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Abstract
Lineage abundance estimation of SARS-CoV-2 in
wastewater is a technique that aims to monitor the
lineage prevalence in communities and help con-
tain the COVID-19 pandemic. Lineages are col-
lections of closely related mutants of a virus. It is
suggested that the genome sequences of lineages
differ across the globe due to random mutations or
distinct immune responses of populations that mu-
tate the virus. In order to estimate the lineage abun-
dance in a specific community, wastewater data col-
lected from the community are compared to ref-
erence SARS-CoV-2 genome sequences of differ-
ent lineages. However, such region-related vari-
ation in the genome sequences of lineages could
impact the abundance estimates. The main aim of
this study is to identify an optimal way of sourc-
ing reference genome sequences such that the lin-
eage abundance estimates are improved. For the
purpose of evaluating the performance of differ-
ent reference sets, simulated wastewater data are
used. We demonstrate that continent-specific refer-
ence sets are the most reliable option. The overall
country interactions with other parts of the world
could be considered for constructing an optimal ref-
erence set. Additionally, results show that consider-
ing immune-response related mutations for the ref-
erence set construction does not influence perfor-
mance. Finally, it is suggested that a higher num-
ber of sequences per lineage and the inclusion of
recently sourced sequences in the reference set im-
prove results.

1 Introduction
COVID-19 is a highly contagious disease caused by SARS-
CoV-2 and is responsible for more than 5 million deaths glob-
ally [1]. During the COVID-19 pandemic, many virus mu-
tants and lineages have been identified. A virus mutant is a
version of the original virus that contains an instance of mu-
tation. Mutants do not necessarily have different properties
than the original virus. A lineage is a collection of mutants
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that share predecessors. Continuous monitoring of the ex-
isting lineages is necessary and crucial for the efforts taken
globally to contain the virus and avoid outbreaks. However,
as clinical sequencing is not feasible in all situations, new
methods can be considered additionally to existing methods
in order to observe how the pandemic evolves and act early.

Lineage abundance estimation of SARS-CoV-2 in wastew-
ater using RNA-Seq quantification methods is a promising
technique that can facilitate the monitoring of different lin-
eages especially when clinical sequencing is beyond reach
[3]. Baaijens et al.[3] prove that such methods are effective in
identifying trends in lineage prevalence. The workflow fol-
lowed by the aforementioned study [3] can be described as
follows. Multiple genome sequences from various lineages
are provided to a tool that quantifies RNA-seq data named
Kallisto [5]. Kallisto [5] is then responsible for aligning the
reads from the genome sequences contained in wastewater
data to the reference genome sequences. Finally, the align-
ment results are analyzed and the lineage abundance is esti-
mated.

Many design choices need to be made regarding the se-
lection of the genome sequences used for the reference set.
Some of those choices should potentially be adjusted based
on the specific wastewater data that need to be measured, in
order to achieve higher performance. Some early findings of
Baaijens et al. [3] suggest that state/country specific reference
sets can improve performance results. In the same study, it is
noted that such reference sets are likely to facilitate the align-
ment process due to random mutations that are dominant only
in certain geographical regions [3].

Similarly, studies suggest that SARS-CoV-2 genome se-
quences sourced from different continents showed different
mutation patterns [6; 12]. Specifically, different geographical
regions show different percentages of mutations per genomic
region. Results from Pachetti et al. [12] show also that the
mutation frequencies per genomic region change over time as
the pandemic evolves.

Viral mutations arise in several ways, one of which is the
host immune response. Wang et al. [16] suggest that the im-
mune response of several populations which are divided by
continent, influences the evolution of SARS-CoV-2. Specif-
ically, first in the study it is demonstrated that certain muta-
tions are associated with the host-virus interaction and that
the those mutation frequencies differ among geographical lo-



cations [16]. Finally, Wang et al. [16] recommend that the
different populations might have developed distinct immune
responses to the viral infection that leads to different mutation
frequencies being observed within the studied populations.

The studies considered, suggest that the SARS-CoV-2
genome sequences differ across the globe and that these dif-
ferences can at least be grouped by continent. Also, it is
mentioned that those differences can be explained by random
mutations that are happening locally as well as the different
immune responses of populations.

Aim of the study The main aim of this study, is to iden-
tify an optimal way of sourcing reference genome sequences
from the different geographical regions and thus to be able
to design a reference set such that the method described in
Baaijens et al. [3] achieves the best results.

