399.0
Percentage of all households 35.65% 74.26% 38.61%
Percentage of connectable households 45.36% 94.49% 49.13%
Nr unconnected 74955.0 7562.0 7562.0

Table 12 Performance of dynamic greedy for budget of 4876.92.

Figure 26 The Pareto curve of the solutions found by the dynamic greedy heuristic for Timor-
Leste

Running time performance

The running time performances of the dynamic greedy algorithm are shown in Table 13. Be-
cause we want to compare this algorithm to the pre-assigned budget method but also want to
show the computational results when we do not bound budget and allow the algorithm to ter-
minate, we include the computational results for both. This algorithm satisfies our maximum
running time of 12 hours demand.
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Calculation time (min) for specific
budget

without budget
constraint

Generating paths 20.59 20.59
Dynamic Greedy 140.78 186.11
Total calculation time 161.37 206.7

Table 13 Running time of Dynamic Greedy algorithm for a set budget of 4879.49 and to find the entire
Pareto curve.

8.2.1 Comparing the dynamic greedy algorithm to the pre-assign budget method

Both in quality of the solution and in running time, the dynamic greedy algorithm performs
much better than the pre-assign budget method. We see that it is able to connect 4% more of
the households, in a much shorter running time. Therefore, this algorithm is much better to find
a solution for large scale scenarios, such as the entire nation of Timor-Leste.

8.2.2 Comparing the dynamic greedy to branch and bound on healthcare facility areas

In order to establish the accuracy of the dynamic greedy algorithm, comparing it to the branch
and bound algorithm would be an interesting measure. Because we could only apply the branch
and bound algorithm on a healthcare facility level, we applied the dynamic greedy to a health-
care facility as well. We applied the branch and bound and the dynamic greedy on n = 86
healthcare facility areas.

The branch and bound algorithm had a set time limit, which was a time limit of 3 hours opti-
mization time per healthcare facility area. This was done because otherwise it could take much
too long. The MIP gap was set to 1% (as argued for in Section 7.3).

From the results we can conclude that the dynamic greedy algorithm preforms very well. As
we can see in Table 14, the dynamic greedy algorithm runs much faster than the branch and
bound algorithm (more than 12x faster) yet the optimality of the solution of the dynamic greedy
algorithm is slightly better. This can be explained because the running time of the branch and
bound algorithm was capped at 3 hours, which could mean that a (near-)optimal solution was
not yet found for certain areas.

The results per instance are visualised in Figure 27.
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Average Branch and Bound Dynamic Greedy
Run time (seconds) 884.4 70.4
Connected households 1006.6 1116.6
Budget Spent 50.5 50.4

Table 14 Performance results of comparative tests for branch and bound and dynamic greedy applied to
n = 86 healthcare facility areas.

(a) Running times (b) Objective values

(c) Budgets

Figure 27 Performance results of the comparative test for the dynamic greedy algorithm and
the branch and bound algorithm for all n = 86 cases. The orderings are done for the branch and
bound algorithm for each test case individually. Performance measures are the running time,
the objective value, and the needed budget.



Conclusions and discussion 72

9 Conclusions and discussion

9.1 Conclusions

This research has aimed to answer the question

How to minimize the impact that flood prone roads have on healthcare accessibility
in developing nations, using optimization techniques.

During the literature review, we found that the road network design problem is somewhat alike
our problem because this problem also aims to design a network that ensures there is a path
between di↵erent O-D pairs. The road network design problem is di↵erent from our problem
because it aims to construct new edges, while we aim to upgrade existing edges that are not
flood resilient. Furthermore, the road network design problem has the a fixed destination for
every origin. By this we mean, if we would apply it within our context of household clusters
and healthcare facilities, that every household cluster is assigned to one healthcare facility. For
our problem, we have the flexibility to connect a household cluster to one healthcare facility
within a set of healthcare facilities. This is a large di↵erence. Lastly, the two problems have a
di↵erent objective.

