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Abstract

In this thesis, we examine the kernel-based spatial random graph (KSRG) model, which is a generali-
sation of many known models such as long-range percolation, scale-free percolation, the Poisson Boolean
model and age-based spatial preferential attachment. We construct a KSRG from a vertex set V = Zd,
assigning each vertex v ∈ V a weight Wv according to a power-law with parameter τ − 1 and connecting
each pair of vertices conditionally independently according to

P(u ↔ v|Wu,Wv) = Θ

(
1 ∧

(
max {Wu,Wv}σ1 min {Wu,Wv}σ2

|u− v|d

)α)
.

Our first contribution is to show that, under certain choices of the parameters σ1, σ2, τ and α, the graph
distance is at most poly-logarithmic or at most doubly logarithmic when compared to the spatial distance.
Furthermore, the parameters σ1 and σ2 allow for extra degrees of freedom when compared to the models
mentioned earlier, which yields a new exponent for poly-logarithmic distances and a generalised constant
for doubly logarithmic distances. Our second contribution lies in the techniques used to prove these
results. In particular, we show that with probability tending to 1 there is a subset of vertices that behaves
pseudo-randomly with regards to the expected amount of vertices with a given weight in any radius. The
presence of this subset, which we call a net, allows for the avoidance of the use of FKG-like inequalities in
proofs. Primarily, it allows us to reveal all relevant weights in advance, which allows us to disregard many
correlations that we would otherwise need to take into account during construction of paths.
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1. Notation

In this section, we denote some of the common notation we use throughout this thesis for later reference.

Graph Notation

Notation Definition

G = (V, E) We denote the entire graph by G. A graph consists of a set of vertices
V and a set of edges E between the vertices.

(
V
2

) We denote by
(V
2

)
the set of all subsets of V that contain exactly 2

elements, i.e. (
V
2

)
:= {{x, y} : x, y ∈ V, x ̸= y} .

e = uv = {u, v} If the graph is undirected, i.e. if E ⊆
(V
2

)
, then any edge e between the

vertices and u and v can be written as e = {u, v}. We may also use the
shorthand notation uv = {u, v}.

u ↔ v We denote u ↔ v if u is connected to v, i.e. uv ∈ E .

u ↔ A If A ⊆ V, then if there is at least one edge between u and a vertex of
A, then we write u ↔ A.

NG(u)

For a vertex u ∈ V, we use NG(u) to denote all the vertices that are
neighbours of u in G, i.e.

NG(u) = {v ∈ V : u ↔ v} .
dG(u, v) We denote with dG(u, v) the graph distance between u and v, which is

defined as the length of the shortest path between u and v in G.

General probability notation

Notation Definition

X⊥Y If X is independent from Y , we denote this with X⊥Y . Here, X and
Y may be either events or random variables.

With high proba-
bility

We say that a sequence of events (Ei)i∈I holds with high probability if

lim
i∈I
i→∞

P(Ei) = 1.

X ∼ Bin(n, p)

If X ∼ Bin(n, p), we say that X has a binomial distribution with
parameters n and p. Then X has probability mass function

P(X = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

Stochastic domi-

nation, X
d

≥ Y

We say that a random variable X stochastically dominates a random

variable Y and write X
d

≥ Y iff

P(X > x) ≥ P(Y > x) for all x ∈ R
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Other notation

Notation Definition

N,Z,R We denote the natural numbers (starting with 1) with N, the integers
with Z and the real numbers with R. We also refer to the natural
numbers as positive integers.

x + A

If x ∈ R is a real number and A ⊆ R is a set of real numbers, we
denote x + A as the set of all elements of A added to x, i.e.

x + A = {x + a : a ∈ A} .
a ∧ b, a ∨ b For two real numbers a, b, we denote with a ∧ b the minimum of a and

b and with a ∨ b the maximum of a and b.

[n]

For a positive integer n ∈ N, we denote with [n] the set of all positive
integers smaller than or equal to n, i.e.

[n] = {1, 2, . . . , n− 1, n} .
{0, 1}i For i ∈ N, we denote {0, 1}i as all sequences of length i with elements

that are either 0 or 1. Furthermore, we denote these sequences without
any punctuation, e.g. for the element (0, 1, 0) ∈ {0, 1}3 we simply write

010. If i = 0, then {0, 1}i contains only an empty string.

f(N) = o(g(N)) We say that f(N) = o(g(N)) (“f(N) is little o of g(N)”) if
f(N)/g(N) → 0 if N → ∞. In particular, we say that f(N) = o(1) if
f(N) → 0 if N → ∞.

f(N) = O(g(N)) We say that f(N) = O(g(N)) (“f(N) is big O of g(N)”) if there exists
a constant M > 0 and an N such that for every N ≥ N it holds that
f(N) ≤ Mg(N).

f(N) = Θ(g(N)) We say that f(N) = Θ(g(N)) if there exists an N and constants
C1, C2 > 0 such that for all N ≥ N it holds that C1g(N) ≤ f(N) ≤
C2g(N).
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2. Introduction

Over the previous years, misinformation has become a heavily discussed topic. Increasingly quickly and
frequently, false information reaches a large proportion of people [45]. Once a person reads a piece of false
information, they tend to spread it to their contacts. This happens either unintentionally, for example
because the spreader does not know the information is false or does not understand the nuances of the
subject, or intentionally, for example because it yields them social or economic benefit [44]. By repeating
this process, the false information can be transmitted to a large group of people. The World Economic
Forum has judged this as both a short-term and long-term global risk, regarding the severity of the problem
to be similar to that of biodiversity loss and new potential pandemics [56].

Wikipedia is one of the most well-known websites in the world; according to the website ranking of
similarweb it is the seventh most visited website globally [52]. The English Wikipedia consists of more
than 6.6 million articles encompassing a broad selection of topics [54]. Each of these articles has its own
web-page, often containing web-links to other articles. By traversing these links, it is very often possible
to connect two arbitrarily chosen articles, even when the articles are about seemingly completely different
topics [53]. Using this fact, the Data Science Lab at EPFL have set up ‘Wikispeedia’, a contest to use the
fewest amount of web-links to find a path between two articles [55].

The above two examples might seem unrelated; both are, however, describable as a process on a network.
In the first example, the underlying network is the social network of people and their connections, i.e.,
the people they know and/or can reach in some way. In the second example, we describe the entirety of
Wikipedia as all its web-pages and the web-links from article to article as the connections. To understand
a process on a network, it is helpful to first understand the network itself. As we will discuss in the next
section, the study of networks can be done very well via mathematical modelling.

2.1. Graph theory & Network studies

Networks are a popular choice to describe and analyse many complex structures and data [18]. Any
structure that can be described as a collection of elements and the connections between them, can be seen
as a network. Networks are usually modelled as graphs. Informally, a graph is a group of vertices (also
called nodes or simply ‘points’) and the edges between those vertices (also called links or bonds). These
edges can be described in various ways. The simplest way is to just connect two vertices, in which case
we call these edges undirected. For example, the network of people that are connected on Facebook is
undirected, since if two people are connected they each appear the friend list of the other. As an antonym
of undirected there is also the notion of directed edges, where an edge means that we can traverse from
one vertex to another, but not necessarily backwards. An example of a network with directed edges is
the network of academic papers and their citations. A paper can only cite another paper when it comes
before it, so this network will have edges that can only be traversed backwards in time. There are also
multigraphs — meaning that there may be multiple edges between two vertices — and hypergraphs —
meaning that an edge may connect more than two vertices. Graphs that are not multi- or hypergraphs are
often called simple graphs.

The start of the study of these graphs – called graph theory – is commonly attributed to Leonhard
Euler and his 1736 solution of the ‘Bridges of Köningsburg’ problem [23, 26]. After this, graph theory has
provided many real-world applications. A few examples:

• If given a distributive network where through each connection a certain amount of product can
be moved per time unit, graph theory gives us a way to compute the maximal amount of product
that may be moved from one point to another. A direct application of this is in cost minimisation
of transport costs for large retail companies, for example.

• In any network, graph theory gives us a way to compute the shortest path between two points.
This is for example used in the route planning algorithm of GPS systems.

• In a social network, graph theory gives a way to identify the most important individual(s) in the
network. For example, this procedure has been used to identify the most important criminal(s) in
a criminal network (See [46], pages 147-150).

The examples given above, however, are often done on relatively small networks. Due to the widespread
availability of computers and communication networks, more and more data can be gathered. This allows
for the analysis of networks on a scale that is much larger than previously possible. With the shift of
analysing larger and larger networks also came a shift in the approach to the study of networks [23, 26].
Rather than analysing the properties of single vertices and edges, the focus was now on large-scale sta-
tistical properties of graphs. One of these reasons for this shift is that in large graphs, a single vertex or
edge is usually relatively inconsequential. For example, the question “which vertex influences the network
the most when removed?” is relevant in small networks (see the criminal network example above), but in
large networks the removal of one vertex usually has very little effect on the network overall. However,
the more statistical question “which percentage of vertices needs to be removed to significantly influence
the network?” does have merit. A second reason is that large networks are often too hard to draw. Small
networks (say tens or hundreds of vertices) may be drawn and visually inspected, but when there are

https://www.wikipedia.org/
www.similarweb.com
https://www.epfl.ch/en/
https://www.epfl.ch/en/
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millions or billions of vertices this becomes near impossible. Visual inspection is powerful tool for analysis,
so its exclusion warrants other similarly powerful tools in the form of statistics.

With the introduction of statistical questions, the logical next step became to introduce randomness
to model the studied networks. This is fully justified, because many real-world networks grow organically.
Such procedures may well be modelled by introducing randomness [35]. This gave rise to the field of
random graphs. The start of the field of random graphs is commonly attributed to the papers of Erdős
and Rényi [1] and Gilbert [2], independently published in 1959. Erdős and Rényi considered a graph on n
vertices and N edges chosen uniformly at random between those n vertices. Gilbert considered a graph on
n vertices, and then let each of the n(n− 1)/2 edges be present independently with probability p. While
these models are interesting in their own right, they do not possess certain large-scale properties that were
found in many real-world networks. These properties were found by the analysis of networks in other fields,
such as physics, chemistry, biology and social psychology. We summarise some of these properties, which
arguably are the most important. In particular, one property is the ‘small-world phenomenon’, which is
very relevant to this thesis.

2.1.1. Small-world

The small-world phenomenon refers to the fact that in a large network, generally the distance between
two elements in that network is relatively small. Furthermore, if the network grows, then the average
distance between two elements grows several orders of magnitude slower than the growth of the network.
The term ‘small-world’ is generally attributed to the social psychologist Stanley Milgram [8]. Milgram
performed two experiments, now coined the ‘small-world experiments’. In each experiment his team dis-
tributed envelopes in one city in the USA, asking people to deliver the envelope to a target person far away
[4]. The catch: the person currently holding the envelope may give the envelope to someone they know.
It was found that the resulting chains were relatively small, taking a median of 5 intermediate persons to
reach the target person. Noting that many people likely did not choose the optimal route to reach the
target person, Milgram conjectured that this chain often is not much longer than 5 intermediaries. From
this, it would follow that it would take the average American only 6 links to reach (almost) every person
in America. This idea is now called ‘the six degrees of separation’, which is now a widely used term also
outside social psychology [16].

Many networks show this small-world phenomenon. For example, the network of film actors that have
appeared in the same work [14], the network of authors of (mathematical) papers that have worked to-
gether [12] (see also the ‘Erdős number’), the internet [20] and neural networks [10]. It has even been found
that language may be constructed as a (random) network [28] which shows a small-world phenomenon [51].

In the study of the graphs that are used to model these networks, there is a precise definition of a
graph being a small world. Suppose the network may be modelled as a graph G = (V, E) that has n := |V|
vertices. Then we say that G is a small world if the distance between two randomly chosen vertices grows
proportional to ln(n) if n increases, i.e., if n increases and u, v ∈ V are uniformly randomly chosen, then

dG(u, v) ∝ ln(n). (2.1)

Here dG(u, v) is the graph distance between u and v, i.e., the length of the shortest path from u to v.
There is also the related notion of a graph begin ‘ultrasmall’. We say that G is an ultrasmall-world if two
uniformly randomly chosen vertices u, v ∈ V satisfy

dG(u, v) ∝ ln ln(n) (2.2)

if n increases. We extend these definitions when the vertex set V is infinite and has an underlying metric
space. In this case, we replace the n in (2.1) and (2.2) with the distance between u and v.

2.1.2. Scale-free property

In many networks, it was found that the vertices could have very high degree [10]. In particular, the
empirical distribution of the degrees of these vertices are often thought to be modelled well by a power-law
distribution with some parameter τ − 1. That is, if Dv is the degree of a vertex randomly chosen vertex
v, then this is thought to satisfy

P(Dv ≥ x) ∝ x−(τ−1).

If the vertex degrees of a network follow a power-law, we call this network scale-free. The name scale-free
comes from the fact that the density function f(x) ∝ x−τ of a power-law is scale-free, i.e., for all a > 0
there exists a b = b(a) such f(ax) = bf(x).

Several real-world networks are found to be scale-free, and the literature has focused a lot on these
networks [19, 22, 23]. For example, if we see the internet as a set of domains (vertices) and the links to
other domains (edges), then it has been found that the degree distribution of the vertices approximately
follows a power-law with parameter τ − 1 ≈ 2.2 (in November 1997) [13]. Other examples of scale-free
networks include the network of scientific collaborations [17], the network of metabolical reactions [15], the
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network of protein coding genes [30] and the network of words in a language [28].

We do however give a disclaimer that the way many scale-free networks are modelled, may be too strict
for many real-world networks [39]. However, other slightly less restrictive definitions have been proposed
to remedy this, for example by introducing slowly varying prefactors to the density [41]. This debate about
whether or not real-world networks are truly scale-free is ongoing.

2.1.3. Clustering

In a network it is often found that if vertex 1 is connected to vertex 2 and vertex 2 is connected 3, then
it is more likely that vertex 1 is also connected to vertex 3 [23]. For example, in a social network, a friend
of your friend is also more likely to be your friend. Similarly, if none of your friends are friends with a
person, then it is less likely that this person is your friend. This behaviour is called clustering.

To analyse to which degree this clustering happens in a network, we analyse the clustering coefficient.
Roughly speaking, the clustering coefficient CL is given by

CL =
3 × number of triangles in the network

number of connected triples of vertices
.

Here a connected triple is a triple of vertices that is connected (see above, if 1 is connected to 2 and 2 to
3, then {1, 2, 3} is a connected triple).

There is also a second related but distinct concept: the study of clusters. A cluster is simply a connected
component in a graph. Examples of research on clusters is the size of the largest cluster or the second
largest cluster [50]. In models with infinite vertex sets, it may also be investigated whether there exists a
cluster of infinite size and if this cluster is unique.

2.2. Spatial random graphs

As already noted, the Erdős-Rényi model and Gilbert model do not satisfy all the properties given in
Subsections 2.1.1-2.1.3. In particular, while both models may satisfy small-world phenomena, their degree
distribution does not satisfy a power-law distribution (rather a binomial distribution with a possible Poisson
limit) and clustering coefficients that tend to 0 in most cases [9]. Therefore, the search for other models
that do satisfy these properties began. In one of these search directions, it was noted that many real-world
networks have an underlying spatial structure; for example, the worldwide social network is determined
heavily by worldwide topology. Because of this observation, spatial random graphs were introduced. In
the following subsections, we discuss some examples of spatial random graphs. This list is not exhaustive.
We show realisations of four of these models in Figure 1.

2.2.1. Random geometric graphs

One of the first spatial random graphs was introduced by Gilbert in 1961, which he called a random
plane network [3]. In the literature, this model is now commonly known as a random geometric graph or
the Gilbert disc model [24]. In this model, we let the vertices be generated by an infinite Poisson process
with density λ per unit area. After this, we connect each pair of vertices if the pair is separated by a
distance less than R, where R is some fixed number. A realisation of this model can be seen in Figure 1a.

We note, however that this model does not show small-world phenomena or a power-law degree. This
is easy to see:

• If u, v are such that |u− v| =: N , if there is a path from u to v it requires at least N/R edges to
connect u and v, since each edge can at most of length R.

• The degree of a vertex u is given exactly by the amount of vertices in the circle of radius R around
u. Since this amount of vertices is Poisson distributed, the vertex degree is also.

However, the random plane network does have a positive clustering coefficient [21].

2.2.2. Hyperbolic random graphs

In 2010, Krioukov et al. noted that the underlying geometry of many real-world complex networks may
be described well with hyperbolic geometry [29]. In their work, Krioukov et al. considered the d-dimensional
hyperbolic plane Hd. To construct the vertex set, they place n points uniformly at random on a hyperbolic
disc of radius R (where R may depend on n) and connect two vertices if their hyperbolic distance was less
than R. While seemingly very similar to the random geometric model of Subsection 2.2.1, the change to
hyperbolic geometry made a large difference. It was shown by Kiwi and Mitsche that if R ∝ lnn, the graph
distance between two vertices in the same connected component is at most poly-logarithmic, meaning that
the average distance is proportional to ln(n)∆ for some power ∆ if n grows [34]. It was also shown by
Gugelmann et al. that due to the hyperbolic geometry, the vertex degrees follow a power-law distribution
[31]. It was shown by Krioukov et al. that this model shows a high clustering coefficient [29].
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(a) An example of a realisation of a random
geometric graph. We connect two vertices if

their Euclidean distance is less than 1.

(b) An example of a realisation of the Poisson
Boolean model where the connection probabil-

ity given by (2.5). The weights generated by a

power-law with parameter τ = 3

(c) An example of a realisation of long-range

percolation where the connection probability

is given by (2.3) with α = 2 and β = 1.

(d) An example for a realisation of scale free

percolation where the connection probability is

given by (2.4) with α = 2, β = 1 and weights
generated by a power-law with parameter τ =

3.

Figure 1. Examples of a realisation of the random geometric graph, the Poisson Boolean
model, long-range percolation and scale-free percolation. On each of these realisations,
the vertex set is given by a Poisson Point Process with density parameter λ = 1 on
[−10, 10]2. Note in particular that the right-most two figures are essentially the same
as the left-most two figures but with a connection probability that depends on weights.
This generally yields more connections; this increase is often found in singular vertices
with very high weight.

2.2.3. Long-range percolation

Initially, only one-dimensional long-range percolation was studied to solve problems in physics, such as
understanding multi-spin interaction [6, 7]. However, Biskup extended this model to d dimensions in 2004
[25]. Biskup set the vertex set to be V = Zd and let two vertices u, v ∈ V be independently connected with
probability

pu,v = 1 − exp
[
− β|u− v|−αd]. (2.3)

Here β > 0 and s > 0 are parameters and |u − v| is the Euclidean distance between u and v. Biskup
showed that in this model the average graph distance is poly-logarithmic when α ∈ (1, 2). Furthermore, it
has been established that the degrees are not scale-free [32].

A realisation of long-range percolation is given in Figure 1c.

2.2.4. Scale-free percolation

The scale-free percolation model was introduced by Maria Deijfen, Remco van der Hofstad and Gerard
Hooghiemstra in 2013 as a model to study inhomogeneous long-range percolation [32]. We still consider
the vertex set V = Zd, but we also assign to each vertex v ∈ V a weight Wv according to a power-law.
Then, two vertices u, v ∈ V are independently connected with probability

pu,v = 1 − exp

[
− β

WuWv

|u− v|αd

]
. (2.4)
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It is shown by Deijfen et al. that this model shows ultrasmall-world behaviour depending on the parameters
and that the vertex degrees are scale-free [32].

We note that the connection probability of (2.4) is essentially the same as the connection probability of
long-range percolation (see (2.3) of Subsection 2.2.3), but with added weights. A realisation of scale-free
percolation is given in Figure 1d.

2.2.5. Poisson Boolean model

The Poisson Boolean model, also called a scale-free Gilbert graph, was introduced by Christian Hirsch
in 2017 [37]. To construct this graph, let V be a d-dimensional homogeneous Poisson Point Process and
independently assign to each vertex v ∈ V a random radius Rv according to a power-law distribution with
parameter τ − 1 > 0. Then, for each pair of vertices u, v ∈ V, connect them if |u − v| ≤ max {Ru, Rv}.
Equivalently, the connection probability between u and v is given by

pu,v = 1{|u−v|≤max{Ru,Rv}}, (2.5)

where 1 is the indicator function. It may be shown that the vertex degrees are again scale-free and show
small-world phenomena with certain choices of parameters [37].

We note that the connection probability is very similar to that of a random geometric graph from
Section 2.2.1, but with added weights. A realisation of this model is given in Figure 1b.

2.2.6. Geometric inhomogeneous random graphs

Introduced by Bringmann, Keusch and Lengler in 2018, geometric inhomogeneous random graphs (here-
after GIRG) is a model that shows the same qualitative behaviour as hyperbolic random graphs, but is
simpler to work with [38]. GIRGs are a geometric generalisation of Chung-Lu random graphs. Briefly,
a Chung-Lu random graph is a graph on n vertices (which we enumerate 1 to n), where each vertex i is
assigned a weight wi > 0. Then by setting W :=

∑n
i=1 wi the total weight, a pair of vertices i, j, i ̸= j is

independently connected with probability

pi,j = Θ

(
1 ∧ wiwj

W

)
.

A GIRG generalises this notion by introducing an underlying d dimensional vector space (for example
Td = Rd/Zd [38]). We still consider the vertex set [n] = {1, . . . , n} and the sequence of weights, but now
the connection probability also depends on the spatial distance between vertices. More precisely, if we let
xi and xj be the spatial positions of i and j respectively, then i and j are connected with probability

pi,j = Θ

(
1 ∧ wiwv/W

|xi − xj |d

)α

. (2.6)

Here, α > 0 is some parameter that may be chosen. Bringman, Keusch and Lengler have shown that in a
GIRG, if the weights (wi)i≤n are generated according to a power-law with parameter τ ∈ (2, 3), then the
model is an ultrasmall-world [38]. In the same work, they note that while a Chung-Lu random graph does
not show high clustering, a GIRG does. Furthermore, both models show power-law vertex degrees [38].
Lastly, we note that the connection probability given in (2.6) is very similar to that of scale-free percolation
(see (2.4) in Subsection 2.2.4), with an extra normalising term given by the total weight W . To see this,
note that 1 − exp(x−1) = Θ(x−1).

2.2.7. Age-based spatial preferential attachment

Introduced by Gracar et al. in 2019, the age-based spatial preferential attachment model (also called
the age-dependent random connection model) aims to model the way networks grow based on time and
the spatial position and age of the vertices [40]. It is based on the spatial preferential attachment model
introduced by Aiello et al. from 2008. In turn, the spatial preferential attachment model is based on the
preferential attachment principle: vertices with high degrees are more likely to receive new edges [27]. The
preferential attachment principle stems from Barabási and Albert [11].

The constructing principles of aged-based spatial preferential attachment model are to construct the
network dynamically by adding nodes successively, and when a new node is introduced, it prefers to
establish links to existing nods that are either old, powerful or in a similar spatial position to the new node
[40]. To be precise, we construct this model in the following way:

• Start with a d-dimensional torus Td
1 = (−1/2, 1/2]d endowed with metric d(x, y) = min

{
|x−y+u| :

u ∈ {−1, 0, 1}d
}

.
• Vertices arrive according to a standard Poisson process in time and we place them independently

uniformly on Td
1, which generates the time-dependent vertex set Ṽt.

• Each time a vertex (x, t) arrives at time t with spatial position x, we connect it to each existing

vertex (y, s) ∈ Ṽt independently with probability

p(x,t),(y,s) = ϕ

(
td(x, y)d

β(t/s)γ

)
.
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Here γ ∈ (0, 1), β ∈ (0,∞) and ϕ : [0,∞) → [0, 1] is a profile function that is non-increasing and

integrates to 1. This process generates the time-dependent edge set Ẽt.
• Then, the graph Gt results from rescaling all vertices from Ṽt by (y, s) 7→ (t1/dy, s/t) and copying

all edges from Ẽt onto the rescaled vertices.

It has been shown that the resulting graph Gt converges weakly locally to a graph G∞ as t → ∞ [40],
where G∞ = (V∞, E∞) is constructed according to

• Let V∞ be given by a homogeneous Poisson Point Process with density 1 in Rd.
• Assign to each v ∈ V∞ a weight Wv according to a power-law with parameter τ − 1, where τ > 2.
• Given the weights, connect each pair of vertices u, v ∈ V∞ independently with probability

pu,v = ϕ

(
max {Wu,Wv}min {Wu,Wv}τ−2

β|u− v|d

)
(2.7)

to construct E∞.

It has also been shown that the resulting graphs G∞ is scale-free and has a positive clustering coefficient
[33, 40]. Furthermore, it has also been shown that the resulting graph is an ultra-small world depending
on the parameters [42].

We may observe that the connection probability given in (2.7) is a modification of that of scale-free
percolation (see (2.4) of Subsection 2.2.4). In particular, note that in the scale-free percolation connection
probability, we may write WuWv = max {Wu,Wv}min {Wu,Wv}. Therefore, essentially the function
x 7→ 1 − exp[x] is replaced by ϕ and the exponent of the minimum is replaced by τ − 2.

2.3. Setup of thesis

In this thesis, we investigate the small-world and ultrasmall-world properties of kernel-based spatial
random graphs (hereafter abbreviated as KSRG(s)), which is a generalisation of many of the models de-
scribed in Subsections 2.2.1-2.2.7. The most general definition of a KSRG appeared in the 2020 paper by
Júlia Komjáthy and Bas Lodewijks [43] and was refined by Gracar et al. in 2022 [48]. The definition of a
KSRG we use, is based on the work of Joost Jorritsma, Júlia Komjáthy and Dieter Mitsche [50], which is a
reparametrisation of the definition given by Gracar et al. Another similar reparametrisation is the ‘spatial
inhomogeneous random graph’ defined by Remco van der Hofstad, Pim van der Hoorn and Neeladri Maitra
[49].

In brief, we investigate a graph G = (V, E) such that

• V = Zd,
• for each v ∈ V, we assign a random weight Wv according to a power-law distribution with parameter

τ − 1, and
• each edge uv is conditionally independently present with

P(u ↔ v|Wu,Wv) = Θ

(
1 ∧

(
max {Wu,Wv}σ1 min {Wu,Wv}σ2

|u− v|d

)α)
. (2.8)

We emphasise that the connection probability of this model generalises many of the models described in
Subsections 2.2.1-2.2.7. In particular, the connection probability of long-range percolation (σ1 = σ2 = 0),
scale-free percolation (σ1 = σ2 = 1/α), Poisson Boolean model (σ1 = 1, σ2 = 0, α = ∞) and G∞ of
age-based spatial preferential attachment (σ1 = 1, σ2 = τ − 2, α = 1) can be found using (2.8).

However, while the behaviour of the graph distance is known for these examples, it is not yet known
for the KSRG with general parameters. My first contribution is to generalise the proofs that show these
graph distances for a KSRG. This is non-trivial because of the different connection probability kernel
and the fact that the presence of the additional parameters σ1 and σ2 allow for new phase transitions.
Particularly, we show that under the assumption that σ1 = 1, σ2 = σ ∈ (0, 1), τ ∈ (2, 3) and α such that
τ − 1 < α < (τ − 1)/(τ − 2) and ασ ≤ τ − 1, then

lim
u,v∈V

|u−v|→∞

P
(
dG(u, v) ≤ (ln(|u− v|))∆+ε) = 1. (2.9)

Here ∆ = ln(2)/ ln((α + τ − 1)/(α(τ − 1))). We note that while this exponent ∆ is different from other
poly-logarithmic regimes (for example in scale free percolation the exponent is ln(2)/(ln(2/α))).
Furthermore, we show that if σ1 = 1, σ2 = σ > 0, α > 1 and τ ∈ (2, 2 + σ), then for every δ it holds that

lim
|u−v|→∞

P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
)

= 1. (2.10)

The regimes are visualised in Figure 2.
Furthermore, we develop a new methodology that is separate of the FKG inequality or FKG-like in-

equalities (see [5]). These inequalities are for example used in the work of M. Biskup [25] and N. Hao
and M. Heydenreich [47]. However, these inequalities are easily improperly applied, which may yield
significant problems. We briefly describe such a problem with an example from the latter paper by
Hao, which studies scale-free percolation. In this paper, the proof relies on the FKG-like inequality
P(π exists) ≥ P(π1 exists)P(π2 exists) for any path π and any subpaths π1, π2 of π such that π = π1π2.
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Figure 2. A figure showing the regimes in which different upper-bounds hold for the
graph distance between two vertices. The line τ = 2 + σ is explicitly shown. In this
image, σ = 1/2. If σ > 1, then regime (B) disappears. Region (A) is given by by α > 1
and τ ∈ (2, 2 +σ). In this region the distance between two vertices is doubly logarithmic
as in (2.10). Region (B) is given by τ > 2 + σ and α ∈ (τ − 1, (τ − 2)/(τ − 1). In
this region, the distance between two vertices is poly-logarithmic as in (2.9). Note that
the result in (2.9) also holds for τ ∈ (2, (2 + σ) ∧ 3), but since the doubly logarithmic
upper-bound is much better than the poly-logarithmic bound, we truncate region (B).
Region (C) is given by τ > 2+σ and α ∈ (1, (τ −1)∧2). While not proven in this thesis,
the techniques used in this thesis may be used to show that in this region the distance
is also poly-logarithmic with exponent ∆̃ = ln(2)/ ln(2/α).

However, this holds only for paths where the spatial position of the vertices is fixed. In the proof, these
paths are constructed randomly and throughout the construction, weights are revealed. These revealed
weights influence the probability of the construction, which may be in a negative way. To see this, consider
constructing a path in a vertex set Ṽ using a vertices with weight in some interval A. Then, the presence
of the path implies the amount of vertices of Ṽ that have weight in A is likely higher, which in turn implies
that the amount of vertices of Ṽ that do not have weight in A is likely smaller. For this reason, if we try
to construct a second path using vertices that do not have weight in A, the presence of the first path will
negatively affect the probability that this second construction succeeds. As such, the FKG-like inequality
may not hold, or in the very least not be as obviously applied as done in [47].

My second contribution is a way to remedy the problem described above. To do this, we propose the
notion of a net. Essentially, before we even start with constructing the paths, we reveal the weight of all
relevant vertices. We then show that with high probability there is a subset of those vertices — a net —
that behaves pseudo-randomly with regards to the expected amount of vertices with a given weight in any
given radius. In other words, for every vertex v in a net, it holds that the amount of vertices in the net
with any given weight that surround v is roughly the expected amount. Only when we have constructed
such a net will we commence with the construction of the paths.

In Section 3, we give a proper definition of a KSRG and state all assumptions we use. Then, in Section
4 we give preliminary results and bounds that are useful in later proofs. After this, in Sections 5 and 6 we
show that under certain choices of parameters, the graph distance is upper-bounded by a poly-logarithmic
resp. doubly logarithmic bound. Furthermore, in Subsection 5.2 we also give a proper definition of the
nets, as announced above. We finish with Section 7, where we discuss these results and give suggestions
for further research.
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3. Model definition

In this section, we define the general framework in which our results will be presented. First, we state the
general definition of a kernel-based spatial random graph (KSRG) and the assumptions we place upon this
graph. After this, we give a way to reparametrise the model and the assumptions we place on it.

3.1. Definition KSRG

We give the definition of a KSRG. The vertices of this graph are (possibly randomly) placed in a metric
space and each given a random weight. The metric space is generally Rd with the standard Euclidean
norm or some subset thereof, but other metric spaces such as a torus or hyperbolic space have also been
considered [38, 29]. Each edge between the vertices is then randomly placed based on some function of
the distance between the vertices (‘spatial’) and a function of the weights of the vertices (‘kernel-based’).
This model is based on [48] and [50].

Definition 3.1 (KSRG) Let (M,dM ) be a metric space, PW a probability distribution of a non-negative
random variable and p : M × M × R+ × R+ → [0, 1] a function that is symmetric when simultaneously
switching its first two and last two components, i.e., for all x1, x2 ∈ M,y1, y2 ∈ R+

p(x1, x2, y1, y2) = p(x2, x1, y2, y1). (3.1)

A kernel-based spatial random graph (hereafter abbreviated as KSRG) is an undirected simple random
graph G = (V, E) generated by the following procedure:

• Let the vertex set V ⊆ M be some (possibly random) countable set.
• Assign to each v ∈ V a random weight Wv according to the distribution PW , independently of all

other vertices from V.
• Let

(V
2

)
be all unordered subsets of V containing exactly two distinct vertices. Then the edge set

E ⊆
(V
2

)
is created by inserting elements from

(V
2

)
into E with a probability given by p. More

specifically, let u, v ∈ V be any pair of vertices. We write u ↔ v if uv = {u, v} ∈ E. Given the
weights Wu = wu,Wv = wv of u and v respectively, the edge between the vertices is present with a
probability given by

P (u ↔ v|Wu = wu,Wv = wv) = p(u, v, wu, wv). (3.2)

Furthermore, for any any subset V ⊆ V all edges between the vertices of V are present independently
when conditioned on (Wx)x∈V .

We call the probability distribution PW the weight distribution and p the connectivity function.

We remark that the reason we require (3.1) is because the edges are undirected. In particular, this
means that for all u, v ∈ V and wu, wv ∈ R+ we must have that

p(u, v, wu, wv) = P(u ↔ v|Wu = wu,Wv = wv) = P(v ↔ u|Wv = wv,Wu = wu) = p(v, u, wv, wu). (3.3)

If p were not simultaneously symmetric in its first two and second two components, we would get that an
undirected edge could possibly be present with two different probabilities. This obviously cannot happen.

Definition 3.1 is very broad, so to state any meaningful results we need to make assumptions. In
particular, we set the metric space we work on to be Zd for some d ∈ N, restrict h and specify the weight
distribution to be a power-law (see also Section 2.2 for justification).

Assumption 3.2 Consider a KSRG from Definition 3.1. We fix d ∈ N and set the metric space to be Zd

equipped with the standard Euclidean norm | · |. We refer to the constant d as the dimension. We assume
that the weights follow a power-law distribution with parameter τ − 1 > 0, i.e.,

P(W ≥ w) = w−(τ−1), w ≥ 1. (3.4)

We refer to the parameter τ as the power-law exponent and τ − 1 as the tail exponent. Next, let
α, σ1, σ2 ≥ 0 be real-valued constants. We define κ : [1,∞) × [1,∞) → [1,∞),

κ(wu, wv) := max(wu, wv)σ1 min(wu, wv)σ2 (3.5)

and then use κ to define ρ : R+ × [1,∞) × [1,∞) → [0, 1],

ρ(|u− v|, wu, wv) = min

[
1,

κ(wu, wv)

|u− v|d

]α
. (3.6)

We call κ the weight kernel, ρ the regular connectivity function and α the long-range parameter.
Let c, C be real-valued constants such that 0 < c ≤ C ≤ 1. We assume that the connectivity function p
from (3.2) is restricted by

cρ(|u− v|, wu, wv) ≤ p(u, v, wu, wv) ≤ Cρ(|u− v|, wu, wv). (3.7)

For all u, v ∈ V and wu, wv ≥ 1.
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We remark that ρ is monotonically non-increasing in its first component and monotonically non-
decreasing in its second and third component. Furthermore, by switching the roles of u and v,

ρ(|u− v|, wu, wv) = ρ(|v − u|, wv, wu).