2 Experimental work

Different mutational patterns are observed in the genome se-
quences sourced in different geographical regions. Those dif-
ferences involve the genomic region, the frequency of muta-
tions as well as the type of mutations. It is thus expected that
by making this variation common between the reference set
and the lineages measured, alignment performance could be
improved since the lineages measured and their correspond-
ing sequences in the reference set will be more similar. More-
over, if this variation is not common among the different lin-
eages, the alignment process could also be facilitated as it
would make the different lineages to be more dissimilar be-
tween them.

In the following experiments, multiple reference sets are
created in order to observe the effect of several factors on
performance. The prediction accuracy of different reference
sets is evaluated on given test sets created using simulated
wastewater data. By understanding whether and how each of
the factors studied influences results, better guidelines can be
given on how the sequences used for the reference set should
be sourced for geographical locations that can be found in the
mainland of a continent as well as for remote areas.

2.1 Geographical proximity and its effects on
prediction accuracy

In this experiment, we study how the geographical proximity
between the source of collection of the reference genome se-
quences and the genome sequences used in the test set, influ-
ences prediction results. To do so, the test sets are formed us-
ing samples sourced from the states shown in Table 1. Then,
the reference sets are constructed with increasing geographi-
cal proximity. Thus, starting with a global reference set and
concluding with a state-specific reference set. A continent-
specific reference set, a country-specific, and a reference set
that includes lineages from the state and its nearby states are
also formed. Table 1 shows the specific collection times and
geographical locations for the reference set and test set con-
struction for all proximity experiments conducted. The lin-
eage measured in each experiment is also shown.

Table 1: Proximity experiment information regarding the geograph-
ical locations, the collection times of the reference sets and the test
sets. The lineage measured is also shown.

Test set:
state

Test set:
country

Test set:
collection time

Reference set:
collection time

Lineage
measured

Massachusetts USA May, 2021 01/2021 - 03/2021 B.1.1.7
Connecticut USA May, 2021 01/2021 - 03/2021 B.1.1.7
Indiana USA May, 2021 01/2021 - 03/2021 B.1.1.7
Maharashtra India March, 2021 11/2020 - 01/2021 B.1.1.7
Kerala India March, 2021 11/2020 - 01/2021 B.1.1.7
Telangana India March, 2021 11/2020 - 01/2021 B.1.1.7

2.2 Effects of ancestry and immune
response-related mutations in prediction
accuracy

The immune response of the host influences how the virus
evolves. Nedelec et al. [11] suggest that such immune re-
sponse differences observed in various populations are re-
lated to the ancestry of the population. In this experiment,
the aim is to identify the influence of ancestry and thus im-
mune response related mutations in performance. This exper-
iment is particularly interesting for remote communities or
for cases where genome sequences are lacking from an opti-
mal geographical region, thus sequences need to be sourced
elsewhere.

A study on the demographics of Argentina suggests that
the population of Argentina has European ancestors for 67%.
A significant number of Argentinians have European ancestry
from Spain, Portugal, Italy, and Greece [8]. The population
of Argentina has East Asian ancestors for 0.014% [8]. Hence,
the test set is constructed using samples sourced in Argentina.
The first reference set is constructed using samples sourced
from south Spain, Portugal, Italy, and Greece, and the second
reference set is constructed using samples sourced from East
Asia. A continent-specific reference set is constructed for the
purpose of comparison.

Table 2: Information regarding the geographical locations, the col-
lection times of the reference sets and the test sets for the ancestry
experiments conducted. The lineage measured is also shown.

Test set:
geographical
location

Test set:
collection time

Reference set:
collection time

Lineage
measured

Argentina March, 2021 11/2020 - 01/2021 B.1.1.7
Argentina April, 2021 12/2020 - 02/2021 B.1.1.7
Argentina May, 2021 01/2021 - 03/2021 B.1.1.7

Table 2 shows the collection times, for the reference sets
and the test sets as well as the lineage measured for each of
the ancestry experiments conducted.

2.3 Effects of population interactions in prediction
accuracy

Interactions between two populations could help local ver-
sions of a lineage to spread in other geographical regions.
The purpose of this experiment is to observe how the inter-
actions between geographical areas influences results. This
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experiment is particularly interesting for islands or remote ge-
ographical areas.

Cyprus is an island in the Mediterranean sea. For the pe-
riod of August 2020 anyone traveling to Cyprus had to fill in
the Cyprus flight pass which includes their country of resi-
dence. The majority of travelers declared as country of resi-
dence the UK (39%) and Germany (12%) [13]. No travelers
from France were reported for that period or during the previ-
ous month [13; 14]. The island reported various percentages
of travelers from European countries for the period of July
and August [13; 14]. All travelers reaching Cyprus for those
two months declared that they reside in Europe.

