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Taking Advantage Of Data Generated By Products: Trends, Opportunities And Chal-
lenges 
Wilhelm Frederik van der Vegte 
DELFT UNIVERSITY OF TECHNOLOGY DELFT, THE NETHERLANDS 
ABSTRACT 
Now that all kinds of products are increasingly getting connected to the Internet, it is expected that it will be-
come easier to collect data on how they are actually used during the middle-of-life stage of their product 
lifecycles. At the same time, a growing number of data analytics technologies offers opportunities to trans-
form this data into actionable knowledge. Over the years, such knowledge extracted from usage data has 
already become a reliable input for managing maintenance and related services, but other uses such as 
feedback to design – where product data management systems have started to offer support for data collec-
tion practices – and providing advice to end users are now also being considered. Most data from sensors 
and other product-embedded information devices are collected in batches and analyzed retrospectively. In 
order for companies to further benefit from data collection in terms of efficacy and acceptance in society, two 
key challenges are (i) finding ways to effectively use data analytics techniques – which currently do not seem 
to be used to their full potential, and (ii) finding a good trade-off between respecting privacy and yet produc-
ing useful knowledge. 

INTRODUCTION 
Analysis of how different customers use products can provide valuable insights for companies which depend 
on revenues generated directly or indirectly from those products. Among these companies are manufactur-
ers, resellers and third parties such as maintenance providers and insurance companies. In addition, non-
commercial parties such as law enforcement authorities and NGOs may have interest in how particular prod-
ucts are being used. 
The collection of usage data to obtain particular insights has been common for a long time in the exploitation 
of websites and software, as well as hardware such as computers, smartphones and digital cameras [e.g., 
1,2,3]. Now that the Internet is evolving “from a network of interconnected computers to a network of inter-
connected objects” [4], also referred to as the Internet of Things (IoT), more and more categories of products 
offer opportunities for collecting data about how they are being used. This trend is extending to product cate-
gories that are deployed to achieve mostly physical effects, which did not traditionally produce any pro-
cessable data. It is facilitated by the fact that product functionality is increasingly realized with the help of 
information-producing and networked solution elements such as embedded software, sensors – which con-
vert measurements from the physical world to data – and actuators, which convert data to changes in the 
physical world. Companies can track the movements of these products and monitor interactions with them, 
which inspires new business models taking advantage of these behavioral data [5]. As we will see in this sur-
vey, the changes in business models can take various forms. Knowing how customers actually use the prod-
ucts is said to enhance a company's ability to segment customers, customize products, set prices to better 
capture value, and extend them with value-added services [6]. 

OBJECTIVE, SCOPE AND METHOD 
In this paper we have focused on how product-producing companies can extract and exploit knowledge from 
product usage to improve their products and product-related services. It is not a paper about the Internet of 
Things, as it has been defined as “the networked interconnection of everyday objects, which are often 
equipped with ubiquitous intelligence” [7] or “the pervasive presence around us of a variety of things or ob-
jects which (...) are able to interact with each other and cooperate with their neighbors to reach common 
goals” [8]. The IoT according to these definitions adds value through networked cooperation between prod-
ucts of various kinds, in applications such as domotics control in smart homes [9]. Instead, our focus has 
been on data and knowledge collected from multiple instances of physical, tangible products of the same 
kind. The IoT can be seen as a possible enabler of data collection, but we have also considered more tradi-
tional, centralized communication schemes in which each instance of the product unidirectionally sends data 
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to the company. Our focus on data to be used by the product-producing company also implies that the sur-
vey does not cover collection of data only to be used within the product itself and its local context, as is the 
case with applications of control engineering and local diagnostics support – e.g., distributed control of air-
craft engines [10], and user access to a vehicle’s diagnostic information [11]. Furthermore, our focus on how 
the product in question is being used, implies that we have not considered data collected by the product 
about (behavior of) other entities that it is monitoring, like fitness trackers, smart alarm systems, smart ener-
gy meters, etc., do [12]. 
 
This survey aims to (i) accumulate what has been done in the field of gathering and utilizing data from prod-
ucts by giving an overview of the applied technologies and approaches as well as the achieved results, and 
(ii) identify unresolved (research) challenges and unexploited opportunities. 
In reviewing the current state of the art, we have started from the following questions: 
• What kinds of products have been considered in the reviewed sources?  
• What have been the motivations to collect and analyze the data? 
• What are the technologies, infrastructures and platforms that have been considered to generate, 
transmit, collect and interpret the data? 
 