Two di↵erent road network design models with fundamentally di↵erent ideas have been re-
viewed: the model of Boyce [9] and the model of Magnanti and Wong [10]. The di↵erence
between the model of Boyce and the model of Magnanti and Wong is that Boyce his model
takes a set of paths between O-D pairs as input, while Magnanti and Wong generate these paths
within the model. Both methods could be applicable to our model. We decided that taking a
set of paths as input is more suitable for our purposes, because it was easier to apply to a large
scale scenario such as Timor-Leste. Therefore, we have decided to model our problem as can
be found Model 4. We named this model the Facility Accessibility Road Network Upgrading
Model.

In order to apply the Facility Accessibility Road Network Upgrading Model, we had to prepare
the input data. One of the most important aspects of this was to create a flood model for the
roads and a cost model for the at risk road segments. Since this topic is out of the scope of
our research, these models are simplistic. We also needed to construct data, because our data
was incomplete. Lastly, we also developed an algorithm that can establish which household
have access to a healthcare facility within 5 kilometers traveling distance (both when taking
into account the flood vulnerable roads and not). From this analysis we concluded that 78.59%
of the households would be able to access a healthcare facility within 5 kilometer traveling
distance, but that only 35.65% of the households is able to do so via a flood resilient path.
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Because our model takes a set of possible paths between household clusters and healthcare
facilities of at most 5 kilometers long as input, a method needed to be developed that generates
this set of paths. Two methods have been developed in order to do so. One method generates all
paths and the other method generates the relevant paths. With relevant paths we mean paths that
are a combination between short in distance or have low updating costs. These two methods
have been compared via empirical tests based on quality of the solution and running time. Based
upon this empirical test, the method that generates the relevant paths seemed to suit our purposes
better, because the running time of both the path generation and optimization running time is
much shorter while the quality of the solution only slightly di↵ers.

Multiple algorithms have been developed to find (near-)optimal solutions for the FARNUP
model. The branch and bound method is applicable on small scale scenarios, but it was com-
putationally too heavy to find a solution for the entire nation of Timor-Leste. In order to find
solutions for this large scale scenario, we had to develop other algorithms. While developing
these algorithms, we concluded that it is very important to take into account the overlap between
healthcare facility areas, because approximately 75.4% of the households in Timor-Leste live
within multiple healthcare facility areas.

Two algorithms were able to produce solutions: the budget pre-assign algorithm and the dy-
namic greedy algorithm. The budget pre-assign algorithm makes use of the branch and bound
method for small scale scenarios. It assigns budgets to di↵erent healthcare facility areas, orders
them, and then finds an (near-)optimal solution for each di↵erent healthcare facility area using
branch and bound while taking into account the solutions of the formerly optimized areas. This
algorithm is outperformed by the dynamic greedy algorithm. The dynamic greedy algorithm
adds paths according to relevance ratio of the paths while taking into account the previous so-
lutions within approximately 3 and a half hours. This algorithm is able to find a (near-)optimal
solution for a provided budget. But, this algorithm can also be ran until all connectable house-
holds have been connected and there are no more paths left and save the order in which the
paths have been added. This creates a prioritization of investments which can give a very clear
overview of the Pareto curve (the number of households that can be connected for every di↵er-
ent budget). This fits the wishes of the World Bank very well because such an analysis is very
useful for policy makers. When comparing these algorithms, we could see that the dynamic
greedy algorithm was able to find a better solution in a much shorter running time.

9.2 Recommendations

This research had a time frame of about nine months. This forced us to make choices in what
we researched and withheld us from digger deeper into di↵erent topics. Therefore, many rec-
ommendations can be made for further research.
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First of all, in order to obtain realistic solutions from our model, the flood and cost model must
be improved by a transportation scientist with recommendations from local governments.