Genome sequences collected from Cyprus during October
2020 are used for the construction of the test set. Next, three
reference sets are created for the time period of August 2020.
The first reference set contains samples sourced from the UK
and Germany. The second reference set contains sequences
sourced from France. Finally, the third reference set contains
sequences sourced from Europe (not restricted to the coun-
tries Cyprus reported having interactions with). The B.1.258
lineage is measured.

2.4 Collection times for the reference set and the
test set

As previously discussed it is suggested that mutation frequen-
cies and the genomic location where mutations occur change
over time [12]. In this experiment, it is tested how shorter
time intervals between the collection of genome sequences
for the reference set and the test set influence results. For
this experiment, SARS-CoV-2 genome sequences collected
in Connecticut are used for the creation of the test set. North
American genome sequences are used to build the reference
sets. The data used for the test set are collected during May
2021. The reference sets are constructed with a time span of
approximately fifteen days for consecutive time periods from
April till February 2021. The B.1.1.7 lineage is measured.

2.5 Effects of within lineage variation in the
reference set

As described by Baaijens et al. [3], in order to improve pre-
dictions multiple genome sequences are used as reference per
lineage in order to capture within lineage variation. In this
experiment, it is evaluated how the number of sequences pro-
vided as a reference for the lineage measured influences pre-
dictions.

For the purpose of this experiment, five reference sets are
constructed that contain two, four, six, eight, and ten B.1.1.7
sequences. Genome sequences collected from Connecticut
sourced in May 2021 are used for the creation of the test set.
Subsequently, four reference sets are constructed. All refer-
ence sets contain sequences collected from the USA for the
time period between January and March of 2021. The lineage
B.1.1.7 is measured.

3 Results
In this section, the results for the experiments described in
section 2 are presented. First, in subsection 3.1 is shown that

while most reference sets examined in the proximity experi-
ments show high variability in their performance, continent-
specific reference sets perform reliably well. In subsec-
tion 3.2 the results for the ancestry experiments are pre-
sented and it is suggested that immune response-related mu-
tations do not influence performance. Moreover, in subsec-
tion 3.3 the findings of the country interactions experiment
are presented. In subsection 3.4 is suggested that by includ-
ing recently sourced genome sequences, better performance
is achieved. Finally, in subsection 3.5 is shown that with
a higher number of reference sequences, performance im-
proves.

3.1 Variability in performance of the reference sets
used in the proximity experiments

Figure 1 and Figure 2 show the average relative prediction
error (Equation 2) of the reference sets constructed per prox-
imity experiment. Figure 1 illustrates the results obtained for
the experiments done for the states in India. Figure 2 shows
the results obtained for the experiments done for the states in
the USA. As can be observed in both figures, there is not a
consistent type of reference set that achieves best results in
all experiments and most reference sets show high variabil-
ity in their performance. However, in most cases, continent-
specific reference sets achieve the best results.
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Figure 1: Average relative prediction error for all proximity experi-
ments conducted for states in India

Figure 1 shows that in the experiment done for the state
of Maharashtra, the continent-specific reference set achieves
the best results. For the experiment conducted for the state
of Kerala, the reference set constructed for the nearby states
achieves the best results while the continent-specific refer-
ence set achieves marginally worse results. Finally, in the
experiment conducted for the state of Telangana best results
are achieved from the country-specific reference sets, and the
continent-specific reference set follows. The state-specific
reference sets show high error rates in all experiments con-
ducted for the states in India.

Similarly, Figure 2 shows that the continent-specific ref-
erence set achieves the best results in the experiment done
for the state of Connecticut. In the experiment conducted
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Figure 2: Average relative prediction error for all proximity experi-
ments conducted for states in the USA

for the state of Indiana, the country-specific reference set
achieves the best results, and the continent-specific reference
set performs marginally worse. Finally, for the state of Mas-
sachusetts, the state-specific reference set performs best and
the continent-specific reference set has one of the worst per-
formances.

Overestimation and underestimation analysis
Figure 3 shows the simulated frequency compared to the es-
timated frequency for the proximity experiment done for the
state of Maharashtra. For true frequencies ranging from 1-
10%, the global, country-specific, and continent-specific ref-
erence sets show overestimation as well as some underestima-
tion. For true frequencies ranging from 10-100% mainly un-
derestimation is observed for those reference sets. The other
reference sets suffer from underestimation across the whole
range of simulated B.1.1.7 frequencies.
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Figure 3: True abundance compared to the estimated abundance for
the proximity experiment done for the state of Maharashtra in India.