This means that the lower- and upper-bound given in (3.7) does not change when switching the roles of u
and v.

3.2. Reparametrising

In this subsection, we will show that the model defined by Definition 3.1 and Assumption 3.2 can be
reparametrised to a form that has one fewer degree of freedom. This simplifies the proofs given in Sections
5 and 6.

Suppose that W has a power-law distribution with parameter τ−1 as given in equation (3.4). Let η > 0

be some positive number. Then, by setting W̃ = W η, we obtain that W̃ also has a power-law distribution
but with parameter (τ − 1)/η:

P(W̃ ≥ w) = P(W ≥ w1/η) = w−(τ−1)/η, w ≥ 1. (3.8)

Now consider the regular connectivity function ρ as defined in (3.6). Provided that σ1 > 0, we can rewrite
ρ to

ρ(|u− v|,Wu,Wv) = min

[
1,

max(Wσ1
u ,Wσ1

v )1 min(Wσ1
u ,Wσ1

v )σ2/σ1

|u− v|d

]α
. (3.9)

By the observation made in (3.8), we observe that rather than parametrising the kernel with the parameters
(σ1, σ2, τ − 1), we can instead parametrise it with the parameters (σ̃1, σ̃2, τ̃ − 1) := (1, σ2/σ1, (τ − 1)/σ1).
Similarly, if σ1 = 0 but σ2 > 0, we can reparametrise the kernel with parameters (σ1, σ2, τ − 1) to having
parameters (σ̃1, σ̃2, τ̃ − 1) = (0, 1, (τ − 1)/σ2). We call this last parametrisation the min-kernel, since the
regular connectivitiy function of two vertices now only depends on the minimum of their weights. Lastly,
if both σ1 = σ2 = 0, then notice that the kernel is not dependent on the weights, and in fact similar to the
long-range percolation model. We summarise our findings in the following Claim 3.3.

Claim 3.3 Consider a KSRG G = (V, E) from Definition 3.1 with parameters (σ1, σ2, τ, d, α) satisfying
Assumption 3.2. Then the following holds:

(1) If σ1 > 0, then G has the same distribution as G1, where G1 is a KSRG satisfying Assumption 3.2
with parameters (σ̃1, σ̃2, τ̃ − 1, d, α) = (1, σ2/σ1, (τ − 1)/σ1, d, α).

(2) If σ1 = 0 and σ2 > 0, then G has the same distribution as G2, where G2 is a KSRG satisfying
Assumption 3.2 with parameters (σ̃1, σ̃2, τ̃ − 1, d, α) = (0, 1, (τ − 1)/σ2, d, α).

(3) If σ1 = σ2 = 0, then G has the same distribution as G3, where G3 is a KSRG satisfying Assumption
3.2 with parameters (σ̃1, σ̃2, τ̃ − 1, d, α) = (0, 0, τ ′, d, α) for any τ ′ > 0 fixed.

Considering the above, we may therefore without loss of generality assume that the parameters σ1 and σ2

defined in Assumption 3.2 either satisfy

• (σ1, σ2) = (1, σ) for some σ ≥ 0,
• (σ1, σ2) = (0, 1), or
• (σ1, σ2) = (0, 0).

In this thesis, we only consider the first case. We notice that in this first case, setting σ = 1 yields scale-free
percolation from Subsection 2.2.4 and setting σ = τ − 2 yields the limit of spatial preferential attachment
from Subsection 2.2.7. Furthermore, we notice that the case (σ1, σ2) = (0, 0) yields long-range percolation
from Subsection 2.2.3.
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4. Preliminary results

In this section we present useful bounds for the connection probability between two vertices that we
use often in later sections. Furthermore, we compute bounds for the average degree of a single vertex.

4.1. Useful bounds and facts

Throughout this thesis, we often encounter connection probabilities where we do not know the weights
of the vertices exactly, but we do know that they are bigger than a certain value. Similar to (3.7), we want
to have a lower bound for these probabilities in terms of ρ. However, we cannot use the distribution of
the weights as given in Assumption 3.2. The reason for this is that in those situations where we want to
apply the bound, we also have more information that skews the distribution of the weights (such as when
we know that that vertex already has an edge). The following lemma gives us this bound.

Lemma 4.1 Let ρ be the regular connectivity function defined in (3.6). Consider a KSRG given by
Definition 3.1 with arbitrary non-negative weight distribution function PW and a connectivity function that
satisfies (3.7). Let s, t ≥ 0 and u, v ∈ V and let F be an event such that P(Wu ≥ s,Wv ≥ t|F) > 0 and for
all x ≥ s, y ≥ t it holds that

P(u ↔ v|Wu = x,Wy = y,F) = P(u ↔ v|Wu = x,Wy = y). (4.1)

Then the following bound holds:

P (u ↔ v|Wu ≥ s,Wv ≥ t,F) ≥ cρ(|u− v|, s, t). (4.2)

Proof. We firstly bound

P (u ↔ v |Wu ≥ s,Wv ≥ t,F ) ≥ inf
x≥s
y≥t

P (u ↔ v |Wu = x,Wv = y,F ) . (4.3)

Now using (4.1) and (3.7)

P (u ↔ v |Wu ≥ s,Wv ≥ t,F ) ≥ inf
x≥s
y≥t

cρ(|u− v|, x, y) = cρ(|u− v|, s, t), (4.4)

where we have used that ρ is monotonically non-decreasing in both its second and third component. ■

We remark that the statement of Lemma 4.1 can easily be adapted for more general intervals than
simply [s,∞) and [t,∞). Next, we elaborate the situation in which we apply Lemma 4.1. As explained, we
often have more information about the distribution of the weight of u and v (as given in the lemma), which
skews the distribution. The event F in Lemma 4.1 contains this information. However, we do require that
F satisfies (4.1). Loosely, with this equation we demand that F may only affect the presence of the edge uv
by affecting the distribution of Wu and Wv, but not directly. We give an example of such an F . Suppose
we know that one of the vertices is connected to other vertices, say v is connected to some vertex a ̸= u, v.
Then by Bayes’ formula

P(Wv ≥ s | v ↔ a) =
P(v ↔ a | Wv ≥ s)

P(v ↔ a)
P(Wv ≥ s) (4.5)

Since in a KSRG we generally have that the weight Wv of v affects the probability that v is connected to a,
we generally have that P(v ↔ a | Wv ≥ s) ̸= P(v ↔ a). Therefore by (4.5) also P(Wv ≥ s|v ↔ a) ̸= P(Wv ≥
s). In fact, under Assumption 3.2 we expect to find that if s is large, P(v ↔ a | Wv ≥ s) ≫ P(v ↔ a).
Intuitively this is because by (3.7), if one of the weights of the two vertices increases, the connectivity
function also increases. Therefore, if we have knowledge that suggests that one of the weights is high, we
expect a higher connection probability than if we had no information about any of the weights. By (4.5),
if we conversely know that an edge exists, we expect the weights of the vertices of that edge to be higher.
Because of this, we therefore also expect that

P(u ↔ v | v ↔ a) > P(u ↔ v). (4.6)

By similar reasoning, we may also conclude if we know that v is not connected to a, then the distribution
of Wv skews to the lower values and hence

P(u ↔ v | v ̸↔ a) < P(u ↔ v). (4.7)

We implicitly use the same reasoning as in the above example when taking certain steps in upcoming
proofs. These steps may be identified by the application of Lemma 4.1. We therefore urge the reader to
keep this example in mind.

Next, we expand the conditional independence that is given in Definition 3.1. Suppose we have three
vertices x, y, z. Given Wz = wz, the event {x ↔ z} solely depends on Wx and the event {y ↔ z} solely
depends on Wy. Since Wx and Wy are independent, we therefore expect that given Wz = wz, also
{x ↔ z}⊥{y ↔ z}. We formalise this idea in Claim 4.2.



16 Preliminary results

Claim 4.2 Consider a KSRG given by Definition 3.1. Let x, y, v ∈ V be three distinct vertices. Then,

P(x ↔ v, y ↔ v | Wv = wv) = P(x ↔ v | Wv = wv)P(y ↔ v | Wv = wv).

Proof. First, by the law of total probability we may write

P(x ↔ v, y ↔ v|Wv = wv) =

∫
R

∫
R
P(x ↔ v, y ↔ v|Wx = wx,Wy = wy,Wv = wv)dPW (wy)dPW (wx)

=:

∫
R

∫
R
q(wx, wy, wx)dPW (wy)dPW (wx). (4.8)

Next, notice that we may apply conditional independence on the integrant. Furthermore, we observe that
the connection probability (3.2) only depends on the weights of the two vertices that the edge connects.
As such, we may write

q(wx, wy, wz) = P(x ↔ v|Wx = wx,Wv = wv)P(y ↔ v|Wy = wy,Wv = wv).

Substituting this into (4.8) and integrating gives the first result. ■

The proof of Lemma 4.2 suggests that this result can hold for more than just three vertices. Furthermore,
the reader may verify that replacing one or both ↔’s by ̸↔’s, the statement is still true. We summarise
these observations in the following Claim 4.3, which we give without proof.

Claim 4.3 Consider a KSRG given by Definition 3.1. Let v ∈ V and A,B ⊆ V\ {v} be finite sets such
that A ∩B = ∅. Then

P (∀a ∈ A, b ∈ B : a ↔ v, b ̸↔ v | Wv = wv) =

[ ∏
a∈A

P(a ↔ v | Wv = wv)

][ ∏
b∈B

P(b ̸↔ v| Wv = wv)

]
.

Proof. The proof is analogous to that of Claim 4.2. ■

We note that we cannot replace Wv = wv by Wv ≥ wv in the statement of Lemma 4.3. The reason
for this is that Wv is correlated with the events x ↔ v and y ↔ v, as may may observe from the example
earlier in this subsection.

4.2. Expected degrees of a single vertex

In this next section, we consider the expected degree of a single vertex. By observing that the connec-
tion probability is bounded by ρ as in (3.7) and the fact that ρ is increasing in the weight of the vertex,
we would expect that the degree of a vertex is increasing in its weight. We show that if α > 1 and τ > 2,
this expectation is correct. However, when α ≤ 1 or τ ≤ 2, we find that the expected degree is infinite.
This is summarised in Claim 4.4 below.

We note that in the second item of Claim 4.4, we find that given the weight Wv = wv of a vertex v, the

expected degree of v is Θ(wσ1
v + w

σ1+σ2−(τ−1)
v ). By adapting the proof of Theorem 2.2 from [32], we may

show that Claim 4.4 implies that the degree distribution (without conditioning on the weight) follows a
power-law too. We do not provide a proof for this observation in this thesis.

Claim 4.4 Consider a KSRG from Definition 3.1 satisfying Assumption 3.2 with parameters σ1, σ2, τ−1, α
and d. For v ∈ V = Zd, call Dv := |{uv ∈ E|u ∈ V}| the degree of v. Then the following hold:

(1) If α ≤ 1 or τ ≤ 1 + σ1, then E[Dv] = ∞.
(2) If α > 1 and τ > 1 + σ1, then

E[Dv | Wv = wv] = Θ
(
wσ1

v + wσ1+σ2−(τ−1)
v

)
. (4.9)

Proof. We split this proof into two cases, one part where α ≤ 1 and one part where α > 1.
(Case 1: α ∈ (0, 1]) We show that in the case where α ≤ 1, every vertex almost surely has infinite degree.
To do this, we apply the Borel-Cantelli lemma1. However, we cannot directly apply the Borel-Cantelli
lemma to

P(Dv = ∞) = P (u ↔ v for infinitely many u ̸= v)

since the events of the form {u ↔ v}, u ∈ Zd\ {v} are not independent2. However, conditioned on the
weight of v, the events are independent (see Claim 4.3). We therefore first apply the Borel-Cantelli lemma

1This result can be found in many probability theory textbooks, such as ‘Probability: A Graduate Course’ by Allan
Gut.

2Since Zd is countable, we can enumerate all elements in Zd\ {v}, i.e., Zd\ {v} = (un)n∈N. Then

{u ↔ v for infinitely many u ̸= v} = {un ↔ v for infinitely many n ∈ N}
= lim sup

n→∞
{un ↔ v} .

Usually, the Borel-Cantelli lemma is formulated for the limit superior of a sequence of sets. The above shows that the
formulation we use here is equivalent.
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on

P
(
Dv = ∞ | Wv = wv

)
= P (u ↔ v for infinitely many u ̸= v | Wv = wv) , (4.10)

where wv ≥ 1 is some fixed number. By Claim 4.3, the events ({u ↔ v})u∈Zd\{v} are independent under

P(·|Wv = wv). As such, by Borel-Cantelli the probability in (4.10) is 1 if and only if∑
u∈Zd\{v}

P(u ↔ v|Wv = wv) = ∞. (4.11)

To show (4.11), we recall the proof of Lemma 4.1 (with F the entire sample space) and the fact that ρ is
increasing in its second and third component to conclude

P (u ↔ v|Wv = wv) ≥ inf
x≥1

P (u ↔ v|Wu = x,Wv = wv) ≥ cρ(|u− v|, 1, wv) ≥ cρ(|u− v|, 1, 1). (4.12)

By summing over u ∈ Zd/ {v} and noting that ρ(|u− v|, 1, 1) = |u− v|−dα we obtain∑
u∈Zd\{v}

P(u ↔ v|Wv = 1) ≥ c
∑

u∈Zd\{v}

1

|u− v|dα = ∞,

since
∑

u∈Zd\{v} |u − v|−p diverges if p ≤ d. We conclude that (4.11) holds and therefore that P(Dv =

∞|Wv = wv) = 1 for all wv ≥ 1 fixed. We therefore conclude that also

P(Dv = ∞) =

∫ ∞

1

P(Dv = ∞|Wv = wv)dPW (wv) = 1.

Since v was arbitrarily chosen, we infer that all vertices have probability 1 to be connected to infinitely
many other vertices. Lastly, we note that P(Dv = ∞) = 1 directly implies that E[Dv] = ∞.

(Case 2: α > 1) We find two regimes: one where all vertices again have infinite degree and one where the
vertices have finite expected degree.

Let v ∈ V = Zd be arbitrary and let wv ≥ 1. Below, we then apply (first line) the Monotone Convergence
Theorem3, (second line) the law of total probability, Definition 3.1 and (third line) the Fubini-Tonelli
theorem

E[Dv|Wv = wv] =
∑
u∈V
u̸=v

P(u ↔ v|Wv = wv)

=
∑
u∈V
u̸=v

∫ ∞

1

p(u, v, w,wv)(τ − 1)w−τdw

=

∫ ∞

1

∑
u∈V
u̸=v

p(u, v, w,wv)(τ − 1)w−τdw. (4.13)

We want to bound the last quantity. To this end, note that by (3.7) we may bound p by cρ and Cρ. Hence,
we first bound

∑
u∈V\{v} ρ(|u − v|, w, wv). Recall Assumption 3.2 and κ(x, y) := max(x, y)σ1 min(x, y)σ2

from (3.5). We rewrite∑
u∈V
u̸=v

ρ(|u− v|, w, wv) =
∑
u∈V

1≤|u−v|d≤κ(w,wv)

1 +
∑
u∈V

|u−v|d>κ(w,wv)

κ(w,wv)α

|u− v|dα . (4.14)

Then, we use that there are constants νd, νd > 0 such that

νdκ(w0, w) ≤
∣∣∣{u ∈ Zd : 1 ≤ |u− v|d ≤ κ(w0, w)

}∣∣∣ ≤ νdκ(w0, w), (4.15)

which can be seen by relating the amount of points between the two radii with the volume of the hollow
sphere spanned by the two radii. Next, we use that we can approximate a sum by an integral, which gives
us that there are constants cd, cd > 0 that do not depend on w or wv such that

cd

∫
{x∈Rd:|x|d>κ(w,wv)}

1

|x|dα dx ≤
∑
u∈V

|u−v|d≤κ(w,wv)

1

|u− v|dα ≤ cd

∫
{x∈Rd:|x|d>κ(w,wv)}

1

|x|dα dx (4.16)

to state that
cd

κ(w,wv)α−1
≤

∑
|u−v|d>κ(w,wv)

1

|u− v|dα ≤ cd
κ(w,wv)α−1

. (4.17)

Here we have used that α > 1 so the integral from (4.16) converges and can be computed.
We now combine the bounds from equation (3.7) with the above equations (4.13), (4.14), (4.15) and (4.17)

to conclude that there are constants C1, C2, C1, C2 such that

E[Dv|Wv = wv] ≤ C(νd + cd)(τ − 1)

∫ ∞

1

κ(w,wv)w−τdw

{
≤ C1w

σ1
v + C2w

σ1+σ2−τ+1
v if τ − 1 > σ1

= ∞ if τ − 1 ≤ σ1

,

3This result can be found in measure-theoretic probability or real analysis textbooks, such as ‘Real Analysis’ by N. L.
Carothers.
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and in in exactly the same way

E[Dv|Wv = wv] ≥ c(νd + cd)(τ − 1)

∫ ∞

1

κ(w,wv)w−τdw

{
≥ C1w

σ1
v + C2w

σ1+σ2−τ+1
v if τ − 1 > σ1

= ∞ if τ − 1 ≤ σ1

.

Here we have used that∫ ∞

1

κ(wv, w)w−τdw =

∫ wv

1

wσ1
v wσ2−τdw +

∫ ∞

wv

wσ1−τwσ2
v dw

=

(
1

σ2 − τ + 1
− 1

σ1 − τ + 1

)
wσ1+σ2−τ+1

v +
1

τ − 1 − σ2
wσ1

v +

{
0 if σ1 < τ − 1

∞ if σ1 ≥ τ − 1
.

One may verify that the constant before the dominant term (i.e., wσ1
v if σ1 > σ1 + σ2 − (τ − 1) and

w
σ1+σ2−(τ−1)
v otherwise) is always positive. We conclude that (4.9) holds, which is what remained to

show. ■
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5. Poly-logarithmic upper-bound for distances

In this section, we show that with the right parameters, a KSRG satisfying Assumption 3.2 with high
probability the graph distance between two vertices is poly-logarithmic in their spatial distance. More
specifically, we show that if u, v ∈ V = Zd, then there exists a ∆ such that for every ε > 0, it holds that
dG(u, v) ≤ (ln |u − v|)∆+ε with high probability as |u − v| → ∞. In particular, we show Theorem 5.1.
When the parameters of the KSRG are such that the graph-distances are poly-logarithmic in the spatial
distance, we refer to these parameters as being a poly-logarithmic regime (or ‘polylog regime’ for short).

Theorem 5.1 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2. Assume that
V = Zd and that the KSRG has parameters d ∈ N, σ1 = 1, σ2 = σ ∈ (0, 1), τ ∈ (2, 3) and α such that
τ − 1 < α < (τ − 1)/(τ − 2) and ασ ≤ τ − 1. Furthermore, assume that all nearest-neighbour edges are
present in E. Let ε > 0 and set

∆ =
ln 2

ln
(
α+τ−1
α(τ−1)

) . (5.1)

Then it holds that

lim
u,v∈V

|u−v|→∞

P
(
dG(u, v) ≤ (ln(|u− v|))∆+ε) = 1. (5.2)

To prove this theorem, we use the following Proposition 5.2.

Proposition 5.2 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2. Assume
that V = Zd and that the KSRG has parameters d ∈ N, σ1 = 1, σ2 = σ ∈ (0, 1), τ ∈ (2, 3) and α such that
τ − 1 < α < (τ − 1)/(τ − 2) and ασ ≤ τ − 1. Furthermore, assume that all nearest-neighbour edges are
present in E. Let ε > 0 and set

∆ =
ln 2

ln
(
α+τ−1
α(τ−1)

) . (5.3)

Let u, v ∈ V. Then, there exists an N5.2 and a function err5.2(|u− v|) = err5.2(|u− v|, ε, α, τ, d) that goes
to 0 if |u− v| → ∞, such that if |u− v| ≥ N5.2, then

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε) ≥ 1 − err5.2(|u− v|, ε, α, τ, d). (5.4)

We note that given that Proposition 5.2 holds, Theorem 5.1 follows directly. Therefore, the remainder of
this section is devoted to proving Proposition 5.2. To start, we firstly give the full setting of the proof
to be used as reference. This contains the description of the KSRG and three additional parameters used
throughout the proof.

Setting 5.3 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2. Assume it
has parameters d ∈ N, σ1 = 1, σ2 = σ ∈ [0, 1), τ ∈ (2, 3) and α such that α > τ − 1, ασ ≤ τ − 1 and
α < (τ − 1)/(τ − 2). Furthermore, fix γ, δ and η satisfying

γ ∈
(

α(τ − 1)

α + τ − 1
, 1

)
=: Iγ , δ ∈

(
0,

1 − γ

1 + 2γ

)
=: Iδ and η ∈

(
0,

2

3

)
. (5.5)

Before we continue with the proof of Proposition 5.2, we discuss Setting 5.3. Firstly, we reason that we may
indeed select α as described. To this end, notice that since τ ∈ (2, 3), we also find that (τ−1)/(τ−2) > τ−1.
If σ = 0, then 0 = ασ ≤ τ − 1 is always satisfied when τ ∈ (2, 3). Hence, the restrictions on α may be
rewritten as τ − 1 < α < (τ − 1)/(τ − 2), which is clearly possible. Furthermore, if σ ̸= 0, then we may
rewrite

ασ ≤ τ − 1 ⇔ α ≤ τ − 1

σ
. (5.6)

We find that the restrictions on α can be rewritten as

τ − 1 < α <
τ − 1

σ
∧ τ − 1

τ − 2
. (5.7)

Since τ − 2 < 1 and σ < 1, selecting an α that satisfies (5.7) is possible. From (5.7) we also notice that
σ = 1 is not possible.
We continue with arguing that Iγ and Iδ are non-empty, which allows us to indeed fix γ and δ as described.
To this end, notice that by rewriting

α <
τ − 1

τ − 2
⇔ α(τ − 1) < α + τ − 1. (5.8)

From the right-most inequality of (5.8) it immediately follows that Iγ is non-empty. Lastly, because γ is
clearly positive and γ < 1, it also immediately follows that the upper end-point of Iδ is strictly positive.
We therefore conclude that Iδ is indeed non-empty.
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In the proof, we eventually choose γ as small as possible. For this reason, we examine the lower end-point
of Iγ . To this end, set γ−(α, τ) = α(τ − 1)/(α + τ − 1). We examine γ− on the domain

D = {τ ∈ (2, 3), α > τ − 1, α < (τ − 1)/(τ − 2), ασ ≤ τ − 1} . (5.9)

We observe γ− is continuously differentiable on D and therefore achieves its minimum either in a stationary
point or on the boundary of D . Next, we may observe that γ− is strictly increasing in both of its variables,
so it does not have any stationary points in D . Furthermore, the fact that γ− is strictly increasing in both
variables suggests that

inf
α,τ∈D

γ−(α, τ) = lim
α,τ∈D
α↓1,τ↓2

α(τ − 1)

α + τ − 1
=

1

2
. (5.10)

From this, we may also conclude that

γ >
1

2
, and hence δ <

1

4
. (5.11)

5.1. Idea of the proof of Proposition 5.2

We continue with a sketch of the proof of Proposition 5.2 to motivate the steps we take in the actual
proof. Visually, the sketch of the proof is given in Figure 3. Throughout this sketch, C1, C2, · · · > 0 denote
strictly positive constants and let Θ(f(N)) be as defined in Section 1. We want to connect two vertices
u, v ∈ V that are distance N := |u− v| apart. Before we start, we call u = z0 and v = z1 to give structure
to the iteration scheme that follows (this may be viewed as the ‘zeroth step’). In the first step, we then
elongate the labels of z0 = z00 and z1 = z11. Then we consider a box B1(z00) around z00 and a box B1(z11)

around z11 with sidelengths of size Nγ1

. Note that this for this reason we need γ < 1, since we want the
boxes to shrink rather than grow. We then search for a vertex z01 in the box around z00 and a vertex z10 in
the box around z11 such that z01 ↔ z10, where z01 has weight Θ(1) and z10 has weight Θ

(
Ndγ(1−δ)/(τ−1)

)
.

We refer to the first vertex z01 as a ‘constant-weight’ vertex and denote all constant weight vertices with a
green circle . The second vertex z10 is a ‘high-weight’ vertex, which we denote with a green square ■. We
show that with high probability we may choose z01 and z10 as described above. To this end, notice that
there are no vertices that satisfy the description of z01 and z10 exactly when all constant weight vertices
in B1(z00) are not connected to any high-weight vertex of B1(z11). We bound the probability of the last
event and show that it goes to 0 if N → ∞. To this end, notice that there are roughly Ndγ vertices in
both B1(z00) and B1(z11). By the distribution of the weights from (3.4), we may obtain that

P(W = Θ(1)) = Θ(1) and (5.12)

P
(
W = Θ

(
Ndγ(1−δ)/(τ−1))) = Θ

(
N−dγ(1−δ)). (5.13)

We conclude that there are roughly Θ
(
1
)
· Ndγ = Θ

(
Ndγ

)
constant weight vertices in the box around

z00 and roughly Θ
(
Ndγ(1−δ)

)
·Ndγ = Θ

(
Ndγδ

)
high-weight vertices in the box around z11. Furthermore,

notice that if x ∈ B1(z00) and y ∈ B1(z11), then |x−y| = Θ(N). Furthermore, if x is such that Wx = Θ(1)

and y = Θ
(
Ndγ(1−δ)/(τ−1)

)
, then by the assumptions of the connection probability given in (3.7), we have

P(x ↔ y | Wx,Wy) ≥ cρ(|x− y|,Wx,Wy) ≥ c

(
1 ∧

Θ
(
Ndγ 1−δ

τ−1
)
Θ(1)σ

Θ(N)d

)α

= Θ
(
N

0∧dγα
(

1−δ
τ−1

− 1
γ

))
, (5.14)

where ρ is from (3.6). Next, we examine the exponent of the last quantity of (5.14). Since γ < 1, τ − 1 ∈
(1, 2) by Setting 5.3 and δ ∈ (0, 1/4) by (5.11), we find that (1− δ)/(τ − 1)− 1/γ < 0. Hence from we find

that P(x ↔ y) ≥ Θ
(
Ndγα((1−δ)/(τ−1)−1/γ)

)
. Since there are Θ

(
Ndγ

)
constant-weight vertices in B1(z00)

and roughly Θ
(
Ndγδ

)
high-weight vertices in B1(z11), the we find that (if we ignore dependence)

P(x ̸↔ y for all constant weight vertices x ∈ B1(z00) and high-weight vertices y ∈ B1(z11))

≈
Θ(Ndγ)∏

i=1

Θ(Ndγδ)∏
j=1

(1 − P(x ↔ y)) ≤
(

1 − Θ
(
N

dγα
(

1−δ
τ−1

− 1
γ

)))Θ(Ndγ(1+δ))

≤ exp
[
− Θ

(
N

dγ
(
1+δ+α 1−δ

τ−1
−α

γ

))]
, (5.15)

where we have used that 1 − x ≤ e−x. To ensure that z01 and z10 exist, we want that (5.15) is small, in
particular if N is large. Therefore, we examine the exponent of N in the right-most quantity of (5.15).
Particularly, we want to show that

R := 1 + δ + α
1 − δ

τ − 1
− α

γ
> 0. (5.16)

To this end, we rewrite to see that (5.16) holds if and only if

γ >
α

(1 + δ) + α 1−δ
τ−1

=
α(τ − 1)

α + τ − 1 + δ(τ − 1 − α)
>

α(τ − 1)

α + τ − 1
. (5.17)

Here we have used that α > τ − 1, so that τ − 1 − α < 0. By definition of γ from Setting 5.3, (5.17) is
true, which makes (5.16) true, which implies that the right-most quantity of (5.15) goes to 0 if N → ∞.
We conclude that with high probability, we may indeed find z01 and z10 as described. The edge between
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Figure 3. A figure showing the rough idea behind the proof of Proposition 5.2 in d = 2.
This image is not to scale. Red arrows denote distances, green icons (i.e., ⋆,■ and )
denote vertices, blue curved lines denote edges and black-bordered squares denote box-
shaped sets of vertices. Due to legibility, we omit labelling in the last step shown.

these two vertices is given in blue in Figure 3.

In step 2, we enhance the labelling: each label that ended in a 0 now ends in 00 and each vertex that
ended in a 1 now ends in 11 (e.g. z0 = z00 = z000 and z01 = z011) until their label is 3 characters long. Then

around each vertex we constructed in step 1, we consider a box of size Nγ2

which we denote by B2. In
the same way as above, we now find an edge z001z010 between the box B2(z000) centred around z00 = z000
and the box B2(z011) centred around z01 = z011 such that z001 has constant weight (i.e., Θ(1)) and z010

has weight Θ
(
Ndγ2(1−δ)/(τ−1)

)
. We again refer to the latter vertex as a ‘high-weight vertex’. Similarly,
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we search for an edge z101z110 such that z101 ∈ B2(z100) has constant weight and z110 ∈ B2(z111) has high
weight. We again analyse the probability that these edges are actually present. For each of the two edges
separately, this is similar to the analysis done in step 1; however now the distance between the two vertices

is Θ
(
Nγ
)

and the high-weight vertex is Θ
(
Ndγ2(1−δ)/(τ−1)

)
. Again by approximate computations, when

ignoring dependence of the weights on step 1 and by setting R as in (5.16), we find that

P(z001, z010 do not exist),P(z101, z110 do not exist) ≤ exp
[
− Θ

(
Ndγ2R)]. (5.18)

By applying the union bound the probability that both z001z010 and z101z110 are present may be bounded
by

P(z001z010 and z101z110 are present) ≥ 1 − 2 exp
[
− Θ

(
Ndγ2R)

]
. (5.19)

In particular, notice that there is an extra factor 21 in front of the exponential, and the exponent of N is
multiplied with an extra factor γ.

We iterate this procedure. In the ith step, we elongate the labels of the vertices from the previous step

by repeating the last digit of its label and put a box with sidelengths Nγi

around it. Then, for every
t ∈ {0, 1}i−1, we search for an edge zt01zt10 between the boxes of zt00 and zt11 such that zt01 has constant

weight and zt10 has weight between Θ
(
Ndγi(1−δ)/(τ−1)

)
(i.e., high weight). There are exactly 2i such edges,

and by the same analysis as in the previous two steps, for a fixed t ∈ {0, 1}i−1 we have

P(zt01zt10 is present) ≥ 1 − exp
[
− Θ

(
NdγiR)] (5.20)

if we ignore dependence. By applying the union bound, we then obtain

P(zt01zt10 is present for all t ∈ {0, 1}i−1) ≥ 1 − 2i−1 exp
[
− Θ

(
NdγiR)]. (5.21)

We iterate this until we have reached the kth step, where

k =
ln lnN − ε ln ln lnN

ln(1/γ)
(5.22)

and ε ∈ (0, 1) some fixed number. Then, again by ignoring dependence, the probability that we have found
each edge from each step can be found by just summing over (5.21) for i = 1, . . . , k and using the union
bound, i.e.

P(for all i = 1, . . . , k, all edges in step i are present) ≥ 1 −
k∑

i=1

2i−1 exp
[
− Θ

(
NdγiR)]

≥ 1 − 2k exp
[
− Θ

(
NdγkR)]

=: 1 − g(N). (5.23)

Here we have used that γ < 1 and
∑k

i=1 2i−1 = 2k − 1 ≤ 2k. We want to show that g of (5.23) goes to

0 if N → ∞. To this end, we notice that if k increases 2k grows, while exp[−Θ(NdγkR)] shrinks. In the
following computation, we show that the choice of k from (5.22) is such that the latter shrinks ‘faster’ than
the former, ensuring that g(N) indeed goes to 0 if N → 0, while still allowing k to be as large as possible.
By substituting the definition of k from (5.22), rewriting and applying some elementary computations, we
find that:

g(N) = 2
ln lnN−ε ln ln lnN

ln(1/γ) exp
[
− Θ

(
NdRγ

ln lnN−ε ln ln lnN
ln(1/γ)

)]
=

(lnN)∆(γ)

(ln lnN)∆(γ)ε
exp

[
− Θ

(
exp

[
dR(ln lnN)ε

])]
=

1

(ln lnN)∆(γ)ε
exp

[
∆(γ) ln lnN − Θ

(
exp

[
dR(ln lnN)ε

])]
, (5.24)

where ∆(γ) = ln(2)/ ln(1/γ) > 0. Now notice that because ∆, R, d, ε > 0 and γ < 1, it holds that

∆(γ) ln lnN − Θ
(

exp[dR(ln lnN)ε]
)
→ −∞ if N → ∞. Furthermore, (ln lnN)−∆(γ)ε → 0 if N → ∞. We

conclude that g(N) → 0 if N → ∞, which by (5.23) implies that with high probability, all edges in all
steps are present.

It remains to count the amount of vertices it takes connect u and v. In the above, notice that in step i
we add 2i−1 edges. In total, therefore, we have already used

∑k
i=1 2i−1 = 2k − 1 ≤ 2k edges. Next, notice

that each of the pairs ztk−101 and ztk−110, tk−1 ∈ {0, 1}k−1 are not yet connected, but if they were, then we

would have found a path between u and v. Then, notice that |ztk−101− ztk−110| ≤
√
dNγk

by the iteration

scheme. We are therefore able to connect each of these pairs with at most C1N
γk

nearest-neighbour edges.
Here C1 = C1(d) > 0 is a positive constant. There are 2k such pairs. In total, therefore, this path utilises
at most

2k + C12kNγk

=
(lnN)∆(γ)

(ln lnN)∆(γ)ε

(
1 + C1 exp

[
(ln lnN)ε

])
= (lnN)∆+o(1) (5.25)
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edges by substituting the definition of k and applying Claim A.4. We therefore conclude that for every
ε̃1, there exists an N1 = N1(ε̃1) such that if N ≥ N1 then (lnN)∆(γ)+o(1) ≤ (lnN)∆(γ)+ε̃1 Furthermore,
since ln(2)/ ln(1/γ) ↓ ln(2)/ ln((α + τ − 1)/(α(τ − 1))) if γ ↓ (α(τ − 1))/(α + τ − 1), we may also conclude
that for every ε̃2 > 0 we may choose γ = γ(ε̃2) such that

∆(γ(ε̃2)) ≤ ln 2

ln
(
α+τ−1
α(τ−1)

) + ε̃2. (5.26)

From this, we conclude that for every ε̃ = ε̃1 + ε̃2 > 0, there exists an N2(ε̃) such that

P
(
dG(u, v) ≤ (lnN)∆+ε̃) ≥ 1 − g(N) (5.27)

if N ≥ N2(ε̃). This is the result we wanted to show.

