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ABSTRACT

With the aging population, the demand for healthcare and related services is increasing
and, for this reason, technologies for remote patient monitoring are developing, aim-
ing at indoor scenarios. Remote patient monitoring can help capture the clinical data
of patients at home, which can save time and money, specifically reducing the need for
hospitalization by potentially detecting health-related issues before they become too se-
rious.

The non-contact radar-based technology can be applied in the remote patient mon-
itoring system for detecting vital signs. Radars are suitable for applications at home be-
cause they are non-invasive, robust in changing lighting and temperature, and suitable
for patients with skin irritation.

Heartbeat and respiration are critical clinical data for the diagnosis of the disease.
The study of respiration frequency estimation was explored by previous work, such as
the MSc thesis in [1]. Building on that work, this project proposes a pipeline to measure
the heartbeat frequency and cancel the random body movement. The impact of different
orientations is also studied. The phase history difference of the chest displacement due
to vital signs is extracted, and the wavelet transform is used to separate heartbeat and
respiration signals. Different methods are tested to calculate the heartbeat frequency
in the time and frequency domain. The RBM is detected by the energy threshold of the
phase difference, and the intervals with the RBM are discarded.

The simulation and experimental results indicate that the proposed processing pipeline
can work on the radar data.
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1
INTRODUCTION

In this introduction chapter, the background, the problem statement and contribution,
and the outline are described. The background in Section 1.1 shows why the thesis is con-
ducted. The statement about the problems the thesis project addresses is analyzed in Sec-
tion 1.2. In Section 1.3, the expected contributions at the end of the project are shown. In
Section 1.4, the outline of the report is presented.

1.1. BACKGROUND
As people’s requirements for healthcare become higher and medical resources in hospi-
tals are limited, remote patient monitoring (RPM) is constantly developing to provide the
service to monitor patients at home. Some devices such as wearable electrocardiogram
(ECG) monitors, smart health watches, radars, and biosensors capture clinical data such
as heartbeat, blood pressure, and respiration rate. These data can be shared with health-
care professionals such as healthcare monitoring centers, hospitals, and skilled nursing
facilities for consultation, emergency warnings, and chronic conditions treatments [2].
RPM systems can help save time and money for patients and manage limited medical
resources more effectively.

Heartbeat and respiration are critical vital signs for the disease diagnosis of the hu-
man body. Heartbeat rate may be an essential risk factor for sudden coronary heart dis-
ease (CHD) death and related to the causes of mortality [3]. The combined effect of heart
rate and other cardiovascular diseases can lead to death from cardiovascular diseases
(CVD) and non-sudden CHD [3]. The resting heartbeat rate is a clinical parameter that
not only plays one of the fundamental roles in emergency patients, but is also helpful
in preventing chronic diseases in healthy subjects [4]. It can be used to predict coronary
artery disease, stroke, sudden death, and non-cardiovascular diseases independently [5].

Contact devices for measuring vital signs in remote patient system (RPS) to mea-
sure heartbeat, such as wearable ECG monitors and smart health watches, may lead to
allergic reactions, skin irritation, limit movement, and comfort of users [6]. Wearable
ECG monitors like the chest strap measuring the electrical activity of your heartbeat

1
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have higher accuracy than smart health watches using sensors that measure heartbeats
based on blood vessels [6]. But smartwatches are more comfortable than the chest strap
because of less area of friction with clothing and skin. Wet and dry electrodes are also
common biosensors that need to be in contact with the skin, which may have lower ac-
curacy because of the unstable contact [7].

In addition to the accuracy of the heartbeat measurement, the lightweight and com-
fort are essential in indoor healthcare [7]. So non-contact techniques can be better
choices to improve the user experience. Non-contact technologies like laser Doppler
vibrometry (LDV), airborne ultrasound, cameras, and radio frequency (RF) technology
can be used to detect vital signs [7]. LDV measures heartbeat and respiration rates by
displacement of the chest skin, but its size and complexity make it hard to be widely
used [8]. Airborne ultrasound can accurately estimate the heartbeat rate for people with
clothes, but the system is cumbersome [9]. Both of them have a high price to be applied
in indoor healthcare. RF technology like passive RFID tags has a low cost to monitor the
heartbeat and breathing based on chest movement, but it is harder to detect weak heart-
beat precisely and needs to attach tags on the clothes [10]. Another RF-based technology,
radar systems, is also suitable for home applications because they are non-invasive com-
pared with cameras, robust to changing lighting and temperature, and can detect vital
signs even for sleeping people or babies without sticky on-body sensors [11]. Frequency
modulated continuous wave (FMCW) radar is a type of radar that is capable of measur-
ing the range and velocity via Doppler frequency, and it is widely applied in indoor vital
sign measurement [12].

Based on the requirement for indoor healthcare and the discussion of technologies,
the focus of this thesis is on monitoring vital signs via FMCW radar.

1.2. PROBLEM STATEMENT
This thesis project follows up on the MSc thesis by Irving Maximino Cortés Peralta, a for-
mer MSc student of the MS3 group [1]. His project involved joint human motion recog-
nition and breathing frequency estimation for indoor healthcare applications based on
FMCW radar [1]. In-place (sitting) and translational (walking and standing) activities
are separated first, then the extended Kalman Filter (EKF) estimated the breathing fre-
quency during the in-place scenario. This project has three main goals: extending cur-
rent monitoring capabilities to heartbeat, analyzing the impact of different orientations
of the targets, and canceling random body movement (RBM). Some challenges are listed
as follows:

The extension of current capabilities to heartbeat
The previous work in [1] focused on respiration estimation, the heartbeat was out of
scope. However, the heartbeat is also an important clinical parameter worth extending
the current capabilities. There are some challenges for radar-based heartbeat frequency
estimation.

• The heartbeat signal is weaker than the respiration signal. The waveform and al-
gorithm’s design must be capable of detecting heartbeat signals. The data with
heartbeat information needs to be selected.
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• The possible frequency band of the heartbeat needs to be researched. The heart-
beat and respiration activities have a low and close frequency, so accurate separa-
tion and estimation of two vital signs need to be researched.