Furthermore, because the dynamic greedy algorithm is the most promising heuristic, further
research on this heuristic could make big di↵erences as well. Many possible improvements can
be explored. First of all, examining the possible submodularity of the model, could provide
mathematical proof of why the dynamic greedy algorithm is so successful. The quality of the
solution could also be improved by the following things:

• An aftermath with a local search heuristic or a genetic algorithm for the dynamic
greedy algorithm. The local search heuristic could generate new solutions by swap-
ping an activated path of the found solution with a non-activated path that is not part of
the solution. The activation and dis-activation of these two paths, would also indicate
which edges no longer need to be upgraded and which edges must now be upgraded;

• Experimentation with the starting situation to which the dynamic greedy method is
applied;

• Besides from only taking into account sub-paths in the dynamic greedy algorithm,
also take into account the paths that have exactly the same at risk road segments in
common and cluster these as one investment. This could also improve the running
time, because there are less paths to iterate over.

Even though we have concluded that the dynamic greedy algorithm outperforms the heuristics
that make use of the small scale branch and bound solutions, there are some recommended
improvements to these heuristics as well. For the multiple budget scenario knapsack method,
some experimentation could be done with bounding the running time of the branch and bound
algorithm. This has not been done because this idea only occurred later on in the research, when
other, more promising methods were already developed. But, in order to yield proper solutions
for this model, a postprocessing heuristic must also be developed. For the pre-assigned budget
method, the most valuable improvement that could be made is a better method to assign budgets.
This is the aspect where most improvement could be made. Lastly, examining the stability of
the algorithm is also advised, because its running times have di↵ered immensely during this
research.

When it comes to generating paths, we have found that the algorithm that generates relevant
paths performs best for our purposes. This is due to the fact that the algorithm makes use of
contraction hierarchies. It could be interesting to implement contraction hierarchies in to the
algorithm that generates all paths. Then, this path generating process could be much speedier,
and thus obtain better solutions using the dynamic greedy algorithm (even though we have seen
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in Section 7.4 that more paths do not necessarily improve the solution nor the running time of
the algorithm).

When it comes to the Python software that has been developed, a lot of improvements could
be made on the implementation that could speed up the algorithms as well. One improvement
could be to replace the use of Pandas DataFrames with Python Lists.
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Appendices

A Other example of applied Magnanti & Wong model: minimum spanning tree
problem

A.1 Minimum Spanning Tree Problem

The minimum spanning tree problem [19] aims to find a spanning tree on an undirected, com-
plete graph where the minimal number of included edges are used. A spanning tree is a tree in
which every pair of vertices are connected by exactly one path. The objective of the minimum
spanning tree problem is to include the least amount of needed edges. Therefore, this problem
has an objective value of min

P
(i, j)2E yi j.

In light of the general model of Magnanti and Wong (Model 2), the objective function � is
written as min

P
(i, j)2E ci jyi j. This holds because the cost of including one edge is one (because

the value of a solution is measured in number of edges). Therefore, we can also formulate this
objective functions as min

P
(i, j)2E yi j. The origin-destination-pairs will be any pair of nodes, as

any two nodes must have a path. Thus there exist V ⇥ V commodities, each one corresponding
to a path between two nodes. There is no budget constraint.

The following variable settings holds for any k 2  and (i, j) 2 E.

Rk = 1
ci

k
j = 1

Ki j = ||
ei j = 0
B = 1

Resulting in the following formulation

min
X

(i, j)2E
yi j

s.t.
X

j2V
f k
i j �
X

l2V
f k
li =

8>>>>><
>>>>>:

1 if i = O(k)
�1 if i = D(k)
0 otherwise

X

k2
f k
i j  ||yi j

yi j, f k
i j 2 {0, 1}

(.1)

The minimum spanning tree is relevant for our problem, as connectivity is very important for
our model, and road networks are often a trade-o↵ between a minimum spanning tree (as this



Appendices XIV

minimizes the costs) and a complete graph (as this minimizes the travel distances between
nodes).