In this sketch, we have ignored many important details. Particularly, we have often ignored dependence.
The most egregious of these offences is that in each step after the first, we reveal weights that have already
been revealed in previous steps. We have also ignored dependence when we reveal that all edges between
two boxes are not present. The latter may be dealt with by applying Lemma 4.1. To resolve the former, in
Subsection 5.2 we develop the notion of ‘nets’. Roughly, a net is a subset of vertices that behaves pseudo-
randomly with regards to the expected amount of vertices with a certain weight in any given radius. If
such a net is present, then we are able to show that on a macro-level this dependence is largely irrelevant
and the steps we have taken in the sketch are in fact largely justifiable.

5.2. Nets

In this section, to deal with the problem of dependence when revealing weights as explained above, we
construct nets. Loosely, we say that Nv ⊂ V is a net for v if Nv if for each vertex x ∈ Nv there are roughly
the expected number of vertices with any weight around x. A bit more precise, a net should satisfy that
in any set X ⊂ Nv such that |X | =: n ≫ 1 and interval I, if each vertex has P(W ∈ I) =: p that its
weight is in I, then there are roughly np vertices with weight in I in X . The idea to do this comes from a
renormalisation group technique — a method often used in physics. The essence of this idea is to look at
the vertex set in boxes of multiple scales. We then call boxes good or bad based on the number of vertices
of certain weight they contain, the number of good sub-boxes they contain and other properties.

To start the construction of the nets, we begin with making the boxes described in the sketch more

precise. To this end, we define a sequence (ri)i of sidelengths that slightly deviates from Nγi

, but no more
than a factor of 2.

Definition 5.4 (Sidelengths) Consider γ from Setting 5.3, let N > 1 and let k be a (possibly N-dependent)
positive integer. Recursively define

rk = rk(N, γ) :=
⌈
Nγk

⌉
, and ri−1 = ri−1(N, γ) :=

⌈
Nγi−1

/ri
⌉
ri for i = 2, . . . , k. (5.28)

Here x 7→ ⌈x⌉ denotes the ceiling function, i.e., ⌈x⌉ = min {z ∈ Z : x ≤ z}. We refer to ri as a sidelength.
We suppress the dependence on N and γ if this is clear from context.

The reason we define the sequence of sidelengths is because these sidelengths have certain useful properties.
These properties are shown in the coming Lemma 5.7. The properties, however, only hold when k is
restricted. In the next definition, we give a function k⋆

ε(N) that dictates this restriction.

Definition 5.5 Consider γ from Setting 5.3. For any ε > 0 and N > e, we set

k⋆
ε(N) = k⋆

ε(N, γ) =
ln lnN − ε ln ln lnN

ln(1/γ)
. (5.29)

We suppress dependence on γ when this is clear from context.

In Definition 5.5, notice that we require N > e since otherwise k⋆
ε(N) does not exist.

We continue with a small claim that we use in multiple proofs in this section. It pertains to the fact

that if k < k⋆
ε(N) for any ε > 0, then for any constant c > 0 it holds that N−cγk

goes to 0 if N → ∞.

This also implies that Ncγk

goes to infinity if N → ∞. It is then also easily seen that this result then also
holds for any positive integer i ≤ k.

Claim 5.6 Consider γ from Setting 5.3, let N > e, ε > 0, consider k⋆
ε(N) from (5.29) of Definition 5.5

and let k be a (possibly N-dependent) positive integer satisfying k < k⋆
ε(N). Then for any c > 0 and i ≤ k

it holds that

N−cγi

< exp [−c(ln lnN)ε] and Ncγi

> exp [c(ln lnN)ε] (5.30)
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Proof. We show the first inequality of (5.30), the second inequality of (5.30) follows immediately from

the first. Notice that because N > 1, c > 0 and γ < 1, the function i 7→ N−cγi

is increasing. Since i ≤ k,
by assuming k < k⋆

ε(N) holds, filling in the definition of k⋆
ε from (5.29) and by applying some elementary

computations we find that

N−cγi

≤ N−cγk

< N−cγ
ln lnN−ε ln ln lnN

ln(1/γ)
= N

−c exp
[
−ln(1/γ) ln lnN−ε ln ln lnN

ln(1/γ)

]
= exp

[
− c(ln lnN)ε

]
(5.31)

as required. ■

We now continue with the properties of the sidelengths. In particular, we have chosen the sidelengths in
such a way that each ri is a (positive) integer, and each ratio ri−1/ri is too. This will be useful to exactly
divide each box with side-lengths ri−1 up into (ri−1/ri)

d sub-boxes with side-lengths ri. Furthermore, as

mentioned previously we show that each ri differs no more than a factor of 2 from Nγi

.

Lemma 5.7 (Properties of sidelengths) Consider Setting 5.3, specifically γ. Let N > 1 and let k be a
(possibly N-dependent) postive integer. Furthermore, let ε > 0 and let k⋆

ε(N) be as in (5.29) of Definition
5.5.1 The sequence (ri)i≤k from Definition 5.4 satisfies the following properties:

(1) For every i = 2, . . . , k it holds that ri−1/ri is a positive integer. Furthermore, every ri is an integer
for i ≤ k.

(2) For any i ≤ k it holds that Nγi

≤ ri. Additionally, for any ε > 0 there exists an N5.7 = N5.7(ε, γ)
such that if N ≥ N5.7 and k < k⋆

ε(N) then for every i = 1, . . . , k it holds that

Nγi

≤ ri ≤ 2Nγi

. (5.32)

Proof. The first part of item (1) follows readily from

ri−1

ri
=

⌈
Nγi−1

/ri
⌉
ri

ri
=
⌈
Nγi−1

/ri
⌉
.

For the second part of (1), notice that rk is an integer by definition. For any i = 1, . . . , k− 1, we may then
expand

ri = rk
rk−1

rk

rk−2

rk−1
. . .

ri+1

ri+2

ri
ri+1

.

Since rk and all fractions rj−1/rj are integers, ri is an integer too.
Before we start with the proof of item (2), we firstly give the definition of N5.7:

N5.7 := exp

[
exp

[(
ln 2

1 − γ

)1/ε
]]

. (5.33)

In particular, notice that if N ≥ N5.7, then it holds that

exp [−(1 − γ)(ln lnN)ε] ≤ 1

2
. (5.34)

Furthermore, N5.7 > e, so that if N ≥ N5.7 then k⋆
ε(N) exists. We continue with the proof of item (2).

Assume that N ≥ N5.7. Starting with i = k, we see that by definition

Nγk

≤ rk :=
⌈
Nγk

⌉
≤ Nγk

+ 1 ≤ 2Nγk

(5.35)

since N > 1. Next, we rewrite for i = 1, . . . , k − 1:

Nγi

≤ ri :=
⌈
Nγi

/ri+1

⌉
ri+1 ≤ Nγi

+ ri+1. (5.36)

We notice that the first statement of item (2) holds regardless if N ≥ N5.7 or not. To show the second

statement of item (2), we show that the right-hand side of (5.36) is bounded by 2Nγi

. We work inductively
backwards. The base case follows from (5.35). Now suppose that (5.32) holds for i+1. We use the induction
hypothesis to rewrite (5.36) to

Nγi

+ ri+1 ≤
(

1 + 2N−(1−γ)γi
)
Nγi

. (5.37)

We show that the pre-factor of the right-hand side is smaller than 2. To this end, observe that 1 − γ > 0
and we have assumed k < k⋆

ε(N). Then, by Claim 5.6 we obtain that

N−(1−γ)γi

≤ exp
[
− (1 − γ)(ln ln(N))ε

]
. (5.38)

Combining this with (5.34), we find that

1 + 2N−γi(1−γ) ≤ 2

if N ≥ N5.7, which shows that ri ≤ 2Nγi

when combined with (5.36) and (5.37). By induction, this shows
item (2). ■
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With the sidelengths now defined, we now create a boxing structure of nested partitions of boxes with
exactly those sidelengths. To properly describe this boxing structure, we use the following definition.

Definition 5.8 Let a1, b1, . . . , ad, bd ∈ R be 2d real-valued constants such that ai ≤ bi for all i ≤ d. Sets
of the form (a1, b1] × · · · × (ad, bd] ⊆ Rd are called half-open boxes.

In Definition 5.8, we remark here that there exists a more general notion of half-open boxes, where the
constants may also be ±∞. We do not need this more general notion.

Using the above Definition 5.8, the boxing structure can now properly be described. It starts with a
half-open box of with sidelength r1 centred around some vertex x, which we call the half-open box of layer
1. We then define an iterating procedure. In each iteration, because of item (1) of Lemma 5.7 a half-open
box of the previous layer i− 1 can be partitioned into exactly (ri−1/ri)

d boxes that do not overlap. This
gives all boxes of the i’th layer. We continue partitioning this half-open box of level 1 into finer and
finer layers, until we reach the kth layer. We refine this idea for a boxing structure as described above in
Definition 5.9.

If it is not immediately clear that the boxes can really be partitioned so exactly, consider first d = 1
and any interval of the form (a, a + ri−1]. By Lemma 5.7, we know that there is some integer ℓ such that
ri−1 = ℓri. From this, it follows that we can rewrite

(a, a + ri−1] =

ℓ⋃
j=1

(a + (j − 1)ri, a + jri].

It should be clear that all intervals of the form (a + (j − 1)ri, a + jri] are pairwise disjoint. This idea can
quite easily be generalised to d dimensions.

Definition 5.9 (Boxing structure) Consider Setting 5.3, in particular γ. Let N > 1 and let k be a
(possibly N-dependent) positive integer. Let (ri)i≤k be the sequence of sidelengths given by Definition 5.4.
Let half-open boxes be as defined in Definition 5.8. We define a boxing structure Sx = Sx(N, k, γ, d) as a set
of partitions of a box centered around x ∈ Rd. More precisely, Sx is generated by the following procedure.

• Define B1 to be the half-open box with sidelength r1 centered around x, i.e.,

B1 = B1,x(N, γ, d) := x +

(
−1

2
r1,

1

2
r1

]d
. (5.39)

This half-open box is called the layer 1 box.
• Because of Lemma 5.7, we can divide B1 into (r1/r2)d half-open boxes with sidelength r2. Index

(for example, in lexicographic order) these half-open boxes and denote them

B2
j = B2,x

j (N, γ, d), for j = 1, . . . ,
rd1
rd2

. (5.40)

These half-open boxes are called boxes of layer 2.
• Recursively, define the boxes of layer i as the subdivision of the boxes of layer i−1. More precisely,

take any

si−1 ∈

{
1, . . . ,

(
r1
r2

)d
}

× · · · ×

{
1, . . . ,

(
ri−2

ri−1

)d
}
. (5.41)

Then any half-open box Bi−1
si−1

= Bi−1,x
si−1

(N, γ, d) can be divided into exactly (ri−1/ri)
d half-open

boxes with sidelength ri. We denote these boxes Bi
si−1,ℓ

= Bi,x
si−1,ℓ

(N, γ, d) for ℓ ranging from 1 to

(ri−1/ri)
d and call them boxes of layer i. Repeat this procedure until layer k has been reached.

Then define the boxes Bi
si = Bi,x

si (N, γ, d) to be exactly those vertices of the vertex set V that fall into Bi
si ,

i.e., Bi
si = Bi

si ∩ V. We also refer to Bi
si as a box of layer i. The boxing structure Sx is defined as the set

containing all these boxes:

Sx =
{
B1,x} ∪ k⋃

i=2

{
Bi,x

si : si ∈

{
1, . . . ,

(
r1
r2

)d
}

× · · · ×

{
1, . . . ,

(
ri−1

ri

)d
}}

. (5.42)

We suppress the dependence on N, γ, k and x of Sx and the boxes if these parameters are clear from context.
If a box Bj,x

sj of layer j is contained within a box Bi,x
si of layer i < j, then we call Bj,x

sj a sub-box of Bi,x
si .

Recall that because the boxes depend on the sidelengths (ri)i≤k. Since the sidelengths depend on N and
γ, the boxes also depend on N and γ. A graphical representation of the boxing structure is given in Figure
4.

In later proofs, we need to know the amount of vertices in each box of the boxing structure. In the
following Claim 5.10, we show that each box of layer i contains exactly rdi vertices.

Claim 5.10 Consider Setting 5.3, let N > 1 and let k ∈ N be a (possibly N-dependent) positive integer.
Let (ri)i≤k be the sequence of sidelengths from Definition 5.4 and consider the boxing structure Sx centred
around x ∈ V. Fix i ≤ k and let Bi,x

si ∈ Sx be any box of layer i from Sx. Then

|Bi,x
si | = rdi (5.43)
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Proof. First, we use Lemma 5.7 to obtain that every ri is an integer. We note that Bi
si can be written

as a half-open box; for some a1, . . . , ad ∈ R we have

Bi
si = (a1, a1 + ri] × · · · × (ad, ad + ri]. (5.44)

We then rewrite

(a1, a1 + ri] × · · · × (ad, ad + ri] =

ri⋃
j1,...,jd=1

(a1 + (j1 − 1), a1 + j1] × · · · × (ad + (jd − 1), ad + jd]

Then, all half-open box of the form (a1 +(j1−1), a1 + j1]×· · ·× (ad +(jd−1), ad + jd] are pairwise disjoint
and must contain exactly one vertex from Zd. Since there are rdi such boxes, the result follows. ■

We move on by properly defining the constants that dictate which vertices are considered ‘constant-
weight’ vertices and which are considered ’high-weight’ vertices at layer i. Furthermore, we define constants
that govern the amount of such vertices.

Figure 4. A graphical representation of the boxing scheme, where d = 2 and k = 3.
The box of level 1 is given in black, the boxes of level 2 in gray and the boxes of level 3
in red. This figure is not to scale.
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Definition 5.11 (Constants) Consider Setting 5.3, especially δ and η. Let N > 1 and let k ∈ N be a
(possibly N-dependent) positive integer. Let (ri)i≤k be the sequence of sidelengths from Definition 5.4. We
define

η :=
η

2
, η := 1 − η

2
. (5.45)

Let ϕ =
(
1 +

√
5
)
/2 be the golden ratio. We define

Mk :=
1

ϕη
, M i :=

1

ϕ
(
η −

∑k
j=i+1

(
1

Mj
− 1

Mj

)
r
−d(1−δ)
j

) ,
Mk :=

ϕ

η
, M i :=

ϕ

η −
∑k

j=i+1

(
1

Mj
− 1

Mj

)
r
−d(1−δ)
j

, (5.46)

for i ≤ k − 1. Next, we also recursively define

Ak := η,Ak := η (5.47)

and

Ai := 1 − η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
−

k∑
j=i+1

[
j−1∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)] [
aj

(
1 − 2r−dδ

j

)
r
−d(1−δ)
j + 2r−dδ

j

]
,

Ai := 1 − η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
−

k∑
j=i+1

[
j∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
ajr

−d(1−δ)
j (5.48)

for i ≤ k − 1, where

ai :=
1

2
Ai, ai :=

1

2
Ai +

1

2
. (5.49)

We are now able to properly give the description of constant-weight vertices; they are exactly those
vertices that have weight between 1 and η−1/(τ−1). In particular, these vertices are called ‘constant-weight’
because their weight does not depend on the layer we are interested in. In contrast, we also consider ‘high
weight vertices’, which are vertices whose weight depends layer we are interested in. More precisely, the

high weight vertices of a layer i are those vertices that have weight between M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i and

M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i . Lastly, we use η and η to dictate the count of constant-weight vertices and ai, ai, Ai

and Ai to both count and dictate the amount of high-weight vertices.
The reason behind the specific values of these sequences will become apparent in the proofs of Lemmas

5.15 and 5.16. Part of that reason is that they have certain properties, which we summarise and show in
the following Claim 5.12.

Claim 5.12 (Properties constants) Consider Setting 5.3, in particular γ, δ and η. Let N > e, ε > 0 and
consider k⋆

ε from (5.29) of Definition 5.5. Let k be a (possibly N-dependent) positive integer satisfying
k < k⋆

ε(N). Let (ri)i≤k be the sequence of sidelengths from Definition 5.4 and consider η, η, (M i)i≤k,

(M i)i≤k, (ai)i≤k, (ai)i≤k, (Ai)i≤k and (Ai)i≤k from Definition 5.11. Set ϕ = (1 +
√

5)/2. There exists an
N5.12 = N5.12(ε, γ, δ, η, d) such that if N ≥ N5.12, then the following all hold

(1) For all i = 1, . . . , k,
1

ϕη
≤ M i < M i ≤

2ϕ

η
. (5.50)

(2) For all i = 1, . . . , k,

1

M i

− 1

M i

= η −
k∑

j=i+1

(
1

M j

− 1

M j

)
r
−d(1−δ)
j . (5.51)

(3) For all i = 1, . . . , k,
η

4
≤ Ai < Ai ≤ 1 − η

4
. (5.52)

Proof. We consider each item separately. For each item (i), i = 1, 2, 3, we show that there exists an N i

such that the respective item holds if N ≥ N i. Then taking N5.12 := N1 ∨N2 ∨N3 ensures that all three
items holds if N ≥ N5.12.
(Item (1)) We recall from (5.46) that

M i :=
1

ϕ
(
η −

∑k
j=i+1

(
1

Mj
− 1

Mj

)
r
−d(1−δ)
j

) and M i :=
ϕ

η −
∑k

j=i+1

(
1

Mj
− 1

Mj

)
r
−d(1−δ)
j

(5.53)

for i ≤ k − 1. Observe that (5.50) follows immediately if we show that

1

2
η ≤ η −

k∑
j=i+1

(
1

M j

− 1

M j

)
r
−d(1−δ)
j ≤ η. (5.54)
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We firstly define N1 = N1(ε, γ, δ, d), and afterwards show that (5.54) holds for all i ≤ k if N ≥ N1. To this
end, we note that d(1 − δ) > 0 by (5.11) and hence by item (2) of Lemma 5.7 (properties of sidelengths),

it holds that kr
−d(1−δ)
k ≤ kN−d(1−δ)γk

. Furthermore, by because k < k⋆
ε(N) and Claim 5.6 we find that

kr
−d(1−δ)
k ≤ kN−d(1−δ)γk

≤ ln ln(N) − ε ln ln ln(N)

ln(1/γ)
exp

[
− d(1 − δ)(ln lnN)ε

]
=: g(N). (5.55)

Observe that g(N) → 0 if N → ∞. For this reason, we may choose N1 such that if N ≥ N1, it holds that

g(N) ≤ ϕ2/2, where ϕ = (1 +
√

5)/2.
Fix N1 as described and assume that N ≥ N1. We continue by showing (5.54) using backwards

induction. The base case is clear by the definition of Mk and Mk (see (5.46)). Suppose that (5.50) holds
for all j = i+ 1, . . . , k (induction hypothesis). We show that it also holds for i. We compute ϕ2 − 2 = 1/ϕ,
from which we can see that ϕη − 2η/ϕ = η/ϕ2. Hence, under the induction hypothesis

0 <
1

M j

− 1

M j

≤ η/ϕ2 (5.56)

for all j = i+ 1, . . . , k. Since the sum in (5.54) consists only of positive terms, the right-most inequality of
(5.54) follows. To show the left-hand side, we note that under the induction hypothesis

η −
k∑

j=i+1

(
1

M j

− 1

M j

)
r
−d(1−δ)
j ≥ η

(
1 − 1

ϕ2

k∑
j=i+1

r
−d(1−δ)
j

)
≥ η

(
1 −

kr
−d(1−δ)
k

ϕ2

)
≥ 1

2
η (5.57)

In the first inequality, we have used (5.56), in the second inequality we have used that rj ≥ rk for all j ≤ k,

and in the last inequality we have used that N ≥ N1 and hence kr
−d(1−δ)
k ≤ ϕ2/2.

(Item (2)) This follows directly by substituting the definition of M i and M i (see (5.46) or (5.53)) into the

left-hand side of (5.51), provided that the denominator of M i and M i is never 0. By the previous item,
we ensure that this does not happen if N ≥ N1. Therefore by setting N2 := N1 we also ensure that the
second item holds if N ≥ N2.
(Item (3)) Similarly to the proof of item (1), we first give the definition of N3 = N3(ε, γ, δ, η, d) and then
show that (5.52) holds for all i ≤ k if N ≥ N3. By replacing (1 − δ) by δ in (5.55), we may also show

that kr−dδ
k → 0 if N → ∞. As such, it is possible to find an N3 such that if N ≥ N3, then the following

inequality holds:

kr−dδ
k <

η

12
. (5.58)

Fix this N3 and let N ≥ N3. Notice that it then also holds that

r−dδ
k ≤ kr−dδ

k <
η

12
<

1

4
and thus

1

2
< (1 − 2r−dδ

j ) < 1 for all j ≤ k, (5.59)

since k is a positive integer, η ∈ (0, 2/3), and for all j ≤ k it holds that rj ≥ rk > 1. We proceed
with showing (5.52) for all i ≤ k with backwards induction. The base case follows immediately from the

definition of Ak := η = η/2 and Ak = η = 1 − η/2 and the fact that η ∈ (0, 2/3). Suppose that (5.52)

holds for all j = i + 1, . . . , k (induction hypothesis). We show that (5.52) then also holds for i. To this

end, firstly recall the definition of Ai and Ai:

Ai := 1 − η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
−

k∑
j=i+1

[
j−1∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)] [
aj

(
1 − 2r−dδ

j

)
r
−d(1−δ)
j + 2r−dδ

j

]
, (5.60)

and

Ai := 1 − η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
−

k∑
j=i+1

[
j∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
ajr

−d(1−δ)
j . (5.61)

Furthermore, recall that ai = Ai/2 and Ai = (Ai + 1)/2. We treat each of the three inequalities in (5.52)
separately. To show the left-most inequality of (5.52), note that the induction hypothesis implies that
0 < η/8 ≤ aj < aj ≤ 1 − η/8 < 1 for all j = i + 1, . . . , k. Now because N ≥ N3, by (5.59) it holds that

1/2 < (1 − 2r−dδ
j ) ≤ 1. Furthermore, by (5.11) we know that δ < 1/4, which implies that δ < 1 − δ.

Because rj > 1 for all j ≤ k, this last inequality in turn results in r
−d(1−δ)
j ≤ r−dδ

j . Combining these facts

with the definition of Ai from (5.60), we find that

Ai ≥ 1 − η −
k∑

j=i+1

3r−dδ
j ≥ 1 − η − 3kr−dδ

k > 1 −
(

1 − η

2

)
− 3

η

12
=

η

4
. (5.62)

In the second inequality we have used that rj ≥ rk for all j ≤ k. In the third inequality we have used that

because N ≥ N3, it holds that kr−dδ
k < η/12 by (5.58). This shows the left-most inequality of (5.52).

The middle inequality of (5.52) can be seen quickly by the fact that Ai has its negative terms multiplied
with larger pre-factors (i.e., η < η and aj < aj by the induction hypothesis) and has an extra negative

term when compared to Ai.
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We proceed with showing the right-most inequality of (5.52). Again we use that 1/2 < (1− 2r−dδ
j ) ≤ 1

when N ≥ N3 by (5.59). Furthermore, we use that 1 − x ≥ e−2x, which is valid when 0 ≤ x ≤ 1/2, and
the fact that rj ≥ rk for j ≤ k. Then we find that

Ai ≤ 1 − η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
≤ 1 − η

(
1 − 2r−dδ

k

)k
≤ 1 − η exp

[
−4kr−dδ

k

]
. (5.63)

In the first inequality of (5.63), we ignore the right-most negative terms of (5.61). In the second inequality

of (5.63), we use that 1 − 2r−dδ
j ≥ 1 − 2r−dδ

k and (1 − 2r−dδ
k )k−i ≥ (1 − 2r−dδ

k )k. In the third inequality

of (5.63), we utilise that 2r−dδ
j ≤ 2r−dδ

k ≤ 1/2 because N ≥ N3. Next, notice that exp[−4x] ≥ 1/2 if

x < ln(2)/4. Since N ≥ N3, by (5.58) we know that kr−dδ
k < η/12 < 1/18 < ln(2)/4 (we may compute

that 1/18 ≈ 0.0555 and ln(2)/4 ≈ 0.1733). By combining the previous two inequalities with (5.63) and the

definition of η = η/2 we find that Ai ≤ 1 − η/4. The right-most inequality of (5.52) follows.
This finishes the proof. ■

Next, we introduce notation to distinguish vertices that have a given weight. This is comparable to T≥
from Definition 6.6. However, whereas in the construction of the path in Section 6 we were interested in
vertices that just have weight larger than a given value, we now search for vertices that have weight in a
given interval.

Definition 5.13 Consider Setting 5.3. For each E ⊆ V = Zd and I ⊆ R≥1, set

T (E, I) = {v ∈ E : Wv ∈ I} , and #T (E, I) = |T (E, I)|. (5.64)

Using Definitions 5.11 and 5.13, we may describe when a box behaves ‘well’, in the sense that it contains
enough vertices with their weight in a certain interval. In particular, we make the idea described at the
very start of this subsection precise.

Definition 5.14 (Lower-sufficient, upper-sufficient, good, bad) Consider Setting 5.3, specifically γ, δ, and
η. Fix N > 1 and let k be a (possibly N-dependent) positive integer. Consider the sequence of sidelengths
(ri)i≤k from Definition 5.4, the boxing structure Sx(N, k, γ, d) around a vertex x ∈ V from Definition 5.9

and let T and #T be from (5.64) of Definition 5.13. Recall η, η, (ai)i≤k, (ai)i≤k, (M i)i≤k, (M i)i≤k from

Definition 5.11. For i ≤ k, we call any box Bi,x
si ∈ Sx (γ, δ, η, τ, d)-upper-sufficient iff

air
dδ
i ≤ #T

(
Bi,x

si ,
[
M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i ,M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i

])
≤ air

dδ
i . (5.65)

We call any box Bk,x
sk ∈ Sx of layer k (γ, δ, η, τ, d)-lower-sufficient iff

ηrdk ≤ #T
(
Bk,x

sk ,
[
1, η−1/(τ−1)]) ≤ ηrdk. (5.66)

For i ≤ k − 1, we call any box Bi,x
si ∈ Sx (γ, δ, η, τ,d)-lower-sufficient iff

#

{
ℓ = 1, . . . ,

rdi
rdi+1

: Bi+1,x
siℓ

is both upper-sufficient and lower-sufficient

}
≥ (1 − 2r−dδ

i+1 )
rdi
rdi+1

. (5.67)

We call boxes that are both lower-sufficient and upper-sufficient (γ, δ, η, τ, d)-good. Any box that is not
(γ, δ, η, τ, d)-good is (γ, δ, η, τ, d)-bad. When γ, δ, η, τ and d are clear from context, we suppress their de-
pendence and write upper-sufficient, lower-sufficient, good and bad.

We remark that (5.67) should be interpreted as ‘Bi
si is lower-sufficient if it contains at least (1 −

2r−dδ
i+1 )(ri/ri+1)d good sub-boxes’.

In the following three lemmas, we work towards showing that any layer 1 box of the boxing structure is
good with high probability as N → ∞. To this end, we start from the bottom up with the smallest boxes
(i.e., those of the form Bk

sk ). In the following Lemma 5.15, we show that these boxes are lower-sufficient.

Lemma 5.15 Consider Setting 5.3, specifically γ, δ, η. Let N > e and let k ∈ N be a (possibly N-dependent)
positive integer. Let (ri)1≤i≤k be as given in Definition 5.4 and let η and η be as given in Definition 5.11.

Consider the boxing structure Sx(N, k, γ, d) around a vertex x ∈ V from Definition 5.9. Furthermore, let
#T be from (5.64) of Definition 5.13 and consider (γ, δ, η, τ, d)-lower-sufficient from Definition 5.14. Fix
Bk,x

sk ∈ Sx any box of layer k from the boxing structure. There exists a C5.15 = C5.15(η) such that

P
(
Bk,x

sk is (γ, δ, η, τ, d)-lower-sufficient
)
≥ 1 − 2 exp

[
−C5.15(η)rdk

]
. (5.68)

Furthermore, the event in the left-hand side of (5.68) is independent of the weight of all vertices that are
in V\Bk,x

sk .

Proof. We write lower-sufficient rather than (γ, δ, η, τ, d)-lower-sufficient since γ, δ, η, τ and d are assumed
to be fixed. Furthermore, we observe that this result holds regardless of the vertex x, so its dependence
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is suppressed. Throughout this proof, denote by X the amount of vertices in Bk
sk that have weight in

[1, η−1/(τ−1)], i.e.,

X := #T
(
Bk

sk ,
[
1, η−1/(τ−1)]).

Recalling the definition of lower-sufficient for the boxes of layer k from (5.66) of Definition 5.14, we may
then rewrite

Q := P
(
Bk

sk is not lower-sufficient
)

= P
(
X ̸∈

[
ηrdk, ηr

d
k

])
. (5.69)

We bound Q. By Lemma 5.10 there are exactly rdk vertices in Bk
sk . By the Definition 3.1 of a KSRG

and the assumption on the weight distribution given by (3.4), each of those vertices independently has

probability 1 − η that its weight is between 1 and η−1/(τ−1). We conclude that X ∼ Bin
(
rdk, 1 − η

)
.

Furthermore, notice that because 0 < η < 2/3 we also find that η := η/2 < 1− η and η = 1− η/2 > 1− η.

We are therefore justified in applying the Chernoff bound for binomial random variables (Lemma B.4) to
the right-most probability of (5.69). We therefore split (5.69) and rewrite it to match the format of the
Chernoff bound to find that

Q = P
(
X <

(
1 −

(
1 −

η

1 − η

))
(1 − η)rdk

)
+ P

(
X >

(
1 +

(
η

1 − η
− 1

))
(1 − η)rdk

)
≤ exp

[
−1

2

(
1 −

η

1 − η

)2

(1 − η)rdk

]
+ exp

[
−1

3

(
η

1 − η
− 1

)2

(1 − η)rdk

]
. (5.70)

Now substituting the definition of η = η/2 and η = 1 − η/2 from (5.45) into (5.70) and by applying some
elementary bounds

Q ≤ 2 exp

[
−

(
(1 − 3

2
η)2

2(1 − η)
∧ η2

12(1 − η)

)
rdk

]
=: 2 exp

[
−C5.15(η)rdk

]
.

Recalling (5.69) finishes the proof of (5.68). Furthermore, notice that throughout this proof, we have only
considered the weight of vertices that are in Bk

sk . Because the weights of all vertices are assumed to be

independent by Definition 3.1 of a KSRG , the result in (5.68) is independent of all vertices in V\Bk
sk . ■

Now that we have obtained a bound for the probability that a box of layer k is lower-sufficient, we
continue by computing a bound for the probability that it is good. To compute this bound, we require
one additional assumption; the boxing structure cannot have too many layers when compared to N . In
particular, we need additionally require that k < k⋆

ε(N) from (5.29) of Definition 5.5.

Lemma 5.16 Consider the same setting as Lemma 5.15. Let (γ, δ, η, τ, d)-upper-sufficient and (γ, δ, η, τ, d)-
good be as given in Definition 5.14. Furthermore, fix ε > 0, consider k⋆

ε(N) from (5.29) of Definition 5.5
and assume that k is such that k < kε

⋆(N). Then there exists a N5.16 = N5.16(γ, δ, η, τ, d) such that if

N ≥ N5.16, then for any box Bk,x
sk ∈ Sx of layer k it holds that

P
(
Bk,x

sk is (γ, δ, η, τ, d)-good
)
≥ 1 − r−dδ

k . (5.71)

Furthermore, the event in (5.71) is independent of the weight of all vertices in V\Bk,x
sk .

Proof. Similar to the proof of Lemma 5.15, we suppress the dependence of x,N, γ and d of Sx and
γ, δ, η, τ and d from upper-sufficient, lower-sufficient and good. We rewrite:

P
(
Bk

sk is good
)

= P
(
Bk

sk is upper-sufficient and Bk
sk is lower-sufficient

)
= P

(
Bk

sk is upper-sufficient
∣∣∣Bk

sk is lower-sufficient
)

︸ ︷︷ ︸
=:1−Q̃

P
(
Bk

sk is lower-sufficient
)
. (5.72)

Through Lemma 5.15 we already know a lower bound for the probability that Bk
sk is lower sufficient. We

therefore bound Q̃. Before we do this, we lay some groundwork.
Firstly, notice that because k < k⋆

ε(N) and Claim 5.6, if follows that rk → ∞ if N → ∞ (see also the proof

of Claim 5.12). We recall the definition of Mk = 1/(ϕη) and Mk = ϕ/η from (5.46) of Definition 5.11,

where ϕ = (1 +
√

5)/2. We apply item (2) of Lemma 5.7 to see that rk ≥ Nγk

. From the assumption that

k < k⋆
ε(N), by Claim 5.6 we find Nγk

→ ∞ if N → ∞ and hence also rk → ∞ if N → ∞. We conclude
that there exists an N1 = N1(γ, δ, η, τ, d) such that if N ≥ N1, then

η− 1
τ−1 < M

1
τ−1

k r
d 1−δ

τ−1

k < M
1

τ−1

k r
d 1−δ

τ−1

k . (5.73)

Fix this N1. Throughout the remainder of this proof, assume that N ≥ N1.

Recall #T from (5.64) of Definition 5.13. By Lemma 5.10, there are exactly rdk vertices in Bk
sk . Of those

rdk vertices, there are #T
(
Bk

sk ,
[
1, η−1/(τ−1)

])
vertices that have weight between 1 and η−1/(τ−1), which



Poly-logarithmic upper-bound for distances 31

implies that there are rdk − #T
(
Bk

sk ,
[
1, η−1/(τ−1)

])
remaining vertices that do not have weight between 1

and η−1/(τ−1). Furthermore, the weight of each of those remaining vertices independently satisfy

P
(
W ∈

[
M

1
τ−1

k r
d 1−δ

τ−1

k ,M
1

τ−1

k r
d 1−δ

τ−1

k

] ∣∣∣ W > η− 1
τ−1

)
= η−1

(
1

Mk

− 1

Mk

)
r
−d(1−δ)
k = r

−d(1−δ)
k .