Figure 4 shows the simulated frequency compared to the
estimated frequency for the proximity experiment done for
the state of Connecticut. The state-specific and the global
reference sets show some overestimation up until the 50% to
60% true frequencies and for the following abundances, some

underestimation is observed mainly for the Global reference
set. Mostly, underestimation is observed for the rest of the
data sets in all abundances.

Similar findings to what have been discussed for Figure 1
and Figure 2 were made for the rest of the proximity experi-
ments conducted.
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Figure 4: True abundance compared to the estimated abundance for
the proximity experiment done for the state of Connecticut in the
USA.

Abundance estimation analysis
Figure 5 shows the abundance distribution across the lineages
in the reference sets used. In both subfigures, the B.1.1.7 se-
quence sourced in Connecticut is simulated at 100% abun-
dance. Figure 5(a) corresponds to the North American refer-
ence set which achieves the best results in the proximity ex-
periment done for Connecticut while figure 5(b) corresponds
to the USA reference set which has the higher average rela-
tive error in the same experiment. What is observed is that,
even though both reference sets contain the same sub-lineage
of B.1.1.7, the USA reference set is affected much more by
its presence.

B.1.1.7
Q.3
other

(a) North American reference set

B.1.1.7
Q.3
other

(b) USA reference set

Figure 5: Abundance estimation predictions for the simulated abun-
dance of 100% of the B.1.1.7 lineage sourced in Connecticut.

Figure 6 shows the abundance distribution across the lin-
eages for the reference sets used. In both subfigures, the
B.1.1.7 lineage sourced in the state of Maharashtra is sim-
ulated at 100% abundance. Figure 6(a) corresponds to the
state-specific reference set which achieves the worst results
in the proximity experiment conducted for the state of Ma-
harashtra, while figure 6(b) corresponds to the continent-
specific reference set which has the lowest average relative
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error in the same experiment. What is observed is that the
state-specific reference set suffers from underestimation due
to similar lineages that it contains. Even though the Asian
reference set contains sub-lineages it is not affected by their
presence and it thus performs better.

B.1.1.7
other

(a) Maharashtra reference set

B.1.1.7
Q.4
other

(b) Asian reference set

Figure 6: Abundance estimation predictions for the simulated abun-
dance of 100% of the B.1.1.7 lineage sourced in Maharashtra.

Figure 7 shows the estimated abundance compared to the
true abundance for the continent-specific reference sets for
all proximity experiments conducted. It can be observed that
all continent-specific reference sets follow similar trends. In
the experiments done for Massachusetts and Telangana, the
continent-specific reference sets achieve higher error rates.
Those error rates are caused by overestimation in lower abun-
dances.
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Figure 7: True abundance compared to the estimated abundance for
the continent-specific reference sets for all proximity experiments
conducted.

3.2 Immune response-related mutations do not
influence performance

In Figure 8, the average relative prediction errors (Equation 2)
for the ancestry experiments described in subsection 2.2 are
presented. The South American reference sets perform well
in all experiments conducted. The results obtained by the
south European and east Asian reference sets are mostly com-
parable. Thus, it is suggested that ancestry and immune
response-related mutations do not influence performance.

Figure 9 shows the estimated abundance over the true abun-
dance for the reference sets used in the ancestry experiment
done for the time period of May. It is shown that all reference
sets suffer mainly from underestimation in higher simulated
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Figure 8: Average relative prediction error percentage for the South
American, the South European, and the East Asian reference sets.
Each experiment presented covers a different time period. Thus, the
test sets are built with samples sourced from Argentina for the time
periods of March, April and May.

abundances. Similar observations are made for the remaining
experiments conducted for the other time periods.

Figure 10 shows that the underestimation that is observed
in the experiment done for the period of May (Figure 9) is
mainly caused by sub-lineages that are present in the refer-
ence sets. Likewise, Figure 11 shows that in the experiment
done for the month of March, the sub-lineages that are present
in the South European reference set cause the higher error
rates presented in Figure 8. No sub-lineages are present in
the East Asian reference set and it thus performs better. Both
the East Asian and the South European reference sets seem to
be similarly affected by sub-lineages they might contain.

3.3 German-British reference set has the worst
performance

Figure 12 shows that the European reference set performs
best. A marginal difference in performance is observed be-
tween the French and German-British reference sets. How-
ever, the British-German reference set has the highest average
relative prediction error. None of the reference sets contains
sub-lineages of the B.1.258 lineage that is measured.