In the light of the increasing connectedness of products, we were especially interested in data collection by 
products that traditionally would not be expected to generate any data about their usage, i.e. products that 
are not essentially computers, but products with main functions other than receiving/collecting, processing 
and providing information. For those products that are essentially computers, the so-called information-
centric products – such as smartphones and tablets – the focus has been on data other than the data han-
dled by the product’s information-processing processes. For instance, for a laptop we would be interested in 
how users handle it mechanically rather than in how often the laptop connects to wireless networks. This 
special interest was motivated by the fact that for information-handling functions the collectable data about 
usage comes more or less for granted, while it might be more interesting to learn about the additional efforts 
needed if that is not the case. 
 
As a basis of the survey, scientific publications, commercial materials as well as technology news reports 
collected from the Web were used. The initial, central search has been for publications and websites where 
the words collect, product, usage/use, and data, with or without sensors appear together. Subsequently, oth-
er sources to which the results referred were consulted, and potentially meaningful terminology often men-
tioned in the results was also used as search terms. 
 
The structure of the remainder of this paper is as follows: in the next section, the various products that have 
been provided with usage data gathering capabilities are characterized. Secondly, the various motivations for 
collecting the data are discussed: what did companies and other stakeholders aim to achieve with it? Third, 
the technologies (platforms, hardware, networking, analysis techniques, etc.) are discussed. These next 
three sections aim to reflect the trends in collecting and utilizing data from products. After that, issues and 
challenges are identified, and the paper ends with a discussion and conclusions. 

CHARACTERIZATION OF PRODUCTS THAT HAVE BEEN DEPLOYED TO COLLECT DATA ABOUT 
THEIR USE 
Many reports on products collecting data during middle-of-life (MOL, also known as mid-life or the aftermar-
ket, i.e. the stage of the lifecycle where a product is used) focus on a particular category of products or even 
a specific product. From our investigation, it appears that the practice of equipping products with data collec-
tion capabilities and utilizing the data is currently more widespread among products of a certain (high) com-
plexity. These are products that buyers generally consider investment goods. Quite a number of sources [13-
24]1 report on data collection from automobiles. Other sources predominantly report on B2B applications in 
aircraft [5,18,25], military equipment [26], industrial equipment [27-31], and infrastructure such as bridges 
[32,33], street lights [34] or elevators [35]. The fact that data collection has become so widespread in cars 

                                                        
1 The individual contributions from the referred works will be discussed in the next subsections. 
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may be due to the fact that automobiles are not only investment goods, but contrary to the other products 
mentioned above, also mass products. 
One example where MOL data collection has made it to less capital-intensive products is Hewlett Packard’s 
Instant Ink program for inkjet printers [36]. The few other examples of data collection from less capital-
intensive goods concern studies, where researchers have collected data from one product or a small number 
of products to investigate aspects of possible future data collection and utilization at a larger scale – for in-
stance fridge-freezer combinations [37], notebook computers [38], and furniture [39]. Furthermore, in 2015, 
Miele completed a proof-of-concept study with data collection from connected kitchen equipment [40]. 
In the remainder of the paper, application examples will be discussed in this same order: (i) automotive, (ii) 
aerospace and defense, (iii) industrial equipment and infrastructure, and (iv) non-capital-intensive products 
including consumer goods. For each category, first, examples will be discussed where data collection actual-
ly has become practice, followed by smaller-scale data collection experiments and novel approaches pro-
posed by researchers. 

MOTIVATIONS FOR COLLECTING AND PROCESSING DATA  
A company that decides to collect data from its products – or from other companies’ products – does so with 
a particular intention. This intention, motivation or rationale is the driver behind some form of exploitation of 
the processed data. It can be anything from optimizing business processes to achieving the “changes in 
business models” mentioned in the introduction. By far the largest body of literature concerns managing 
maintenance of products out in the field. After the state of art in that area, other reasons why data collection 
has been considered or implemented will be discussed. 