Here we have used that by (5.73) the left-most interval lies completely above η−1/(τ−1), the conditional

power-law distribution is given by Claim A.3 and the fact that M−1
k −M

−1
k = η(ϕ−1/ϕ) = η. By recalling

the definition of upper-sufficient from (5.65) of Definition 5.14, we thus conclude that under the assumption
that N ≥ N1 it holds that

X := #T
(
Bk

sk ,
[
M

1
τ−1

k r
d 1−δ

τ−1

k ,M
1

τ−1

k r
d 1−δ

τ−1

k

])
∼ Bin

(
rdk − #T

(
Bk

sk

[
1, η−1/(τ−1)]), r−d(1−δ)

k

)
. (5.74)

Next, we define two random variables that stochastically bound X. The fact that Bk
sk is lower-sufficient

by definition (see (5.66) of Definition 5.14) means that #T
(
Bk

sk

[
1, η−1/(τ−1)

])
≤ ηrdk, which implies that

given that Bk
sk is lower-sufficient, X stochastically dominates another binomial random variable:

(X|Bk
sk is lower-sufficient)

d

≥ X, where X ∼ Bin
(

(1 − η) rdk, r
−d(1−δ)
k

)
. (5.75)

Similarly, by using the lower bound for #T
(
Bk

sk ,
[
1, η−1/(τ−1)

])
when Bk

sk is lower sufficient from (5.66),
we find that

(X|Bk
sk is lower-sufficient)

d

≤ X, where X ∼ Bin
((

1 − η
)
rdk, r

−d(1−δ)
k

)
. (5.76)

We return to Q̃ by splitting it into two components, which we bound separately. By recalling the definition
of upper-sufficient (Definition 5.14), we see that

Q̃ =P
(
X < akr

dδ
k

∣∣∣Bk
sk is lower-sufficient

)
︸ ︷︷ ︸

=:Q̃1

+P
(
X > akr

dδ
k

∣∣∣Bk
sk is lower-sufficient

)
︸ ︷︷ ︸

=:Q̃2

.

We then apply (5.75) and (5.76) to see that

Q̃1 ≤ P
(
X < akr

dδ
k

)
and Q̃2 ≤ P

(
X > akr

dδ
k

)
. (5.77)

Then, notice that by (5.49) of Definition 5.11,

ak =
1

2
(1 − η) < 1 − η, and ak = 1 − 1

2
η > 1 − η. (5.78)

We are therefore justified in applying the Chernoff bound for binomially distributed random variables
(Lemma B.4) on both probabilities in (5.77). By doing so and rewriting we find that

Q̃1 ≤ exp

[
− 1

2

(
1 − ak

1 − η

)2

(1 − η) rdkr
−d(1−δ)
k

]
= exp

[
− (1 − η − ak)2

2(1 − η)︸ ︷︷ ︸
=:C1(η)

rdδk

]
=: Q̃≤

1 (5.79)

and

Q̃2 ≤ exp

[
− 1

3

(
ak

1 − η
− 1

)2(
1 − η

)
rdkr

−d(1−δ)
k

]
= exp

[
−
(
ak + η − 1

)2
3(1 − η)︸ ︷︷ ︸
=:C2(η)

rdδk

]
=: Q̃≤

2 . (5.80)

To see that C1(η) and C2(η) are actually constants that only depend on the constant η, recall from (5.49) of

Definition 5.11 that ak = η/4 and ak = 1−η/4. We conclude that 1−Q̃ ≥ 1−Q̃≤
1 −Q̃≤

2 . Finally, we return

to equation (5.72). By combining the bounds for Q̃, Lemma 5.15, the inequality (1−x)(1− y) ≥ 1−x− y
which is valid if x, y > 0, and some elementary bounds, we obtain

P
(
Bk

sk is good
)
≥ (1 − Q̃≤

1 − Q̃≤
2 )
(

1 − 2 exp
[
−C5.15(η)rdk

])
(5.81)

≥ 1 − 4 exp
[
−C5.16(η)rdδk

]
. (5.82)

Here, C5.16(η) = C1(η) ∧ C2(η) ∧ C5.15(η). For any constant Ĉ, there is an x such that if x > x, then

1− 4 exp(−Ĉx) ≥ 1− x−1. It follows that there exists an N2 = N2(γ, δ, η, τ, d) such that if N > N2, then

P
(
Bk

sk is good
)
≥ 1 − r−dδ

k . (5.83)

Setting N5.16 = N5.16(γ, δ, η, τ, d) := N1(γ, δ, η, τ, d) ∨ N2(γ, δ, η, d) finishes the proof of (5.71). Further-
more, similarly to the end of the proof of Lemma 5.15, we note that throughout this proof we have only
used the weight of vertices within Bk

sk and as such, the event in (5.71) is independent of the weight of all

vertices in V\Bk
sk . ■

We have now found a bound for the probability that the boxes of the lowest level (i.e., the boxes of
level k) are good. Next, our goal is to extend this result to boxes of any level i ≤ k. We show this using
induction; we start from the smallest boxes and work to the larger layers.
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Lemma 5.17 Consider Setting 5.3, in particular γ, δ and η. Fix N > e, ε > 0, recall k⋆
ε(N) from (5.29) of

Definition 5.5 and let k be a positive integer satisfying k < k⋆
ε(N). Let (ri)i≤k be the sequence of sidelengths

from Definition 5.4. Consider the boxing structure Sx(N, k, γ, d) around a vertex x ∈ V from Definition 5.9
and (γ, δ, η, τ, d)-good from Definition 5.14. Then there exists an N5.17 = N5.17(ε, γ, δ, η, τ, d) such that if
N > N5.17, then for any i ≤ k and any box Bi,x

si ∈ Sx of layer i it holds that

P
(
Bi,x

si is (γ, δ, η, τ, d)-good
)
≥ 1 − r−dδ

i . (5.84)

Furthermore, the event in (5.84) is independent of the weight of all vertices within V\Bi,x
si .

Proof. Similar to the proof of Lemma 5.15, we suppress the dependence of x,N, γ and d of Sx and
γ, δ, η, τ and d from upper-sufficient, lower-sufficient and good. Before we commence with the proof, we
give the definition of N5.17. Firstly, by Lemma 5.16 we know that there exist an N1 = N1(η) such that
(5.71) holds if N ≥ N1 (which also implies that (5.84) holds for boxes of layer k). Furthermore, because
k < k⋆

ε(N) we may utilise item (2) of Lemma 5.7 (properties of sidelengths) to see that there exists an
N2 = N2(ε, γ) such that

Nγj

≤ rj ≤ 2Nγj

(5.85)

for all j ≤ k if N ≥ N2. Next, by Claim 5.12 there exists an N3 = N3(ε, γ, δ, η, d) such that if N ≥ N3

then all items of Claim 5.12 hold. Furthermore, because k < k⋆
ε(N) and by recalling the definition of

(ri)i≤k from Definition 5.4, by applying Claim 5.6 to (5.85) we may observe that all the ri grow rapidly

with as i decreases. Furthermore, by (5.51) of item (2) of Claim 5.12, we note that all M i and M i are
bounded if N is large. As such, we may observe that there exists an N4 = N4(ε, γ, δ, η, τ, d) such that if
N ≥ N4, then all of the intervals[

1, η− 1
τ−1
]
, and

[
M

1
τ−1

j r
d 1−δ

τ−1

j ,M
1

τ−1

j r
d 1−δ

τ−1

j

]
, where j ≤ k, (5.86)

are all disjoint. Lastly, we apply the same reasoning we have done to show (5.83) in the proof of Lemma
5.16. Notice that if we set

C5.17 = C5.17(η) :=
1

21+d(1+3δ)
∧ η

32
∧ η2

192 − 48η)
> 0, (5.87)

then there exists an N5 = N5(ε, γ, δ, η, d) such that if N ≥ N5, then

1 − 3 exp[−C5.17r
dδ
j ] ≥ 1 − r−dδ

j (5.88)

for all j ≤ k.
Next, we fix N1, N2, N3, N4, N5 and set N5.17 = N1 ∨ N2 ∨ N3 ∨ N4 ∨ N5. In the remainder of this

proof, we assume that N ≥ N5.17, and hence all of the above holds.

To show that (5.84) holds for all i ≤ k, we apply (backwards) induction on layer i. Because N ≥ N5.17 ≥
N1, we know that by Lemma 5.16 the base case is true: (5.84) holds for layer k. Next, we show that if
the result holds for all layers j = i + 1, . . . , k, then it also holds for any box of layer i. Fix any box Bi

si of
layer i. By writing out the definition of good (see Definition 5.14), we obtain that

P(Bi
si is good) = P

(
Bi

si is upper-sufficient
∣∣ Bi

si is lower-sufficient
)
P
(
Bi

si is lower-sufficient
)

(5.89)

The proof consists of four subsequent parts. In the first part, we bound P
(
Bi

si is lower-sufficient
)
. In the

second part and third part, we compute P
(
Bi

si is upper-sufficient
∣∣ Bi

si is lower-sufficient
)
. In the fourth

part, we bring everything together.

(1: Lower sufficiency) We compute a lower bound for the probability that Bi
si is lower-sufficient. Call

Γ̃ the amount of good sub-boxes of layer i + 1 in Bi
si . There are exactly (ri/ri+1)d such sub-boxes by

construction (see Definition 5.9). Furthermore, each of these sub-boxes are independently good with a

probability lower-bounded by 1 − r−dδ
i+1 when we apply the induction hypothesis (see (5.84)). We conclude

that Γ̃ stochastically dominates Γ, where Γ is defined by

Γ ∼ Bin

(
rdi
rdi+1

, 1 − r−dδ
i+1

)
. (5.90)

By applying the Chernoff bound (Corollary B.4), we may compute

P
(
Bi

si is lower-sufficient
)

= P
(

Γ̃ ≥
(

1 − 2r−dδ
i+1

) rdi
rdi+1

)
≥ P

(
Γ ≥

(
1 −

(
1 −

1 − 2r−dδ
i+1

1 − r−dδ
i+1

))
(1 − r−dδ

i+1 )
rdi
rdi+1

)

≥ 1 − exp

[
−1

2

(
1 −

1 − 2r−dδ
i+1

1 − r−dδ
i+1

)2

(1 − r−dδ
i+1 )

rdi
rdi+1

]
. (5.91)

In the first line we have used the definition of lower-sufficient, in the second line we have used that Γ̃
stochastically dominates Γ and rewritten to match the format of the Chernoff bound and in the third line
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we have applied the Chernoff bound. Our goal is to further bound the last quantity in (5.91). To this end,

notice that 1 − (1 − 2r−dδ
i+1 )/(1 − r−dδ

i+1 ) = r−dδ
i+1 /(1 − r−dδ

i+1 ) and 0 < 1 − r−dδ
i+1 < 1. Substituting this into

(5.91) and rewrite to see that

P
(
Bi

si is lower-sufficient
)

= 1 − exp

[
− 1

2

r−2dδ
i+1

1 − r−dδ
i+1

rdi
rdi+1

]
≥ 1 − exp

[
− 1

2
r
−d(1+2δ)
i+1 rdi

]
. (5.92)

Furthermore, by the definition of δ (see Setting 5.3), we know that δ < (1 − γ)/(1 + 2γ), which we may
rewrite to δ < 1− γ(1 + 2δ). Combining this with Lemma 5.7 (properties of sidelengths) and the fact that
N ≥ N5.17 ≥ N2, we find that

rdi

r
d(1+2δ)
i+1

≥ Ndγi

2d(1+2δ)Nd(1+2δ)γi+1 =
1

2d(1+2δ)
Nd(1−γ(1+2δ))γi

≥ 1

2d(1+2δ)
Ndδγi

≥ 1

2d(1+3δ)
rdδi . (5.93)

Notice that we have applied Lemma 5.7 twice in the left-most inequality and once in the right-most
inequality. Applying all the above to (5.92) we obtain

P
(
Bi

si is lower-sufficient
)
≥ 1 − exp

[
− 1

21+d(2+2δ)
rdδi

]
=: 1 − err1 (5.94)

which gives a lower bound for the probability that Bi
si is lower-sufficient.

(2: Bounds for the amount of vertices that have already been revealed if Bi
si is lower-sufficient) Now that

we have found the probability that Bi
si is lower-sufficient, we want to bound the probability that it is also

upper-sufficient, given that it is lower-sufficient. This is analogous to the proof of Lemma 5.16. We have
split this part of the proof into two parts. In this part of the proof, we bound the amount of vertices that
can still contribute to Bi

si being upper-sufficient, given that Bi
si is lower-sufficient. In the next part, we

use these bounds to bound the probability that Bi
si is upper-sufficient, given that it is lower-sufficient.

Recall that for us to know Bi
si to be lower-sufficient, we necessarily need to have revealed information about

the weight of vertices of Bi
si . More precisely, we need to have revealed that there is a division of vertices:

one portion of the vertices has weight either between 1 and η−1/(τ−1) or between M
1/(τ−1)
j r

d(1−δ)/(τ−1)
j

and M
1/(τ−1)
j r

d(1−δ)/(τ−1)
j for some j = i + 1, . . . , k; the other portion consists of vertices that have a

different weight. The first portion is exactly #T
(
Bi

si ,Wi+1

)
, where

Wi+1 :=
[
1, η− 1

τ−1

]
∪

k⋃
j=i+1

[
M

1
τ−1

j r
d 1−δ

τ−1

j ,M
1

τ−1

j r
d 1−δ

τ−1

j

]
(5.95)

and #T is as in (5.64) of Definition 5.13. The second portion is Bi
si\#T

(
Bi

si ,Wi+1

)
. Because N ≥ N5.17 ≥

N4 and (5.86), only the vertices of the second portion can have weight between M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i and

M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i and hence can contribute to Bi

si being upper-sufficient. As such, we bound the first

portion of vertices and note that since both portions together make up Bi
si , this also bounds the second

portion.
Throughout this entire part, assume that Bi

si is lower-sufficient. We start with a lower-bound for

#T
(
Bi

si ,Wi+1

)
. We firstly lower-bound the constant-weight vertices, i.e., those vertices that have weight

between 1 and η−1/(τ−1). There are exactly #T
(
Bi

si ,
[
1, η−1/(τ−1)

])
such vertices. To find a lower-bound,

we firstly count the fewest good layer j sub-boxes that are contained within Bi
si . By recalling the definition

of lower-sufficient from (5.67), we see that Bi
si must contain at least (1 − 2r−dδ

i+1 )(ri/ri+1)d good sub-boxes
of layer i + 1. Since these sub-boxes are good, they are also lower-sufficient. It follows that each good
sub-box of layer i + 1 contains at least (1 − 2r−dδ

i+1 )(ri+1/ri+2)d sub-boxes of layer i + 2. We iterate this
procedure to see that

the minimal amount of good sub-boxes of layer j
contained solely in good sub-boxes of Bi

si

=

j∏
ℓ=i+1

(
1 − 2r−dδ

ℓ

) rdℓ−1

rdℓ
, (5.96)

for any j = i+ 1, . . . , k. Since each good sub-box of layer k contains at least ηrdk vertices by definition (see

(5.66) of Definition 5.14), we thus conclude that

#T
(
Bi

si ,
[
1, η−1/(τ−1)]) ≥ ηrdk

k∏
ℓ=i+1

((
1 − 2r−dδ

ℓ

) rdℓ−1

rdℓ

)
= η

[
k∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
rdi . (5.97)

Here we have ignored that the bad sub-boxes of Bi
si may also contribute with vertices that have weight

between 1 and η−1/(τ−1).

We reason similarly for vertices with weight between M
1/(τ−1)
j r

d(1−δ)/(τ−1)
j and M

1/(τ−1)
j r

d(1−δ)/(τ−1)
j ,

where j = i+ 1, . . . , k. Combining (5.96) and the fact that each good box of layer j contains at least ajr
dδ
j

vertices with the required weight yields

#T

(
Bi

si ,

[
M

1
τ−1

j r
d 1−δ

τ−1

j ,M
1

τ−1

j r
d 1−δ

τ−1

j

])
≥ aj

[
j∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
r
−d(1−δ)
j rdi (5.98)
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for all j ∈ {i + 1, . . . , k}. Again, we ignore the fact that the bad sub-boxes may also contain any vertices

with weight between M
1/(τ−1)
j r

d(1−δ)/(τ−1)
j and M

1/(τ−1)
j r

d(1−δ)/(τ−1)
j for all j ∈ {i + 1, . . . , k}. Combining

(5.97), (5.98), the fact that Wi+1 consists of disjoint intervals because N ≥ N5.17 ≥ N4 and summing over
j = i + 1, . . . , k we obtain

#T
(
Bi

si ,Wi+1

)
≥ η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
rdi +

k∑
j=i+1

aj

[
j∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
r
−d(1−δ)
j rdi

= (1 −Ai)r
d
i . (5.99)

Here Ai is as defined in (5.48) from Definition 5.11. We emphasise that (5.99) holds because we have
conditioned on Bi

si being lower-sufficient.

Next, we upper-bound the amount of vertices that have weight in Wi+1. To this end, we approach layer
by layer. Suppose that a box of layer j, j = i, . . . , k − 1 is good. Then it must contain at least (1 −
2r−dδ

j )(rj/rj+1)d good sub-boxes by definition. The remaining 2r−dδ
j (rj/rj+1)2 sub-boxes can either be

• bad, in which case it may consist fully of rdj+1 vertices with weight in Wi+1, or

• good, in which case it must consist of fewer than rdj+1 vertices with weight in Wi+1.

We therefore endeavour to find the largest amount of sub-boxes that are bad. We start with layer i.
By the above reasoning, we know that we search for the maximum amount of bad sub-boxes of layer
i + 1, of which there are at most 2r−dδ

i+1 (ri/ri+1)d by (5.96). We do not continue with the bad sub-boxes
of layer i + 1 to avoid double counting. We do continue with the fewest number of good sub-boxes of
layer i + 1, of which there are at least (1 − 2r−dδ

i+1 )(ri/ri+1)d. Then each of these sub-boxes of layer

i + 1 contains maximally 2r−dδ
i+2 (ri+1/ri+2)d bad sub-boxes of layer i + 2, so in total there are at most

(1−2r−dδ
i+1 )(ri/ri+1)d ·2r−dδ

i+2 (ri+1/ri+2)d sub-boxes of layer i+2 that we add to the amount of bad sub-boxes.
More generally, we take a layer j, j = i+1, . . . , k and assume that in all layers from i to j−2 we have already
found the maximum amount of bad sub-boxes. Then by (5.96), there are

∏j−1
ℓ=i+1((1 − 2r−dδ

ℓ )(rℓ−1/rℓ)
d)

remaining good sub-boxes of layer j − 1. Each of these good sub-boxes of layer j − 1 may contain at most
2r−dδ

j (rj−1/rj)
d sub-boxes of layer j that are bad. We find that

#

{
bad boxes of layer j contained within
good sub-boxes of layer j − 1 in Bi

si

}
≤

[
j−1∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

) rdℓ−1

rdℓ

]
2r−dδ

j

rdj−1

rdj
. (5.100)

Each of these boxes consists of rdj vertices. By summing over j = i + 1, . . . , k and rewriting we find that

the amount of vertices contained in bad sub-boxes of Bi
si ≤

k∑
j=i+1

[
j−1∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
2r−dδ

j rdi (5.101)

Next, we count the maximal amount of vertices that have weight in Wi+1 that are in the remaining
good sub-boxes. The computation is exactly the same for the lower bound from earlier in this part of the
proof, but with η and aj replaced by η and aj , respectively.

Combining everything and using the same reasoning done in finding the lower-bound, we obtain

#T
(
Bi

si ,Wi+1

)
≤ η

[
k∏

j=i+1

(
1 − 2r−dδ

j

)]
rdi +

k∑
j=i+1

aj

[
j∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
r
−d(1−δ)
j rdi

+

k∑
j=i+1

[
j−1∏

ℓ=i+1

(
1 − 2r−dδ

ℓ

)]
2r−dδ

j rdi

= (1 −Ai) r
d
i (5.102)

Again, we emphasise that this result holds when conditioned on Bi
si being lower-sufficient.

(3: upper-sufficiency) Now that we know bounds for the amount of vertices that potentially have a weight

between M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i and M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i if Bi

si is lower-sufficient, we may continue with

computing a bound for the probability that Bi
si is upper-sufficient, given that it is lower-sufficient. We do

this in way that is similar to the proof of Lemma 5.16. To this end, note that N ≥ N5.17 ≥ N3 ∨ N4,
which by item (2) of Claim 5.12 implies that

1

M i

− 1

M i

= η −
k∑

j=i+1

(
1

M j

− 1

M j

)
r
−d(1−δ)
j . (5.103)

Furthermore, by (5.86), we also obtain[
M

1
τ−1

i r
d 1−δ

τ−1

i ,M
1

τ−1

i r
d 1−δ

τ−1

i

]
∩ Wi+1 = ∅. (5.104)
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Moreover, by (3.4) (see also the proof of Claim A.3) we find that P(W ̸∈ Wi+1) is equal to the right-hand
side of (5.103). Combining the above three observations, we find that

P
(
W ∈

[
M

1
τ−1

i r
d 1−δ

τ−1

i ,M
1

τ−1

i r
d 1−δ

τ−1

i

] ∣∣∣ W ̸∈ Wi+1

)
=

(
1

Mi
− 1

Mi

)
r
−d(1−δ)
i

η −
∑k

j=i+1

(
1

Mj
− 1

Mj

)
r
−d(1−δ)
j

= r
−d(1−δ)
i

(5.105)

We note that each of the vertices that do not have weight in Wi+1, each independently have probability given

by (5.105) that their weight is between M
1/(τ−1)
i r

d(1−δ)/(τ−1)
i and M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i . Furthermore, by

Lemma 5.10 the box Bi
si contains rdi vertices, of which #T

(
Bi

si ,Wi+1

)
are vertices that have weight within

Wi+1. We may therefore define

X := #T
(
Bi

si ,
[
M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i ,M

1/(τ−1)
i r

d(1−δ)/(τ−1)
i

])
(5.106)

and observe that

X ∼ Bin
(
rdi − #T

(
Bi

si ,Wi+1

)
, r

−d(1−δ)
i

)
. (5.107)

Then, by (5.99) and (5.102) we observe that

(X|Bi
si is lower-sufficient)

d

≥ X, where X ∼ Bin
(
Air

d
i , r

−d(1−δ)
i

)
(5.108)

and

(X|Bi
si is lower-sufficient)

d

≤ X, where X ∼ Bin
(
Air

d
i , r

−d(1−δ)
i

)
. (5.109)

Next, we define

Qi := P
(
Bi

si is not upper-sufficient
∣∣ Bi

si is lower-sufficient
)
. (5.110)

We then apply the definition of upper-sufficient (see 5.65 of Definition 5.14), equations (5.108) and (5.109)
and rewrite

Qi = P
(
X < air

dδ
i

∣∣ Bi
si is lower-sufficient

)
+ P

(
X > air

dδ
i

∣∣ Bi
si is lower-sufficient

)
≤ P

(
X < air

dδ
i

)
+ P

(
X > air

dδ
i

)
. (5.111)

We apply the Chernoff bound (see Lemma B.4) to both probabilities in (5.111) separately. Recall that

ai = Ai/2 < Ai and ai = (Ai + 1)/2 > Ai by Definition 5.11 and item (3) of Lemma 5.12 (which we may

apply since N ≥ N5.17 ≥ N3). Substituting these, recalling the definitions of X from (5.108) and X from
(5.109) and rewriting in the format of the Chernoff bound, yields

P
(
X < air

dδ
i

)
= P

(
X < (1 − 1/2)Air

dδ
i

)
≤ exp

[
− 1

8
Air

dδ
i

]
(5.112)

and

P
(
X > air

dδ
i

)
= P

(
X >

(
1 +

1 −Ai

2Ai

)
Air

dδ
i

)
≤ exp

[
− 1

12

(1 −Ai)
2

Ai

rdδi

]
. (5.113)

Then notice that, again by item (3) of Lemma 5.12, we have that Ai ≥ η/4 and Ai ≤ 1−η/4. Furthermore,
notice that x 7→ (1 − x)2/x is decreasing if x ∈ (0, 1). Combining this with (5.111), (5.112) and (5.113)
and some elementary bounds then yields

Qi ≤ exp

[
− 1

8
Air

dδ
i

]
+ exp

[
− 1

12

(1 −Ai)
2

Ai

rdδi

]
≤ 2 exp

[
−
(

η

32
∧ η2

192 − 48η

)
rdδi

]
=: err2. (5.114)

(4: Conclusion) We return to (5.89). By combining equations (5.94) and (5.114) we may now compute a
lower bound for the probability that Bi

si is good:

P(Bi
si is good) = P

(
Bi

si is upper-sufficient
∣∣∣Bi

si is lower-sufficient
)
P
(
Bi

si is lower-sufficient
)

≥ (1 − err1)(1 − err2) ≥ 1 − 3 exp(−C5.17r
dδ
i ) ≥ 1 − r−dδ

i . (5.115)

Here we have used that (1−err1)(1−err2) ≥ 1−err1−err2 since err1, err2 > 0 and the fact that N ≥ N5.17,
so that (5.88) holds. By induction, this finishes the proof of (5.84). Furthermore, throughout this proof
we have only used the weight of vertices that are within Bi

si (recall that all sub-boxes of Bi
si are fully

contained within Bi
si). We conclude that the event in (5.84) is independent of all vertices within V\Bi

si .
This finishes the proof. ■

Since ri is increasing when i becomes smaller, the result in (5.84) suggests that the probability of a
larger layer being good is higher than those of the lower layers. At first glance, this might seem counter-
intuitive: the larger boxes depend on the smaller boxes. It is, however, to be expected when one considers
that the larger boxes contain (much more) vertices than the smaller boxes. With the law of large numbers
in mind, it is therefore to be expected that the large boxes deviate relatively little from their ‘expected’
behaviour (i.e., the distribution of the weight of the vertices) when compared to the smaller boxes.

Throughout the proof of Lemma 5.17, with (5.96) we have made one observation that will be useful in
later proofs. We emphasise this result in Corollary 5.18
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Corollary 5.18 Consider Setting 5.3, in particular γ, δ and η. Let N > 1 and let k be a (possibly
N dependent) positive integer. Let (ri)i≤k be the sequence of sidelengths from Definition 5.4. Consider
the boxing structure Sx(N, k, γ, d) around a vertex x ∈ V from Definition 5.9 and (γ, δ, η, τ, d)-good from
Definition 5.14. Let Bi,x

si ∈ Sx(N, k, γ, d) be any box of layer i ∈ {1, . . . , k − 1} and assume that it is
(γ, δ, η, τ, d)-good. Then

#

{
(γ, δ, η, τ, d)-good sub-boxes of Bi,x

si of layer j that are contained

in (γ, δ, η, τ, d)-good sub-boxes of Bi,x
si of all layers ℓ = i, . . . , j

}
≥ rdi

rdj

j∏
ℓ=i+1

(
1 − 2r−dδ

ℓ

)
. (5.116)

Proof. This follows immediately from (5.96) of part 2 of the proof of Lemma 5.17. ■

In defining the nets, it will turn out to be very useful to be able to reference which box of the boxing
structure a vertex is in. To this end, we define a labelling function, which for each vertex and each layer i
returns the label of the box of layer i that the vertex is in.

Definition 5.19 Consider Setting 5.3, particularly γ. Let N > 1 and k be a (possibly N-dependent)
positive integer. Let v ∈ V and consider the boxing structure Su = Su(N, k, γ, d) around u from Definition
5.9. For x ∈ B1,u and i ∈ {1, . . . , k}, we let Λi

u(u) be the label of the box of layer i in the boxing structure
that contains u, i.e.,

if x ∈ Bi,u
si = Bi,u

si (N, γ, d) then Λi
u(x) = si. (5.117)

For x ∈ B1,u and i ∈ {1, . . . , k}, we let Bi
Λ(x) denote the box of layer i that contains x, i.e.,

Bi
Λ(x) = Bi,u

Λi
u(x)

. (5.118)

Furthermore, suppose the setting is such that an additional boxing structure Sv = Sv(N, k, γ, d) around v
present, satisfying that for all i, j = 1, . . . , k, for all Bi,u

si ∈ Su and Bj,v
sj ∈ Sv it holds that Bi,u

si ∩ Bj,v
sj = ∅.

For x ∈ B1,u ∪ B1,v and i ∈ {1, . . . , k}, we then define Bi
Λ(x) in the following way:

Bi
Λ(x) =

{
Bi,u

Λi
u(x)

if x ∈ B1,u

Bi,v

Λi
v(x)

if x ∈ B1,v
. (5.119)

By convention Bi
Λ(∅) = ∅.

We discuss Definition 5.19, starting with Λi
u(x). Notice that B1,v is a superset of every other box in the

boxing structure Sv. Furthermore, by definition of the boxing structure Su (see Definition 5.9), each box
of the boxing structure is divided exactly into sub-boxes. Therefore, every vertex in B1,u is contained
in exactly one box of layer i, which means that Λi

u(x) is well-defined. It follows that Bi
Λ(x) is also well-

defined in the setting with only one boxing structure. Furthermore, it is obvious that x ∈ Bi
Λ(x) and

Bi
Λ(x) ⊃ Bi+1

Λ (x) when we consider the way the boxing structure is defined (see Definition 5.9).

Lastly, we briefly discuss Bi
Λ(x) in the setting where there are two boxing structures Su,Sv present. In

this case, again B1,u ∪ B1,v is a superset of all boxes of Su ∪ Sv. Therefore, if the boxing structures are
disjoint (i.e., each box of Su is disjoint of each box of Sv), there is exactly one level i box in either Su or
Sv that contains x ∈ B1,u ∪ B1,v. Therefore, in this setting Bi

Λ(x) is again well-defined. Again, it is easily
verifiable that x ∈ Bi

Λ(x) and Bi
Λ(x) ⊃ Bi+1

Λ (x) also holds in this setting.

We continue with giving the proper definition of a net. Informally, a net is the set of all vertices u such
that all boxes that contain u are good.

Definition 5.20 (Nets) Consider Setting 5.3, particularly γ, δ, and η. Fix N > 1 and let k be a (possibly
N-dependent) positive integer. Let v ∈ V and consider the boxing structure Sv = Sv(N, k, γ, d) around v,
let B1,v ∈ Sv be the layer 1 box of Sv and let (γ, δ, η, τ, d)-good be as in Definition 5.14. Furthermore, let
Bi

Λ(x) be as defined in (5.118) of Definition 5.19. Then set

Nv = Nv(N, k, γ, δ, η, τ, d) =
{
u ∈ B1,v : Bi

Λ(u) is (γ, δ, η, τ, d)-good for all i = 1, . . . , k
}
. (5.120)

We call Nv(N, k, γ, δ, η, τ, d) an (N, k, γ, δ, η, τ, d)-net for v if v ∈ Nv(N, k, γ, δ, η, τ, d). When N, k, γ, δ, η, τ
and d are clear from context, we write that Nv is a net for v.

Notice that if Nv is a net for v, then every box of the boxing structure Sv in which v is contained, must
be good. In particular, then B1,v must be good. Therefore, if v ∈ Nv then by Corollary 5.18 there are at
least (r1/rk)d

∏k
j=2(1− 2r−dδ

j ) boxes of layer k that are contained within good boxes of every layer. Since

a box of layer k contains rdk vertices by Claim 5.10, there therefore must be at least rd1
∏k

j=2(1 − 2r−dδ
j )

vertices in the net.
We continue by showing that if k < k⋆

ε , then a net is present with high probability.

Claim 5.21 Consider Setting 5.3, in particular γ, δ and η. Fix N > e, ε > 0, recall k⋆
ε(N) from (5.29)
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of Definition 5.5 and let k be a (possibly N-dependent) positive integer satisfying k < k⋆
ε(N). Let (ri)i≤k

be the sequence of sidelengths from Definition 5.4. Fix v ∈ V = Zd and let Sv = Sv(N, k, γ, d) be the
boxing structure from Definition 5.9 around v. Furthermore, let Nv = Nv(N, k, γ, δ, η, τ, d) be as defined
in (5.120) of Definition 5.20. There exists an N5.21 = N5.21(ε, γ, δ, η, τ, d) such that if N > N5.21, then

P(v ∈ Nv(N, k, γ, δ, η, τ, d)) ≥ 1 − kr−dδ
k . (5.121)

Furthermore, the event in (5.121) is independent of all vertices of V\B1,v, where B1,v ∈ Sv is the layer 1
box of the boxing structure.

Proof. We suppress dependence of v, γ, δ, η, τ and d when appropriate. Consider N5.17 from Lemma 5.17
and set N5.21 = N5.17. For the remainder of this proof, suppose that N ≥ N5.21. To show (5.121), from
definition of Nv (see (5.120) of Definition 5.20), the definition of good (see Definition 5.14) and the union
bound we find that

P(v ∈ Nv) = P
(
Bi

Λ(v) is good for all i = 1, . . . , k
)
≥ 1 −

k∑
i=1

(
1 − P

(
Bi

Λ(v) is good
))
. (5.122)

Then, because N ≥ N5.21 we may apply (5.84) of Lemma 5.17 to (5.122) to see that

P(v ∈ Nv) ≥ 1 −
k∑

i=1

r−dδ
i ≥ 1 − kr−dδ

k , (5.123)

which shows (5.121). Here we have used that ri ≥ rk for all i ≤ k. Furthermore, notice that the event in
(5.121) only depends on vertices that are contained in the boxing structure. Since B1,v encompasses all
these vertices, the event in (5.121) is independent of all vertices from V\B1,v. This finishes the proof. ■

5.3. Proof of Proposition 5.2

In this section, we finalise the proof of Proposition 5.2. To this end, we apply the nets from the previous
section to make the sketch of the proof from Subsection 5.1 precise. Throughout this subsection, we use
the concept of hierarchies, which formalises the labelling of the vertices described in Subsection 5.1. This
idea is inspired by M. Biskup, and we use a slightly modified definition (see Definition 2.1 in [25]).

Definition 5.22 (Hierarchy) Consider an integer k ∈ N and let u, v ∈ V be distinct vertices. A collection

Hk(u, v) =
{

(zti) ∈ V : i = 1, 2, . . . , k, k + 1, ti ∈ {0, 1}i
}

(5.124)

is called a hierarchy of depth k if it satisfies the following four properties:

(1) z0 = u and z1 = v.

(2) For all i = 0, 1, . . . , k − 1, for all ti ∈ {0, 1}i we have that zti0 = zti00 and zti1 = zti11.

(3) For all i = 0, 1, . . . , k − 1, for all ti ∈ {0, 1}i, if zti01 ̸= zti10 we have that zti01 ↔ zti10.
(4) The edges specified in item (3) appear only once in Hk(u, v).

When u, v and k are clear from context, we write Hk and call it a hierarchy.

We may now recognise that the construction that is described in Subsection 5.1 and visualised in Figure
3, exactly yields a hierarchy of depth k. Therefore, in the remainder of this section we show that a hierarchy
is present with sufficient probability, similar to what has been done in Subsection 5.1. To this end, we
introduce some notation. In the following Definition 5.23, we establish notation to obtain all edges between
two sets of vertices.