B Postprocessing heuristic for the LP relaxation

The idea of the postprocessing heuristic is that if a path variable takes a non-integer value, the
household cluster dependent upon this path is either (1) connected by multiple fractional paths,
whose variables sum up to 1, or (2) is not fully connected and is therefore part of the remainder
set of solutions that could not be fully included.

For the first group of fractional solutions, the idea is that they are interchangeable. As their costs
and number of households that benefit are equal. For example, say three paths are all valued at
1
3 , then we can choose one of these paths to value at 1 and the others at 0. To repeat, this is a
hypothesis and will not be not proven.

In Listing 6, the pseudocode of the algorithm is given.

to_address_links = []
for all p in paths with p , 1 and p , 0:

if 9 set of paths P0 such that:
- S p0 = S p for all p0 2 P0 and
-
P

p02P0 zp0 = 1 :
for all p" in P0 with

P
p2Pend(n) zp = 0, choose (one of) the p" with the

highest value for zp”
set zp” = 1
for all p’2 P’ where p’ , p":

zp0 = 0
else:

zp0 = 0

for all links l in edgeset E:
if there exists a path p such that l 2 p and zp = 1:

set xl = 1
else:

set xl = 0

Listing 6 Pseudocode of postprocessing heuristic that would create an (near-)optimal IP
solution given an optimal LP solution.

C Choosing how many paths to generate per O-D pair (K)

C.1 Statistics of Pareto curve samples

K=2
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% Budget Budget # connected % connected
1.0% 103.83 16199.0 9.28%
2.5% 259.57 23505.0 13.47%
5.0% 519.14 30246.0 17.33%
7.5% 778.7 34415.0 19.72%
10.0% 1038.27 38240.0 21.91%
15.0% 1557.41 44862.0 25.7%
20.0% 2076.54 50406.0 28.88%
25.0% 2595.68 54697.0 31.34%
30.0% 3114.82 58412.0 33.47%
35.0% 3633.95 61776.0 35.39%
40.0% 4153.09 64177.0 36.77%
45.0% 4672.22 66471.0 38.08%
50.0% 5191.36 68301.0 39.13%
55.0% 5710.5 70159.0 40.2%
60.0% 6229.63 71459.0 40.94%
70.0% 7267.91 73443.0 42.08%
80.0% 8306.18 74567.0 42.72%
100% 10382.72 75606.0 43.32%

Calculation time (min)
Generating paths 13.91
Dynamic Greedy 148.56
Total calculation time 164.26

Table 15 Statistics for K=2

K=3
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% Budget Budget # connected % connected
1.0% 98.73 16844.0 9.65%
2.5% 258.88 23777.0 13.62%
5.0% 518.03 30382.0 17.41%
7.5% 777.0 35086.0 20.1%

10.0% 1035.98 38582.0 22.1%
15.0% 1552.82 44930.0 25.74%
20.0% 2065.73 50539.0 28.95%
25.0% 2581.77 54841.0 31.42%
30.0% 3108.37 58618.0 33.58%
35.0% 3614.94 61746.0 35.38%
40.0% 4125.59 64145.0 36.75%
45.0% 4662.37 66478.0 38.09%
50.0% 5180.57 68297.0 39.13%
55.0% 5699.28 70148.0 40.19%
60.0% 6212.25 71431.0 40.92%
70.0% 7248.08 73401.0 42.05%
80.0% 8266.75 74573.0 42.72%
100% 10362.4 75606.0 43.32%

Calculation time (min)
Generating paths 16.79
Dynamic Greedy 172.44
Total calculation time 191.09