Maintenance management of fielded products 
According to the broad definition offered by the European Federation of National Maintenance Societies, 
‘maintenance’, is the combination of all technical, administrative and managerial actions during the lifecycle 
of an item intended to retain or restore it to a state in which it can perform its required function [41]. Going by 
this definition, there are several differently named but similar approaches aiming to exploit data collection for 
support, streamlining, or optimizing maintenance of products to reduce downtime, avoid unnecessary 
maintenance activities, increase customer satisfaction and extending the use phase of the product lifecycle. 
In this section, the following approaches have been grouped together: condition-based, predictive, proactive 
and preventive maintenance, prognostics & health management (PHM) and through-life engineering services 
(TES). 
Condition-based maintenance is an established and accepted maintenance practice. It aims to derive 
maintenance requirements from real-time assessment of the product2 condition obtained from embedded 
sensors and/or external tests and measurements. It relies on built-in diagnostic equipment or portable diag-
nostic equipment, such as PDAs and tablets [26]. The goal of condition-based maintenance is to perform 
maintenance based only upon the evidence of a need rather than any predetermined time cycle, equipment 
activity count, or other engineered basis. 
Proactive maintenance is an approach that uses integrated, investigative and corrective practices to signifi-
cantly extend machinery life with the goal to eliminate failures of equipment forever [31].  
PHM aims to monitor life-cycle environmental and usage conditions of products or systems to assess on-
going health, provide advance warning of failure through detection of failure precursors, and provide infor-
mation to improve the design and qualification of fielded and future products [42]. 
TES has been defined as “a result of the application of explicit and tacit ‘service knowledge’ supported by the 
use of monitoring, diagnostic, prognostic technologies and decision support systems whilst the product is in 
use, and maintenance (…) functions to mitigate degradation, restore ‘as design’ functionality, maximize 
product availability, thus reducing whole-life operation cost” [43]. This is achieved based on five sources of 
knowledge, namely knowledge of (i) degradation and failure mechanisms, (ii) means of repair, (iii) diagnos-
tics and prognostics, (iv) use, and (v) design and function. 
The approaches to manage maintenance described above are often considered to underlie so-called per-
formance models, which represent the transition from selling products to selling performance. They are 
based on the rationale that there is no inherent benefit for the customer to actually own the product [44]. 
                                                        

2The original publication [26] specifically uses “weapon system” where “product” is used in this survey. 
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In the automotive industry, health monitoring and fault tracing based on diagnostics data collected from field-
ed cars forms an important part of service and maintenance [16]. It increases the service technicians’ ability 
to diagnose and remedy problems in the increasingly complex electronically controlled vehicles and thus im-
proves customer satisfaction. The offline retrospective readouts are also uploaded to the manufacturer's da-
tabase to analyze fault occurrences collected from multiple cars, (i) to monitor the quality of components and 
subsystems, (ii) to prioritize in which order problems should be addressed and (iii) to find correlations be-
tween different faults, or between faults and the operating environment. The recent trend of offering real-time 
connectivity in vehicles is mainly motivated by customers’ demand for on-board internet and on-demand en-
tertainment [45] rather than by the need to collect data. 
The automobile industry has introduced data collection platforms offering support for maintenance manage-
ment. For instance, GM’s OnStar emails diagnostics reports to the dealer to facilitate scheduling of service 
appointments [46]. A more futuristic proposition was proposed by Amor-Segan et al. [23]: their self-healing 
vehicle concept collects data from connected automobiles and is supposed to support in-vehicle autonomous 
fault management. They claim that centralized collection of data based on wireless telematics can be used to 
(i) facilitate more comprehensive data analysis and diagnosis at a remote support center, (ii) receiving diag-
nostics patches to aid in-vehicle diagnostics, (iii) update diagnostic and prognostic guidance and (iv) enable 
new software versions for feature enhancements, correction of design and implementation errors. In addition, 
Johanson et al [16] foresee support of inspection and repair during manufacturing of automobiles based on 
collected data. 
Performance models have been introduced in the aerospace industry, where manufacturers of jet engines 
nowadays retain ownership of their products while charging airlines for the amount of thrust used [5,43]. As 
an example of predictive maintenance in industrial capital goods, Marek et al describe how this has been put 
into practice for mining equipment [28]. Maintenance dates are scheduled and optimized related to the actual 
load on the machines. Before a maintenance job, the machine informs the crew about the tools and con-
sumables needed, thus reducing the level of service skills required. As tools and consumables can be pre-
organized and made available, hourly-based routine maintenance can be avoided and the time involved min-
imized, thus reducing downtime and improve availability. 
Aspects of predictive maintenance can also be found in less capital-intensive products – as Hewlett Pack-
ard’s Instant Ink program for inkjet printers shows. It enables connected inkjet printers to arrange replace-
ment cartridges for their end users before they run out [36]. Service contracts for office equipment such as 
printers and computers are often based on a performance model [44]. 