Definition 5.23 For X ,Y ⊂ V such that X ∩ Y = ∅, we set

E (X ,Y) = {(x, y) : x ∈ X , y ∈ Y, xy ∈ E} (5.125)

Notice that E (X ,Y) consists of ordered pair of vertices. The reason for this is that further in this section,
we would like to extract a pair (x, y) ∈ E (X ,Y) and ensure that x ∈ X and y ∈ Y. If E (X ,Y) were to
consist of edges or unordered pairs of vertices, this would not be as readily possible.

We continue by defining a construction that, if it succeeds, yields a hierarchy. This construction is given
in Definition 5.24, and further explanation follows afterwards. In particular, we formalise the construction
given in the sketch of Section 5.1. We show that this construction succeeds with high probability as N → ∞
in Lemma 5.25.

Definition 5.24 Consider Setting 7.3, in particular γ, δ and η. Let u, v ∈ V = Zd and suppose that
N := |u − v| > e. Let ε > 0, recall k⋆

ε(N) from (5.29) of Definition 5.5 and let k be a (possibly N-
dependent) positive integer satisfying k < k⋆

ε(N). Let Su = Su(N, k, γ, d) and Sv = Sv(N, k, γ, d) be two
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boxing structures centred around u resp. v as in Definition 5.9. Furthermore, let Nu = Nu(N, k, γ, δ, η, τ, d)
and Nv(N, k, γ, δ, η, τ, d) be from (5.120) of Definition 5.20. Then let Bi

Λ(x) be as defined in (5.119) of
Definition 5.19, T and #T from Definition 5.13 and E (X ,Y) as in (5.125) from Definition 5.23. We
define a collection

Hk(u, v) =
{

(Zti) : i ∈ {1, . . . , k + 1} , ti ∈ {0, 1}i
}

(5.126)

of (random) vertices in the following iterative way: first set Z0 = u and Z1 = v and then for i = 2, . . . , k+1

(1) For all ti−2 ∈ {0, 1}i−2, set Zti−200 = Zti−20 and Zti−211 = Zti−21.

(2) For all ti−2 ∈ {0, 1}i−2, define Zti−201 and Zti−210 in the following way:

• If Zti−20 ̸= ∅ and Zti−21 ̸= ∅, and if Bi
Λ(Zti−20) = Bi

Λ(Zti−21), then set Zti−201 = Zti−210 =
Zti−20.

• If Zti−20 ̸= ∅ and Zti−21 ̸= ∅, and if Bi
Λ(Zti−20) ̸= Bi

Λ(Zti−21), then set

T i−1
ti−20

= T
(
Bi−1

Λ (Zti−20),
[
1, η− 1

τ−1

])
∩ (Nu ∪Nv), and (5.127)

T i−1
ti−21

= T
(
Bi−1

Λ (Zti−21),
[
M

1
τ−1

i−1 r
d 1−δ

τ−1

i−1 ,M
1

τ−1

i−1 r
d 1−δ

τ−1

i−1

])
∩ (Nu ∪Nv). (5.128)

Then if E (T i−1
ti−20

, T i−1
ti−21

) ̸= ∅, choose any (x, y) ∈ E (T i−1
ti−20

, T i−1
ti−21

) randomly in a way that is

independent of all other random terms in this procedure and set Zti−201 = x and Zti−210 = y.
• Otherwise, set Zti−201 = Zti−210 = ∅.

If u and v are clear from context, we write Hk.

We elaborate on Definition 5.24. We follow the same reasoning as given in Subsection 5.1. First, in the
‘zeroth step’, we set Z0 = u and Z1 = v. Then, in the ith step, we firstly elongate every vertex-label as in
item (1), which defines Zti−200 = Zti−20 and Zti−211 = Zti−21.

The complexity lies in defining Zti−201 and Zti−210. Recall from the sketch of the proof (see Subsection
5.1) that these vertices are supposed to bridge the box of layer i−1 containing Zti−20 and the box of layer
i−1 containing Zti−21, in such a way that Zti−201 is a constant-weight vertex and Zti−210 is a high-weight

vertex. In other words, we consider all vertices of Bi−1
Λ (Zti−20) that have weight between 1 and η−1/(τ−1)

and try to find edges to the vertices of Bi−1
Λ (Zti−21) that have weight between M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 and

M
1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 . However, to ensure that further steps also succeed, we only consider those vertices

that are in good boxes all of all layers. This ensures that in further steps, we do not encounter situations
where there are not ‘enough’ constant-weight or high-weight vertices to those steps also succeed. In
particular, we search for vertices that are in the nets, i.e., either in Nu or Nv. We conclude that we search
for vertices exactly in T i−1

ti−20
and T i−1

ti−20
from equations (5.127) and (5.128). If there is an edge present

between these sets (i.e., if E (T i−1
ti−20

, T i−1
ti−21

) ̸= ∅), then we may define Zti−201 and Zti−210 according to this

edge. If there are multiple, we do however require that this happens in an independent way. Particularly,
we require that the choice is independent of the everything else in the construction and the weight of all
considered vertices.

There are two exceptions in defining Zti−201 and Zti−210. The first is if Zti−20 and Zti−21 are already
in the same box of layer i, in which case there is little use in connecting their boxes of layer i. We then
skip finding an edge by simply setting Zti−201 and Zti−210 to be Zti−20. The second is if either Zti−20

and Zti−21 is equal to ∅, or if E (T i−1
ti−20

, T i−1
ti−21

) = ∅. In this case, the construction has failed and we set

Zti−201 = Zti−210 = ∅.

Before we continue, we make one further observation about Definition 5.24: if the construction succeeds,
then Hk is a hierarchy of depth k. Furthermore, we have one simple test to see if the construction has
failed; in this case Hk contains at least one element that is equal to (∅). That is,

Hk is a hierarchy of depth k ⇔ (∅) /∈ Hk. (5.129)

Furthermore, if the construction succeeds, then by definition all vertices (Zti)ti∈{0,1}i,i≤k+1 are either in
Nu or Nv. This implies if the hierarchy succeeds, then all its vertices are contained in good boxes of every
layer. Additionally, notice that by construction for all i ∈ {2, . . . , k + 1} it holds that (Zti)ti∈{0,1}i contains

all information about (Zti−1)ti−1∈{0,1}i−1 . Indeed, we may obtain every vertex from (Zti−1)ti−1∈{0,1}i−1

from (Zti)ti∈{0,1}i by applying step (1) from Definition 5.24 in reverse. We also observe that

∅ /∈ (Zti)ti∈{0,1}i ⇒ ∅ /∈ (Zti−1)ti−1∈{0,1}i−1 . (5.130)

Lastly, notice that by definition, if Zti−201 ̸= ∅, then Zti−201 ∈ Bi−1
Λ (Zti−20 = Bi−1

Λ (Zti−100). Similarly, if

Zti−210 ∈ Bi−1
Λ (Zti−211). We therefore observe that for all ti−1 ∈ {0, 1}i−1 it holds that

Bi−1
Λ (Zti−10) = Bi−1

Λ (Zti−11). (5.131)

From item (1) of Lemma A.1 it then follows that

|Zti−10 − Zti−11| ≤
√
dri−1, (5.132)



Poly-logarithmic upper-bound for distances 39

provided that Zti−201, Zti−210 ̸= ∅.
In the following lemma, we show that with high probability Hk in fact constitutes a hierarchy of depth k.

Lemma 5.25 Consider Setting 5.3, in particular γ, δ and η. Let u, v ∈ V = Zd. Let N = |u − v|, ε > 0,
recall k⋆

ε(N) from (5.29) of Definition 5.5 and let k be a (possibly N-dependent) positive integer satisfying
k < k⋆

ε(N). Let (ri)i≤k be the sequence of sidelengths from Definition 5.4. Fix u, v ∈ V = Zd, let Hk(u, v)
be as in Definition 5.24 and let a hierarchy of depth k be as given in Definition 5.22. Then there exists an
N5.25 = N5.25(ε, γ, δ, η, τ, d) and a function err5.25(N, ε, γ, δ, η, α, τ, d) that goes to 0 if N → ∞ such that
if N ≥ N5.25, then

P(Hk(u, v) is a hierarchy of depth k) ≥ 1 − err5.25(N, ε, γ, δ, η, α, τ, d). (5.133)

Proof. As done before, we suppress dependence on γ, δ, η,N and k when appropriate. This proof consists
of multiple parts.

(Part 1: defining N5.25) We firstly give the definition of N5.25. Firstly, note that γ < 1 (see Setting
5.3), from which it follows that there exists an N1 = N1(γ) such that if N ≥ N1, then it holds that ⌈Nγ⌉ ≤
N/

√
d. Furthermore, by Claim 5.21 we find that if we set N2 = N2(ε, γ, δ, η, τ, d) = N5.21(ε, γ, δ, η, τ, d),

then if N ≥ N2 it holds that Nu (resp. Nv) is a net for v (resp. u) with probability greater than 1−kr−dδ
k .

Furthermore, we set N3 = N3(ε, γ, δ, η, τ, d) = N5.17(ε, γ, δ, η, τ, d) and note that if N ≥ N3, then (5.112)

holds. Then, by Claim 5.7 we may set N4 = N4(ε, γ) = N5.7(ε, γ) such that if N ≥ N4, then Nγi

≤ ri ≤
2Nγi

for all i ≤ k. Next, by Claim 5.6 and item (2) of Lemma 5.7 it is possible to define N5 = N5(γ, δ, ε, d)
such that if N ≥ N5, then it holds that

k∏
j=1

(1 − 2r−dδ
j ) ≥ 1 −

k∑
j=1

2r−dδ
j ≥ 1 − 2r−dδ

k ≥ 1 − 4kN−dδγk

≥ 1 − 4 exp[−dδ(ln lnN)ε] ≥ 1

2
. (5.134)

Here we have repeatedly used that (1 − x)(1 − y) ≥ 1 − x − y if x, y ∈ (0, 1) and the fact that ri ≥ rk
for all i ≤ k. Furthermore, by items (1) and (3) of Claim 5.12, we may define N6 = N6(ε, γ, δ, η, d) =
N5.12(ε, γ, δ, η, d) such that M i ≥ 1/(ϕη), Ai ≥ η/4 and ai = Ai/2 ≥ η/8 if N ≥ N6.
We now set N5.25 = max {N1, N2, N3, N4, N5, N6}. For the remainder of this proof, assume that
N ≥ N5.25.

(Part 2: preliminary work) Before we show that Hk(u, v) is a hierarchy of depth k, we give some preliminary
definitions and do some preliminary work to be used later in the proof. Firstly, let Su = Su(N, k, γ, d)
and Sv = Sv(N, k, γ, d) two boxing structures centred around u and v respectively (see Definition 5.9).
Furthermore, given these boxing structures let Nu = Nu(N, k, γ, δ, η, τ, d) and Nv = Nv(N, k, γ, δ, η, τ, d)
be as defined in 5.120 in Definition 5.20. We suppress dependence on γ, δ and η and see the dependence on
N and k as implicit, unless necessary for clarity. Recall that Nu (resp. Nv) is called a net for u (resp. v) if
all boxes of Su (resp. Sv) that contain u (resp. v) are good. Furthermore, recall that all boxes of Su (resp.

Sv) are subsets of B1,u (resp. B1,v). Furthermore, since N ≥ N5.25, we have that r1 = ⌈Nγ⌉ ≤ N/
√
d, so

that by item (2) of Lemma A.1 we my find that B1,u ∩ B1,v = ∅. From this it follows that every box in
Su is disjoint from every box of Sv, i.e.,

for all i, j = 1, . . . , k, for all Bi,u
si ∈ Su and Bj,v

sj ∈ Sv it holds that Bi,u
si ∩ Bj,v

sj = ∅. (5.135)

In turn, (5.135) implies that

Nu ∩Nv = ∅ (5.136)

by definition. Furthermore, (5.135) implies that Bi
Λ(x) from (5.119) of Definition 5.19 is well-defined.

(Part 3: rewriting and set-up) We return to (5.133) by denoting H as the event given in (5.133), i.e.,

H := {Hk is a hierarchy of depth k} . (5.137)

Then, we rewrite (5.133) as

P(H) = P(H|u ∈ Nu, v ∈ Nv)P(u ∈ Nu, v ∈ Nv) + P(H|(u ∈ Nu, v ∈ Nv)c)P((u ∈ Nu, v ∈ Nv)c)

≥ P(H|u ∈ Nu, v ∈ Nv)P(u ∈ Nu, v ∈ Nv), (5.138)

where we have applied the law of total probability. Now by Claim 5.21, since Nu and Nv are disjoint (see
(5.136)), the events {u ∈ Nu} and {v ∈ Nv} are independent and furthermore since N ≥ N5.25

P(u ∈ Nu, v ∈ Nv) = P(u ∈ Nu)P(v ∈ Nv) ≥ (1 − kr−dδ
k )2. (5.139)

It therefore remains to analyse P(H|u ∈ Nu, v ∈ Nv) from (5.138). To this end, note that by (5.129) we
may equivalently analyse P((∅) /∈ Hk|u ∈ Nu, v ∈ Nv). In particular, we aim to show that

Q := P(∅ /∈ (Zti)i∈{0,1}i for all i ∈ [k + 1] | u ∈ Nu, v ∈ Nv) ≥ 1 − g̃(N), (5.140)

for some function g̃(N) that satisfies g̃(N) → 0 if N → ∞. Here [k + 1] = {1, 2, . . . , k, k + 1}. In the
remainder or this proof, we denote

N = {u ∈ Nu, v ∈ Nv} . (5.141)
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We then telescopically apply conditional independence to (5.140) to see that

Q = P
(
∅ /∈ (Zt1)t1∈{0,1}

∣∣N ) k+1∏
i=2

P
(
∅ /∈ (Zti)ti∈{0,1}i

∣∣ ∅ /∈ (Ztj )tj∈{0,1}j for all j ∈ [i− 1],N
)
. (5.142)

Now notice that by (5.130), we obtain that{
∅ /∈ (Ztj )j∈{0,1}j for all j ∈ [i− 1]

}
=
{
∅ /∈ (Zti−1)ti−1∈{0,1}i

}
, (5.143)

Thus, if we define

Q1 := P
(
∅ /∈ (Zt1)t1∈{0,1}

∣∣N )
and Qi := P

(
∅ /∈ (Zti)ti∈{0,1}i

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)
, (5.144)

then from (5.142) and (5.143) it follows that

Q =

k+1∏
i=1

Qi. (5.145)

(Part 4: examining Qi) To find the bound given in (5.140), we examine each Qi separately. Firstly, notice
that Z0 = u and Z1 = v, so Q1 = 1. Therefore, consider any Qi for i ∈ {2, . . . , k + 1}. Rather than bound
Qi, we bound 1 −Qi. To this end, we rewrite{

∅ /∈ (Zti)ti∈{0,1}i
}

=

( ⋂
ti−2∈{0,1}i−2

{
Zti−200 ̸= ∅ and Zti−211 ̸= ∅

})

∩
( ⋂

ti−2∈{0,1}i−2

{
Zti−201 ̸= ∅ and Zti−210 ̸= ∅

})
. (5.146)

Then by applying (5.146) and the union bound, we find that

1 −Qi ≤
∑

ti−2∈{0,1}i−2

P
(
Zti−200 = ∅ or Zti−211 = ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)

+
∑

ti−2∈{0,1}i−2

P
(
Zti−201 = ∅ or Zti−210 = ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)
. (5.147)

Then, observe that if ∅ /∈ (Zti−1)ti−1∈{0,1}j , then also Zti−200 ̸= ∅ and Zti−211 ̸= ∅. Indeed, this

follows immediately from the fact that Zti−200 = Zti−20 ∈ (Ztj−1)tj−1∈{0,1}j−1 and Zti−211 = Zti−21 ∈
(Ztj−1)tj−1∈{0,1}j−1 . As such, we find that P

(
Zti−200 = ∅ or Zti−211 = ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)

= 0

and the first sum in (5.147) vanishes. Thus, we examine

Ψti−2 = P
(
Zti−201 = ∅ or Zti−210 = ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)

(5.148)

for every ti−2 ∈ {0, 1}i−2 and find an uniform bound for all these quantities. To this end, fix any

ti−2 ∈ {0, 1}i−2, assume that Zti−20, Zti−21 ̸= ∅ and N holds. Now by construction (see item (2)

of Definition 5.24), if Bi
Λ(Zti−20) = Bi

Λ(Zti−21), we know that Zti−201 = Zti−210 = Zti−20 and hence
Ψti−2 = 0. So consider the case where this is not true. Then it is only possible that Zti−2 = ∅ or

Zti−2 = ∅ if E (T i−1
ti−20

, T i−1
ti−21

) ̸= ∅. Recall here equations (5.127) and (5.128):

T i−1
ti−20

= T
(
Bi−1

Λ (Zti−20),
[
1, η− 1

τ−1

])
∩ (Nu ∪Nv), and (5.149)

T i−1
ti−21

= T
(
Bi−1

Λ (Zti−21),
[
M

1
τ−1

i−1 r
d 1−δ

τ−1

i−1 ,M
1

τ−1

i−1 r
d 1−δ

τ−1

i−1

])
∩ (Nu ∪Nv). (5.150)

Since we condition on N = {u ∈ Nu, v ∈ Nv}, we know that Nu and Nv are non-empty. We firstly
examine T i−1

ti−20
. We note that by construction, Zti−20 ∈ Nu ∪Nv and hence all boxes that contain Zti−20

are good. In particular, Bi−1
Λ (Zti−20) is good. By Corollary 5.18 we therefore know that Bi−1

Λ (Zti−20)

contains at least (ri−1/rk)d
∏k

j=i(1 − 2r−dδ
j ) sub-boxes of layer k that are contained within good boxes of

layer j = i− 1, . . . , k. Since also each box that contains Bi−1
Λ (Zti−20) is also good by construction, each of

these sub-boxes of layer k are fully contained within Nu ∪ Nv. Because each of these sub-boxes contains
at least ηrdk vertices that have weight between 1 and η−1/(τ−1),

∣∣T i−1
ti−20

∣∣ ≥ ηrdi−1

k∏
j=i

(1 − 2r−dδ
j ) (5.151)

holds when Zti−20 ̸= ∅ and N . Also notice that Zti−20 is a high-weight vertex, so it does not subtract

the number of constant-weight vertices, i.e., it does not subtract from the vertices of T i−1
ti−20

that may still

be examined. Next, we examine T i−1
ti−21

. To this end, note that by part 2 and 3 of the proof of Lemma

5.17, if N ≥ N5.25 it follows that with probability greater than 1 − exp
[
− ηrdδi−1/32

]
there are more than

ai−1r
dδ
i−1 vertices that are solely in good sub-boxes of layer j = i, . . . , k of Bi−1

Λ (Zti−21) and have weight

between M
1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 and M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 . Since Zti−21 ∈ Nv ∪ Nu, Bi−1

Λ (Zti−21) is good
and solely contained in good boxes of layer 1 up to i − 1. Therefore, all these vertices are solely in good
sub-boxes and therefore in Nu ∪ Nv. Furthermore, since Zti−21 is a constant-weight vertex, it does not
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subtract from the number of high-weight vertices, i.e., it does not subtract from the number of vertices of
T i−1
ti−21

that may be examined. We conclude that

Ψ2
ti−2

:= P
(∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)
≥ 1 − exp

[
− η

32
rdδi−1

]
. (5.152)

Furthermore, by item (2) of Lemma 5.7 we know that ri−1 ≥ Nγi−1

and hence

Ψ2
ti−2

≥ 1 − exp
[
− η

32
Ndδγi−1

]
=: 1 − err2(i− 1). (5.153)

We return to (5.148). We may now apply the law of total probability to find that

1 − Ψti−2 = P
(
E (T i−1

ti−20
, T i−1

ti−21
) ̸= ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)

≥ P
(
E (T i−1

ti−20
, T i−1

ti−21
) ̸= ∅

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N ,
∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1

)
· P
(∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1

∣∣∅ /∈ (Zti−1)ti−1∈{0,1}j ,N
)

=: Ψ1
ti−2

Ψ2
ti−2

. (5.154)

Notice that we bound 1 − Ψti−2 and not Ψti−2 in the last equation.

(Part 5: examining Ψ1
ti−2

) It remains to examine Ψ1
ti−2

, i.e., the probability that E (T i−1
ti−20

, T i−1
ti−21

) ̸=
∅ given that

∣∣T i−1
ti−21

∣∣ ≥ ai−1r
dδ
i−1, ∅ /∈ (Zti−1)ti−1∈{0,1}j and N hold. We do this by examining the

probability of the complement 1 − Ψ1
ti−2

, i.e., where E (T i−1
ti−20

, T i−1
ti−21

) = ∅. To ease notation in this

part, we suppress the dependence on ti−2 when possible. Set n :=
∣∣T i−1

ti−20

∣∣ and enumerate each vertex of

Tti−20 by x1, . . . , xn in a way that is independent from each other random element in the construction (for

example by lexicographical ordering). Similarly, set m :=
∣∣T i−1

ti−21

∣∣ and enumerate each vertex of Tti−21 by

y1, . . . , ym. Then by (5.151), the fact that η = η/2 (see (5.45) of Definition 5.11) and because N ≥ N5.25,
it holds that

n ≥ ηrdi−1

k∏
j=i

(1 − 2r−dδ
j ) ≥ ηrdi−1

k∏
j=1

(1 − 2r−dδ
j ) ≥ η

4
rdi−1. (5.155)

Next, if we condition on
∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1, by applying item (3) of Claim 5.12 and the fact that

ai−1 = Ai−1/2, we find that because N ≥ N5.25

m ≥ ai−1r
dδ
i−1 ≥ η

8
rdδi−1. (5.156)

We return to 1−Ψ1
ti−2

. Notice that by the definition of E (see (5.125) of Definition 5.23) it is only possible

that E (T i−1
ti−20

, T i−1
ti−21

) = ∅ if there are no edges between T i−1
ti−20

and T i−1
ti−21

, i.e., if for all ñ ≤ n and m̃ ≤ m

it holds that xñ ̸↔ ym̃. Hence, by repeatedly applying the definition of conditional probability we may
observe that

1 − Ψ1
ti−2

=P
(
for all ñ ≤ n, m̃ ≤ m we have xñ ̸↔ ym̃

∣∣ ∅ /∈ (Zti−1)ti−1∈{0,1}j ,N ,
∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1

)
=
∏
ñ≤n
m̃≤m

P(xñ ̸↔ ym̃|Fñ,m̃), (5.157)

where we have defined as Fñ,m̃ as follows:

Fñ,m̃ :=
⋂

µ<m̃
ν≤n

{xν ̸↔ yµ} ∩
⋂
ν<ñ

{xν ̸↔ ym̃} ∩ N ∩
{
∅ /∈ (Zti−1)ti−1∈{0,1}j

}
∩
{∣∣T i−1

ti−21

∣∣ ≥ ai−1r
dδ
i−1

}
.

In particular, Fñ,m̃ contains all the information we condition in in Ψ1
ti−2

and the information that up to

the combination (ñ, m̃), no edge has been found. We examine each P(xñ ̸↔ ym̃|Fñ,m̃) in (5.157) separately.
To this end, notice that for xñ ∈ T i−1

ti−20
and ym̃ ∈ T i−1

ti−21
the following holds:

• Since nothing from Fñ,m̃ prevents xñ to have weight higher than 1 or ym̃ to have weight higher

than M
1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 , it holds that P(Wxñ ≥ 1,Wym̃ ≥ M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 |Fñ,m̃) > 0.

• By the independence of edge presence if the weight is given, we may observe that for wxñ ∈
[1, η−1/(τ−1)] and wym̃ ∈ [M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 ,M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 ] it holds that

P(xñ ↔ ym̃|Wxñ = wxñ ,Wym̃ = wym̃ ,Fñ,m̃) = P(xñ ↔ ym̃|Wxñ = wxñ ,Wym̃ = wym̃). (5.158)

• If i = 2, then Zti−20 = Z0 = u and Zti−21 = Z1 = v. As such, we observe that T 1
0 ⊆ B1,u

and T 1
1 ⊆ B1,v and hence |xñ − ym̃| ≤ N +

√
dNγ . Since N > 1 and γ < 1, it holds that

N +
√
dNγ ≤ (1 +

√
d)N . Hence if we set

√
dr0 := (1 +

√
d)N, (5.159)

then |xñ − ym̃| ≤
√
dr0 holds.

If i ∈ {3, . . . , k + 1}, then by (5.131), Bi−1
Λ (Zti−20) and Bi−1

Λ (Zti−21) must be contained within

the same layer i− 2 box. It also follows that T i−1
ti−20

, T i−1
ti−21

⊂ Bi−2
Λ (Zti−20). By item (1) of Lemma

A.1, |xñ − ym̃| ≤
√
dri−2 holds.
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The first two points justify applying Lemma 4.1. Furthermore, recall that xñ ∈ T i−1
ti−20

implies that Wxñ ∈[
1, η−1/(τ−1)

]
and ym̃ ∈ T i−1

ti−20
implies that Wym̃ is between M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 and M

1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 .

By applying Lemma 4.1 we find that

P(xñ ̸↔ yñ|Fñ,m̃) ≤ 1 − cρ
(
|xñ − ym̃|, 1,M

1
τ−1

i−1 r
d 1−δ

τ−1

i−1

)
≤ 1 − cρ

(√
dri−2, 1,M

1
τ−1

i−1 r
d 1−δ

τ−1

i−1

)
. (5.160)

Here ρ is as in (3.6) of Assumption 3.2 and we have used that ρ is decreasing in its first component. Next,
we know that because N ≥ N5.25 for all i ∈ {3, . . . , k + 1} it holds that

ri−1 ≥ Nγi−1

and ri−2 ≤ 2Nγi−2

(5.161)

Furthermore, because N ≥ N5.25, by item (1) of Claim 5.12 it holds that M i−1 ≥ 1/(ϕη), where ϕ =

(1 +
√

5)/2. Then, filling in the definition of ρ and applying (5.161), we find that

P(xñ ̸↔ yñ|Fñ,m̃) = 1 − c

(
1 ∧

M
1/(τ−1)
i−1 r

d(1−δ)/(τ−1)
i−1 · 1σ

(
√
d)drdi−2

)α

≤ 1 − C1N
0∧dαγi−1

(
1−δ
τ−1

− 1
γ

)
= 1 − C1N

dαγi−1
(

1−δ
τ−1

− 1
γ

)
. (5.162)

Here C1 = C1(α, τ, η, d) > 0 is constant with respect to i and N . Furthermore, in the last equation of
(5.162) we have used that 1 − δ < 1, τ − 1 > 1 and 1/γ > 1 by definition of δ, τ and γ (see Setting
5.3), so that (1 − δ)/(τ − 1) − 1/γ < 0. Then, we combine (5.161) with (5.155) and (5.156) to see that

n ≥ ηNdγi−1

/4 and m ≥ ηNdδγi−1

/8. By substituting this into (5.157) and using 1 − x ≤ e−x, we obtain

1 − Ψ1
ti−2

=
∏
ñ≤n
m̃≤m

P(xñ ̸↔ ym̃|Fñ,m̃) ≤
∏
ñ≤n
m̃≤m

(
1 − C1N

dαγi−1
(

1−δ
τ−1

− 1
γ

))

≤ exp
[
− C1nmN

dαγi−1
(

1−δ
τ−1

− 1
γ

)]
≤ exp

[
− C2N

dγi−1
(
1+δ+α 1−δ

τ−1
−α

γ

)]
=: err3(i − 1). (5.163)

Here C2 = C2(α, τ, η, d) > 0 is a constant. We set

R := 1 + δ + α
1 − δ

τ − 1
− α

γ
(5.164)

and notice that R > 0 because of the same explanation that was given in (5.16).
(Part 6: conclusion) We now take everything together. By substituting (5.163) and (5.153) into (5.154),
we obtain that Ψti−2 ≤ 1− (1− err3(i− 1))(1− err2(i− 1)). We may further bound this by the inequality
(1 − x)(1 − y) ≥ 1 − x − y to see that Ψti−2 ≤ err2(i − 1) + err3(i − 1). This, in turn we substitute into
(5.147) (with Ψti−2 as defined in (5.148)) to observe that if i ≥ 2

Qi ≥ 1 −
∑

ti−2∈{0,1}i−2

(err2(i− 1) + err3(i− 1)) = 1 − 2i−2(err2(i− 1) + err3(i− 1)). (5.165)

Recall that Q1 = 1. Then, by substituting (5.165) into (5.145) and using repeatedly that (1 − x)(1 − y) ≥
1 − x− y obtain that

Q =

k+1∏
i=1

Qi ≥
k+1∏
i=2

(1 − 2i−2(err2(i− 1) + err3(i− 1))) ≥ 1 −
k+1∑
i=2

2i−2(err2(i− 1) + err3(i− 1)). (5.166)

Now notice that err2(i − 1) and err3(i − 1) are increasing in i (see (5.153) resp. (5.163)). As such, for
all i ∈ {2, . . . , k + 1} we have that err2(i − 1) + err3(i − 1) ≤ err2(k) + err3(k). Furthermore, we may

observe that
∑k+1

i=2 2i−2 = 2k − 1 ≤ 2k. Then, recall k⋆
ε(N) = (ln lnN − ε ln ln lnN)/ ln(1/γ) from (5.29)

of Definition 5.5 and set ∆(γ) := ln(2)/ ln(1/γ). By elementary computation, we observe that

2kε
⋆(N) = 2

ln lnN−ε ln ln lnN
ln(1/γ) =

(lnN)∆(γ)

(ln lnN)ε∆(γ)
. (5.167)

Applying the last three observations to (5.166), applying that k < k⋆
ε(N), using the definitions of err2 and

err3 from (5.153) and (5.163) and Claim 5.6 to bound NCγk

, we see that

Q ≥ 1 − 2k(err2(k) + err3(k))

≥ 1 − (lnN)∆(γ)

(ln lnN)ε∆(γ)

(
exp

[
− η

32
exp

[
dδ(ln lnN)ε

]]
+ exp

[
− C2 exp

[
dR(ln lnN)ε

]])
=: 1 − g̃(N, ε, γ, δ, η, α, τ, d). (5.168)



Poly-logarithmic upper-bound for distances 43

One can show that g̃(N, γ, δ, η, α, τ, ε) → 0 if N → ∞. Finally, we return to equations (5.137) and (5.138)
to observe that

P(Hk is a hierarchy of depth k) ≥ (1 − g̃(N, ε, γ, δ, η, α, τ, d)(1 − kr−dδ
k )2

≥ 1 − g̃(N, ε, γ, δ, η, α, τ, d) − 2kr−dδ
k

=: 1 − err5.25(N, ε, γ, δ, η, α, τ, d). (5.169)

To show that err5.25 → 0 if N → 0, it remains to show that 2kr−dδ
k → 0 if N → 0. To do this, we use that

rk ≥ Nγk

by item (2) of Lemma 5.7, k < k⋆
ε(N) and Claim 5.6 to observe that

kr−dδ
k ≤ kN−dδγk

≤ ln lnN

ln(1/γ)
exp

[
− dδ(ln lnN)ε

]
. (5.170)

Since the right-hand side of (5.170) goes to 0 if N → ∞, we may conclude that kr−dδ
k → 0 too if N → ∞.

We conclude that in (5.169) we have that err5.25(N, ε, γ, δ, η, α, τ, d) → 0 if N → ∞. This finishes the
proof. ■

We are now ready to prove Proposition 5.2. We repeat it here for convenience.