• The performance of the algorithm needs to be verified to be robust enough to pos-
sible heartbeat frequencies by the simulations and experiments. The experiment
scenario needs to be designed.

The cancellation of random body movement (RBM)
Random body movement (RBM) may occur during the measurement at any time. The
user experience of the patient at home is influenced by the limitation of body movement.
The achievement of RBM cancellation can also improve the accuracy of vital sign esti-
mation, especially for the weak heartbeat signal. The tasks for the RBM cancellation are
described below.

• In this project, the large-scale RBM like shaking hands and large chest movement
that is much larger than the movement due to the vital signs, needs to be detected
and canceled.

• A model of RBM needs to be researched and implemented in the simulation used
to test the algorithm’s performance.

• In the experiments, the RBM is defined as random movements larger than chest
displacement due to the vital sign. The accuracy of RBM cancellation should be
analyzed.

Analysis of the impact of different orientations of the targets
The targets sat on a chair and faced the radar to measure the respiration signal in [1].
Whether the orientation of the targets will influence the accuracy of the estimation and
whether the front side is the optimal measurement direction is not studied in previous
work in [1]. The study of the different orientations can provide the possibility of increas-
ing the activity space for a better user experience. The different orientations should be
selected and tested, and the performance should be evaluated in this project.

1.3. THESIS CONTRIBUTION
The main contributions of this thesis are summarized below:

(1) A processing pipeline with an explanation of the methods for extracting and estimat-
ing the heartbeat from the radar signal is proposed.

(2) The algorithm used to accurately estimate the heartbeat signal is implemented in
MATLAB.

(3) The waveform that can be used to extract heartbeat activity from FMCW radar is
designed and validated.

(4) The proposed pipeline is validated with simulated and experimental radar data of 7
participants. Random body movement can be canceled, and the impact of the body
orientation is studied.
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1.4. THESIS OUTLINE
The rest of the thesis is structured as follows. Chapter 2 reviews the most relevant liter-
ature on heartbeat estimation, the impact of different body orientations, and RBM can-
cellation. Chapter 3 selects and assembles the different ideas from the literature into a
complete process pipeline. The design of the chosen radar waveform is also described.
Chapter 4 presents the simulations in MATLAB and the analysis of the results. The mea-
surement equipment, experiment design, and analysis of the experimental results are
introduced in Chapter 5. Finally, the conclusions and recommendations are presented
in Chapter 6.



2
LITERATURE REVIEW

This chapter reviews the most relevant literature on vital sign monitoring by radars. Sec-
tion 2.1 introduces the cardiopulmonary activity and the model of vital signs and radar
data. Section 2.2 describes the existing signal processing approaches to remove clutter,
random body movement cancellation, and estimation of the heartbeat frequency. In the
end, the literature review is summarized in Section 2.3.

2.1. SIGNAL MODEL

2.1.1. PHYSIOLOGY OF CARDIOPULMONARY ACTIVITY
The FMCW radar can measure chest displacement to extract information on vital signs.
The chest displacement due to vital signs is very small and can not be detected with the
range resolution of the FMCW radar. The phase history in slow time contains the vital
sign information and can be converted to range history [13]. The Doppler resolution of
the FMCW radar can detect the low frequency of vital signs. The detailed calculation is
explained in 2.1.2. The process from the beginning of the heartbeat to the beginning of
the next heartbeat is the cardiac cycle [14]. The cardiac cycle has two periods, which
are diastole and systole [14]. In the diastole period, the heart relaxes, filled with blood
in the systole. The electrocardiogram is shown in Figure 2.1. The voltages of the heart
are recorded from the surface of the body [14]. The ventricular volume resulting in the
chest surface displacement can be extracted by radar to further vital sign estimation. The
heartbeat causes the chest displacements between 0.3 and 0.8 mm [15]. The heartbeat
rate (HR) corresponds to a frequency between 1 and 3 Hz.

Figure 2.1: Ventricular volume changes and electrocardiogram during heartbeat [14]

5
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In the process of respiration, oxygen is provided to the body, and carbon dioxide
leaves. There are two activities in respiration duration shown in Figure 2.2. During inspi-
ration(left side), the diaphragm contracts, pulling the lower surfaces of the lungs down.
During expiration(right side), the diaphragm relaxes, and the lungs are compressed to
remove the air. The changes in lung volume, which will result in the displacement of
the chest surface are shown in Figure 2.3. The chest displacement due to the respiration
activity between 3 mm and 11 mm [16]. The respiration rate (RR) varies between 0.1 and
0.3 Hz [17].

Figure 2.2: Contraction and expansion of the thoracic cage during expiration and inspiration [14]

Figure 2.3: The changes in lung volume during respiration cycle [14]

2.1.2. VITAL SIGN MODEL
In many studies, the human chest surface caused by breathing and heartbeat are consid-
ered as periodic motions with different amplitudes and frequencies [18]. The derivations
of models are proposed by Paterniani et al. [19].

The movement of the chest surface due to heartbeat can be modeled as the displace-
ment in Equation 2.1.

Rh(t ) ≈αhcos(2π fh t ) (2.1)

where αh is deterministic, unknown amplitude, fh is deterministic, unknown angular
frequency and ϕh is initial phase of the heartbeat signal.
Similarly, the movement of the chest surface due to respiration can also be modeled as a
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displacement in Equation 2.2.

Rr (t ) ≈ αr (1− cos(2π fr t ))

2
(2.2)

whereαr is deterministic and unknown amplitude, fr is deterministic and unknown an-
gular frequency and ϕr is initial phase of the respiration signal.
For simplicity here, respiration and heartbeat are separated because studying their inter-
action goes beyond the scope of this thesis. The total displacement of the chest surface
can be expressed by the summation of two movements in Equation 2.3.

R(t ) = Rh(t )+Rr (t )

= αr (1− cos(2π fr t ))

2
+αhcos(2π fh t ) (2.3)

2.1.3. RADAR RESPONSE MODEL OF THE VITAL SIGN
If the initial position of the chest surface is R0, then the position of the chest surface at a
distance R0 can be expressed by Equation 2.4.