The results presented in Figure 12 suggest that, it is not
enough to just consider the majority of interactions of a coun-
try and that it is safer to consider the entire continent the
country had interactions with. More such experiments will
add confidence to the results.

3.4 Including the latest sequences available in the
reference set improves results

As shown in Figure 13 the error rate follows a decreasing
trend in most cases as the time interval shortens between the
collection times for the reference set and the test set. The data
set that corresponds to the time span between the first and
the fifteenth day of April even though being the second data
set closest to the collection date of the test set, has the high-
est error rate. Another exception to that trend is the data set
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Figure 9: True abundance compared to the estimated abundance
for the experiment that covers immune response-related mutations.
The results correspond to the experiment done for the month of
May. The reference sets are constructed using genome sequences
collected from the geographical locations of South America, South
Europe, and East Asia.
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(a) South European reference set

B.1.1.7
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other

(b) East Asian reference set

Figure 10: Abundance estimates for the simulated abundance of
100% of the B.1.1.7 lineage sourced in Argentina for the month of
May 2021.

that corresponds to the time span between the first and the fif-
teenth day of February since it performs better than some data
sets that have collection dates closer to the collection dates of
the lineage measured in the test set. Despite the aforemen-
tioned exceptions, results suggest that considering sequences
collected closest to the day of measuring the lineage abun-
dance in a specific geographical location, can benefit results.

3.5 A higher number of B.1.1.7 sequences in the
reference set improves results

As shown in Figure 14, in most cases, the results improve
with more B.1.1.7 sequences. However, the error rate does
not follow a linearly decreasing trend. The reference sets
that contain two to eight B.1.1.7 sequences have similar er-
ror rates. A rapid decrease in the error rate is observed for
the reference set with ten sequences thus when two more
sequences are added in the reference set that contains eight
B.1.1.7 sequences. When only those last two sequences are
included in the reference set, the performance is better than in
the case of the reference sets with two up to eight B.1.1.7 se-
quences. Those findings suggest that performance improves
with a higher number of reference sequences for the lineage
measured.

B.1.1.7
Q.2
Q.4
Q.8
other

(a) South European reference set

B.1.1.7
other

(b) East Asian reference set

Figure 11: Abundance estimation predictions for the simulated
abundance of 100% of the B.1.1.7 lineage sourced in Argentina for
the month of March 2021.
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dictions when using each of the reference sets presented in the fig-
ure. The test set is built with samples sourced from Cyprus.

4 Discussion
In this study, we aim to identify an optimal way of sourcing
reference genome sequences so that the lineage abundance
estimation of SARS-CoV-2 in wastewater improves. Pre-
viously, in section 2 the experiments conducted in order to
achieve this objective are described. In this section, the re-
sults presented in section 3 for each of those experiments are
discussed.

4.1 Underestimation when sub-lineages are
present in the reference set

The presence of sub-lineages seems to be responsible for the
abundance underestimation that is observed mainly in high
simulated abundances across the experiments presented in
section 3. What happens is that some of the reads of the lin-
eage measured in the simulated wastewater data are assigned
to sub-lineages that are present in the reference set. However,
not all reference sets that contain sub-lineages suffer from
this. This can be seen in Figure 5. Both reference sets contain
the same sub-lineage but in the case of the continent-specific
reference set, results show that is not as affected by its pres-
ence. This is not the case for the country-specific reference
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Figure 13: Average relative prediction error per reference set. The
reference sets are constructed with a time span of approximately fif-
teen days for consecutive time periods from April till February 2021.
All samples are sourced from North America. The test set is formed
from samples sourced in Connecticut during May 2021.

set, which is significantly affected.
The results obtained by the continent-specific reference

sets in the proximity experiments suggest that they are not
prone to underestimation (Figure 7). Instead, they are more
likely to show overestimation in lower abundances. This can
be seen in the proximity experiments done for the state of
Telangana in India and the state of Massachusetts in the USA.
The higher error rates observed in those two cases are due to
overestimation in lower abundances.

Preliminary findings presented in Appendix A, suggest that
measuring the SARS-CoV-2 quantities in wastewater for a
family of lineages improves the abundance estimates.

4.2 Geographical proximity

The continent-specific reference sets seem to be the most re-
liable option. What seems to matter is the similarity between
the lineages in the reference set as well as between the lin-
eages in the reference set and the test set.