Table 16 Statistics for K=3

K=4
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% Budget Budget # connected % connected
1.0% 97.86 16941.0 9.71%
2.5% 257.63 23506.0 13.47%
5.0% 517.44 30001.0 17.19%
7.5% 765.22 34895.0 19.99%
10.0% 1027.39 38468.0 22.04%
15.0% 1527.25 44768.0 25.65%
20.0% 2066.77 50587.0 28.98%
25.0% 2587.06 54941.0 31.48%
30.0% 3104.86 58673.0 33.61%
35.0% 3614.83 61718.0 35.36%
40.0% 4136.78 64106.0 36.73%
45.0% 4657.66 66491.0 38.09%
50.0% 5174.89 68394.0 39.18%
55.0% 5688.17 70148.0 40.19%
60.0% 6205.96 71438.0 40.93%
70.0% 7238.51 73403.0 42.05%
80.0% 8257.03 74575.0 42.73%
100% 10350.59 75606.0 43.32%

Calculation time (min)

Generating paths 20.59
Dynamic Greedy 176.35
Total calculation time 256.76

Table 17 Statistics for K=4

K=5
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% Budget Budget # connected % connected
1.0% 98.55 16982.0 9.73%
2.5% 258.55 23399.0 13.41%
5.0% 517.11 29870.0 17.11%
7.5% 774.68 34997.0 20.05%

10.0% 1029.02 38458.0 22.03%
15.0% 1547.87 44829.0 25.68%
20.0% 2044.64 50477.0 28.92%
25.0% 2583.58 54996.0 31.51%
30.0% 3102.52 58758.0 33.66%
35.0% 3617.38 61810.0 35.41%
40.0% 4135.68 64174.0 36.77%
45.0% 4653.75 66504.0 38.1%
50.0% 5169.85 68406.0 39.19%
55.0% 5687.7 70168.0 40.2%
60.0% 6203.04 71544.0 40.99%
70.0% 7233.31 73403.0 42.05%
80.0% 8274.3 74621.0 42.75%
100% 10342.9 75606.0 43.32%

Calculation time (min)

Generating paths 23.11
Dynamic Greedy 194.23
Total calculation time 219.54

Table 18 Statistics for K=5

K=7
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% Budget Budget # connected % connected
1.0% 103.48 17243.0 9.88%
2.5% 258.71 23556.0 13.5%
5.0% 517.42 29950.0 17.16%
7.5% 776.13 35101.0 20.11%
10.0% 1034.85 38562.0 22.09%
15.0% 1552.27 44948.0 25.75%
20.0% 2069.69 50720.0 29.06%
25.0% 2587.11 55054.0 31.54%
30.0% 3104.54 58812.0 33.69%
35.0% 3621.96 61847.0 35.43%
40.0% 4139.38 64216.0 36.79%
45.0% 4656.8 66531.0 38.12%
50.0% 5174.23 68434.0 39.21%
55.0% 5691.65 70191.0 40.21%
60.0% 6209.07 71642.0 41.05%
70.0% 7243.92 73427.0 42.07%
80.0% 8278.76 74629.0 42.76%
100% 10348.45 75609.0 43.32%

Calculation time (min)
Generating paths 24.31
Dynamic Greedy 221.02
Total calculation time 247.38

Table 19 Statistics for K=7

K=9
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% Budget Budget # connected % connected
1.0% 98.72 17007.0 9.74%
2.5% 258.55 23465.0 13.44%
5.0% 515.91 29908.0 17.13%
7.5% 775.43 35068.0 20.09%
10.0% 1034.01 38583.0 22.1%
15.0% 1551.01 44916.0 25.73%
20.0% 2042.13 50514.0 28.94%
25.0% 2581.72 55042.0 31.53%
30.0% 3102.07 58814.0 33.7%
35.0% 3615.79 61864.0 35.44%
40.0% 4136.83 64241.0 36.8%
45.0% 4653.52 66546.0 38.13%
50.0% 5170.8 68445.0 39.21%
55.0% 5686.14 70197.0 40.22%
60.0% 6204.56 71651.0 41.05%
70.0% 7236.49 73425.0 42.07%
80.0% 8269.29 74627.0 42.76%
100% 10342.18 75609.0 43.32%