R(t ) = R0 +Rr (t )+Rh(t )

= R0 + αr (1− cos(2π fr t ))

2
+αhcos(2π fh t ) (2.4)

The phase history φph(n) over slow time is derived by Equation 2.5.

φph(t ) = 4π fc

c
R(t )

= 4π fc

c
(
αr (1− cos(2π fr t ))

2
+αhcos(2π fh t )) (2.5)

Because there is an initial distance R0 between the radar and the chest surface of the
target, the wrapped phase caused can be written by Equation 2.6.

φe = wr ap(
4π fc

c
R0) (2.6)

The phase history can be expressed as Equation 2.7.

φph(t ) =φe + 4π fc

c
(
αr (1− cos(2π fr t ))

2
+αhcos(2π fh t )) (2.7)

The range history over slow time can be computed by Equation 2.8 based on the phase
history.

R(t ) = φph(t )c

4π fc
(2.8)
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The beat signal of the range bins in the time domain measured by FMCW radar can be
derived in Equation 2.9.

s(t ) = h exp( jφe )exp( j
4π fc

c
(
αr (1− cos(2π fr t ))

2
+αhcos(2π fh t )) (2.9)

where h is the amplitude of the processed signal, and fc is the carrier frequency of the
radar.

2.2. SIGNAL PROCESSING

The signal processing of the heartbeat has four main blocks illustrated in Figure 2.4. It is
a generic processing pipeline from the literature review. After reading raw data from the
FMCW radar, the clutter should be removed to detect the range bin with vital signs. The
RBM movement should be detected and canceled before the heartbeat estimation. The
heartbeat and respiration frequencies need to be analyzed separately.

Figure 2.4: A generic processing pipeline from the literature review

2.2.1. CLUTTER REMOVAL

As the heartbeat signal is weak, it can be easily buried by static clutter, which is reflec-
tions from the environment. In a static environment, the clutter results in a DC com-
ponent in the slow-time domain. Lazaro et al. [20] proposed a moving averaging filter
that subtracts the average of the received signals to remove the DC component in the
fast-time domain. Because the clutter is static, then only the motion of the chest sur-
face varies in slow time. This method provided a good signal-to-noise ratio signal [20].
The window length of the filter should be selected. When the window length is longer,
the attenuation of clutter decreases but the cutting-off frequency of the vital sign sep-
aration decreases too [20]. An extended method based on this used by Zetik et al. [21]
added weighted factors following the exponential law. Sacco et al. [22] used the stan-
dard deviation over slow time after the first Fourier transform to reduce the influence of
the clutters. Then the signal from the movement of the chest surface can be recognized
from the static surroundings. Singh et al. [23] tried to detect respiration behind a wall,
and the singular value decomposition (SVD) method was applied to reduce clutter, but it
did not work for all kinds of materials. Yim et al. [24] removed unwanted clutter signals
by applying the loopback filter for background subtraction.
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2.2.2. RANDOM BODY MOVEMENT CANCELLATION
Body movement has a significant influence on the extraction of vital sign signals. There-
fore, before applying the process of estimating the heartbeat, the impact of random body
movement (RBM) should be reduced. Most papers related to random body movement
cancellation did not define the specific motion. It is hard to design further experiments.
Khan et al. [25] considered three different types of motions, including speaking, shaking
the head slightly, and slight movement of the whole body. The auto-correlation-based
movement detection method (AC) determined whether people had random movement
based on auto-correlation [25]. The measurement stopped until the people were station-
ary. This method reduced unreliable measurements, but may lose some information.

Xu et al. [26] built an algorithm based on adaptive Kalman filter (AKF) that updated
the model parameters in different activities. This method used the heartbeat and move-
ment history to predict the heartbeat. So the model fitting error may lead to prediction
failure. It can work without training data and perform well when the movement changes.

Li et al. [27] used a multi-direction measurement method (MDM), placing two radars
in the front and back sides of the people and two synchronized DRSs to detect the RBM.
The intense noise was reduced, but the system was complex with multiple radars syn-
chronized.

Gu et al. [28] proposed strategies for RBM cancellation by phase compensation at RF-
front-end, baseband, and RBM cancellation for demodulated signals. The multi-sensor
measurement (MSM) used the radar system with camera-aided to measure RBM.

Lv et al. [29] applied the curve fitting technology (CF) to compensate for the large-
scale body movement. The heartbeat signal was reconstructed from strong body move-
ment noise, but the SNR is low, which needs to be improved.

advanced range-bin alignment technique (ARA) used two incoherent FMCW radars
and combined with range history extracted by range-bin alignment method was done
by Muñoz-Ferreras [30]. Reflection from the front scatterer is aligned and peaks of the
heartbeat and respiration are clear [30].

Adiprabowo et al. [31] used the energy threshold to detect the RBM. If the energy of
the heartbeat signal is higher than the threshold, this time segment is removed because
there is an RBM here. This method is simple and effective for large-scale movement. The
threshold needs to be defined to achieve good performance.

There are also some digital filters, such as the matched filter and low-pass filter to get
the heartbeat signal, but they may suppress vital sign signals [26].

2.2.3. IMPACT OF DIFFERENT ORIENTATIONS OF TARGETS
In realistic indoor healthcare applications, in which the orientation of people toward the
antenna is typically unknown. So, the performance of scenarios in different orientations
should be tested. Sacco et al. [22] considered four orientations of people with respect
to the radar, including the back side, front side, left side, and right side. Radar data was
compared with the signals measured by a PPG. Results from four scenarios show that
respiratory rate and heartbeat can be accurately estimated.

Wang et al. [32] also conducted these four scenarios. It was found that the front side
can get the most accurate respiration rate, and the heartbeat has the lowest error on the
front side. According to statistical analysis of the data collected from the five people, the



2

10 2. LITERATURE REVIEW

radar can measure respiratory rate and heart rate with high accuracy, regardless of the
orientation of the chest towards the antenna.

Ren et al. [33] proposed a derivative independent component analysis (DICA) method
to estimate the heartbeat and respiratory using an SFCW radar system with one trans-
mitter and four receivers. This method can not reconstruct the information on the sig-
nal amplitude. The data from the front, left, right, and back sides are measured and
processed. The errors of heartbeat rate estimation are lower than 3%.