Locality
In the case of local reference sets, they seem to be prone to
overestimation but mainly to underestimation for all abun-
dances simulated. If all lineages in a given geographical loca-
tion are more similar between them, this results in less diver-
gence between lineages in the reference set and in the test set.
Some reads of similar lineages that exist in the background
could be assigned to the lineage measured thus, some over-
estimation is observed. In most cases, however, what seems
to happen is that reads of the lineage measured are similar to
multiple lineages in the reference set, thus underestimation is
observed.
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Figure 14: Average relative prediction error for the reference sets
with varying amounts of reference samples of the lineage measured.

Global reference sets
Global reference sets suffer from high error rates due to over-
estimation in low abundances but perform well on high abun-
dances. Perhaps a global reference set does not contain as
many lineages that are found exclusively in certain geograph-
ical locations. Again, lineages that are in the background
could be similar to the lineage measured. In such cases, in
low simulated abundances of the lineage measured, those lin-
eages that exist in the background are highly abundant in the
simulated wastewater data. If their corresponding lineage
does not exist in the reference set and/or are similar to the
lineage measured, then they can be wrongly assigned to the
corresponding sequences for lineage measured in the refer-
ence set.

Continent specific reference sets
The continent-specific reference sets perform well in most ex-
periments conducted. This is perhaps because they can pro-
vide the right amount of contrast between the lineages in the
reference set while having the lineage measured being similar
enough to the corresponding sequences in the reference set.
Enough contrast in the reference set means that the lineages
are more divergent between them due to non-defining region-
specific mutations since multiple countries in the continent
are considered. At the same time, continent-specific refer-
ence sets are ”local” enough to contain the corresponding lin-
eages for the lineages that exist in the background. Thus,
those background lineages are not so often being falsely con-
sidered as the lineage measured.

Other factors
Measures taken to contain the virus as well as population den-
sity could result in states or countries experiencing the pan-
demic differently. Depending on such factors, certain refer-
ence sets could perform better or worse at given times.
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Stringency levels for measures implemented It is possi-
ble that the states studied had implemented different strin-
gency levels of measures to control the spread of the virus
for the time periods considered. Such different levels of mea-
sures influence mutation frequencies [2] as well as the state
interactions with the rest of the world. This situation could in-
fluence the similarity of the lineages of a given state with the
contents of reference sets constructed using sequences from
other parts of the world.

Population density Population density positively corre-
lates with the number of infections. Research conducted
specifically for India and the USA indicates that higher popu-
lation density facilitates disease transmission and it thus leads
to higher infection rates [15; 4]. Higher infection rates could
result in lineages showing more non-defining mutations. This
can impact the performance of certain reference sets.

4.3 Interactions between countries
Cyprus reported having travelers in July and August mainly
from European countries. Even though the majority of those,
were coming from the UK and Germany for the month of Au-
gust, the fact that the German and British reference set per-
forms marginally worse than the French reference set even
though no travelers were reported from France, suggests that
interactions can be hard to capture. The European data set
performs best, perhaps because it has better chances to cap-
ture the interactions that brought the most abundant version
of a specific lineage at a specific time. That being said, it
could be the case that there is a more specific geographical
location that could achieve better results. However, this ex-
periment shows that there is no reliable way of finding such
location. It is safer to consider the entire continent the coun-
try had interactions with.

4.4 Increased number of the B.1.1.7 sequences in
the reference set

The findings from this experiment presented in subsec-
tion 4.4, can be partially explained due to the fact that for
the wastewater simulation only one genome sequence is used.
When working with real wastewater data, it is expected that
there will be a greater variety in the lineages measured. Then,
perhaps the decreasing error rate will follow a more linear
trend.

Another interesting observation is that the reference set
with four B.1.1.7 sequences has slightly better performance
than the reference set with six B.1.1.7 sequences. This re-
veals that Kallistos’ [5] likelihood function that uses the
expectation-maximization algorithm to compute the proba-
bility that a specific read belongs to a specific reference tran-
script, distributes those probabilities slightly differently given
a different number of sequences in the reference set.

All in all, the experiment shows that the number of refer-
ence sequences does not necessarily translate to higher per-
formance. Perhaps by including more sequences, one in-
creases the chances of having a good sequence included in the
reference set. Finally, different sizes of reference sets could
influence performance negatively or positively.

5 Methods
In this section, the experimental setup and methods are de-
scribed. First in subsection 5.1 the workflow followed by this
study is illustrated and the steps are explained. Next, in sub-
sections 5.2, 5.3 and 5.4 design choices made such as the ge-
nomic region, the simulated abundances and the simulated
coverage are documented and discussed. In 5.5, the metrics
used to evaluate the reference sets created, are presented. Fi-
nally, in subsections 5.6 and 5.7, the data collection methods
are described.