Other uses 
Other than for maintenance management, one of the uses of collected data that has been foreseen by the 
literature is providing feedback to product design. This feedback is used, for instance, to reduce future prod-
uct failures and associated services required [6] to draft better requirements based on actual usage or to re-
define the functionality of a next product design iteration based on functions and features actually used [44]. 
Similarly, Van Horn et al [47] have suggested that data collected from deployed products enables manufac-
turers to quickly identify and efficiently solve quality issues in specific components. In addition, product usage 
data can also be used to validate warranty claims and identify warranty agreement violations [6]. Further-
more, Främling et al. [48] have suggested to collect information from connected cars to (i) proactively opti-
mize engine tuning based on factors such as location and time of day, and (ii) present comparative perfor-
mance measures affecting behavior of drivers. Al-Taee et al. have suggested collecting data from connected 
cars for a completely different purpose, namely, to allow the traffic control authority to record speed limit vio-
lations [21]. 
Data collection schemes that have been brought to practice or have been envisaged for concrete products 
give evidence of some of the above and several other motivations behind data collection. The initial goal that 
Ford envisaged with collecting usage information from customers’ automobiles in the 1990s was indeed to 
gain understanding of how customers actually use their vehicles and to define appropriate specifications for 
development and testing. This has been considered as a critical factor supporting design and development in 
delivering affordable, high-reliability, high-quality products [20]. Hilpert et al [22] presented a system for real-
time collection of CO2 emissions from an entire company fleet of transportation vehicles to assess the carbon 
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footprint of the products they are transporting. Although, strictly spoken, the application is outside the scope 
of this survey, it could theoretically be used to collect emission data from all fielded cars of a certain type, 
and collect usage data based on which its manufacturer could possibly reduce emissions. 
Two forms of third-party use of data collected from automobiles have been reported by Chui et al [5], namely 
(i) insurance companies installing location sensors in customers’ cars so that they can base the price of poli-
cies on how a car is driven as well as where it travels, and (ii) rental car companies using tracking data to 
optimize each car’s use. 
In the aerospace industry, important objectives – other than maintenance management – for data collection 
have been (i) improving crew decision-making and response in complex situations (ii) maintaining aircraft 
safety between major inspections; and (iii) assuring safe and effective aircraft control under hazardous condi-
tions [18] . 
Dienst et al. [29] propose a knowledge-based feedback system to assist product developers in exploiting 
data collected during the use of industrial goods, e.g., centrifugal pumps. From the given examples, the im-
pression emerges that application of the system is limited to redesign based on component selection and 
parameter modification, e.g., selecting a better bearing to replace a bearing that the data analysis proves to 
fail too often, or selecting a different material. 
Coca-Cola collected data from vending machines that allowed customers to compose their own drinks, with 
the objective to automatically schedule refills, but also for marketing purposes: the purchased mixtures pro-
vided indications of how new drinks are performing on the market over time, and of differences in regional 
tastes [49]. Miele’s connected kitchen equipment has been developed with the initial goal to assist end users 
by providing recipes on demand, but future plans include data collection for generating status report for ma-
chines or enabling remote diagnosis of problems [40]. 
For the EU-funded ELIMA project, data from 28 fridge-freezer combinations was collected to record events of 
door opening and using the fast-freeze feature per user over time, with the goal to obtain an impression how 
useful these data would be as input for (i) design improvements, (ii) offering improved logistics and (value-
added) services and (iii) possibility of reusing components from disposed products [37]. The preliminary find-
ings indicated that some potentially useful input could be collected for design and also for the contents of the 
user manual.  
Gu et al. [38] collected data about handling of notebook computers to (i) get an impression of variations in 
use conditions between different users and in one user over a longer time span, and (ii) verify that the test 
conditions in lab tests reasonably reflect actual use. Some of their tests involved hundreds of users over 
hundreds of days. They were able to point out particular use conditions that were either more critical than 
assumed or were not properly reflected in lab tests. 