Proposition 5.2 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2. Assume
that V = Zd and that the KSRG has parameters d ∈ N, σ1 = 1, σ2 = σ ≥ 0, τ ∈ (2, 3) and α such that
τ − 1 < α < (τ − 1)/(τ − 2). Furthermore, assume that all nearest-neighbour edges are present in E. Let
ε > 0 and set

∆ =
ln 2

ln
(
α+τ−1
α(τ−1)

) . (5.3)

Let u, v ∈ V. Then, there exists an N5.2 and a function err5.2(|u− v|) = err5.2(|u− v|, ε, α, τ, d) that goes
to 0 if |u− v| → ∞, such that if |u− v| ≥ N5.2, then

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε) ≥ 1 − err5.2(|u− v|, ε, α, τ, d). (5.4)

Proof of Proposition 5.2. Observe that

ln 2

ln(1/γ)
↓ ln 2

ln
(
α+τ−1
α(τ−1)

) if γ ↓ α(τ − 1)

α + τ − 1
. (5.171)

As such, it is possible to choose γ⋆ = γ⋆(ε, α, τ) > α(τ − 1)/(α + τ − 1) such that

ln 2

ln(1/γ⋆)
≤ ln 2

ln
(
α+τ−1
α(τ−1)

) +
ε

2
. (5.172)

Next, choose any ε̃ ∈ (0, 1). Set N := |u − v| and let k < k⋆
ε̃(N). We use the law of total probability to

see that

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε) ≥ P

(
dG(u, v) ≤ (ln |u− v|)∆+ε

∣∣ Hk(u, v) is a hierarchy of depth k
)

· P(Hk(u, v) is a hierarchy of depth k). (5.173)

We aim to reason that there exists an Ñ5.2 such that if N ≥ Ñ5.2 and Hk from Definition 5.24 is a

hierarchy of depth k, then dG(u, v) ≤ (ln |u − v|)∆+ε. To this end, notice that by construction there are∑k−1
i=1 2i = 2k − 1 ≤ 2k edges present between the vertices of Hk. Furthermore, the vertices of Hk form

a broken path between u and v, with gaps between the vertices of the form Ztk−100 and Ztk−101 or the
vertices of the form Ztk−110 and Ztk−111. Shorthand, we may summarise that we only need to connect

Ztk0 with Ztk1 for tk ∈ {0, 1}k. Recall rk = rk(N, γ⋆) from Definition 5.4. Then, by (5.131) we see

that for each tk ∈ {0, 1}k it holds that Ztk0 and Ztk1 are contained within the same layer k box (i.e.,

Bk
Λ(Ztk0) = Bk

Λ(Ztk1)) and hence from (5.132) it follows that |Ztk0 −Ztk1| ≤
√
drk. Set N1 = N1(ε̃, γ⋆) =

N5.7(ε̃, γ⋆). Then by item (2) of Lemma 5.7, if N ≥ N1 it holds that rk ≤ 2Nγk
⋆ . It follows that there

exists a constant C1 = C1(d) > 0 such that for all tk ∈ {0, 1}k, we may connect Ztk0 and Ztk1 with at

most C1N
γk
⋆ nearest-neighbour edges. Since there are 2k such pairs, this requires at most C2kNγk

⋆ edges.
The path that we have constructed in this way connects u and v. It remains to rewrite the amount of edges
required in the form given by (5.4). To this end, notice that the path from u to v we have constructed

uses at most 2k + C12kNγk
⋆ vertices, which in turn implies that dG(u, v) ≤ 2k + C12kNγk

⋆ . By using that
k < k⋆

ε̃(N) and applying Claim 5.6, with some rewriting and elementary computation we may rewrite

dG(u, v) ≤ (lnN)
ln 2

ln(1/γ⋆)

(ln lnN)
ε̃ ln 2
ln(1/γ⋆)

+ C1
(lnN)

ln 2
ln(1/γ⋆)

(ln lnN)
ε̃ ln 2
ln(1/γ⋆)

exp[(ln lnN)ε̃]

= (lnN)
ln 2

ln(1/γ⋆)

(
(ln lnN)

−ε̃ ln 2
ln(1/γ⋆) + C1(d)(ln lnN)

−ε̃ ln 2
ln(1/γ⋆) exp[(ln lnN)ε̃]︸ ︷︷ ︸

=:f(N,ε̃,γ⋆,d)

)
. (5.174)

One may verify that f(N, ε̃, γ⋆, d) = o
(
(lnN)ε/2

)
(see also Claim A.4). We may therefore choose N2 =

N2(ε, ε̃, γ⋆, d) such that if N ≥ N2, then f(N, ε̃, γ⋆, d) ≤ (lnN)ε/2. We conclude that if N ≥ N1 ∨ N2
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and Hk is present, then dG(u, v) ≤ (lnN)∆+ε. Furthermore, by Lemma 5.25, there exists an N3 =
N3(ε̃, γ⋆, δ, η, τ, d) = N5.25(ε̃, γ⋆, δ, η, τ, d) such that

P(Hk(u, v) is a hierarchy of depth k) ≥ 1 − err5.25(N, ε̃, γ⋆, δ, η, α, τ, d). (5.175)

We return to (5.173). If we set Ñ5.2 = Ñ5.2(ε, ε̃, γ⋆, δ, η, τ, d) = N1(ε̃, γ⋆)∨N2(ε, ε̃, γ⋆, d)∨N3(ε̃, γ⋆, δ, η, τ, d),

then if N ≥ Ñ5.2 by the above we find that

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε

∣∣ Hk(u, v) is a hierarchy of depth k
)

= 1. (5.176)

Combining this with (5.173) and (5.175) yields

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε) ≥ 1 − err5.25(N, ε̃, γ⋆, δ, η, α, τ, d). (5.177)

Then, notice that γ⋆ depends on ε, α and τ . Fix δ⋆ such that δ⋆ ∈ Iδ(γ⋆) (see Setting 5.3) and such that
R = 1 + δ⋆ + α(1 − δ⋆)/(τ − 1) − α/γ⋆ > 0 (note that this requirement is implicit used for err5.25). If we
now fix ε̃ = 1/10, η = 1/2, we may set

N5.2 = N5.2(ε, α, τ, d) = Ñ5.2(ε, 1/10, γ⋆(ε, α, τ), δ⋆, 1/2, α, τ, d) and (5.178)

err5.2(N, ε, α, τ, d) = err5.25(N, 1/10, γ⋆(ε, α, τ), δ⋆, 1/2, α, τ, d) (5.179)

to see that from (5.177) it follows that if N ≥ N5.2, then

P
(
dG(u, v) ≤ (ln |u− v|)∆+ε) ≥ 1 − err5.2(N, ε, α, τ, d). (5.180)

Furthermore, notice that by Lemma 5.25 the right-hand side of (5.179) goes to 0 if N → ∞. From this it
follows that also err5.2(N, ε, α, τ, d) → 0 if N → ∞. This finishes the proof. ■

We remark that in (5.178) and (5.179), the choice of ε̃ = 1/10 and η = 1/2 is completely arbitrary.
Similarly, if its constraints are satisfied the choice of δ⋆ is also arbitrary. One may choose them differently
and obtain a similar result. It should be noted, however, that varying one of the parameters ε̃, δ or η will
likely have opposing effects on N5.2 and err5.2. In particular, if one wants the result of (5.4) to hold for
more values of N := |u− v| (i.e., decrease N5.2), then that necessarily requires increasing the error bound
err5.2. The opposite also holds.

5.4. Other poly-logarithmic upper bounds

In the previous subsections, we have shown a poly-logarithmic upper bound for distances for a specific
set of parameters, specifically σ1 = 1, σ2 = σ ∈ [0, 1), τ ∈ (2, 3) and α such that τ−1 < α < (τ−1)/(τ−2)
and ασ ≤ τ − 1. In this subsection, we reason that the same ideas from the previous subsections may
be used to also find poly-logarithmic upper bounds for more values of σ, α and τ . We do not show these
results as thoroughly as we have done earlier in this section, but we note that the same proof technique
works with relatively few modifications.

Recall from that in the proof of Proposition 5.2 (in particular equations (5.164) and (5.171)), the optimal
value of the exponent ∆ depends on the lowest value that γ can attain. This lower bound is determined
by the inequality R > 0, as for example given in (5.16) or (5.164). However, this value of R is specific to
this set of parameters and the choice to search for one high-weight vertex and one constant-weight vertex.
In this section, we generalise this idea.

We imitate the sketch given in Subsection 5.1, but immediately continue to the i’th step. Rather than

searching for one high-weight vertex (i.e., with weight Θ
(
Ndγi(1−δ)/(τ−1)

)
) and one constant-weight vertex

(i.e., with weight Θ(1)) in the i’th step as done in Subsection 5.1, we search for one vertex with weight

Θ
(
Ndγiζ1/(τ−1)

)
and one vertex with weight Θ

(
Ndγiζ2/(τ−1)

)
, where ζ1, ζ2 ≥ 0. Note that without loss of

generality, we may assume that ζ1 ≥ ζ2, otherwise we interchange their role. In the i’th step, we put a

box with sidelengths Nγi

around zti−100 and search for all vertices with weight Θ
(
Ndγiζ1/(τ−1)

)
. We note

that

P
(
W = Θ

(
Ndγiζ1/(τ−1))) = Θ

(
N−dγiζ1

)
, (5.181)

so that this box contains (roughly) Ndγi

Θ
(
N−dγiζ1

)
= Θ

(
Ndγi(1−ζ1)

)
vertices. Similarly, we put a

box with sidelengths Nγi

around zti−111 and search for vertices with weight Θ
(
Ndγiζ2/(τ−1)

)
; there

are (roughly) Θ
(
Ndγi(1−ζ2)

)
such vertices. We note that for this to make sense, Θ

(
Ndγi(1−ζ1)

)
and

Θ
(
Ndγi(1−ζ2)

)
needs to increase when N increases. Therefore, we impose that ζ1, ζ2 < 1. We continue by

doing a similar computation to (5.14): if x is in the box around zti−100 and such that Wx = Θ
(
Ndγiζ1/(τ−1)

)
and y is in the box around zti−111 such that Wy = Θ

(
Ndγiζ2/(τ−1)

)
, then |x− y| = Θ

(
Nγi−1)

and

P(x ↔ y|Wx,Wy) ≥ c

(
1 ∧

Θ
(
Nγi ζ1

τ−1
)
Θ
(
Nγi ζ2

τ−1
)σ

Θ
(
Nγi−1

)d )α

= Θ
(
N

0∧dγiα
(

ζ1+σζ2
τ−1

− 1
γ

))
. (5.182)
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Note that here we have used that ζ1 ≥ ζ2. Therefore, by mimicking (5.15) we find that the probability

that none of the the vertices from the box around zti−100 with weight Θ
(
Ndγiζ1/(τ−1)

)
is connected to

any vertex of the box around zti−111 with weight Θ
(
Ndγiζ2/(τ−1)

)
is (approximately) bounded by

Θ
(
Ndγi(1−ζ1)

)∏
i=1

Θ
(
Ndγi(1−ζ2)

)∏
j=1

(
1 − Θ

(
N

0∧dγiα
(

ζ1+σζ2
τ−1

− 1
γ

)))
≤ exp

[
− Θ

(
NdRγi

)]
, (5.183)

where we have set

R = R(ζ1, ζ2, γ, α, τ, σ) = 2 − ζ1 − ζ2 + 0 ∧
(
α
ζ1 + σζ2
τ − 1

− α

γ

)
. (5.184)

As suggested, if R > 0 then we are able to show that the construction succeeds. We analyse for which
values of ζ1, ζ2 and γ this is true. The goal is to do this in such a way that γ can achieve the lowest value
possible, since ultimately if γ attains smaller values then the value of the exponent ∆(γ) = ln(2)/ ln(1/γ)
of the poly-logarithmic upper-bound becomes smaller. We denote this smallest possible value for γ by γ⋆.
We claim that we may remove the minimisation with 0 in R and are only required to analyse

R = 2 − ζ1 − ζ2 + α
ζ1 + σζ2
τ − 1

− α

γ
. (5.185)

Indeed, if the minimisation were necessary, then this would be because ζ1 and ζ2 were large enough.
However, then increasing ζ1 and ζ2 only decreases R because of the term 2− ζ1 − ζ2. In fact, we will later
see that indeed all values we obtain justify removing the minimisation. We therefore continue with the
expression in (5.185). With elementary rewriting, we may show that R > 0 is equivalent to

γ >
α(τ − 1)

(α− (τ − 1))ζ1 + (ασ − (τ − 1))ζ2 + 2(τ − 1)
=: γ̃⋆(ζ1, ζ2, α, τ, σ). (5.186)

Therefore, to obtain γ⋆ we need to find the minimal value of γ̃⋆(ζ1, ζ2α, τ, σ). Recall however that we must
do so under the requirements that 0 ≤ ζ2 ≤ ζ1 < 1. We conclude that that

γ⋆ = inf
0≤ζ2≤ζ1<1

γ̃⋆(ζ1, ζ2, α, τ, σ). (5.187)

We compute this infimum by considering different cases for α, τ and σ. We do so with three examples,
after which we note that all other cases can be reasoned in the same way.

• (Ex. 1: α < τ −1, ασ < τ −1) In this case, increasing ζ1 and ζ2 decreases the denominator, which
increases γ̃⋆. Therefore, we find the infimum at ζ1 = ζ2 = 0, and γ⋆ = α/2.

• (Ex. 2: α > τ − 1, ασ ≤ τ − 1) In this case, increasing ζ1 decreases γ̃⋆, while increasing ζ2
increases γ̃⋆. Therefore, we find the infimum by letting ζ1 ↑ 1 and setting ζ2 = 0. This yields
γ⋆ = α(τ − 1)/(α + τ − 1). We note that this is the setting of Proposition 5.2.

• (Ex. 3: α < τ − 1, ασ > τ − 1) In this case, we have to take care of the restraint ζ1 ≥ ζ2. We see
that increasing ζ1 increases γ̃⋆, while increasing ζ2 decreases γ̃⋆. We conclude that to achieve the
infimum, we need to choose ζ1 as small as possible, i.e., we set ζ1 = ζ2. We now arrive at a second
disjunction:

– If |α−(τ−1)| > ασ−(τ−1), then (α−(τ−1))ζ1+(ασ−(τ−1))ζ2 = (α−(τ−1)+ασ−(τ−1))ζ2
is decreasing in ζ2 and hence setting ζ2 = 0 yields the infimum; γ⋆ = α/2.

– However, if |α− (τ − 1)| < ασ− (τ − 1), then (α− (τ − 1) +ασ− (τ − 1))ζ2 is increasing and
therefore ζ2 ↑ 1 yields the infimum; γ⋆ = (τ − 1)/(1 + σ).

In total, we obtain the following Table 1.

Restrictions on α, τ, σ Optimal values ζ1, ζ2 γ⋆

α ≤ τ − 1, ασ ≤ τ − 1 ζ1, ζ2 = 0 α
2

α > τ − 1, ασ ≤ τ − 1 ζ1 ↑ 1, ζ2 = 0 α(τ−1)
α+τ−1

α ≤ τ − 1, ασ > τ − 1,
|α− (τ − 1)| < ασ − (τ − 1)

ζ1, ζ2 ↑ 1 τ−1
1+σ

α ≤ τ − 1, ασ > τ − 1,
|α− (τ − 1)| = ασ − (τ − 1)

ζ1 = ζ2 ∈ (0, 1) α
2

α ≤ τ − 1, ασ > τ − 1,
|α− (τ − 1)| > ασ − (τ − 1)

ζ1, ζ2 = 0 α
2

α > τ − 1, ασ > τ − 1 ζ1, ζ2 ↑ 1 τ−1
1+σ

Table 1. A table summarising the optimal lower-bound γ⋆ for γ such that R > 0 in
(5.185). In the left-most column we distinguish all cases based on the value of α, τ and
σ. In the middle column we note which values for ζ1 and ζ2 should be taken in each case.
The right-most column denotes the value of γ⋆ that holds in each case.

Our techniques may readily be generalised to show the same statement as Proposition 5.2, but with
the restrictions replaced by the left-most column of Table 1 and ∆ replaced by ln(2)/ ln(1/γ⋆) for the
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corresponding value of γ⋆ from the right-most column of Table 1, provided that γ⋆ < 1. We note that
γ⋆ < 1 is necessary because γ > γ⋆ and we require that γ < 1.

Note that for the entries with γ⋆ = (τ − 1)/(1 + σ), γ⋆ < 1 implies that τ < 2 + σ. As we will see in
the following Section 6, there is much stricter upper bound in these cases. As such, these cases will not
appear in the phase diagram given in Figure 2.
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6. Doubly logarithmic upper-bound for distances

In this section, we prove that if we choose the parameters in a certain way, then a KSRG under
Assumption 3.2 shows ultra-small behaviour. That is, the graph distance of two vertices u, v ∈ V grows
doubly logarithmically with the spatial distance |u − v| with high probability as |u − v| → ∞. We show
this under the condition that all nearest-neighbour edges are present, i.e., we assume that if x, y ∈ V = Zd

are such that |x − y| = 1, then xy ∈ E . In particular, we show Theorem 6.1. We do so for a KSRG with
parameters σ1 = 1 and σ2 = σ > 0. We note that by Claim 3.3 the result then follows for all σ1, σ2 > 0.

Theorem 6.1 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2 with parameters
d ∈ N, σ1 = 1, σ2 = σ > 0, α > 1, τ ∈ (2, 2 + σ) and V = Zd and suppose that all nearest-neighbour edges
of Zd are present in E. Then for every δ > 0 it holds that

lim
|u−v|→∞

P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
)

= 1. (6.1)

To prove Theorem 6.1, we use the following Proposition 6.2.

Proposition 6.2 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2 with param-
eters d ∈ N, σ1 = 1, σ2 = σ > 0, α > 1, τ ∈ (2, 2 + σ) and V = Zd and suppose that all nearest-neighbour
edges of Zd are present in E. Let u, v ∈ V. Take any ε ∈ (0, 1) and δ > 0. Then there exists an
N6.2 = N6.2(δ, ε, σ, α, τ, d) such that if |u− v| ≥ N6.2, then

P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
)

≥ 1 − ε. (6.2)

We note that the proof of Theorem 6.1 follows immediately from Proposition 6.2. The following Sub-
section 6.1 is dedicated to proving Proposition 6.2.

6.1. Proof of Proposition 6.2

To show Proposition 6.2, we construct a path between u and v that has length at most (2 + δ) ln ln(|u−
v|)/ ln(σ/(τ − 2)) and show that this construction succeeds with probability at least 1 − ε. In Figure 5,
an illustration of the path we construct is given. The description of Figure 5 contains roughly the steps
we take to construct this path. To start, we highlight the setting we are working in throughout the entire
subsection. Additionally to all parameters of the KSRG G given in Theorem 6.1 and Proposition 6.2, we
define two extra parameters A and B. Roughly, A determines the amount of vertices we may choose from
for each step in the weight-increasing path (see step (1) from Figure 5). B determines the speed with
which the size of the layers grows (see the black boxes in Figure 5).

Setting 6.3 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2 with parameters
d ∈ N, σ1 = 1, σ2 = σ > 0, α > 1 and τ ∈ (2, 2 + σ). Fix A,B > 1 two real-valued constants such that

A ∈
(

1,
1 + σ

τ − 1

)
=: IA, B ∈

(
σ

(τ − 1)A− 1
,

σ

(τ − 1)
(
A− A−1

α

)
− 1

)
=: IB(A) = IB . (6.3)

We always suppress the dependence on σ and τ from IA and IB and see it as implicit.

In Setting 6.3, it may not a priori be clear that IA and IB are non-empty or that B > 1. We therefore
verify this. To show that IA is non-empty, we show that (1 + σ)/(τ − 1) > 1. To this end, note that
(1 + σ)/(τ − 1) > 1 is equivalent to τ < 2 + σ, which is true by assumption. We conclude that IA is
non-empty and we may therefore indeed choose A such as described above. Next, we show that IB is
non-empty and that if we choose B ∈ IB , then B > 1. First, we analyse the lower-end point of IB . We
note that since τ > 2 by assumption and A > 1, it is also clear that (τ − 1)A − 1 > 0. Therefore, by
rewriting we observe that

σ

(τ − 1)A− 1
> 1 ⇔ A <

1 + σ

τ − 1
, (6.4)

which is true because of the choice of A. We conclude that the lower end-point of IB is greater than 1.
Next, we analyse the upper end-point of IB , starting with showing that the denominator is positive. We
again rewrite to see that

(τ − 1)

(
A− A− 1

α

)
− 1 > 0 ⇔ A <

α 1+σ
τ−1

− 1

α− 1
. (6.5)
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Figure 5. A figure illustrating the heuristic idea of the proof of Proposition 6.2. We want
to construct a path between two distinct vertices u, v ∈ V. To this end, we firstly define
doubly exponentially increasing annuli (Lu

i )i and (Lv
i )i around u and v. These annuli

are called layers and are given in black in the figure. In step (1), we construct a greedy
weight-increasing path that has exactly one vertex in each layer, i.e., we sequentially
build a path V u

0 V u
1 . . . V u

k⋆−1V
u
k⋆

such that each V u
i is in Lu

i and the weight of V u
i is

at least doubly exponential in i. Similarly, we construct such a path for v. Here k⋆ is
a variable that signifies when we stop the process to ensure that step (2) can also be
achieved. In particular, we set k⋆ to be O(ln ln |u−v|). This also implies that the length
of the two paths we construct in step (1) is O(ln ln |u − v|). These paths are given in
blue. Next, in step (2) we connect V u

k⋆
and V v

k⋆
in at most 4 edges. These are given in

green. Lastly, in step (3) we connect u to V u
0 and v to V v

0 in a constant number of edges
using nearest-neighbour edges. These paths are given in red. In total, therefore, this
path from u to v utilises O(ln ln |u− v|) edges. Furthermore, each step may be achieved
with high probability.

To show that the right-most inequality of (6.5) is true, we use that if α > 1, then (αx− 1)/(α− 1) > x for
all x > 1. Since (1 + σ)/(τ − 1) > A > 1 and (αx− 1)/(α− 1) is increasing in x, we therefore obtain

α 1+σ
τ−1

− 1

α− 1
>

αA− 1

α− 1
> A. (6.6)

We conclude that the right-most inequality of (6.5) is true, and hence that the denominator of the upper
end-point of IB is positive. From the fact that (τ − 1)A− 1 > (τ − 1)(A− (A− 1)/α) − 1, it can quickly
be observed that the upper end-point of IB is indeed greater than the lower end-point. Taking everything
together, we see that IB is non-empty and lies completely above 1. We may therefore also choose B as
described in (6.3).

Using the constants defined in Setting 6.3, for every vertex v ∈ V we define a sequence of doubly
exponentially growing annuli centred around v. We call these annuli the layers around v. In Figure 5,
these layers are illustrated in black.

Definition 6.4 (Layers) Consider Setting 6.3, in particular A and B. Let Mε > 1 and v ∈ V = Zd. We
define

Lv
0 = Lv

0(Mε, A, d) :=

(
v +

[
− 1

2
MA

ε ,
1

2
MA

ε

]d)
∩ V and (6.7)

Lv
i = Lv

i (Mε, A,B, d) :=

((
v +

[
− 1

2
MABi

ε ,
1

2
MABi

ε

]d)
∩ V

)∖ i−1⋃
j=0

Lv
j for i ∈ N. (6.8)

We refer to these sets as the layers around v. Furthermore, for i ≥ 0, we refer to Lv
i as a layer of order

i. When Mε, A,B and d are clear from context we write Lv
0 and Lv

i .
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We continue by showing some useful properties that we use in later proofs of this section. In particular,
we bound the distance between two vertices in the layers and bound the amount of vertices that each layer
contains. These two properties are given in the following Claim 6.5.

Claim 6.5 (Properties of layers) Consider Setting 6.3, in particular A and B. Let Mε > 1, v ∈ V = Zd

and let the layers (Lv
i )i≥0 be as given by Definition 6.4. The following statements hold:

(1) Let i, j ∈ N ∪ {0}. Then, for all x ∈ Lv
i and y ∈ Lv

j it holds that |x− y| ≤
√
dMdABi∨j

ε .
(2) There exists a M6.5 = M6.5(A,B, d) such that for all i ≥ 0 if Mε ≥ M6.5, we have

|Lv
i | ≥

1

2
MdABi

ε . (6.9)

Proof. Item (1) is a direct consequence of Lemma A.1. Next, we consider item (2). To this end, we note
that for all i ∈ N ∪ {0} it holds that∣∣∣∣(v +

[
− 1

2
MABi

ε ,
1

2
MABi

ε

]d)
∩ V

∣∣∣∣ =

(
2

⌊
MABi

ε

2

⌋
+ 1

)d

. (6.10)

We first consider a layer or order 0, i.e., Lv
0 . Then by (6.10) and the fact that 2⌊x/2⌋ ≥ x− 2, we obtain

that

|Lv
0 | =

(
2

⌊
MA

ε

2

⌋
+ 1

)d

≥
(
MA

ε − 1
)d ≥

(
1 −M−A

ε

)d
MdA

ε =: R0(Mε)MdA
ε . (6.11)

Similarly, if i ≥ 1 we may again apply (6.10) and the fact that x− 2 ≤ 2⌊x/2⌋ ≤ x to see that

|Lv
i | =

(
2

⌊
MABi

ε

2

⌋
+ 1

)d

−

(
2

⌊
MABi−1

ε

2

⌋
+ 1

)d

≥
(
MABi

ε − 1
)d −

(
MABi−1

ε + 1)

=

[(
1 −M−ABi

ε

)d
−
(
M−ABi−1(B−1)

ε + M−ABi

ε

)d]
MdABi

ε =: Ri(Mε)MdBi

ε . (6.12)

To show item 2, we want to show that there exists an M6.5 such that for all j ≥ 0, Rj(Mε) ≥ 1/2 if
Mε ≥ M . To this end, note that because B > 1, Rj(Mε) is increasing in j if j ≥ 1. Hence

R1(Mε) ≥ 1

2
⇒ Rj(Mε) ≥ 1

2
(6.13)

for all j ≥ 1. Next, note that R0(Mε) → 1 and R1(Mε) → 1 if Mε → ∞. We conclude that
there must be some M1 = M1(A, d) such that if Mε ≥ M1, then R0(Mε) ≥ 1/2. Similarly, there
must be some M2 = M2(A,B, d) such that if Mε ≥ M2, then R1(Mε) ≥ 1/2. From (6.13) it then
also follows that if Mε ≥ M2, then for all j ≥ 1 it holds that Rj(Mε) ≥ 1/2. Thus, if we set
M6.5 = M6.5(A,B, d) = M1(A, d) ∨ M2(A,B, d), then if Mε ≥ M6.5 equation (6.9) holds, which is
what we wanted to show. ■

Next, we continue with constructing paths through the layers. In particular, we build up a path such
that its first vertex is in the layer of order 0 and each subsequent vertex is in a layer of one higher order.
Furthermore, we do this in such a way that the weight along the path typically increases. For this reason,
the path we construct is also called a weight-increasing path. This path is given in step (1) of Figure 5,
where it is coloured blue. To develop this path, we firstly develop some notation. In particular, we define
a short-hand notation to find all vertices in a set E ⊆ V that have a weight higher than a certain value K.
Formally, we use the following Definition 6.6.

Definition 6.6 Consider Setting 6.3. For any set E ⊆ V = Zd and K ≥ 1 we set

T≥(E,K) := {v ∈ E : Wv ≥ K} . (6.14)

The function defined above essentially thins out a set of vertices based on their weight. For this reason,
the function T≥ may be referred to as a thinning function.

Next, we develop notation for the random vertices that constitute the path described earlier. We de-
note these vertices (V v

i )i≥0 and we construct them in a specific way. We start by searching Lv
0 for all

vertices that have weight higher than M
d/(τ−1)
ε . If such a vertex exists, we set V v

0 to be that vertex. If
multiple such vertices exist, we set V v

0 to be the one with the highest weight. If no such vertex exists,

we set V v
0 to be ∅. Next, we search for all vertices in Lv

1 that have weight higher than M
dB/(τ−1)
ε and

are connected to V v
0 . Again, we set V v

1 to be the vertex with the highest weight if such a vertex exist
and ∅ otherwise. We then iterate this procedure for i ≥ 2. In particular, we use the following Definition 6.7.
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Definition 6.7 Consider Setting 6.3, in particular A and B. Let Mε > 1, v ∈ V = Zd and consider
(Lv

i )i≥0 from Definition 6.4. Furthermore, let T≥ be from Definition 6.6. We define the random set

T v
0 = T v

0 (A,B, τ, d) = T≥

(
Lv

0 ,M
d/(τ−1)
ε

)
and the random vertex

V v
0 = V v

0 (T v
0 ) =

{
arg maxu∈Tv

0
Wu if T v

0 ̸= ∅
∅ if T v

0 = ∅
. (6.15)

Then for i ≥ 1 consecutively define T v
i = T≥

(
Lv

i ,M
dBi/(τ−1)
ε

)
∩NG (V v

i−1) and

V v
i = V v

i (V v
i−1, T

v
i ) =

{
arg maxu∈Tv

i
Wu if T v

i ̸= ∅
∅ if T v

i = ∅
. (6.16)

Suppose, in Definition 6.7 above, we have that V v
i ̸= ∅. Then it must hold that all V v

j , j ∈ {0, i− 1}
also satisfy V v

j ̸= ∅. Intuitively, this is because if at some point there is some V v
j where the construction

given in Definition 6.7 fails, then all the following vertices cannot connect to a previous vertex. More
precisely, if there exists some j such that V v

j = ∅, then NG(V 0
j ) = NG(∅) = ∅. It follows that T v

j+1 = ∅
and hence V v

j+1 = ∅. Repeating this observation shows that if V v
j = ∅, then for all ℓ ≥ j it holds that

V v
ℓ = ∅. Since V v

i ̸= ∅, we therefore conclude that V v
j ̸= ∅ for all j ∈ 0, i− 1. We continue by observing

that if V v
i ̸= ∅, then it holds that T v

i ̸= ∅. From the fact that

V v
i ∈ T v

i ⊆ T≥

(
Lv

i ,M
dBi/(τ−1)
ε

)
, (6.17)

it immediately follows that WV v
i
≥ M

dBi/(τ−1)
ε by recalling Definition 6.6. These two properties described

above are summarised in the following Claim 6.8.

Claim 6.8 (Properties of random vertices) Consider Setting 6.3, in particular B. Let Mε > 1, v ∈ V and
consider (V v

i )i≥0 from Definition 6.7. If for i ∈ N ∪ {0} it holds that V v
i ̸= ∅, then

(1) for all j < i, V v
j ̸= ∅, and

(2) the weight of V v
i satisfies WV v

i
≥ M

dBi/(τ−1)
ε .

Proof. This follows immediately from Definition 6.7. ■

We note that if the construction of the random vertices given in Definition 6.7 succeeds, then this
constitutes a weight-increasing path. Indeed, by item (2) of Claim 6.8, we see that the weight of the
i’th random vertex typically grows with i. It remains to show that this construction succeeds with high
probability. To this end, we firstly show that each step of the construction succeeds with high probability.
More precisely, given that V v

i−1 ̸= ∅, we bound the probability that also V v
i ̸= ∅. We also show that this

bound goes to 1 both if Mε → ∞ and if i → ∞. The latter suggests that the first few steps of the path
are the ‘hardest’, in the sense that the success probability of these steps is much lower than those of the
later steps.

Claim 6.9 Consider Setting 6.3, in particular A and B. Let Mε > 1, v ∈ V, consider (Lv
i )i≥0 from

Definition 6.4 and (V v
i )i≥0 and (T v

i )i≥0 from Definition 6.7. There exists a constant C6.9 = C6.9(α, d) > 0
and an M6.9 = M6.9(A,B, α, d) such that if Mε ≥ M6.9, then for all i ≥ 1

P (V v
i ̸= ∅|V v

i−1 ̸= ∅) ≥ 1 − exp

[
−C6.9M

dBiα
(

B+σ
B(τ−1)

−A+A−1
α

)
ε

]
. (6.18)

Furthermore, the event in (6.18) is independent of all vertices in V\
⋃i

j=0 L
v
j .

Proof. We aim to show that (6.18) holds when we condition on V v
i−1 = vi−1, rather than V v

i−1 ̸= ∅.
That is, we show that for all vi−1 ∈ Lv

i−1 then

P (V v
i ̸= ∅|V v

i−1 = vi−1) ≥ 1 − exp

[
−C6.9M

dBiα
(

B+σ
B(τ−1)

−A+A−1
α

)
ε

]
. (6.19)

Since this bound is uniform over all vi−1, it is valid for every realisation of V v
i when conditioned on V v

i ̸= ∅.
Equation (6.18) follows immediately.

Fix any vi−1 ∈ Lv
i−1. We want to show (6.19). To do this, we find a bound for the complement of the

event given in (6.19), i.e., we find a bound for P(V v
i = ∅|V v

i−1 = vi−1). To this end, note that V v
i = ∅

happens when T v
i = ∅. By definition of T v

i (see Definition 6.7) and the fact that V v
i−1 = vi−1, this can

only happen when each vertex of Lv
i is either not connected to vi−1 or does not have weight higher than
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M
dBi/(τ−1)
ε . We conclude that

Qi−1(vi−1) := P(V v
i = ∅|V v

i−1 = vi−1) = P(∀u ∈ Lv
i : u ̸↔ vi−1 or Wu < MdBi/(τ−1)

ε |V v
i−1 = vi−1).

(6.20)
We analyse Qi−1(vi−1). Firstly, note that Lv

i is finite, so we can enumerate all its vertices. Choose any
labelling {uj : j ∈ {1, . . . , |Lv

i |}} of the vertices such that {uj : j ∈ {1, . . . , |Lv
i |}} = Lv

i and the labelling is
independent of the weight of the vertices4. Next, we define the following events for all j ≤ |Lv

i |:

Fuj ,vi−1 := {V v
i−1 = vi−1} ∩

j−1⋂
ℓ=1

(
{uℓ ̸↔ vi−1} ∩

{
Wuℓ < MdBi/(τ−1)

ε

})
. (6.21)

These sets give the information that V v
i−1 = vi−1 and that all vertices before uj are either not connected to

vi−1 or do not have high enough weight. We consider for any uj ∈ Lv
i the probability that uj ̸∈ T v

i , i.e.,it

is not either not connected to V v
i−1 = vi−1 or its weight is not larger than M

dBi/(τ−1)
ε , given Fuj ,vi−1 .

Using this and telescopically applying the definition of conditional probability, we may write

Qi−1(vi−1) = P
( |Lv

i |⋂
j=1

(
{uj ̸↔ vi−1} ∩

{
Wuj < MdBi/(τ−1)

ε

}) ∣∣∣ V v
i−1 = vi−1

)

=

|Lv
i |∏

j=1

P(uj ̸= vi−1 or Wuj < MdBi/(τ−1)
ε | Fuj ,vi−1)︸ ︷︷ ︸

=:qi−1(uj ,vi−1)

. (6.22)

Next, we analyse qi−1(uj , vi−1). By rewriting and using conditional probability, we find that

qi−1(uj , vi−1) = 1 − P
(
uj ↔ vi−1

∣∣∣Wuj ≥ MdBi/(τ−1)
ε ,Fuj ,vi−1

)
P
(
Wuj ≥ MdBi/(τ−1)

ε

)
. (6.23)

In the last probability, we have also used that Wuj⊥Fuj ,vi−1 , since Wuj is independent of the weight of
every other vertex and Fuj ,vi−1 only contains information about the weight of (V u

ℓ )ℓ≤i−1 and (uℓ)ℓ≤j−1.

Next, for any s ≥ 1, t ≥ M
dBi−1/(τ−1)
ε we may verify that the assumptions of Lemma 4.1 hold:

(1) P(Wuj ≥ s,Wvi−1 ≥ t|Fuj ,vi−1) > 0

(2) P
(
uj ↔ vi−1|Wuj = s,Wvi−1 = t,Fuj ,vi−1

)
= P

(
uj ↔ vi−1|Wuj = s,Wvi−1 = t

)
.

In the first inequality, we have used that the weight Wuj of uj is independent of Fuj ,vi−1 and Wvi−1 and
Wvi−1 ≥ t has positive probability under Fuj ,vi−1 . In the second equality, we have used that edges are
present independently of all other edges, given a realisation of the weights. We are therefore justified in
applying Lemma 4.1. By doing so, from (6.23), the weight distribution of Wuj given by (3.4) and the fact

that Fuj ,vi−1 implies that V v
i=1 = vi−1 which implies that Wvi−1 ≥ MdBi−1

ε , we find that

qi−1(uj , vi−1) ≤ 1 − cρ
(
|uj − vi−1|,MdBi/(τ−1)

ε ,MdBi−1/(τ−1)
ε

)
M−(τ−1)dBi/(τ−1)

ε . (6.24)

Then, notice that since Mε > 1, d ∈ N, τ − 1 > 1 and B > 1 it holds that M
dBi/(τ−1)
ε > M

dBi−1/(τ−1)
ε .