5.1 Pipeline
In this subsection, the steps of the pipeline used for the lin-
eage abundance estimation are illustrated in Figure 15 and
then described.

GISAID
Reference set
construction

Abundance 
 estimates

Lineage abundance
prediction

Wastewater
simulation

Figure 15: Steps of the pipeline used in this study to quantify the
abundance of SARS-CoV-2 in wastewater data.

Reference set construction
First, the sequences and the corresponding metadata are pro-
vided as input to the pipeline. Quality filters are applied.
Then the sequences are compared to the original SARS-
CoV-2 reference (NC 045512.2, collected from the NCBI
database). Next, the allele frequencies per lineage are com-
puted and are used for the selection of the sequences for each
lineage. All mutations with an allele frequency of at least
50% are captured at least once.

Wastewater simulation
In order to test the performance of the reference sets cre-
ated, wastewater sequencing data are simulated using ART
[9]. Genome sequences collected in a course of a month for
a specific geographical region are sourced from GISAID [7].
All sequences that are of the same lineage with the lineage
to be measured are then removed from that data set. The re-
maining sequences are used to simulate the background lin-
eages for the wastewater simulation. A genome sequence that
is collected during that same time period for that same geo-
graphical location is sourced from GISAID [7] to represent
the lineage to be simulated.

Lineage abundance predictions
The Kallisto index (de Bruijn graph) is built for the filtered
reference set. Kallisto [5] quantifies the abundance per refer-
ence sequence for the simulated wastewater data. Finally, the
Kallisto output is processed to obtain the abundance estimates
per lineage.
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5.2 Genomic region
For the purpose of the experiments, the whole genome is used
as input. Even though, spike-only sequencing of the genome
yields better results with simulated data [3], when working
with real sequencing data, it is usually needed to sequence the
whole genome in order to gather enough information. More-
over, it is suggested that there are mutations in the whole
genome that could be related to immune responses [16]. Fi-
nally, it is recommended that mutations in the whole-genome
change frequencies over time in different geographical loca-
tions [12]. Thus, the whole genome is used.

5.3 Simulated abundances and abundance
threshold

The lineage chosen to be measured in each experiment is sim-
ulated in low (scale of one to ten) and high (scale of ten to
hundred) abundances. The abundance threshold applied is
1% on the overall sequence abundance.

5.4 Coverage
The coverage simulated is 100x. Baaijens et al. [3] suggest
that using coverage of 100x achieves comparable results with
higher coverage. It is also computationally not as intensive as
other higher coverage options.

5.5 Metrics
The metrics used to measure the performance of each refer-
ence set, are namely the relative prediction error (Equation 1)
and the average relative prediction error (Equation 2).

|true abundance − estimated abundance|
true abundance

(1)

Suma ∈ Abundances (Relative prediction errora)
NAbundances

(2)

5.6 Data availability
All data used for the reference set and test set construction
are downloaded from the GISAID database [7]. All GISAID
identifiers are available on the Gitlab repository 1.

5.7 Data collection methods
All data are collected from GISAID. In order to reduce the
number of sequences, filters available on GISAID were ap-
plied. Those filters exclude incomplete sequences, sequences
where patient status is missing or the date is incomplete. This
was mainly done for the country level and the continent-
specific reference sets. For the construction of the close-by
states reference sets and for cases where a combination of
countries was needed, data were downloaded from GISAID
and then merged. In the case of global data sets, the global
data set available on GISAID (next-regions) was downloaded
and then filtered to contain sequences only for the needed
time periods.

If global reference sets were to be sourced in the same way
as the rest of the data sets, results could have perhaps been

1https://gitlab.ewi.tudelft.nl/jbaaijens/CSE3000 wastewater
project.git

different in some cases. However, the reference sets would
have been much larger in size which would have resulted in
the process being more computationally intensive. Most im-
portantly, such global reference sets would have been heav-
ily biased towards countries and continents that sequence and
submit more especially at earlier time periods during the pan-
demic.

6 Responsible research
In order to ensure the reproducibility of the results produced
by this study, the tool Snakemake [10] is used. Moreover, all
code is available on the Gitlab repository. In any parts of the
code where randomization is involved, random seeds where
used. Therefore, the reader should be able to reproduce the
exact same results by using the same random seeds which
can be found on the Gitlab repository. The genome data used
in this study can be downloaded from GISAID [7]. As it is
forbidden to publish the genome data, the GISAID identifiers
for all data sets used are available on the Gitlab repository.