TECHNOLOGIES, INFRASTRUCTURES AND PLATFORMS TO SUPPORT UTILIZATION OF DATA 
FROM PRODUCTS 
All the surveyed approaches to taking advantage of data collected by products assume a processing chain 
that starts with collecting or generating the data and ends with outputting the results of data processing for 
utilization and storing it for possible later use. Our goal in surveying technologies, infrastructures and plat-
forms has been to get a general overview of: 
• how processing chains have been implemented: 

– To what extent are data stored and processed in the product? 
– Is it a continuous stream of data or is it a list of events? 
– Is the data transferred by wire or wirelessly? 
– Is this done continuously in real time or in batches? 

• what kind of analysis is performed: 
– How has the need for collecting data affected the product, i.e., to what extent does it require addi-

tional PEIDs (product-embedded information devices, i.e., sensors, transmitters and processors)? 
 
In the automotive industry, ‘on-board diagnostics system’ or ODB is the common umbrella term used for sys-
tems collecting MOL data [13]. The ODB in automobiles physically manifests in the form of the ODB-II con-
nector which is connected to the Controller Area Network (CAN) bus.  The CAN bus is in turn responsible for 
the communication between the electronic control units (ECUs) of the car [15]. Diagnostic trouble codes 
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(DTCs) from ECUs are routinely being read out during service from customer vehicles using a wired connec-
tion. DTCs are stored only when a reading is out of range. Readings produced at other times are generally 
not recorded. This is a missed opportunity, because these could potentially be used to gain knowledge about 
usage and vehicle behavior, for instance to predict faults. By establishing a real-time connection to the ODB 
these off-line retrospective readouts can however be collected and sent to a manufacturer’s database for 
further statistical analysis to find correlations between detected events [16]. 
Connecting cars to the Internet can be achieved indirectly through a smartphone [17,22], although today’s 
connected cars usually have their own direct access to the mobile phone network [19]. The increasing de-
mand for bandwidth requires implementation of multiple radio interfaces, which may incur a high cost and 
thereby impede further developments [45]. In the 1990s, Ford introduced CVDAS (customer vehicle data 
acquisition system), the first platform to wirelessly connect vehicles [20]. CVDAS uses the same SAE J1850 
protocol for the vehicle data communication backbone that was prescribed for OBD. Its wireless data com-
munication is based on mobile telephony standards. A recent development in that area is the ISO 13400 
standard for Diagnostics over Internet Protocol (DoIP) [16]. To be able to collect the desired usage data in 
CVDAS-equipped cars, the existing ECUs have been extended with additional sensors such as an ambient 
temperature sensor and a rotary position sensor. To keep hardware requirements manageable, the data are 
statistically analyzed inside the car and only the results are transmitted. A drawback of this approach is that, 
in order to perform the right type of analysis, a-priori knowledge about system interaction effects is needed 
[20]. In the system for real-time collection of CO2 emissions presented by Hilpert et al [22], OBD data were 
combined with GPS, transmitted wirelessly through the mobile phone network, and collected and processed 
by ERP systems.  
The term OBD is also used in the aerospace industry [18], where the proactive maintenance schemes that 
have been introduced by manufacturers rely on networked sensors built into airframes that send continuous 
data on product wear and tear to the manufacturers’ computers [5]. 
 