The single input and single output FMCW radar with a 5.8 GHz band was used to
measure the left, back, and right sides of heartbeat rate by Sacco et al. [34]. The error on
the front side is the lowest, and the error on the right side is the highest [34].

Ren et al. [35] compared the electromagnetic scattering model simulation results and
experimental results measured by SFCW radars. Six orientations are analyzed including
right 45°, back, front, right 90°, left 45°, right 45°, and left 90°. The first three sides have
errors less than 3%, and the left side has the highest error 5.7% because of the lower radar
cross section [35].

The three-layer artificial neural network model was used to predict heartbeat by Iyer
et al. [36]. The heartbeat data was measured by the FMCW radar at 77GHz with a band-
width of 4 GHz and Fourier series analysis was applied to extract the phase [36]. The
results concluded that the right and left sides did not work well, and the performance is
good for the front and back sides [36].

Nahar et al. measured the scenarios putting the targets at 0°, 45°, 90°, and -45° with
respect to the radar [37]. An SFCW radar system working at 1 GHz bandwidth was im-
plemented. An electromagnetic (EM) model of scenarios was developed. The errors of
heartbeat are less than 2.5% based on the simulation and experiment results [37]. The
larger radar cross section will lead to less error was proved in both measurements and
simulations [37].

2.2.4. HEARTBEAT ESTIMATION

The existing radar-based heartbeat estimation approaches utilized in papers are de-
scribed below. The vital sign contains both heartbeat and respiration activities, the heart-
beat signal is the desired signal and should be separated.

Lazaro et al. [38] used an impulse radio ultra-wideband (IR-UWB) radar operating at
5GHz to detect the signal. The heartbeat and respiration frequencies are estimated in the
normalized spectrum by chirp Z-Transform which can provide a high-resolution analysis
[39]. moving target indicator (MTI) removes the respiration frequency from the original
signal and then searches for the heartbeat rate [38]. But if the heartbeat frequency is
close to the respiration frequency, then the filter may remove the heartbeat along with
the respiration [38].

wavelet independent component analysis (WICA) which combined the wavelet de-
composition and independent component analysis (ICA) was presented by Mercuri et
al. [40]. Phase-Tracking CW Doppler radar at 5.8 GHz detects the chest displacement.
Lowpass and highpass filters were used to decompose the signal into low and high-
frequency components, then the mother wavelet, which had a similar shape to the signal
processed, was used to determine the decomposition level. The ICA method can sepa-
rate independent sources from the heartbeat and respiration. The shape of the Mother
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Wavelet should be selected to be close to the signal.

Weishaupt et al. [6] used empirical mode decomposition (EMD) to decompose the
signal into physically meaningful components called intrinsic mode functions (IMF).
The raw data measured by Linear frequency modulated continuous wave radar at 76.5GHz
is preprocessed to extract the phase containing the respiration and heartbeat signal.
EMD is a part of the Hilbert-Huang transform (HHT) and can do convenient frequency
estimation [41]. It works like a filter bank. Selecting and summing the appropriate IMFs
and components can reconstruct the heartbeat signal. EMD method can extract heart-
beat components from the signal generated in noisy nonlinear and nonstationary pro-
cesses. But this method also has problems, such as mode mixing due to signal interfer-
ence [42].

Dragomiretskiy et al. [43] proposed the variational mode decomposition (VMD) method
which is more robust to sampling and noise compared with the EMD method. It is im-
proved with the alternating direction method of the multipliers approach using 5.8GHz
FMCW radar. VMD method cannot be applied in the non-stationary signal directly and
the number of modes should be defined at the beginning. Wu et al. [44] combined finite
impulse response filter (FIR), comb filter, and VMD algorithm. The improved system
is robust to the non-stationary clutter and has a lower computational load and higher
SNR than the EMD method. It had higher heartbeat extraction accuracy than the FFT
method.

Mikhelson et al. [45] combined the wavelet multi-resolution decomposition method
and the statistical algorithm (WMRDS) with a 94-GHz millimeter-wave sensor. The wavelet
multi-resolution decomposition method decomposed the displacement signal and has
a good time resolution for heartbeats but does not work for every heartbeat [46]. So the
statistical algorithm helps to compensate temporal locations of heartbeat obtained from
the wavelet method [45].

Tariq et al. [47] detected the phase difference caused by the chest movement by
phase-modulated Doppler radar to estimate heartbeat frequency. The wavelet trans-
form (WT) was applied with a good frequency resolution at low frequencies and was
suitable for the heartbeat signal with change over a short time. This method can help
detect the heartbeat rate without filtering noise when the distance between the radar
and the target is close [47]. But if the distance is larger than 1m, the extraction accuracy
of the heartbeat signal is not reliable enough, the technology for clutter removal should
be added [47].

The breathing and heartbeat rate have different frequencies and can be separated by
the bandpass filters applied by Ahmad et al. [48]. The FMCW with a carrier frequency of
77 GHz is used to detect the phase of the chest movement. The frequency of the peak in
the spectrum after selection by the signal power threshold is defined as the respiration
frequency. The heartbeat frequency is estimated using a density-based approach in the
spectrum. Wang et al. [32] also used a bandpass filter and adaptive peak detection after
FFT to separate and calculate heartbeat and respiration frequencies.

Birsan et al. [49] used the Doppler radar operating at 24 GHz to measure the chest
displacement due to the heartbeat. The Gabor transform (GT) is used to get high accu-
racy in counting the heartbeats in the time-frequency domain. Gabor transform applied
the Gaussian window to get the best time-frequency product among window functions
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[50]. Even if there is a big displacement of the target’s chest, this method also had a low
error. It is hard to reduce the influence of the micromotion dynamics, the fit pattern
needs to be found.

The heartbeat and respiration activities are periodic sinusoidal movements with fre-
quencies. Li et al. [51] used Doppler radar to detect chest displacement and process the
periodogram by the relaxation approach (RELAX). It can reduce the effects of smearing
and leakage problems of the simple periodogram approach but needs more computa-
tion [51].