In this study, an effort has been made so that the experi-
ments will allow the reader to generalize over the conclusions
and use them for a wide range of geographical regions. Also,
there has been an effort to include various geographical lo-
cations into the experiments so that confidence in the results
can be gained for more places around the globe. However,
due to limitations in data sources, this was not entirely feasi-
ble, thus the most studied continents are Asia, Europe, North
and South America. By conducting additional experiments
that include other geographical regions, more confidence will
be gained in the results of this study and their applicability in
more geographical areas.

It is at the moment unclear whether the lineage classifica-
tion and labeling for the data being submitted to GISAID [7]
are updated and if so, how often the updating process takes
place. In a situation where data are not frequently updated,
new lineages could be mislabelled in the database as similar
known lineages. The accuracy of the classification process
for the genome sequences available in GISAID [7] is also un-
known. Those uncertainties could impact the accuracy of the
results obtained by this study.

Finally, in this study, wastewater data were simulated in or-
der to test the performance of each reference set used. It is en-
couraged that the experiments be repeated using real wastew-
ater data in order to gain more confidence in the results in
real-world settings.

7 Conclusion
Continent specific reference sets are the most reliable and
good performing choice for estimating the lineage abundance
of SARS-COV-2 in the wastewater of a community. In case
an optimal reference set is not available or in the case of a re-
mote geographical location, it is worth considering the overall
interactions of that geographical region. It is suggested that
ancestry and thus immune response-related mutations do not
influence performance. It is also recommended that a higher
number of sequences per lineage in the reference as well as
the inclusion of recently sourced sequences improve results.
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Finally, preliminary results indicate that considering a fam-
ily of lineages or the variants of concern/interest as they are
defined by the World Health Organisation yields better results
since most underestimation and overestimation happen due to
sub-lineages in the data sets.

7.1 Future work
In this study, suggestions have been made mainly for the re-
gions the samples should be sourced from given a geograph-
ical location that lineage abundance estimations should be
made. One could further investigate topics such as optimal
reference set size as well as the optimal amount of time the
reference set should cover in order to achieve best results. It
is recommended to repeat the experiments using real wastew-
ater data. This will add confidence in the results obtained for
real-world settings.

Detection of a new variant
The pipeline used by this study can only detect known lin-
eages that are contained in the reference sets used. The
pipeline aligns the reads from the wastewater data to the most
similar lineages in the reference set. In this case, if a new
lineage is more similar to a non-highly abundant lineage then
an increase in the abundance of that lineage will be observed.
Then, differential expression analysis could be conducted to
identify if it is the already known lineage or a similar new
one. In case the new lineage is most similar to an already
highly abundant lineage that would make it harder to detect.

Another approach to this problem is the use of Genera-
tive Artificial Intelligence. Generative Artificial Intelligence
could be used to predict and generate sequences of lineages
that might appear in the future. This would require the evo-
lution of the virus to be predicted and the genome sequences
that would be produced by such a tool to be more similar to
the new lineage than other known lineages.
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A Abundance estimates in lower granularity
Figure 16 shows the average relative prediction error (Equa-
tion 2) for each of the proximity experiments done for states
in the USA. These experiments are similar to the experiments
described in subsection 2.1. The difference is that abundance
predictions are made for a family of lineages.

The B.1.1.7 lineage is simulated. All B.1.1.7 sequences are
removed from the test set. The sublineages of the B.1.1.7 lin-
eage (Q.x) are also removed. Abundance is measured from
both B.1.1.7 and Q.x sequences in the reference set for the
final abundance estimates. As we observe in Figure 16 re-
sults mostly improve for all experiments and all reference set
types. Continent specific reference sets continue to perform
well. The results of the global reference sets are also signifi-
cantly improved.

More such experiments and throughout analysis of the re-
sults will help identify the optimal granularity one should use
for more accurate abundance predictions.

State
specific

Closeby
states

Country
specific

Continent
specific

Global

Dataset

0

10

20

30

40

50

60

Av
er

ag
e 

re
la

tiv
e 

pr
ed

ic
tio

n 
er

ro
r (

%
)

18.66
20.22 19.39

15.25

11.83

41.6

25.11

37.49

24.98
22.07

18.99

10.98
13.66

17.25

24.56

Test set: Connecticut
Test set: Indiana
Test set: Massachusetts

Figure 16: Average relative prediction errors for proximity experi-
ments conducted for states in the USA. The B.1.1.7 lineage is sim-
ulated. Abundance estimates are measured from B.1.1.7 and Q.x
sequences in the reference set
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