In the knowledge-based feedback system that Dienst et al. [29] proposed for industrial equipment, the col-
lected data consists of (i) sensor data, which are collected automatically, and (ii) data that have been entered 
manually by maintenance engineers and customers3. The system prepared the data so that these could be 
handled by a product lifecycle management (PLM) system. This is needed because, according to the au-
thors, conventional PLM systems cannot deal with multiple individual instances of products, and therefore 
the systems cannot store the collected data directly. Before further processing, the collected data require 
additional human intervention: a knowledge engineer aggregates the data from numerous databases and 
initiates Bayesian-networks based statistical analysis and visualization techniques. With the results, design-
ers can perform what-if studies with different usage conditions, and identify weak spots in the design to be 
reconsidered. A decision support module guides towards the best solution from available alternatives. 
The automated maintenance planning and diagnostic fault-finding for mining equipment that Marek et al. re-
ported on, uses on-board sensors. The machines’ on-board control system processes the incoming data and 
compares these with the machine manufacturers’ database to ascertain whether the values are within the 
defined parameters. If not,  maintenance is scheduled automatically through a wired interface with the SAPTM 
ERP (enterprise resource planning) system. In addition, the ERP integration facilitates automated ordering of 
the consumables needed for maintenance, and assessment of the machine’s performance in the context of 
the entire mine. The sensor data themselves are stored at the mining site in an SQL database to allow fur-
ther (unspecified) post-processing and visualization [28]. 
 
The fridge-freezer combinations in the ELIMA study reported in [37] were equipped with extra sensors to log 
energy consumption, door openings, power on/off cycles and temperatures every second. Several other pa-
rameters could be read from the embedded software without the need for adding additional sensors. Data 
logged by a built-in custom logger were transferred to the ELIMA database by a GSM module once every 
three hours. At the end of the running time of the study, the collected data were visualized in histograms, 
presumably by using a spreadsheet application. 
The notebook computers in the experimental setup discussed in [38] were equipped with sensors capable of 
measuring temperature, humidity and vibration. Part of the collected data were visualized in graphs without 
                                                        

3 These data that are not generated by the product and therefore outside the scope of this paper.  
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additional prior processing, to qualitatively assess characteristic patterns of variables over time and relations 
between variables (e.g. between temperature and humidity inside the notebook), other part of the data was 
statistically analyzed by means of ANOVA tests. Since the investigators performed analysis based on rec-
orded history of sensor data, real-time communication of data does not seem to have played a significant 
role. 
 
Wrapping up the inventory of technology that is used to realize the data-processing chain, we can state that 
the first step, collection of data, typically takes place inside products, and is typically done by sensors. Em-
bedded software can also produce valuable data, thus reducing the need for additional sensors.  The subse-
quent steps may take place anywhere between ‘inside the product’ and ‘at a central location’. If data pro-
cessing is done in-product, it is typically transmitted to and stored at a central location afterwards, i.e. the 
product’s manufacturer or a service provider’s site. Some basic pre-processing of the bandwidth for data 
transfer, e.g., when the average is considered instead of the individual values. Details about the subsequent 
processing that is performed to produce actionable knowledge are not always given. Approaches that have 
been mentioned are statistical  techniques such as Bayesian networks analysis, ANOVA and visualization. 
Some of the reported processes involve multiple steps and in some cases human interventions by, for in-
stance, knowledge engineers. In none of the discussed  implementations, continuous data transfer and real-
time knowledge conversion seem to play a role. 
For storage of the data and the findings, and making these accessible and manageable, PLM systems, ERP 
systems and databases such as MySQL are used. The name ‘product lifecycle management’  suggests that 
PLM includes management of MOL and tracking how products are actually being used. However, several 
authors have indicated that conventional PLM systems are not adequately equipped for that purpose. For a 
long time, these systems have focused on processes where digital systems such as CAx traditionally pro-
duce large amounts of data to be managed [48]. Conventional PLM systems are generally not equipped to 
keep records of any dynamical process after the product has left the factory [50]. 
As a follow-up to this conclusion, it is interesting to note that software vendor PTC has recently announced 
that the latest version of its WindchillTM PLM system was designed to to support collection of PEID data dur-
ing MOL [51]. This would facilitate exploitation of usage data in predictive maintenance and MOL-
information-based design, which has also been referred to as ‘closed-loop PLM’ [52].  

ISSUES AND CHALLENGES 
The sources that we consulted pointed out several issues and challenges related to collection of MOL data 
from products. In addition to these sources, we reviewed several issues and challenges that were identified 
in works related to the IoT  [53-57] to check whether these would also apply to data collection within the 
scope of our survey. The following issues and challenges were brought forward by two or more sources: 
• limitations of the current internet [e.g., 45,53]; 
• privacy, trust and security [e.g., 4,37,44,53,54]; 
• conversion of data to knowledge [e.g., 53,54,55,56]; 
• achieving standardization and overcoming heterogeneity [e.g., 4,44,53]; 
• energy efficiency [e.g., 56,57]. 
Below these issues will be addressed more specifically in the context of data collection and utilization during 
MOL. 