The auto-regressive algorithm (AR) was proposed by Lee et al. [52] to extract the pe-
riodicity of the vital signs of multiple targets by the FMCW Doppler radar of 24 GHz. The
MUSIC algorithm completed the beat frequency containing range information, and the
Fourier transform method was used to phase history extraction. The short-time autore-
gressive algorithm extracted heartbeat and respiration signals in real-time. It resolved
the problem of the range resolution of multiple people estimation, but the algorithm is
not robust for small body movements [52].

Kalman filter (KF) based approach was applied by Rahman et al. [53] to the vital sign
monitoring using 2.4 GHz Doppler radar. This estimator was used for quadrature signals
in the linear dynamic system influenced by white noise [54]. Then principal component
combining (PCC) is used to combine the estimated signal. This approach is robust to
environmental noise. The extended Kalman filter (EKF) method proposed by Rahman
et al. [55] is a non-linear dynamic model extension of KF which is more suitable for vital
sign estimation. The phase noise and delay needed further improvement. Kalman filter-
based tracking algorithm (KFT) was proposed by Arsalan et al. [56]. The fourth-order
Butterworth filter is applied to extract the heartbeat signal from the displacement of the
chest surface adaptatively.

The phase FFT proposed by Anitori et al.[57] using FMCW radar st 9.6GHz. The range
bin 12 in the range-slow time map is selected to estimate the heartbeat frequency. The
range bin with the highest reliability is selected to estimate the respiration frequency
in the spectrum using FFT. The heartbeat frequency can be successfully estimated, but
with high error.

2.3. SUMMARY
This chapter introduces the physiology of cardiopulmonary activity and its simulation
model. For the tests of the impact of the different orientations in some papers, it was
found that normally the front side has the highest heartbeat estimation accuracy. The
flow of a general processing pipeline typical of all reviewed literature has mainly four
blocks shown in 2.4. There are many existing approaches that are studied in this chapter.
In the processing pipeline proposed in this thesis, the selected ideas from the analyzed
literature will be assembled together for the tasks of clutter removal, RBM cancellation,
and heartbeat frequency estimation.

For clutter removal, the existing approaches in Section 2.2.2 are summarized in Table
2.3. The approach which subtracts the DC component in slow time is applied. Because
in this project the test people are seated on a chair without large movements like walk-
ing, it can help to remove all the stationary objects in the room like the furniture, other
parts of the human body besides the chest, the wall, and so on. Since the range bin with
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vital sign signals in slow time needs to be selected to estimate the heartbeat frequency,
reducing the clutter in slow time can help make it easier to be detected by the maximum
variance. This method does not cost too much complex computation compared with
other methods such as the loopback filter.

After detecting the range bin, the large-scale random body movement should be de-
tected and canceled. The methods described in Section 2.2.4 are summarized in Table
2.2. For this part, the following three bullets can be derived:

• The multi-radars make the system complex and hard to work synchronously. The
extra devices like cameras are non-invasive for indoor healthcare at home. The
single FMCW radar which can measure chest displacement to extract the phase
history difference of the vital signs is used in this thesis project.

• The heartbeat signal is weak, and using filters will suppress the signal. The lower
SNR caused by the method of curve fitting will reduce the phase sensitivity ac-
cording to the paper [48]. The energy threshold is an effective and simple way to
distinguish the RBM.

• The RBM is much larger than the chest displacement due to the vital sign. The
energy of the RBM is higher than the normal heartbeat signal. Because the heart-
beat frequency of the people may not be valuable for the disease diagnosis when
people are not stable, the data with RBM can be discarded.

According to the analysis above, the energy threshold method shown in Table 2.2 is
selected to remove RBM in this thesis. Based on simulations and experimental results,
the threshold value of the vital sign signal containing RBM will be determined.

For heartbeat frequency estimation, there are lots of approaches in Section 2.2.4. The
types of equipment, advantages, and disadvantages of approaches are organized in Table
2.1. The wavelet transform is selected for the heartbeat estimation, because it has a good
frequency at low frequencies and the heartbeat frequency is between 1-3Hz which is low.
It can help filter the noise when test people are close to the radar. Also, the heartbeat and
respiration signals can be separated by multi-resolution analysis of Wavelet transform.
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3
PROPOSED PROCESSING PIPELINE

DESIGN

In this chapter, a processing pipeline is proposed inspired by the ideas from the literature
review. In section 3.1, the working principle of FMCW radar and the design of the wave-
form is illustrated. Section 3.2 explains in detail the main blocks and steps of the proposed
processing pipeline.

3.1. FMCW RADAR AND WAVEFORM

3.1.1. PRINCIPLE OF FMCW RADAR

The Frequency Modulated Continuous Wave Radar (FMCW) radar is a type of radar sen-
sor that can radiate power continuously and modulate the frequency of the transmitted
signal. The frequency modulation of the radar used in this project is linear sawtooth fre-
quency modulation. The shape of the chirp is shown in Figure 3.2. The radar sends the
signal continuously and receives the echo signal reflected by the objects. The delay be-
tween the transmitted and received signal results in the frequency shift, which is the beat
frequency, the model of the beat signal is shown in Equation 2.9. The radar transmits
chirps every chirp time. The range of the target can be detected by the delay between
the transmitted and the received signal. The Doppler frequency of the target can also be
measured by the frequency difference between the transmitted and the received signals.

3.1.2. WAVEFORM DESIGN

The Texas Instrument (TI) mm-wave radar IWR6843 with a carrier frequency of 60GHz
is chosen. The radar system is shown in Figure 3.1.

17
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Figure 3.1: Texas Instrument (TI) mm-wave radar IWR6843 together with the acquisition board used in this
thesis project

The configuration of a single FMCW chirp in the time domain is shown in Figure 3.2.
The chirp time includes the idle time, which is required for the radar to decrease the end
frequency to the start frequency, and the ramp time. The frequency slope of the chirp
is determined by the bandwidth and ramp time. The settings of two types of waveform
designed are summarized in Table 3.1. Waveform 1 (W1) was designed by Irving Max-
imino Cortés Peralta to measure joint human motion and breathing frequency [1]. It is
proved that it can capture respiration activity. In this project, the settings of the wave-
forms designed should be capable of measuring the heartbeat activity. Waveform 2 (W2)
is designed in Section 5.2.1 to fit the sitting scenario tested in this project. Both two
waveforms are able to measure the heartbeat and respiration activities.