Calculation time (min)
Generating paths 32.16
Dynamic Greedy 246.67
Total calculation time 281.18

Table 20 Statistics for K=9

K=11
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% Budget Budget # connected % connected
1.0% 103.29 17271.0 9.89%
2.5% 258.29 23614.0 13.53%
5.0% 515.66 29935.0 17.15%
7.5% 774.67 35080.0 20.1%
10.0% 1031.36 38564.0 22.09%
15.0% 1550.13 44783.0 25.66%
20.0% 2049.01 50576.0 28.98%
25.0% 2583.58 55056.0 31.54%
30.0% 3100.53 58808.0 33.69%
35.0% 3616.39 61872.0 35.45%
40.0% 4127.0 64195.0 36.78%
45.0% 4650.11 66540.0 38.12%
50.0% 5164.26 68434.0 39.21%
55.0% 5679.05 70187.0 40.21%
60.0% 6200.34 71638.0 41.04%
70.0% 7228.09 73407.0 42.06%
80.0% 8265.81 74623.0 42.75%
100% 10335.64 75609.0 43.32%

Calculation time (min)
Generating paths 32.02
Dynamic Greedy 247.63
Total calculation time 282.02

Table 21 Statistics for K=11

K=13
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% Budget Budget # connected % connected
1.0% 98.72 16988.0 9.73%
2.5% 257.35 23419.0 13.42%
5.0% 516.56 29900.0 17.13%
7.5% 764.54 34893.0 19.99%
10.0% 1032.27 38559.0 22.09%
15.0% 1550.57 44934.0 25.74%
20.0% 2043.74 50524.0 28.95%
25.0% 2583.78 55054.0 31.54%
30.0% 3100.38 58806.0 33.69%
35.0% 3618.38 61882.0 35.45%
40.0% 4135.66 64244.0 36.81%
45.0% 4652.82 66545.0 38.12%
50.0% 5169.31 68441.0 39.21%
55.0% 5682.94 70200.0 40.22%
60.0% 6201.51 71660.0 41.06%
70.0% 7236.11 73430.0 42.07%
80.0% 8268.31 74632.0 42.76%
100% 10340.36 75609.0 43.32%

Calculation time (min)

Generating paths 39.0
Dynamic Greedy 266.29
Total calculation time 307.45

Table 22 Statistics K=13

C.2 Results of logarithmic area under curve and sum of relevance ratios
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Relevance ratio sum AUC Deviation Log AUC Deviation
2 591.55 644444547.5 1132230.5 48.61 -0.32
3 607.32 643982716.64 670399.63 49.11 0.18
4 609.67 643217801.98 -94515.02 49.17 0.25
5 607.48 642867400.39 -444916.62 49.09 0.16
7 603.99 642929682.92 -382634.08 48.64 -0.29
9 608.07 643239379.21 -72937.79 49.08 0.15
11 603.85 642672406.4 -639910.6 48.63 -0.29
13 608.51 643144600.99 -167716.01 49.07 0.15

Table 23 Statistical results for the di↵erent Pareto measures. This includes the sum of the relevance
ratios of al samples, the AUC (and the deviation from the mean) and the logarithmic AUC (and the

deviation from that mean).

D Frequency of cutting planes in optimization

Cutting plane Total times applied Times present in scenarios
Gomory 173 13
Cover 7 3
Clique 20147 11
MIR 108 9
StrongCG 10 3
GUB cover 14 4
Zero half 5586 10
RLT 1960 14
Learned 0 0
Implied bound 0 0
Flow cover 0 0

Table 24 Results for cutting plane analysis for n = 96 heatlchare facility area scenarios. First column
displays the total number of times a cutting plane has been applied over all the scenarios. The second

column portrays how often the cutting plane was present at least once in a scenario (this was done
because some cutting planes are applied very often once they are applied).
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