Limitations of the current internet 
The current Internet architecture is limited in terms of mobility, availability, manageability and scalability [53]. 
This may give rise to problems if data are collected to provoke immediate action on critical events [45] or if 
the quality and/or completeness is crucial for achieving the objectives of collecting and processing the data. 

Privacy, trust and security 
The data collected by products during MOL hold information or knowledge about product usage, and thus 
also about the users. Social acceptance of data collection and utilization is expected to strongly depend on 
the respect for privacy that is being observed, and the protection of personal data. [4]. 
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The privacy concerns arising from the collection of usage data from tangible products are perhaps best illus-
trated by what is known from the car industry, which is obviously a prominent domain where data collection 
has become common practice. 
In 2015, researchers from the General German Automobile Club ADAC were commissioned by the Interna-
tional Automobile Federation FIA to investigate data collection by cars with wireless connection capabilities. 
They examined two cars from one manufacturer – one with combustion engine and one electrical car. The 
goal was to uncover (i) what data these cars collect and make available to the manufacturer and/or the work-
shop, (ii) how long these are stored inside the car and (iii) on what occasions the data are transferred [14]. 
Since data collection and transfer is based on closed-source mechanisms devised by the manufacturer, the 
investigators had to reverse-engineer ODB information and signals transferred by the built-in wireless com-
munication means. For the same reason, the manufacturer’s motivation behind collection of the data could 
not be determined. 
Of the dozens of information items that they identified to be stored and/or retrieved during workshop visits 
and/or wirelessly transmitted, several were labeled potentially privacy-sensitive. Among these are preferred 
seat positions, telephone contacts and numbers of drives covering particular distance ranges. In the electri-
cal car they even found that, each time the ignition is turned off and the car is locked, it transmits data such 
as GPS location of the parking spot, previous charging stations, recent destinations entered in the navigation 
system as well as at least 25 other items. Based on these and similar results, the FIA has demanded new 
legislation to ensure that car manufacturers (i) reveal what they collect, (ii) give customers access to the col-
lected data and (iii) offer an opt-out from data collection. 
Findings from [37] suggest that, especially if it is used to improve service or recycling processes, most con-
sumers (~70%) would accept recording of technical data, provided that not too much of actual usage is re-
vealed. Furthermore, they appeared to accept data collection at end-of-life more easily than continuous col-
lection over the Internet. Besides, it has been suggested that the IoT and other recent ICT developments are 
affecting the way privacy is understood, particularly among younger generations [4]. In that context, future 
users might be more willing to accept collection of data by products. 
There are strategies that can be applied to reduce the privacy sensitivity of transmitted data – for instance, 
limiting the data transmission or reducing the quality or fidelity of the transmitted data. However, there is a 
trade-off in applying these: it is considered unavoidable that these approaches compromise the quality of the 
extracted knowledge and thus the user’s trust in it [58,59].  
Besides privacy, security of information is considered a major concern when data are collected that can re-
veal insights on users [4,60]. Industrial espionage can be a threat for business data [61], and hackers can be 
a threat for both business data and potentially privacy-sensitive data of users [62]. Since this is a whole field 
of research in itself, it will not be elaborated here; the reader is invited to refer to the many surveys on this 
specific topic, for instance [63-66]. 

Converting data to knowledge 
The whole point of collecting data is to transform these into actionable knowledge [55]. In the context of this 
survey, ‘actionable’ means that knowledge satisfies the motivation behind the data gathering (e.g., service 
management or design improvement). It is however somewhat disappointing that our sources hardly provide 
details on how the data were analyzed. In most cases, sources state that ‘statistical analysis’ or even just 
‘data analysis’ was performed. Only in a few cases, more specifics were given, such as Bayesian Networks 
[29] and ANOVA [38]. 
Statistical analysis is just one of the more traditional forms of data analysis, and there is a large collection of 
other techniques available, including various data mining and discovery techniques, prediction techniques 
and simulation techniques using real-time acquired data [43,54,67]. Developing methods to select the best 
out of many analysis techniques given the characteristics of the available data and the motivation that is to 
be satisfied, still seems to be a challenge. A possible reason why the industry does not seem to explore po-
tentially more advanced analysis techniques is given in the next subsection. 