Figure 3.2: Single chirp and related parameters from TI IWR6843 radar [60]
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Radar parameter Waveform 1 Waveform 2
Carrier Frequency [GHz] 60 60
Frequency Slope [MHz/us] 30 60
Number of ADC samples per chip 128 128
ADC start time [us] 6 6
Ramp Time [us] 100 100
Idle Time [us] 5160 3800
Chip Duration [us] 5260 3900
Number of chirps per frame 255 255
Frame Duration [s] 1.341 0.9949
Bandwidth [MHz] 3000 3000
Range Resolution [cm] 5 5
Unambiguous Range [m] 6.4 6.4
Unambiguous frequency [Hz] 95.057 128.205

Table 3.1: Radar parameters of Waveform 1 from previous work [1] and Waveform 2 designed in this thesis
project

The FMCW radar detects the propagation delay to compute the displacement of the
chest surface. Range and Doppler resolution and ambiguity should be checked if respi-
ration and heartbeat activity can be recognized.

The Doppler frequency resolution determines the minimum Doppler frequency change
that the radar can detect. It can be derived by equation 3.1. The interval is the observa-
tion time of measurement data processed in the algorithm to output a heart rate fre-
quency. The minimum length of the interval is 2 s because the wrist oximeter captures
the ground truth heartbeat frequency every two seconds. So the maximum value of the
Doppler frequency resolution is 0.5Hz in this thesis project. The influence of the length
of the intervals on the estimation error is discussed in Section 4.2.

∆ f = 1

MTchi r p
(3.1)

Here,Tchi r p is the chirp time, and M is the number of chirps in one interval in the algo-
rithm which is the observation time.

The unambiguous frequency is calculated by Equation 3.2. The unambiguous fre-
quency of Waveform 1 and 2 is 95.057Hz and 128.205Hz respectively, which is higher
than the maximum heartbeat frequency.

fmax = 1

2Tchi r p
(3.2)

The range resolution can be derived by Equation 3.3. The maximum displacement
of the chest due to the heartbeat and respiration is 11mm which is lower than 5cm and
can be detected in one range bin. Because the target is not multiple in this project, the
range resolution is not considered for the target distinction. But if there are random body
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movements, a higher range resolution can help to separate vital signs and RBM.

∆R = c

2B
= 3×108

2×3×109 = 0.05m = 5cm (3.3)

Here, B is the bandwidth of the radar, and c is the speed of the light.

The unambiguous range can be derived by Equation 3.4. The initial range between
the radar and the target is defined as shorter than the unambiguous range.

Rmax = N ADC∆R = 128×0.05 = 6.4m (3.4)

Here, NADC is the number of ADC samples in one chirp.

In conclusion, the ambiguity and resolution of range and frequency are essential pa-
rameters in waveform design. The range and frequency of the chest displacement should
be below the unambiguity range and frequency. Otherwise, the reflected signal from the
chest can not be received before the next transmitted chirp to get the correct frequency
information of the target. The range and frequency resolution of the FMCW radar de-
termines the minimum range and frequency that the radar can detect. The phase his-
tory difference is used to estimate heartbeat frequency because the range resolution of
the radar utilized in this thesis project can not achieve the measurement of millimeters.
Then Doppler frequency resolution is a crucial parameter to the accuracy of the heart-
beat estimation. It is determined by the length of the observation intervals, which is
discussed in the simulation and experimental data analysis.

3.2. PROPOSED PROCESSING PIPELINE DESIGN

The processing pipeline describes the detailed steps of how the algorithm processes the
radar raw data to the heartbeat frequency. There are two main parts including the ex-
traction of the phase history difference and the estimation of the heartbeat frequency.

3.2.1. EXTRACTION OF THE PHASE HISTORY DIFFERENCE

The processing steps of extracting the phase history difference are shown in Figure 3.3.
The raw data is read from the FMCW radar, it needs to be reshaped to the samples-chirps
matrix. The range information of the target is contained in fast time over samples at
each chirp. The frequency (velocity) information of the target movement is contained
in the slow time domain over the chirps. The range-slow time map is generated after
applying Fourier transform over samples at each chirp. The clutter noise of reflections
from stationary objects can be removed by subtracting the average power over the slow
time.
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Figure 3.3: Extraction of the phase difference in the proposed processing pipeline

The highest reflected power occurs at about 0.5m, which is the initial distance be-
tween the chest of the target and the radar in Figure 3.4. The received power is inversely
proportional to the fourth power of the range. The influence of the range is not studied
in this thesis project. The variance over the chirps is derived, and the range bin with
the highest variance contains the vital signs. Because the other objects in the range map
are stationary, and the chest has movement due to heartbeat and respiration activities
will result in a higher variance. The phase history of the range bin is unwrapped to re-
move the influence of the initial distance between the radar and the chest. The phase
history difference is calculated by subtracting the sequential phase history to strengthen
the heartbeat signal for further frequency estimation.

Figure 3.4: Range-slow time map when the target is seated at 0.5m away from the radar without RBM

3.2.2. ESTIMATION OF HEARTBEAT FREQUENCY
The processing steps of heartbeat frequency estimation are shown in Figure 3.5. The in-
tervals with RBM are detected and discarded according to the energy level of the phase
history difference, and the detailed steps are described in Section 3.2.3. The measure-
ment length is split into observation intervals of the same time length. The wavelet
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transform is applied to each observation interval and decomposes it into multi-levels
with different frequency bands by wavelet transform. Selecting suitable levels can help
to filter out the heartbeat and respiration signals. The principle of the wavelet transform
is explained in Section 3.2.4.