Furthermore, from item (1) of Claim 6.5, we find that |uj−vi−1| ≤
√
dMdABi

ε . Now by using the definition
of ρ from (3.6) and using some elementary computations, from (6.24) we obtain that

qi−1(uj , vi−1) ≤ 1 − c

[
1 ∧

(
M

dBi/(τ−1)
ε M

σdBi−1/(τ−1)
ε

(
√
dMABi

ε )d

)]α
M−dBi

ε

≤ 1 − C1M
−dBi−0∧dαBi

(
B+σ

B(τ−1)
−A
)

ε . (6.25)

Here C1 = C1(α, d) = c/ddα/2 > 0 is constant with respect to Mε and i and we have used that 1∧xp = x0∧p

if x > 1. Next, we analyse the exponent of Mε in (6.25). By rewriting, we may show that

B + σ

B(τ − 1)
−A < 0 ⇔ B >

σ

A(τ − 1) + 1
. (6.26)

The latter inequality is true by definition (see Setting 6.3), so the former is too. By going back to (6.25),
we conclude that

qi−1(uj , vi−1) ≤ 1 − C1M
dBi(α B+σ

B(τ−1)
−Aα−1)

ε . (6.27)

Continuing, by item (2) of Claim 6.5, there exists a M6.9 = M6.9(A,B, d) = M6.5(A,B, d) such that if

Mε ≥ M6.5, then |Lv
i | ≥ MdBi

ε /2 for all i ∈ N ∪ {0}. If we then assume that Mε ≥ M1, by substituting

4For example, choose the lexicographical ordering of spatial position of the vertices.
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(6.27) into (6.22) and using that 1 − x ≤ e−x, we obtain

Qi−1(vi−1) =

|Lv
i |∏

j=1

qi−1(uj , vi−1)

≤
(

1 − C1M
−dBi(α B+σ

B(τ−1)
−Aα−1)

ε

) 1
2
MdABi

ε

≤ exp
[
− C2M

dBi(α B+σ
B(τ−1)

−αA−1+A)

ε

]
. (6.28)

Here C2 = C2(α, d) = C1(α, d)/2 > 0 is constant with respect to i and Mε. By recalling the definition
of Qi−1(vi−1) from (6.20) and setting C6.9 = C6.9(α, d) = C2(α, d), we thus conclude that (6.19) holds
if Mε ≥ M6.9. As already reasoned at the start of the proof, this also shows that (6.18) holds. Lastly,

note that in this proof we have only used weights of vertices that are in
⋃i

j=0 L
v
j . Since the weights of all

vertices are independent, we conclude that the event in (6.18) is independent of all vertices in V\
⋃i

j=0 L
v
j .

This finishes the proof.
■

We recall from Definition 3.1 that an edge between two vertices depends solely on the weight of those
two vertices. The fact that the result in Claim 6.9 is independent of all vertices in V\

⋃i
j=0 L

v
j therefore

also means that the result is independent of all edges between vertices that are not in
⋃i

j=0 L
v
j .

Continuing, since we later on intend to take Mε a large constant, the result (6.18) of Claim 6.9 is only
useful when

R := α

(
B + σ

B(τ − 1)
−A +

A− 1

α

)
> 0. (6.29)

We therefore verify that (6.29) is correct. To do this, we note that by rewriting we can see that (6.29) is
equivalent to

A <
α 1+σ

τ−1
− 1

α− 1
. (6.30)

We have already seen that this is true in equation (6.6). Therefore, the right-hand side of (6.18) indeed
goes to 1 if Mε → ∞.

From the above Claim 6.9 we see that we can find edges from one layer to the next using vertices with
typically increasing weight. Using this claim repeatedly, we can string all these edges together to construct
a path from the layer of order 0 to a layer of any order. In the following Corollary 6.10, we compute a
lower bound for the probability that this construction succeeds. Crucially, the bound we compute goes to
1 if Mε → ∞ and does not depend on the length of the path. The former is needed when we eventually
need to construct a path with high probability; the latter is useful when we want to find increasingly longer
paths.

Corollary 6.10 Consider the same setting as Lemma 6.9 and fix any k ∈ N. Then there exists a constant
C6.10 > 0 and an M6.10 = M6.10(A,B, α, d) such that if Mε ≥ M6.10, then

P (V v
k ̸= ∅) ≥ 1 − 2 exp

[
−1

2
Md(A−1)

ε

]
− 4 exp

[
−C6.10M

dαB
(

A−1
α

+ B+σ
B(τ−1)

−1
)

ε

]
. (6.31)

Furthermore, the event {V v
k ̸= ∅} is independent of the weight of all vertices in V\

⋃k
i=0 L

v
i .

Proof. Before we start with the proof, we firstly give the definition of M6.10. Firstly set M1 =
M1(A,B, d) = M6.5(A,B, d) and note that if Mε ≥ M1, then by item (2) of Claim 6.5, for all i ∈ N ∪ {0}
it holds that |Lv

i | ≥ MdABi

ε /2. Furthermore, let M2 = M2(A,B, α, d) = M6.9(A,B, α, d) and note that if
Mε ≥ M2, then by Claim 6.9 for all i ≥ 1 equation 6.18 holds. Next, define R as in (6.29), i.e.,

R = R(A,B, α, τ) = α

(
B + σ

B(τ − 1)
−A +

A− 1

α

)
. (6.32)

Then by (6.29) we know that R > 0. Furthermore, let C6.9 = C6.9(α, d) > 0 be the constant from Claim
6.9. Then, because d ∈ N, A > 1 and B > 1, it is possible to find an M3 = M3(A,B, α, τ, d) such that if
Mε ≥ M3, then

exp
[
−Md(A−1)

ε

]
≤ 1

2
and exp

[
− C6.9M

dRB
ε

]
≤ 1

2
. (6.33)

Specifically, we set

M3 = ln(2)
1

d(A−1) ∨
( ln 2

C6.9

) 1
dRB

. (6.34)

Lastly, it is quickly verified that there exists an M4 = M4(A,B, α, τ, d) such that if Mε ≥ M4, then

for all i ≥ 0 it holds that iMdRB
ε ≤ MdRBi

ε . We now set M6.10 = M6.10(A,B, α, τ, d) = M1(A,B, d) ∨
M2(A,B, α, d) ∨ M3(A,B, α, τ, d) ∨ M4(A,B, α, τ, d). For the remainder of this proof, we assume that
Mε ≥ M6.10.
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We continue by showing (6.31). By the law of total probability, we observe that for any i ≥ 1:

P (V v
i ̸= ∅) = P

(
V v
i ̸= ∅

∣∣V v
i−1 ̸= ∅

)
P (V v

i−1 ̸= ∅) + P
(
V v
i ̸= ∅

∣∣V v
i−1 = ∅

)︸ ︷︷ ︸
=0

P (V v
i−1 = ∅)

= P
(
V v
i ̸= ∅

∣∣V v
i−1 ̸= ∅

)
P (V v

i−1 ̸= ∅) . (6.35)

Here we have used that by the first item of Claim 6.8, it cannot happen that V v
i−1 = ∅ and V v

i ̸= ∅.
Applying (6.35) k times, we obtain

P(V v
k ̸= ∅) = P(V v

0 ̸= ∅)

k∏
i=1

P
(
V v
i ̸= ∅

∣∣V v
i−1 ̸= ∅

)
. (6.36)

We first consider P(V v
0 ̸= ∅). To this end, note that {V v

0 ̸= ∅} is only possible if T v
0 ̸= ∅. By recalling

the definition of T v
0 from Definition 6.7, we observe that this is possible if there is at least one vertex with

weight higher than M
d/(τ−1)
ε in Lv

0 . Equivalently, T v
0 ̸= ∅ if maxx∈Lv

0
Wx ≥ M

d/(τ−1)
ε . Taking everything

together, by additionally applying Claim A.2 and using that Mε ≥ M6.10 implies that |Lv
0 | ≥ MdA

ε /2, we
find that

P(V v
0 ̸= ∅) = P

(
max
x∈Lv

0

Wx ≥ Md/(τ−1)
ε

)
= 1 − exp

[
− |Lv

0 |M−d
ε

]
≤ 1 − exp

[
− 1

2
Md(A−1)

ε

]
. (6.37)

Next, because Mε ≥ M6.10 and by Lemma 6.9, we know that (6.18) holds for every P(V v
i ̸= ∅|V v

i−1 ̸= ∅).
By returning to (6.36) we obtain

P(V v
k ̸= ∅) ≥

(
1 − exp

[
−1

2
Md(A−1)

ε

]) k∏
i=1

(
1 − exp

[
−C6.9M

dRBi

ε

])
, (6.38)

where R is as in (6.32). Next, note that because Mε ≥ M6.10, we know that exp
[
− M

d(A−1)
ε /2

]
≤ 1/2

and exp
[
− C6.9M

dRB
ε

]
≤ 1/2. Furthermore, since B > 1 from the last inequality we also obtain that for

all i ≥ 2 it holds that exp
[
− C6.9M

dRBi

ε

]
≤ 1/2. Next, we apply the inequality 1 − x ≥ e−2x, which is

valid when x ∈ [0, 1/2] 5. By doing so to (6.38) we obtain

P(V v
k ̸= ∅) ≥ exp

[
− 2

(
exp

[
−1

2
Md(A−1)

ε

]
+

k∑
i=1

exp
[
−C6.9M

dRBi

ε

])]

≥ exp

[
− 2

(
exp

[
−1

2
Md(A−1)

ε

]
+

∞∑
i=1

exp
[
−C6.9M

dRBi

ε

])]
. (6.39)

In the second inequality we take the infinite sum rather than the partial sum up to k, as this yields a uniform
bound over all k. Next, we examine the sum in (6.39). To this end, note that because Mε ≥ M6.10, for all

i ≥ 0 it holds that iMdRB
ε ≤ MdRBi

ε . By applying this and using that exp
[
− C6.9M

dRB
ε

]
≤ 1/2, we find

that
∞∑
i=1

exp
[
−C6.9M

dRBi

ε

]
≤

∞∑
i=1

exp
[
−C6.9M

dRB
ε

]i
=

exp
[
−C6.9M

dRB
ε

]
1 − exp

[
−C6.9MdRB

ε

] ≤ 2 exp
[
−C6.9M

dRB
ε

]
.

(6.40)
By substituting (6.40) into (6.39) and using that e−x ≥ 1 − x, we obtain

P(V v
k ̸= ∅) ≥ 1 − 2 exp

[
−1

2
Md(A−1)

ε

]
− 4 exp

[
−C6.9M

dRB
ε

]
, (6.41)

which is valid if Mε ≥ M6.10. By recalling the definition of R from (6.32) and setting C6.10 = C6.10(α, d) =
C6.9(α, d) > 0 we see that this shows (6.31). Lastly, we note that the event {V v

k ̸= ∅} only depends on

the weight of vertices that are in
⋃k

i=0 L
v
i . Since the weights of all vertices are independent, we find that

{V v
k ̸= ∅} is independent of the weight of all vertices in V\

⋃k
i=0 L

v
i . This finishes the proof. ■

We note that with Corollary 6.10, we have shown that the construction of Definition 6.7 succeeds with
high probability. Indeed, if V u

k ̸= ∅ with high probability, then by item (1) of Claim 6.8 we see that also
the path V u

0 V u
1 . . . V u

k exists with high probability. As already announced, this result holds regardless of
the value of k. We may therefore build the path from step (1) of Figure 5 up to any length. We choose a
specific length k⋆ for this path. This k⋆ is defined in the following Definition 6.11.

Definition 6.11 Consider Setting 6.3, in particular A and B. Let u, v ∈ V and set N := |u − v|. We
define k⋆ = k⋆(N,Mε, A,B, d) as the largest integer satisfying

MABk⋆

ε ≤ 1

2
√
d
N. (6.42)

When N,Mε, A,B and d are clear from context, we suppress their dependence and write k⋆.

5This inequality is in fact valid for more values that just x ∈ [0, 1/2]. The lower-bound of 0 is valid, but the exact

upper end-point for x is given by 1 + W (−2/e2)/2 ≈ 0.7968. Here W is the principal branch of the Lambert W function,
which is the inverse function of y 7→ yey . Choosing 1/2 as an upper bound is more convenient and does not significantly
impact the proof.

https://en.wikipedia.org/wiki/Lambert_W_function
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Before we continue, we analyse Definition 6.11. Firstly, by taking logarithms twice in (6.42), we see
that k⋆ needs to satisfy

lnA + k⋆ lnB + ln lnMε ≤ ln(lnN − ln(2
√
d)). (6.43)

Next, we notice that B > 1 and that since d ≥ 1, it holds that ln(lnN − ln(2
√
d)) ≤ ln lnN . Substituting

this into (6.43) and rewriting yields

k⋆ ≤ ln lnN − lnA− ln lnMε

ln(B)
. (6.44)

We indeed see that as announced, k⋆ = O(ln ln(N)). Next, notice that because Lu
k⋆

and Lv
k⋆

have side-

lengths MABk⋆

ε ≤ N/(2
√
d) and their centres u and v are N apart, by item (2) of Lemma A.1 we find that

Lu
k⋆

∩ Lv
k⋆

= ∅. Since the layers are increasing, it quickly follows that

( k⋆⋃
i=0

Lu
i

)
∩
( k⋆⋃

i=0

Lv
i

)
= ∅. (6.45)

From Corollary 6.10, we then also obtain that the events
{
V u
k⋆

̸= ∅
}

and
{
V v
k⋆

̸= ∅
}

are independent.
This latter observation is exactly why we require that k⋆ satisfies (6.42); if k⋆ were (much) larger, then
we cannot ensure that Lu

k⋆
∩ Lv

k⋆
̸= ∅ and hence that

{
V u
k⋆

̸= ∅
}

and
{
V v
k⋆

̸= ∅
}

are independent. There
is, however, also reason to require k⋆ to be as large as possible. This becomes evident when we want to
connect V u

k⋆
to V v

k⋆
. If k⋆ were (much) smaller, then these vertices typically would have smaller weight. It

would therefore be more difficult to connect them, i.e., the probability that these vertices would be con-
nected in a constant number of edges would decrease. We avoid this decrease in probability by choosing
k⋆ as large as possible, and noting that this yields no disadvantages elsewhere as the result of Corollary
6.10 is uniform over all k.

It remains to actually compute the probability that V u
k⋆

and V v
k⋆

are connected in a constant number
of edges. More precisely, we show that with high probability, dG(V u

k⋆
, V v

k⋆
) ≤ 4. This result can be found

in Corollary 6.17. However, to show this result we require an additional structure that we have not yet

defined. In particular, we define a large set Du,v of with sidelengths Θ
(
MABk⋆+1

ε

)
centred around the

midpoint of u and v. We do this in such a way that
⋃k⋆

i=0 L
u
i and

⋃k⋆
i=0 L

u
i are fully encompassed by Du,v.

We then consider all vertices in Du,v that have weight higher than M
dBk⋆+1/(τ−1)
ε , which we call T . Then,

we show that both V u
k⋆

and Vk⋆ are connected to T and that the distance between two vertices in T is
typically constant.

In the following Definition 6.12, we give the definition of Du,v as described above. The reader may
think of this set as the ‘last layer’ or an ‘encompassing set’.

Definition 6.12 Consider Setting 6.3, in particular A and B. Let (Lv
i )i be as in Definition 6.4. Let

u, v ∈ V = Zd be distinct vertices, set N = |u− v| and let k⋆ = k⋆(N,Mε, A,B, d) be as in Definition 6.11.
We define

Du,v = Du,v(N,Mε, A,B, d) =

(
u + v

2
+
[
−2

√
dMABk⋆+1

ε , 2
√
dMABk⋆+1

ε

]d)
∩ V\

k⋆⋃
i=0

(Lu
i ∪ Lv

i ). (6.46)

When N,Mε, A,B and d are clear from context, we write Du,v.

We immediately continue by giving the properties of Du,v we use.

Claim 6.13 Consider Setting 6.3, in particular A and B. Fix u, v ∈ V, set N = |u − v|, let Mε > 1,
consider k⋆ = k⋆(N,Mε, A,B, d) from Definition 6.11 and consider Du,v = Du,v(N,Mε, A,B, d) from
Definition 6.12. Then the following statements holds:

(1) For every Mε > 1 there exists an N6.13 = N6.13(Mε, A,B, d) such that if N ≥ N6.13, then

|Du,v| ≥ (2
√
d)dMdABk⋆+1

ε . (6.47)

(2) For any x, y ∈ Du,v ∪
⋃k⋆

i=0(Lu
i ∪ Lv

i ) it holds that

|x− y| ≤ 4dMABk⋆+1

ε . (6.48)

Proof. Item (2) follows immediately from first item of Lemma A.1. For item (1), we imitate the proof

of Lemma 6.5. Because of the second item of Lemma A.1, we note that
⋃k⋆

i=0 L
u
i is disjoint from

⋃k⋆
i=0 L

v
i .
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Furthermore, we may compute (similarly to the proof of Lemma 6.5):

|Du,v| = 2d
⌊
2
√
dMABk⋆+1

ε + 1
⌋d

− 2 · 2d
⌊1

2
MABk⋆

ε + 1
⌋d

≥
(

(4
√
d)d − 2d+1

(
M−ABk⋆

(B−1)
ε + M−ABk⋆+1

ε

))
MdABk⋆+1

ε

=: g(Mε, k⋆)MdABk⋆+1

ε . (6.49)

To show (6.47), it remains to show that g(Mε, k⋆) ≥ (2
√
d)d. Fix any Mε > 1. It is quickly verified that

if N increases, then k⋆ is increasing and therefore g(Mε, k⋆) is also increasing. More precisely, if N ↑ ∞
then k⋆ ↑ ∞ and if k⋆ ↑ ∞, then g(Mε, k⋆) ↑ (4

√
d)d. Therefore, for any fixed Mε there indeed is such a

N6.13 = N6.13(Mε, A,B, d) such that if N ≥ N6.13 then g(Mε, k⋆) ≥ (2
√
d)d. Furthermore, if N ≥ N6.13

then also |Du,v| ≥ (2
√
d)dMdABk⋆+1

ε . This finishes the proof of item (1). ■

To increase legibility in later results, we introduce more notation. In particular, we give a name to the

event that there are at least Θ
(
M

d(A−1)Bk⋆+1

ε ) vertices that have weight M
dBk⋆+1/(τ−1)
ε or greater within

Du,v.

Definition 6.14 Consider Setting 6.3 in particular A and B. Let u, v ∈ V = Zd be distinct, set N =
|u − v| and let Mε > 1. Consider T≥ from Definition 6.6, k⋆ = k⋆(N,Mε, A,B, d) from Definition
6.11, T≥ from Definition 6.6 and Du,v = Du,v(N,Mε, A,B, d) from Definition 6.12. Denote by Wu,v =
Wu,v(N,Mε, A,B, d) the (random) vector of weights of the vertices within Du,v, i.e.,

Wu,v = (Wx)x∈Du,v
. (6.50)

Then, set

T = T (Wu,v, N,Mε, A,B, d) = T≥

(
Du,v,M

dBk⋆+1/(τ−1)
ε

)
. (6.51)

If a realisation w = (wx)x∈Du,v of Wu,v is such that

|T (w, N,Mε, A,B, d)| ≥ (
√
d)dMd(A−1)Bk⋆+1

ε , (6.52)

we call this realisation (N,Mε, A,B, d)-good. Furthermore, we define the following event

{Wu,v is (N,Mε, A,B, d)-good} := {Wu,v ∈ {w : w is (N,Mε, A,B, d)-good}} (6.53)

When N,Mε, A,B and d are clear from context, we write good rather than (N,Mε, A,B, d)-good and we
denote the event in (6.53) with {Wu,v is good}.

Next, using the notation from Definition 6.14, we compute the probability that a realisation of Wu,v is
good. In particular, we show that this happens with high probability as Mε → ∞. This is be useful in
later proofs, as this means that we may then condition on the fact that there are ‘enough’ (i.e., more than

(
√
d)dM

d(A−1)Bk⋆+1

ε ) vertices with weight higher that M
dBk⋆+1/(τ−1)
ε .

Claim 6.15 Consider Setting 6.3, in particular A and B. Let u, v ∈ V = Zd be distinct, set N = |u− v|,
fix any Mε > 1, consider k⋆ = k⋆(N,Mε, A,B, d) from Definition 6.11 and let (N,Mε, A,B, d)-good be as
given in Definition 6.14. There is a C6.15 = C6.15(d) > 0 and an N6.15 = N6.15(Mε, A,B, d) such that if
N ≥ N6.15, then

P (Wu,v is (N,Mε, A,B, d)-good) ≥ 1 − exp
(
−C6.15M

d(A−1)Bk⋆+1

ε

)
.

Furthermore, the event from (6.15) is independent of all vertices in
⋃k⋆

i=0(Lu
i ∪ Lv

i ), where (Lu
i )i≥0 is as

given in Definition 6.4.

Proof. Throughout this proof, we suppress all dependencies unless necessary. Note that Wu,v is good if

|T | ≥ (
√
d)dM

d(A−1)Bk⋆+1

ε , where T is as defined in (6.51). We compute the probability that this inequality
holds. To do this, note that there are n := |Du,v| vertices in Du,v. Furthermore, by (3.4) of Assumption
3.2 we find that each of these vertices independently have probability p that their weight is larger than

MdBk⋆+1

ε /(τ − 1), where p is given by:

p := P
(
W ≥ MdBk⋆+1/(τ−1)

ε

)
= M−dBk⋆+1

ε . (6.54)

We conclude that

X := |T | =
∣∣∣T≥

(
Du,v,M

dBk⋆+1/(τ−1)
ε

)∣∣∣ ∼ Bin(n, p), (6.55)

We remark that

Wu,v is good ⇔ X ≥ (
√
d)dMd(A−1)Bk⋆+1

ε (6.56)

by Definition 6.14. Next, we set N6.15 = N6.15(Mε, A,B, d) = N6.13(Mε, A,B, d) and note that if N ≥
N6.15, then by item (1) of Claim 6.13, it holds that n = |Du,v| ≥ (2

√
d)dMdABk⋆+1

ε . From this, we
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may conclude that if N ≥ N6.15, then X stochastically dominates another binomially distributed random

variable X̃:

X
d

≥ X̃ ∼ Bin
(

(2
√
d)dMdABk⋆+1

ε ,M−dBk⋆+1

ε

)
. (6.57)

By using (6.57), the Chernoff bound for binomial random variables (see Lemma B.4) and rewriting to
match the format of the Chernoff bound, we observe that

P
(
X ≥

√
d
d
MdBk⋆+1(A−1)

ε

)
≥ P

(
X̃ ≥

√
d
d
MdBk⋆+1(A−1)

ε

)
= 1 − P

(
X̃ < (1 − (1 − 2−d))(2

√
d)dMdABk⋆+1

ε MdBk⋆+1

ε

)
≥ 1 − exp

[
− (2

√
d)d(1 − 2−d)

2︸ ︷︷ ︸
=:C6.15(d)=C6.15

Md(A−1)Bk⋆+1

ε

]
. (6.58)

Recalling (6.56) and defining C6.15 as in (6.58) finishes the proof. ■

In the following Claim 6.16, we show that both V u
k⋆

and V v
k⋆

are connected to T (see (6.51), i.e., the set

of all vertices of Du,v that have weight higher that M
dBk⋆+1/(τ−1)
ε .

Claim 6.16 Consider Setting 6.3, in particular A and B. Let u, v ∈ V = Zd, set N = |u− v|, let Mε > 1
and let k⋆ = k⋆(N,Mε, A,B, d) be as in Definition 6.11. Furthermore, let T≥ be as given in Definition
6.6, let (V u

i )i≤k⋆ and (V v
i )i≤k⋆ be as given in Definition 6.7 and Du,v = Du,v(N,Mε, A,B, d) as given in

Definition 6.12. Let Wu,v = Wu,v(N,Mε, A,B, d), T and (N,Mε, A,B, d)-good be as defined in 6.14. Set

R := α

(
B + σ

B(τ − 1)
−A +

A− 1

α

)
> 0. (6.59)

There is a C6.16 = C6.16(α, d) such that

P
(
V u
k⋆

↔ T , V v
k⋆

↔ T
∣∣ Wu,v is good, V u

k⋆
, V v

k⋆
̸= ∅

)
≥ 1 − 2 exp

[
− C6.16M

dRBk⋆+1

ε

]
. (6.60)

Proof. Throughout this proof, we suppress any dependence on N,Mε, A,B or d when these quantities
are clear. We examine the complement of the event in (6.60), i.e.,

Q = P
(
{V u

k⋆
̸↔ T } ∪ {V v

k⋆
̸↔ T }

∣∣ Wu,v is good, V u
k⋆
, V v

k⋆
̸= ∅

)
(6.61)

Now by applying the union bound, we find that

Q ≤ P
(
V u
k⋆

̸↔ T
∣∣ Wu,v is good, V u

k⋆
̸= ∅

)︸ ︷︷ ︸
=:Qu

+P
(
V v
k⋆

̸↔ T
∣∣ Wu,v is good, V v

k⋆
̸= ∅

)︸ ︷︷ ︸
=:Qv

. (6.62)

Here have have dropped V v
k⋆

̸= ∅ from the conditioning in Qu since
{
V u
k⋆

↔ T
}

is independent of V v
k⋆

,
also when conditioned on V u

k⋆
̸= ∅ and Wu,v is good. We do the same with Qv but with the roles of u and

v reversed. Notice that Qu is not necessarily equal to Qv, since the connection probability may depend
on the locations of u and v. Regardless, we find the same lower-bound for Qu and Qv. We do not find
this lower-bound when conditioned on Wu,v is good and V x

k⋆
̸= ∅, but on Wu,v = w and V x

k⋆
= vk⋆ . In

particular, for x ∈ {u, v}, vk⋆ ∈ Lx
k⋆

and w a good weight vector we search for a lower bound for

Qx(vk⋆ ,w) = P
(
vk⋆ ̸↔ T

∣∣ Wu,v = w, V x
k⋆

= vk⋆

)
. (6.63)

We note that if we find a uniform bound for Qx(vk⋆ ,w) for all x ∈ {u, v}, vk⋆ ∈ Lx
k⋆

and w that are good,
then we have found a lower-bound for both Qu and Qv.

Fix any x ∈ {u, v}, any good w and vk⋆ ∈ Lx
k⋆

. Then, because w is good, we know that

|T | = |T (w)| =
∣∣∣T≥

(
Du,v,M

dBk⋆+1/(τ−1)
ε

)∣∣∣ ≥ (
√
d)dMd(A−1)Bk⋆+1

ε . (6.64)

Here we abuse notation and write T (w) rather than T (w, N,Mε, A,B, d). Enumerate all vertices in T by
{tℓ : ℓ = 1, . . . , |T |} in way that is independent from the weights, for example by lexicographical ordering
of the spatial position. Then, by telescopically using conditional probability, we may write

Qx(vk⋆ ,w) =

|T (w)|∏
ℓ=1

P
(
vk⋆ ̸↔ tℓ

∣∣ for all m = 1, . . . , ℓ− 1 vk⋆ ̸ tm,Wu,v = w, V x
k⋆

= vk⋆

)︸ ︷︷ ︸
qx(vk⋆ ,w,ℓ)

. (6.65)
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Note that since we already condition on w, we cannot apply Lemma 4.1 in its current form. However, we
may imitate its proof to obtain a similar result. To this end, we write

qx(vk⋆ ,w, ℓ) ≤ sup

s≥M
dBk⋆/(τ−1)
ε

P
(
vk⋆ ̸↔ tℓ

∣∣ ∀m = 1, . . . , ℓ− 1 : vk⋆ ̸↔ tm,Wu,v = w, V x
k⋆

= vk⋆ ,Wvk⋆
= s
)

= sup

s≥M
dBk⋆/(τ−1)
ε

P
(
vk⋆ ̸↔ tℓ

∣∣ Wtℓ = wtℓ ,Wvk⋆
= s
)

≤ sup

s≥M
dBk⋆/(τ−1)
ε

1 − cρ(|vk⋆ − tℓ|, wtℓ , s). (6.66)

Here we have used in the second line that the event {vk⋆ ̸↔ tℓ} depends only on the weight Wtℓ and
Wvk⋆

. Since w is a realisation of Wu,v, it contains the realisation of the weight of tℓ, namely Wtℓ = wtℓ .
Furthermore, we condition on Wvk⋆

= s, and none of the other events we condition on have any influence
over whether {vk⋆ ̸↔ tℓ} happens or not. Furthermore, in the third line we have used (3.7), where ρ is as

defined in (3.6) in Assumption 3.2. Next, by item (2) of Claim 6.13, we find that |vk⋆ − tℓ| ≤ 4dMABk⋆+1

ε .

Furthermore, as B > 1 we find that M
dBk⋆/(τ−1)
ε < MdBk⋆+1

ε . Taking these two previous observations
together, by substituting the definition of ρ and some elementary computations, we find that

qx(vk⋆ ,w, ℓ) ≤ 1 − inf
s≥M

dBk⋆/(τ−1)
ε

c

(
1 ∧ max {wtℓ , s}

1 min {wtℓ , s}
σ

|vk⋆ − tℓ|d

)α

≤ 1 − c

(
1 ∧ M

dBk⋆+1 B+σ
B(τ−1)

ε

(4dMdABk⋆+1
ε )d

)α

≤ 1 − C1M
0∧dαBk⋆+1

(
B+σ

B(τ−1)
−A
)

ε . (6.67)

Here C1 = C1(α, d) > 0 and we have used that 1∧ xp = x0∧p for x > 1. Now, as we have already reasoned
before (see for example (6.26)), it holds that (B + σ)/(B(τ − 1)) −A < 0, so

qx(vk⋆ ,w, ℓ) ≤ 1 − C1M
dαBk⋆+1

(
B+σ

B(τ−1)
−A
)

ε

≤ exp
[
− C1M

dαBk⋆+1
(

B+σ
B(τ−1)

−A
)

ε

]
, (6.68)

where we have used that 1 − x ≤ e−x. Now we substitute this into (6.65) and use that w is good to see
that

Qx(vk⋆ ,w) ≤ exp
[
− C1|T (w)|M

dαBk⋆+1
(

B+σ
B(τ−1)

−A
)

ε

]
≤ exp

[
− C2M

dRBk⋆+1

ε

]
. (6.69)

Here C2 = C2(α, d) > 0 and R is as given in (6.59). We now note that the bound for Qx(vk⋆ ,w) is uniform
over all x ∈ {u, v}, vk⋆ ∈ Lx

k⋆
and good w. From this and (6.62), we may conclude that

Q ≤ Qu + Qv ≤ 2 exp
[
− C2M

dRBk⋆+1

ε

]
. (6.70)

Setting C6.16 = C6.16(α, d) = C2(α, d) and recalling the definition of Q from (6.61) finishes the proof. ■

As announced, we immediately continue with showing that if V u
k⋆

↔ T and V v
k⋆

↔ T , then we may
connect V u

k⋆
and V v

k⋆
through T using a constant number of vertices. More precisely, if u⋆, v⋆ ∈ T are such

that V u
k⋆

↔ u⋆ and V v
k⋆

↔ v⋆, then we show that with high probability there is a third vertex t⋆ ∈ T such
that u⋆ ↔ t⋆ ↔ v⋆. If this succeeds, then V u

k⋆
u⋆t⋆v⋆V

v
k⋆

is a path of length 4 that connects V u
k⋆

and V v
k⋆

.
Of course, if u⋆ ↔ v⋆ or if u⋆ = v⋆, we require even fewer edges. Furthermore, there may be other paths
that do not solely utilise vertices from T . In either case, however, it holds that dG(V u

k⋆
, V v

k⋆
) ≤ 4 with high

probability, as we show in the following Corollary 6.17.