Standardization and homogeneity 
Most implementations of data collection and utilization have been developed in closed innovation processes 
[44], which gives rise to the problem that components (including networks and software) from different com-
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panies have to work together, yet cannot be integrated or run on a common operating system [68]. Managing 
heterogeneous applications, environments and devices constitute a major challenge [53]. Consequently, in 
practice, the collected data are mainly used for anomaly detection and control, but not for more sophisticated 
forms of analysis such as optimization, prediction or discovery [67]. 

Energy efficiency 
Collecting, processing and transferring data consumes electrical power. Especially, the power required by 3G 
and Wi-Fi connectivity is relatively high. Problems may arise when a user is responsible for maintaining the 
battery and other connectivity aspects of the product [59]. Energy supply is also an issue for products that 
are traditionally not powered and need to be powered just for data collection, such as furniture [39]. 

DISCUSSION AND CONCLUSIONS 
From the inventory, the impression emerges that, apart from products that are essentially computers, MOL 
data collection and analysis has mainly been deployed in the context of capital-intensive goods, such as au-
tomobiles, airplanes, professional equipment and manufacturing equipment. With the exception of automo-
biles and a few other products where data collection has been studied in small-scale experimental setups, 
these products are typically deployed in a B2B context. However, data collection from consumer products 
seems to be on the rise, as most examples in that area appear to be recent. This trend can perhaps be ac-
counted to the fact that the contact between companies and consumers is more anonymous than between 
companies and corporate customers in a B2B context. Collecting data about these previously anonymous 
consumers would offer a good opportunity to get to know them better. 
In the majority of the cases, the rationale behind collecting and processing usage data is to manage mainte-
nance activities. Other purposes to which data collection has been exploited most prominently include feed-
back to design, for future products, and providing advice to end users. Furthermore, analysis results were 
used for diverse purposes such as marketing, tracking and classifying users and environmental impact as-
sessment. 
Currently, most data are collected at intervals and analyzed retrospectively. Real-time monitoring does not 
seem to be much needed, except for condition-based maintenance. In some cases, products such as 
smartphones play an intermediary role in collecting the data. 
For the manufacturer, the collected data can generally be characterized as a contribution to management of 
the product lifecycle. Recently, vendors of product lifecycle management software appear to have recognized 
the potential, and have started offering functionality to collect data from fielded products. Among the parties 
taking advantage of the data are not only the manufacturers of the products, but also resellers and third par-
ties such as maintenance providers and insurance companies. In addition, non-commercial parties such as 
law enforcement authorities have shown interest in how particular products are being used. It is not surpris-
ing that all this interest in usage data might cause privacy concerns among end users – especially  in cases 
where they do not seem to benefit from it (e.g., validation of warranty claims). Offering the possibility to opt 
out from data collection seems to be a good solution to this problem. Data security is a related issue; offering 
solutions for secure data handling is, however, a discipline of its own. 
For the actual analysis of the data, a wide range of techniques are available including solutions from ma-
chine learning, statistics, pattern recognition, simulation and combinations thereof. However, in most cases 
of actual data collection, no further analysis tools than basic statistics are being applied. One of the biggest 
unresolved challenges is to match the characteristics of the available data to those analytics tools that best 
support the extraction of the sought-after knowledge. A first step towards achieving this would be to conduct 
further research to characterize and classify (i) all types of data that can possibly collected from products on 
how they are used, (ii) motivations of stakeholders for collecting the data in terms of possible analysis results 
(i.e., the sought-after knowledge: answers to questions/queries about the data), and (iii) data analytics tech-
niques, their data requirements and their knowledge extraction capabilities. In addition, the development of 
knowledge extraction approaches would benefit from standardization among the involved applications, envi-
ronments and devices. 
Another important issue, especially when it comes to societal acceptance of data collection practices, is find-
ing a way to deal with the trade-offs that arise between respecting privacy of individual end users and striving 
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to get the highest-quality knowledge out of the collected data. This, however, is a problem that is also being 
dealt with in related other fields – in particular analysis of website statistics. 
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