Figure 3.5: Estimation of heartbeat frequency after extracting the phase history difference in the processing
pipeline shown in Figure 3.3

Two methods to select needed levels with heartbeat were tested. The first method
is to select the level with the highest auto-correlation peak because the heartbeat signal
is periodic and the auto-correlation can help verify the presence of periods. The sec-
ond method is summing all levels that may contain the heartbeat signal. The heartbeat
frequency is about 1-3Hz according to the literature. For example, if the chirp time is
5260us, then the fifth, sixth, and seventh levels have the frequency band of 2.97-5.94Hz,
1.49-2.97Hz, and 0.74-1.49Hz. These three levels may contain the heartbeat signal, so
the algorithm directly sums them up for heartbeat estimation. The performance of the
auto-correlation method is not good because the respiration activity is also periodic and
the heartbeat is not perfectly periodic in experimental data, so the method of summing
levels is assembled in the final processing pipeline.

After getting the heartbeat signal by wavelet transform, there are three methods to
calculate the heartbeat frequency of each observation interval in the time or frequency
domain. The FFT method applies the second Fourier transform over slow time and se-
lects the frequency with the maximum amplitude as the heartbeat frequency in the spec-
trum.

The other two methods count the heartbeat frequency in the slow-time domain. The
second method is counting the number of peaks of the heartbeat signal and dividing the
number by the length of the observation intervals to get the heartbeat frequency. For
example, the heartbeat signal of one observation interval of 2 s is shown in Figure 3.6.
There are four peaks, and then the heartbeat frequency is 4/2=2 Hz.

The third method combines the second method and the generalized likelihood ratio
test (GLRT) proposed in [45]. The samples within 1/4 of the distance from the peak are
defined as having a heartbeat, while the rest are defined as having no heartbeat. Fig-
ure 3.6 shows the heartbeat and non-heartbeat selection selection. The red points are
defined as points with the heartbeat (HB), and the green asterisks correspond to points
without the heartbeat (nHB).
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Figure 3.6: Heartbeat(red) and non-heartbeat(green) selection for further heartbeat frequency estimation
using GLRT method

The histogram of two types of points is shown in Figure 3.7 and is fitted to the normal
distribution. The amplitude of the first intersection of the distributions is defined as
the threshold for deciding whether the peak contains a heartbeat. The total number of
heartbeat peaks in the observation interval is counted using the counting peaks method.
The peaks that have lower amplitude than the threshold are subtracted from the counted
number. Then, the heartbeat frequency can be calculated by dividing the number of
heartbeat peaks by the length of the observation interval.

Figure 3.7: Histogram of HB and nHB values and fitted distributions from Figure 3.6 using GLRT method

3.2.3. RANDOM BODY MOVEMENT CANCELLATION
The random body movement is detected by the energy level of the phase history differ-
ence and the observation intervals with RBM are discarded. Numerical integration via
the trapezoidal method is used in the algorithm to calculate the energy level which is
equal to the area between the phase history difference and the time axis.
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The threshold is determined by comparing the energy level when there is an RBM
and no RBM. When the energy level is higher than the threshold times the energy level
of the previous segment, this time interval is judged to have an RBM. The detection flow
is shown in Figure 3.8. After the measurement length is split into intervals, the energy
of the observation intervals is calculated. The energy of the evaluated interval is defined
as eng1. If it is higher than the threshold multiplied by the energy of the previous one
interval before the evaluated interval eng2, the evaluated interval is defined as having
RBM and discarded. Then, the following interval eng3 will also be compared with eng2
until one interval is defined as no RBM.

Figure 3.8: The RBM detection flow in the proposed pipeline

3.2.4. WAVELET TRANSFORM

Discrete wavelet transform (DWT) has been applied in processing biomedical signals
like ECG signals in the time and frequency domain [61]. The Fourier transform has a
good frequency resolution but no time resolution. The Short Time Fourier transform
divides the signal into the same length by a sliding window and then applies the Fourier
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Transform. The time and frequency resolutions are fixed and determined by the length of
the window. The wavelet transform can decompose a signal into different frequencies by
multi-resolution. The multi-resolution analysis of wavelet transform has good frequency
resolution and poor time resolution at low frequencies and has good time resolution and
poor frequency resolution at high frequencies. The equation of the wavelet transform
applied to a signal X(t) is shown in Equation 3.5.

X (τ, s) = 1p|s|

+∞∫
−∞

X (t )ϕ∗(
t −τ

s
)d t (3.5)

Here, s is the scale parameter that defines how it stretches and compresses the wavelet.
τ is the translation parameter that defines how the wavelet translates across the signal.
ϕ is the wavelet function.

The Maximal Overlap Discrete Wavelet Transform (MODWT) implemented by the
existing function in MATLAB in this thesis project is the modified version of the DWT
[62]. It performs the decomposition of the signal into wavelet and scaling coefficients
with a filter bank of high-pass and low-pass filters [63], shown in Figure 3.9. This does
not discard samples after every decomposition like DWT, which is suitable for the short
observation intervals of the heartbeat signal. The maximal overlap property at each level
ensures efficient utilization of information across scales compared to DWT [62]. After
applying different types of wavelets in the algorithm, Daubechies 4 is selected as the
wavelet because it has higher accuracy in the heartbeat frequency estimation.

Figure 3.9: MODWT decomposition tree [63]

The wavelet and scaling filters are defined in Equation 3.6 [64].

h̃ j ,l = h j ,l /2 j /2, g̃ j ,l = g̃ j ,l /2 j /2 (3.6)

where h j ,l is the DWT wavelet filter of length l and jth level decomposition, g j ,l is the
scaling filter of length l and jth level decomposition. l=1,2,..., L is the length of the filter,
and j is the level of decomposition.
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The wavelet coefficient W j ,t and scaling coefficient V j ,t of jth level are defined as the
convolution of time series X and MODWT filters in Equation 3.7 [64].