Corollary 6.17 Consider Setting 6.3, in particular A and B. Let u, v ∈ V = Zd, set N = |u − v|, let
Mε > 1 and let k⋆ = k⋆(N,Mε, A,B, d) be as in Definition 6.11. Furthermore, let T≥ be as given in
Definition 6.6, let (V u

i )i≤k⋆ and (V v
i )i≤k⋆ be as given in Definition 6.7 and Du,v = Du,v(N,Mε, A,B, d)

as given in Definition 6.12. Let Wu,v = Wu,v(N,Mε, A,B, d), T and (N,Mε, A,B, d)-good be as defined
in 6.14. Then there exists a function err6.16 = err6.16(N,Mε, A,B, σ, α, τ, d) that satisfies err6.16 → 0 if
N → ∞ such that

P(dG(V u
k⋆
, Vkv

⋆
) ≤ 4 | Wu,v is good, V u

k⋆
̸= ∅, V v

k⋆
̸= ∅) ≥ 1 − err6.16(N,Mε, A,B, σ, α, τ, d). (6.71)

Proof. We set

Q≤4 := P(dG(V u
k⋆
, V v

k⋆
) ≤ 4 | Wu,v is good, V u

k⋆
̸= ∅, V v

k⋆
̸= ∅) (6.72)
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and then bound this using the law of total probability to see that

Q≤4 ≥ P(dG(V u
k⋆
, Vkv

⋆
) ≤ 4 | Wu,v is good, V u

k⋆
̸= ∅, V v

k⋆
̸= ∅, V u

k⋆
↔ T , V v

k⋆
↔ T )︸ ︷︷ ︸

=:Q1

· P
(
V u
k⋆

↔ T , V v
k⋆

↔ T
∣∣ Wu,v is good, V u

k⋆
, V v

k⋆
̸= ∅

)︸ ︷︷ ︸
=:Q2

. (6.73)

By Claim 6.16, we have already found a bound for the latter probability Ψ2. We therefore analyse Ψ1. We
proceed similarly as the proof of Claim 6.16. First, for any good weight vector w and u⋆, v⋆ ∈ T (w), set

Ψ1(w, u⋆, v⋆) := P(dG(V u
k⋆
, V v

k⋆
) ≤ 4 | Wu,v = w, V u

k⋆
̸= ∅, V v

k⋆
̸= ∅, V u

k⋆
↔ u⋆, V

v
k⋆

↔ v⋆). (6.74)

Then note that if we find a uniform bound for Ψ1, then we have also found a bound for Q1. Fix any w
and u⋆, v⋆ ∈ T (w). Now if u⋆ = v⋆, then we are done and Ψ1(w, u⋆, v⋆) = 1. Therefore, suppose that u⋆

and v⋆ are distinct. Then note that if we condition of V u
k⋆

↔ u⋆ and V v
k⋆

↔ v⋆, then dG(V u
k⋆
, V v

k⋆
) ≤ 4

happens if u⋆ and v⋆ are connected with at most one other vertex. Specifically, we search for any other
vertex t⋆ ∈ T (w)\ {u⋆, v⋆} such that u⋆ ↔ t⋆ ↔ v⋆. To this end, we firstly bound

Ψ1(w, u⋆, v⋆) ≥ P
(
∃t⋆ ∈ T (w)\ {u⋆, v⋆} : u⋆ ↔ t⋆ ↔ v⋆

∣∣ Wu,v = w, V u
k⋆
, V v

k⋆
̸= ∅, V u

k⋆
↔ u⋆, V

v
k⋆

↔ v⋆
)

= P
(
∃t⋆ ∈ T (w)\ {u⋆, v⋆} : u⋆ ↔ t⋆ ↔ v⋆

∣∣ Wu,v = w
)

=: Ψ2(w, u⋆, v⋆), (6.75)

where in the last equality we use that the event {∃t⋆ ∈ T (w)\ {u⋆, v⋆} : u⋆ ↔ t⋆ ↔ v⋆} is independent of{
V u
k⋆

̸= ∅, V v
k⋆

̸= ∅, V u
k⋆

↔ u⋆, V
v
k⋆

↔ v⋆
}

when conditioned on Wu,v = w. Next, we use that since we

condition on Wu,v = w, for every t⋆, t̃⋆ ∈ T (w)\ {u⋆, v⋆} it holds that {u⋆ ↔ t⋆ ↔ v⋆} is independent
from

{
u⋆ ↔ t̃⋆ ↔ v⋆

}
. Furthermore, for any t⋆ ∈ T (w)\ {u⋆, v⋆}, when conditioned on Wu,v = w it holds

that {u⋆ ↔ t⋆} is independent from {t⋆ ↔ v⋆}. We may therefore rewrite Ψ2(w, v⋆, u⋆) from (6.75) to

Ψ2(w, v⋆, u⋆) = 1 −
|T (w)|−2∏

j=1

(
1 − P

(
u⋆ ↔ tj

∣∣ Wu,v = w
)
P
(
tj ↔ v⋆

∣∣ Wu,v = w
))
, (6.76)

where {tj : j = 1, . . . , |T (w)| − 2} is the lexicographical ordering in spatial position of T (w)\ {u⋆, v⋆}.
Next, we apply (3.7) to see that

Ψ2(w, v⋆, u⋆) = 1 −
|T (w)|−2∏

j=1

(
1 − c2ρ(|u⋆ − tj |, wu⋆ , wtj )ρ(|tj − v⋆|, wtj , wv⋆)

)
. (6.77)

Next by item (2) of Claim 6.13 is holds that |u⋆ − tj | ≤ 4dM − εABk⋆+1

and |tj − v⋆| ≤ 4dMABk⋆+1

ε .
Furthermore, because u⋆, v⋆ ∈ T (w) and tj ∈ T (w) for all j = 1, . . . , |T (w)| − 2, we know that

wu⋆ , wv⋆ , wtj ≥ M
dBk⋆+1/(τ−1)
ε . Thus, we find that

ρ(|u⋆ − tj |, wu⋆ , wtj ) =

(
1 ∧

max
{
wu⋆ , wtj

}1
min

{
wu⋆ , wtj

}σ
|u⋆ − tj |d

)α

≥ C1M
0∧dαBk⋆+1

(
1+σ
τ−1

−A
)

ε , (6.78)

where C1 = C1(α, d) = (4d)−dα ∈ (0, 1/4). Now note that by Setting 6.3, it holds that A < (1+σ)/(τ −1).
From (6.78) we therefore obtain that ρ(|u⋆ − tj |, wu⋆ , wtj ) ≥ C1. In the same way, we also obtain ρ(|tj −
v⋆|, wtj , wv⋆)

)
≥ C1. By setting C2 = C2(α, d) = c2(4d)−2dα ∈ (0, 1/4), from (6.77) we obtain that

Ψ2(w, u⋆, v⋆) ≥ 1 −
|T (w)|−2∏

j=1

(1 − C2) ≥ 1 − exp[−C2(|T (w)| − 2)] ≥ 1 −
√
e exp[−C2|T (w)|]. (6.79)

Lastly, since w is good, we know that |T (w)| ≥ (
√
d)dM

d(A−1)Bk⋆+1

ε . Substituting this into (6.79) and
recalling that Ψ1 is bounded by Ψ2 by (6.75), we obtain that

Ψ1(w, u⋆, v⋆) ≥ Ψ2(w, u⋆, v⋆) ≥ 1 −
√
e exp

[
− C3M

d(A−1)Bk⋆+1

ε

]
. (6.80)

Here C3 = C3(α, d) = (
√
d)dC2(α, d) = c24dαdd(1/2−α). Now note by (6.80) we have found a uniform

bound for Ψ1(w, u⋆, v⋆) for all good w and u⋆, v⋆ ∈ T (w). As already reasoned, therefore the right-most
quantity of (6.80) is also a lower-bound for Q1 as in (6.73). Furthermore, by Claim 6.16 we also obtain a
bound for Q2 (see (6.73)). By applying both these bounds and setting C6.17 = C6.17(α, d) = C3(α, d), we
find that

Q≤4 ≥ Q1Q2 ≥
(

1 −
√
e exp

[
− C3M

d(A−1)Bk⋆+1

ε

])(
1 − 2 exp

[
− C6.16M

dBk⋆+1α
(

B+σ
B(τ−1)

−A+A−1
α

)
ε

])
=: 1 − err6.16(N,Mε, A,B, σ, α, τ, d). (6.81)

Note that err6.16 = err6.16(N,Mε, A,B, σ, α, τ, d) from (6.81) satisfies that err6.16 ↓ 0 if k⋆ ↑ ∞ (which is
equivalent to N ↑ ∞). Recalling the definition of Q≤4 from (6.72) finishes the proof. ■

We note that Corollary 6.17 essentially shows step (2) from Figure 5. Thus, by combining Corollary
6.10 (step (1)), Corollary 6.17 (step (2)) and the fact that all nearest-neighbour edges are present (step
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(3)), we have completed the entire construction as described in Figure 5. We are therefore prepared to
prove Proposition 6.2. We repeat it here for convenience.

Proposition 6.2 Consider a KSRG G = (V, E) from Definition 3.1 satisfying Assumption 3.2 with param-
eters d ∈ N, σ1 = 1, σ2 = σ > 0, α > 1, τ ∈ (2, 2 + σ) and V = Zd and suppose that all nearest-neighbour
edges of Zd are present in E. Let u, v ∈ V. Take any ε ∈ (0, 1) and δ > 0. Then there exists an
N6.2 = N6.2(δ, ε, σ, α, τ, d) such that if |u− v| ≥ N6.2, then

P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
)
≥ 1 − ε. (6.2)

Proof. Before we continue with the proof, we do some preliminary work and give preliminary definitions.
Firstly, set

Â = Â(δ, σ, τ) =
1 + σ

(
τ−2
σ

) 2
2+δ/2

τ − 1
. (6.82)

By recalling IA from Setting 6.3, it is quickly verified that since τ − 2 < σ and 2/(2 + δ/2) ∈ (0, 1) it holds

that Â ∈ IA. Furthermore, it may be verified that

σ

(τ − 1)Â− 1
=

(
σ

τ − 2

) 2
2+δ/2

. (6.83)

Then, take any B̂ = B̂(δ, σ, τ) ∈ IB(Â), for example the mid-point of IB(Â). Then by (6.83), it holds that

B̂ > (σ/(τ − 2))2/(2+δ/2) and hence

2

ln(B̂)
<

2 + δ
2

ln
(

σ
τ−2

)
. (6.84)

Next, set

1 − err1(Mε, Â, B̂, σ, α, τ, d) = 1 − 2 exp

[
−1

2
Md(Â−1)

ε

]
− 4 exp

[
− C6.10M

dB̂
(

Â−1
α

+ B̂+σ

B̂(τ−1)
−1
)

ε

]
, (6.85)

where C6.10 is from Corollary 6.10. We continue by noting that it is possible to choose M̂ε = M̂ε(δ, σ, α, τ, d)

such that M̂ε ≥ M6.10(Â(δ, σ, τ), B̂(δ, σ, τ), α, d) and

1 − err1(M̂ε, Â(δ, σ, τ), B̂(δ, σ, τ), σ, α, τ, d) ≥ 1 − ε

4
. (6.86)

Fix such an M̂ε. Note that for this choice of M̂ε, by Corollary 6.10 it holds that for any k ∈ N

P(V u
k ̸= ∅) ≥ 1 − ε

4
and P(V v

k ̸= ∅) ≥ 1 − ε

4
. (6.87)

Next, set N := |u − v| and let k⋆ = k⋆(N, M̂ε, Â, B̂, d) be as given in Definition 6.11. Note that (6.87)
also holds with k replaced by k⋆. Furthermore, let (V u

i )i≤k⋆ and (V v
i )i≤k⋆ be as given in Definition 6.7.

Note also that (V u
i )i≤k⋆ and (V v

i )i≤k⋆ implicitly depend on N, M̂ε, Â, B̂, τ and d. Next, let Wu,v =

Wu,v(N, M̂ε, Â, B̂, d) and
{
Wu,v is (N, M̂ε, Â, B̂, d)-good

}
be as in Definition 6.14. After this, set

1 − err2(N, M̂ε, Â, B̂, d) := 1 − exp
(
−C6.15M

d(A−1)Bk⋆+1

ε

)
, (6.88)

where C6.15 = C6.15(d) if as given in Claim 6.15. Furthermore, notice that if N → ∞, then k⋆ →
∞ and hence err2(N, M̂ε, Â, B̂, d) → 0. Also, by Claim 6.15 there exists a N1 = N1(δ, ε, σ, α, τ, d) =

N6.15(M̂ε, Â, B̂, d) such that

P(Wu,v is good) ≥ 1 − err2(N, M̂ε, Â, B̂, d). (6.89)

Lastly, by Corollary 6.16 there exists a function

1 − err3(N, M̂ε, Â, B̂, σ, α, τ, d) = 1 − err6.16(N, M̂ε, Â, B̂, σ, α, τ, d) (6.90)

that satisfies err3 → 0 if N → ∞ such that

P(dG(V u
k⋆
, Vkv

⋆
) ≤ 4 | Wu,v is good, V u

k⋆
̸= ∅, V v

k⋆
̸= ∅) ≥ 1 − err3(N, M̂ε, Â, B̂, σ, α, τ, d). (6.91)

We continue with the proof of (6.2). To this end, first set

Q6.2 := P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
)

(6.92)
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We firstly use the law of total probability and the definition of conditional probability multiple times to
see that

Q6.2 ≥ P
(
dG(u, v) ≤ 2 + δ

ln
(

σ
τ−2

) ln ln |u− v|
∣∣ V u

k⋆
̸= ∅, V v

k⋆
̸= ∅, dG(V u

k⋆
, V v

k⋆
) ≤ 4

)
︸ ︷︷ ︸

=:q4

· P
(
dG(V u

k⋆
, V v

k⋆
) ≤ 4

∣∣ V u
k⋆

̸= ∅, V v
k⋆

̸= ∅,Wu,v is good
)︸ ︷︷ ︸

=:q3

· P(Wu,v is good)︸ ︷︷ ︸
=:q2

P(V u
k⋆

̸= ∅, V v
k⋆

̸= ∅)︸ ︷︷ ︸
=:q1

. (6.93)

We firstly analyse q1. Recall (Lu
i )i≤k⋆ and (Lv

i )i≤k⋆ from Definition 6.4. We notice that by definition of

k⋆ and item (2) of Lemma A.1, it holds that
⋃k⋆

i=0 L
u
i is disjoint from

⋃k⋆
i=0 L

v
i . Corollary 6.10 then yields

that
{
V u
k⋆

̸= ∅
}

is independent from
{
V v
k⋆

̸= ∅
}

. Combining this with (6.87) and (1−x)(1−y) ≥ 1−x−y
for x, y ∈ (0, 1) yields

q1 = P(V u
k⋆

̸= ∅)P(V v
k⋆

̸= ∅) ≥
(

1 − ε

4

)2
≥ 1 − ε

2
. (6.94)

Now by (6.89), (6.91) and (6.94), we know that if N ≥ N1 then

q3q2q1 ≥ (1 − err3(N, M̂ε, Â, B̂, σ, α, τ, d))(1 − err2(N, M̂ε, Â, B̂, d))
(

1 − ε

2

)
=: q≥321. (6.95)

Now since err3, err2 → 0 if N → ∞, there exists an N2 = N2(δ, ε, σ, α, τ, d) such that if N ≥ N2, then

q≥321 ≥ 1 − ε. (6.96)

Lastly, we show that there exists an N3 = N3(δ, ε, σ, α, τ, d such that q4 = 1 if N ≥ N3. We note that if
we have shown this, then by setting

N6.2 = N6.2(δ, ε, σ, α, τ, d) = max {N1(δ, ε, σ, α, τ, d), N2(δ, ε, σ, α, τ, d), N3(δ, ε, σ, α, τ, d} (6.97)

we may conclude from (6.93), (6.95) and (6.96) that Q6.2 ≥ 1 − ε. Recalling the definition of Q6.2 from
(6.92) then finishes the proof.

It remains to show that this N3 exists. To this end, we examine q4. Notice that because V u
k⋆

̸= ∅,
V u
0 . . . V u

k⋆
is a path of length k⋆ from V u

0 to V u
k⋆

. Similarly, because V v
k⋆

̸= ∅, V v
0 . . . V v

k⋆
is a path of length

k⋆ from V v
0 to V v

k⋆
by the construction of (V u

i )i≤k⋆ and item (1) of Claim 6.8. Furthermore, because we
condition on dG(V u

k⋆
, V v

k⋆
) ≤ 4, there is a path utilising at most 4 edges from V u

k⋆
to V v

k⋆
. Next, because

V u
0 ∈ Lu

0 , there is a path from u to V u
0 utilising at most dM̂ Â

ε nearest neighbour edges. Similarly, there

is a path from v to V v
0 utilising at most dM̂ Â

ε edges. By combining all the paths above, we have found a

path connecting u and v that utilises 2k⋆ + 4 + 2dM̂ Â
ε edges. Now by (6.44) and rewriting,

dG(u, v) ≤ 2k⋆ + 4 + 2dM̂ Â
ε ≤ 2

ln(B̂)
ln ln(N) +

(
− ln(Â) − ln ln(M̂ε)

ln(B̂) ln ln(N)
+

4 + 2dM̂ Â
ε

ln ln(N)︸ ︷︷ ︸
=:g(N,M̂ε,Â,B̂,d)

)
ln ln(N). (6.98)

Now notice that by (6.84) it holds that 2/ ln(B̂) < (2 + δ/2)/ ln(σ/(τ − 2)). Furthermore, it is clear that

g(N, M̂ε, Â, B̂, d) → 0 if N → ∞. For this reason, there exists an N3 = N3(δ, ε, σ, α, τ, d) such that if

N ≥ N3, then g(N, M̂ε, Â, B̂, d) ≤ δ/(2 ln(σ/(τ − 2))). We conclude that if N ≥ N3, then

dG(u, v) ≤
2 + δ

2

ln
(

σ
τ−2

) ln ln(N) +
δ
2

ln
(

σ
τ−2

) =
2 + δ

ln
(

σ
τ−2

) . (6.99)

As such, if N ≥ N3, V u
k⋆

̸= ∅, V v
k⋆

̸= ∅ and dG(V u
k⋆
, V v

k⋆
) ≤ 4, it always holds that dG ≤ (2+δ)/ ln(σ/(τ−2)).

We conclude that q4 = 1. As previously stated, defining N6.2 as in (6.97) finishes the proof. ■

6.2. Presence of an infinite component

In this subsection, we reason that almost surely an infinite component is present in a KSRG satisfying
Assumption 3.2 with V = Zd and parameters d ∈ N, σ1 = 1, σ2 = σ > 0 α > 1 and τ ∈ (2, 2 + σ). In
particular, we argue that this is a direct consequence of Corollary 6.10. Denote the event that an infinite
component is present by {C∞ is present} and let (V u

i )i∈N∪{0} be as defined in Definition 6.7. Then note
that if all V u

i are present (i.e., V u
i ̸= ∅ for all i ∈ N∪{0}), then the set {V u

i } forms an infinite component.
Therefore, we reason that if with high probability all these vertices are present, then we have found that
an infinite component is also almost surely present. To this end, by item (1) of Claim 6.8 we observe for
all k ∈ N ∪ {0} it holds V u

k ̸= ∅ implies that V u
j ̸= ∅ for j < k. By applying this and some elementary

computation, we see that

{V u
i ̸= ∅ for all i ∈ N ∪ {0} } = lim

k→∞

⋂
i≤k

{V u
i ̸= ∅} = lim

k→∞
{V u

k ̸= ∅} . (6.100)



Doubly logarithmic upper-bound for distances 61

We also note that
⋂

i≤k {V
u
i ̸= ∅} = {V u

k ̸= ∅} is a decreasing set in k. Then, by combining all the above,
continuity of probability measures and Corollary 6.10 we see that

P(C∞ is present) ≥ lim
k→∞

P(V u
k ̸= ∅)

≥ 1 − 2 exp

[
− 1

2
Md(A−1)

ε

]
− 4 exp

[
− C6.10M

dαB
(

A−1
α

+ B+σ
B(τ−1)

−1
)

ε

]
. (6.101)

We note that {C∞ is present} is a tail-event, so by Kolmogorov’s 0-1 law, its probability is either 0 or 1.
We may now take Mε in the right-hand side of (6.101) such that the right-hand side is positive. It follows
that P(C∞ is present) = 1, which is what we wanted to show.
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7. Conclusion

7.1. Summary

In this thesis, we have investigated the relation between the graph distance and the spatial distance
between two vertices in the KSRG model. The KSRG model is a recent model that generalises known
models as long-range percolation, scale-free percolation and age-based spatial preferential attachment. In
this model, we choose the underlying vertex set to be Zd and independently assign each vertex v ∈ V a
weight Wv generated by a power-law with parameter τ − 1. We then let each edge conditioned on the
weight of the vertices independently present with probability

P(u ↔ v|Wv,Wu) = Θ

(
1 ∧ max {Wu,Wv}σ1 min {Wu,Wv}σ2

|u− v|d

)α

,

where σ1, σ2 ≥ 0, α ≥ 0 and |u− v| is the Euclidean distance between u and v.

First, we analyse the expected vertex degree Dv given a realisation of the weight Wv. We show that
if α ≤ 1 or τ ≤ 1 + σ, then the expected degrees are infinite. There is however a phase transition when
α > 1 and τ > 1 + σ, where the expected degree of a vertex is polynomial in the weight of that vertex.
This phase transition may be explained because

• for α ≤ 1, the spatial decaying factor is not summable, whereas for α > 1 it is, and
• for τ ≤ 1 + σ1, the weight kernel max {Wu,Wv}σ1 min {Wu,Wv}σ2 has an infinite expected value,

whereas for τ > 1 + σ1 it has a finite expected value.

These results may for example be compared with the work of Deijfen et al. [32].
Next, we show that under the assumption that σ1 = 1, σ2 = σ ∈ (0, 1), τ ∈ (2, 3) and α such that

τ − 1 < α < (τ − 1)/(τ − 2) and ασ ≤ τ − 1, then the graph distance is poly-logarithmic with exponent
∆ = ln(2)/ ln(α(τ − 1)/(α + τ − 1)). We note that this exponent does not appear in other models such
as long-range percolation, scale-free percolation and age-based spatial preferential attachment. Other
poly-logarithmic upper-bounds were also found, in particular with exponent ln(2)/ ln(2/α). This latter
exponent is present in other models, such as in long-range percolation (see [25]). We note that in the
poly-logarithmic regimes, the exponent never becomes 1. This suggest that growth of graph distances
yields less than exponential growth in spatial distances. Furthermore, we show that if σ1 = 1, σ2 = σ > 0,
α > 1 and τ ∈ (2, 2 + σ), then the graph distances are most doubly logarithmic. This suggests that the
spatial distances grow at least doubly exponentially with the graph distances.

The boundary between the poly-logarithmic phase and the doubly logarithmic phase is σ = τ−2, which
yields the age-based spatial preferential attachment model.

To show the first regime, we develop the notion of nets. A net is a subset of vertices that behaves pseudo-
randomly with regards to the expected amount of vertices with a certain weight in any given radius. In
particular, if a vertex v is in a net, then in any radius the amount of other vertices in the net that have a
certain weight in a ball of that radius surrounding v is roughly the expected amount. We develop nets to
avoid having to rely on the FKG inequality or FKG-like inequalities.

7.2. Further research

We start by giving further research directions directly related to this thesis. To start, as already
announced in Subsection 5.4, we note that the proof techniques used to show the poly-logarithmic upper-
bound may be applied to find other (and potentially tighter) poly-logarithmic upper-bounds. Other upper-
bounds for different choices of parameters may also be investigated; for example we conjecture that in the
case that E(Dv) = ∞ then almost surely the diameters of the graph is Θ(1) (generalising for example
results found in the work by Heydenreich, Hulshof and Jorritsma [36]). Another direct open problem is to
show matching lower-bounds with the upper-bounds. To do this, in the doubly-logarithmic case the proof
of the paper by Deijfen et al. ([32]) may be adapted; in the poly-logarithmic case the paper by Biskup
([25]) may be adapted.

Next, by broadening our view, we note that the idea behind the nets may be generalised or adapted
to other proofs to avoid having to use FKG-like inequalities. In particular, we note that if the underlying
vertex space of the model is a homogeneous d-dimensional Poisson Point Process with density λ ·Lebd, then
defining the nets likely requires less work. This is because we may then see combination of the vertex set
and the weights of the vertices (V, (Wv)v∈V) as a d + 1 dimensional inhomogeneous Poisson Point Process
with density λ · Lebd ⊗ PW . Here Lebd is the d-dimensional Lebesgue measure and PW is the distribution
of the weights. When viewed this way, it is clear that the amount of vertices of a certain weight in a box
is independent of the vertices with any other weight in the same box; each weight-range may therefore
independently be examined.

Lastly, we suggest much broader further research. One of the first and most important open problems
is to investigate whether or not a KSRG actually fits real-world networks well. Related to this problem is
to devise ways to statistically estimate the parameters of the connection probability.
Further research may also be done on processes on a KSRG. For example, one may investigate a random
walk on a KSRG, or the spread of an epidemic where each connection is modelled by a KSRG.
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A. Appendix — Technical lemmas

Lemma A.1 Fix d ∈ N and let x, y ∈ Rd. Then fix ξ > 0. The following two points hold:

(1) The hypercube

Cx(ξ) := x +

[
− ξ

2
,
ξ

2

]d
(A.1)

centered around x with sidelengths ξ satisfies

diam(Cx(ξ)) = sup
a,b∈Cx(ξ)

|a− b| =
√
dξ. (A.2)

(2) If ξ < |x− y|/
√
d, then Cx(ξ) ∩ Cy(ξ) = ∅.

Proof. (1) Consider two points a, b ∈ Cx(ξ) and write a = (a1, . . . , ad), b = (b1, . . . , bd). In the j-th
coordinate, j ∈ [d], the two points can differ at most ξ. That is, for all j ∈ [d] it holds that |aj − bj | ≤ ξ.
As such, we find that

|a− b| =

√√√√ d∑
j=1

|aj − bj |2 ≤

√√√√ d∑
j=1

ξ2 =
√
dξ. (A.3)

Furthermore, we can find two points in which this inequality is equal; this happens when we pick two
opposing corners of the hypercube.

(2) By definition, each point a ∈ Cx(ξ) differs at most ξ/2 in each coordinate. By the same reasoning done

in (1), this means that |a − x| ≤
√
dξ/2. Similarly, supb∈Cy(ξ)

|b − y| ≤
√
dξ/2. Now suppose that there

exists a z ∈ Cx(ξ) ∩ Cy(ξ). Then

|x− y| ≤ |x− z| + |z − y| ≤ 2

√
dξ

2
< |x− y|. (A.4)

This is a contradiction, so Cx(ξ) ∩ Cy(ξ) = ∅. ■

Lemma A.2 Suppose that (Xi)
n
i=1 is a sequence of independent random variables with a power-law distri-

bution with parameter τ − 1. Then for every c > 1

P
(

max
i=1,...,n

Xi ≥ c

)
≥ 1 − e−n/cτ−1

. (A.5)

As a consequence, with probability greater than 1 − e−n/cτ−1

there is at least one i such that Xi > c.

Proof. We make the following computation:

P
(

max
i=1,...,n

Xi ≥ c

)
= 1 − P

(
max

i=1,...,n
Xi < c

)
= 1 −

(
1 − c−(τ−1)

)n
≥ 1 − e−n/cτ−1

where in the second line we use that (Xi)
n
i=1 is i.i.d., and in the third line we use that 1 − x ≤ e−x. ■

Claim A.3 Let X be a random variable with a power-law distribution with parameter τ − 1 > 0, i.e.

P(X ≥ x) = x−(τ−1), x ≥ 1. (A.6)

Let I1, . . . , In, In+1 be n + 1 disjoint intervals such that the i’th interval has lower end-point ai and upper
end-point bi satisfying 1 ≤ ai < bi, where only bn+1 is allowed to be infinite. Then

P
(
X ∈ In+1

∣∣∣X ̸∈
n⋃

i=1

Ii
)

=
a
−(τ−1)
n+1 − b

−(τ−1)
n+1

1 −
∑n

i=1

(
a
−(τ−1)
i − b

−(τ−1)
i

) , (A.7)

where by convention ∞−(τ−1) = 0.

Proof. We notice that for any interval Ii we obtain that P(X ∈ Ii) = a
−(τ−1)
i −b

−(τ−1)
i . We then rewrite



64 Appendix

the left-hand side of A.7 and use that all Ii are disjoint to see that

P
(
X ∈ In+1

∣∣∣X ̸∈
n⋃

i=1

Ii
)

=
P
(
{X ∈ In+1} ∩

{
X ̸∈

⋃n
i=1 Ii

})
1 − P

(
X ∈

⋃n
i=1 Ii

)
=

P(X ∈ In+1)

1 −
∑n

i=1 P(X ∈ Ii)

=
a
−(τ−1)
n+1 − b

−(τ−1)
n+1

1 −
∑n

i=1

(
a
−(τ−1)
i − b

−(τ−1)
i

)
as required. ■

Claim A.4 Let ε ∈ (0, 1). Then for all C > 0 it holds that

exp
[
C(ln lnN)ε

]
= (lnN)o(1). (A.8)

Proof. We may rewrite

exp
[
C(ln ln(N)ε)

]
= (lnN)C

(ln lnN)ε

ln lnN = (lnN)C(ln lnN)−(1−ε)

= (lnN)o(1). (A.9)

This finishes the proof. ■

B. Appendix — Chernoff bounds for binomial random variables

In this section we will set up the Chernoff bounds for random variables with a binomial distribution.
These bounds will be used that the probability that a binomial random variable differs some fraction from
its mean decays exponentially.
The proof of the Chernoff bound depends on Markov’s inequality, which we will state first in the following
lemma.

Lemma B.1 (Markov’s inequality) Let X be a non-negative random variable and a > 0. Then

P(X ≥ a) ≤ E(X)

a

Proof. This statement follows directly from the following inequality:

E(X) = E(X|X ≥ a)P(X ≥ a) + E(X|X < a)P(X < a) ≥ aP(X ≥ a)

where we have used that E(X|X < a) ≥ 0 and E(X|X ≥ a) ≥ a. ■

Markov’s inequality usually is not very ‘tight’, meaning that the upper bound given by Markov’s in-
equality can be much larger than the actual value of P(X ≥ a). By appending Markov’s inequality we can
introduce an exponentially decaying term, which generally gives much tighter results. This is called the
Chernoff bound.

Lemma B.2 (General Chernoff bound) Let X be a real-valued random variable and a ∈ R. Then the
following two inequalities hold:

P(X ≥ a) ≤ inf
t≥0

E
(
etX
)

eta
, and (B.1)

P(X ≤ a) ≤ inf
t≤0

E
(
etX
)

eta
, (B.2)

provided that E
(
etX
)
exists.

Proof. We consider the first statement. Let t ≥ 0. By applying Markov’s inequality (Lemma B.1) to
etX , we find that

P(X ≥ a) = P(etX ≥ eta) ≤
E
(
etX
)

eta

Since this holds for every t ≥ 0, it also holds for the infimum. The second statement is shown in a similar
way, but with t ≤ 0. ■

Now that we have found the general Chernoff bound, we will apply this to binomial random variables.



Appendix 65

Corollary B.3 (Chernoff bound for binomial random variables) Let n ∈ N and p, α, β be such that 0 <
β < p < α < 1. Consider X ∼ Bin(n, p) a random variable with a binomial distribution. Then

P(X ≤ βn) ≤
(

1 − p

1 − β

)n(1−β)(
p

β

)nβ

, and (B.3)

P(X ≥ αn) ≤
(

1 − p

1 − α

)n(1−α) ( p
α

)nα

. (B.4)

Proof. We only show the first the inequality, the proof of the second is analogous. We want to apply
the Chernoff bound. To this end, we first notice that X is a finite random variable, so that E

(
etX
)

exists
for all t ∈ R. In particular, we find that

E
(
etX
)

=

n∑
k=0

etk
(
n

k

)
pkqn−k =

(
q + pet

)n
,

where we have denoted q = 1 − p. Now applying the second statement of Lemma B.2, we obtain

P(X ≤ βn) ≤ inf
t≤0

(
qe−βt + pe(1−β)t

)n
=: inf

t≤0
g(t)n.

Notice that since g(t) ≥ 0, to find the infimum of g(t)n we can just as well find the infimum of g(t).
Furthermore, notice that t 7→ g(t) is continuously differentiable and that limt→±∞ g(t) = +∞, which means

that g(t) attains its minimum at a stationary point. A simple computation shows that t := ln
(

βq
(1−β)p

)
is

the unique stationary point of g(t). That is,

d

dt
g(t)

∣∣∣∣
t=t

= 0

Furthermore, notice that β < p and q = 1 − p < 1 − β, so that t < 0 and the minimiser we have found is
within the right region.

Filling t into g yields

P(X ≤ βn) ≤ g(t) =

(
1 − p

1 − β

)n(1−β)(
p

β

)nβ

,

which was the desired result. ■

The Chernoff bounds given in Corollary B.4 can often not be applied directly and requires more treat-
ment. For this reason, we state a slightly worse performing bound that is much more readily applicable.
This result is used often in the literature.

Corollary B.4 Suppose that X ∼ Bin(n, p) and let 0 ≤ δ < 1. Then

P (X ≤ (1 − δ)np) ≤
(

e−δ

(1 − δ)(1−δ)

)np

≤ e−
δ2np

2 . (B.5)

If additionally δ is such that (1 + δ)p < 1,

P (X ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)(1+δ)

)np

≤ e−
δ2np
2+δ . (B.6)

We further remark that for additional ease of use, because 2 + δ < 3 in the last inequality we may replace
2 + δ by 3.

Proof of Corollary B.4. We firstly show (B.5). By putting β = (1 − δ)p in Corollary B.3, we find that

P(X ≤ (1 − δ)np) ≤
(

1 − p

1 − (1 − δ)p

)n(1−(1−δ)p)(
p

(1 − δ)p

)n(1−δ)p

=

(
1 − δp

1 − (1 − δ)p

)n(1−(1−δ)p)(
1

(1 − δ)(1−δ)

)np

≤ e
− δp

1−(1−δ)p
n(1−(1−δ)p)

(
1

(1 − δ)(1−δ)

)np

=

(
e−δ

(1 − δ)(1−δ)

)np

, (B.7)

which shows the first inequality of (B.5). To show the second, we rewrite

e−δ

(1 − δ)(1−δ)
= exp [−δ − (1 − δ) ln(1 − δ)] = exp

[
−δ + (1 − δ)

∞∑
k=1

δk

k

]
. (B.8)

Here we have written out the Taylor expansion of ln(1 − δ) (which is valid when |δ| < 1). By writing out
the terms we notice that we can rewrite

− δ + (1 − δ)

∞∑
k=1

δk

k
= −

∞∑
k=2

δk

k(k − 1)
≤ −δ2

2
. (B.9)
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Applying this to (B.7) and (B.8) yields the second inequality:(
e−δ

(1 − δ)(1−δ)

)np

≤ e−
δ2np

2 .

Next, we consider the second sequence of inequalities given in (B.6). We again apply Corollary B.3 with
α = (1 + δ)p, which gives

P(X ≥ (1 + δ)np) ≤
(

1 − p

1 − (1 + δ)p

)n(1−(1+δ)p)(
p

(1 + δ)p

)n(1+δ)p)

=

(
1 +

δp

1 − (1 + δ)p

)n(1−(1+δ)p(
1

(1 + δ)(1+δ)

)np

≤ e
δp

1−(1+δ)p
n(1−(1+δ)p)

(
1

(1 + δ)(1+δ)

)np

=

(
eδ

(1 + δ)(1+δ)

)np

.

Differently than above, we now use the inequality 2δ
2+δ

≤ ln(1 + δ) (valid if δ ≥ 0). This inequality can be

found by analysing the Taylor expansion of e2x/(2+x) around 0 and rewriting. Applying the inequality, we
find that

δ − (1 + δ) ln(1 + δ) ≤ δ − (1 + δ)
2δ

2 + δ
= − δ2

2 + δ
.

This yields the last inequality: (
eδ

(1 + δ)(1+δ)

)np

≤ e−
δ2np
2+δ .

■
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complex networks,” Phys. Rev. E, vol. 82, p. 036 106, 3 2010. doi: 10.1103/PhysRevE.82.036106.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.82.036106.

[30] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: A network-based approach to
human disease,” Nature Reviews Genetics, vol. 12, pp. 56–68, 2011. doi: 10.1038/nrg2918.

[31] L. Gugelmann, K. Panagiotou, and U. Peter, Random Hyperbolic Graphs: Degree Sequence and
Clustering, A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, Eds. Springer Berlin Heidelberg,
2012, pp. 573–585. [Online]. Available: https://arxiv.org/abs/1205.1470.

[32] M. Deijfen, R. Hofstad, van der, and G. Hooghiemstra, “Scale-free percolation,” English, Annales
de l’institut Henri Poincare (B): Probability and Statistics, vol. 49, no. 3, pp. 817–838, 2013, issn:
0246-0203. doi: 10.1214/12-AIHP480.

[33] E. Jacob and P. Mörters, “Spatial preferential attachment networks: Power laws and clustering
coefficients,” The Annals of Applied Probability, vol. 25, no. 2, pp. 632–662, 2015. doi: 10.1214/14-
AAP1006. [Online]. Available: https://doi.org/10.1214/14-AAP1006.

[34] M. Kiwi and D. Mitsche, A Bound for the Diameter of Random Hyperbolic Graphs. 2015, pp. 26–39.
doi: 10.1137/1.9781611973761.3. [Online]. Available: https://epubs.siam.org/doi/abs/10.
1137/1.9781611973761.3.

[35] R. v. d. Hofstad, Random Graphs and Complex Networks, ser. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2016. doi: 10.1017/9781316779422.

[36] M. Heydenreich, T. Hulshof, and J. Jorritsma, “Structures in supercritical scale-free percolation,”
The Annals of Applied Probability, vol. 27, no. 4, pp. 2569–2604, 2017. doi: 10.1214/16-AAP1270.
[Online]. Available: https://doi.org/10.1214/16-AAP1270.

[37] C. Hirsch, “From heavy-tailed Boolean models to scale-free Gilbert graphs,” Brazilian Journal of
Probability and Statistics, vol. 31, no. 1, pp. 111–143, 2017. doi: 10.1214/15-BJPS305. [Online].
Available: https://doi.org/10.1214/15-BJPS305.

[38] K. Bringmann, R. Keusch, and J. Lengler, “Geometric inhomogeneous random graphs,” Theoretical
Computer Science, vol. 760, pp. 35–54, 2019, issn: 0304-3975. doi: https://doi.org/10.1016/j.
tcs.2018.08.014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0304397518305309.

[39] A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature Communications, vol. 10,
no. 1017, 2019. doi: 10.1038/s41467- 019- 08746- 5. [Online]. Available: https://doi.org/

10.1038/s41467-019-08746-5.
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