W j ,t =
L j −1∑
l=0

h̃ j ,l X t−l mod N ,V j ,t =
L j −1∑
l=0

g̃ j ,l X t−l mod N (3.7)

where X = {X t , t = 0,1,2, ..., N −1} is the time series of the original signal,and L j = (2 j −
1)(L−1)+1

The inverse transformation can reconstruct the original signal from the wavelet and
scaling coefficients. The multi-resolution analysis (MRA) component of the jth level
MODWT details of the signal X corresponds to different frequency bands [64]. The fre-
quency band is defined by the level of the MRA component and sampling interval, which
is the chirp time of the FMCW radar measuring the vital sign signal in this thesis project.
The phase history difference extracted to estimate the heartbeat signal is in the slow
time domain over sequential chirps. So the frequency band of MRA components in the
jth level is defined by Equation 3.8.

[
1

2 j+1Tchi r p
,

1

2 j Tchi r p
] (3.8)

where Tchi r p is the chirp time of the FMCW radar used to measure the vital sign signal
in this thesis project.

3.3. SUMMARY
This chapter proposes the processing pipeline for heartbeat estimation formulated and
validated in this thesis project. The phase history difference is selected for the heartbeat
frequency extraction from the chosen range bin in the Range-slow time map. The time
intervals with RBM are detected and discarded by the energy level threshold. Wavelet
transform decomposes the heartbeat signal from the phase history difference contain-
ing the vital signs. Then, the heartbeat frequency is estimated with three approaches,
either through the frequency domain by the FFT method or through the time domain
by counting peaks or GLRT methods. The performance of the processing pipeline to
heartbeat frequency estimation and RBM cancellation are validated and analyzed by the
simulations and experiments in Chapter 4 and Chapter 5.



4
SIMULATION RESULTS AND

ANALYSIS

The processing pipeline described in the previous chapter is validated in this chapter via
numerical simulations implemented in MATLAB and following a Monte Carlo strategy to
simulate possible different scenarios. The influence of different lengths of observation in-
tervals is analyzed in Section 4.2. The algorithm for RBM cancellation is tested in Section
4.3. The ability to estimate the respiration frequency is also studied in Section 4.4. For con-
ciseness, the discussion of the orientation simulation and overlap percentages are shown
in Appendix 7.

4.1. HEARTBEAT FREQUENCY ESTIMATION METHODS
Multiple scenarios with constant and non-constant heartbeat frequencies are simulated
to evaluate the performance of the heartbeat frequency estimation. The simulation with
the constant heartbeat frequency can verify whether the algorithm will react differently
to different heartbeat frequencies between 1-3 Hz. There are 100 data sets with constant
heartbeat frequencies from 1 to 3Hz. The amplitude of heartbeat and respiration and
the frequency of respiration are random. The simulation with the non-constant heart-
beat has heartbeat frequency changing during the measurement time, which can help to
check whether the algorithm is robust to rising and falling or mutating heartbeats. Ten
non-constant heartbeat frequency patterns are shown in Appendix 7. The median filter
is not used in the simulation because there are not too many impulse-like artifacts in the
phase history difference.

Two kinds of errors are used to evaluate the algorithm’s performance. The average
error in the results is the average value of the errors of all the intervals. The first type
of error is defined as the absolute difference between the estimated and ground truth
frequency derived in Equation 4.1. This is used to check if the difference between the es-
timation and ground truth data is related to the magnitude of the ground truth heartbeat
frequency.

27
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er r or = ∣∣ fh − fh_g t
∣∣ (4.1)

Here, fh is the estimated heartbeat frequency in Hz, and fh_g t is the ground truth heart-
beat frequency in Hz.

The second kind of error is the relative error defined by Equation 4.2. It is easier to
compare with the error of other estimation approaches based on radars in other papers.
The same difference error also has different importance for low and high ground truth
frequencies.

r el ati ve er r or =
∣∣ fh − fh_g t

∣∣
fh_g t

×100% (4.2)

Here, fh is the estimated heartbeat frequency in Hz, and fh_g t is the ground truth heart-
beat frequency in Hz.

Three heartbeat frequency estimation methods introduced in Section 3.2.2 including
FFT, GLRT, and counting peaks, were applied and compared in the simulations.

Firstly, three estimation methods are applied to the constant heartbeat frequency.
Figure 4.1 to Figure 4.6 below shows the average error and average relative error of all
people over different ground truth frequencies. The length of the observation interval is
set to 2 s.

Figure 4.1: Average error of all people over
different ground truth heartbeat frequencies(FFT
method, simulations with constant ground truth

heartbeat frequency pattern)

Figure 4.2: Average relative error of all people
over different ground truth heartbeat

frequencies(FFT method, simulations with
constant ground truth heartbeat frequency

pattern)
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Figure 4.3: Average error of all people over
different ground truth heartbeat

frequencies(GLRT method, simulations with
constant ground truth heartbeat frequency

pattern)

Figure 4.4: Average relative error of all people
over different ground truth heartbeat

frequencies(GLRT method, simulations with
constant ground truth heartbeat frequency

pattern)

Figure 4.5: Average error of all people over
different ground truth heartbeat

frequencies(counting peaks method, simulations
with constant ground truth heartbeat frequency

pattern)

Figure 4.6: Average relative error of all people
over different ground truth heartbeat

frequencies(counting peaks method, simulations
with constant ground truth heartbeat frequency

pattern)

The average error of the three estimation methods has the shape of waves with peaks.
The amplitude of peaks of average relative errors decreases because the relative errors
need to be divided by increasing ground truth frequency. The shape of waves is due to
the limitation of Doppler resolution. The different ground truth frequency between two
sequential peaks is estimated as the same frequency. The comparison between the esti-
mated and ground truth heartbeat frequency using the FFT method is shown in Figure
4.7. For example, the ground truth frequencies between 1.72Hz,1.87Hz, and 2.03Hz are
estimated as the same frequency about 1.85-1.87Hz. The estimation error is lowest when
the ground truth frequency is 1.87Hz. When the ground truth frequency is far away from
1.87Hz between 1.72Hz and 2.03Hz, the estimation error is larger.
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Figure 4.7: Estimated and ground truth heartbeat frequencies(FFT method, constant ground truth heartbeat
frequency pattern)

The average ground truth frequency difference between peaks of the FFT method
is about 0.38 Hz. The average ground truth frequency difference between the peaks of
GLRT and counting peaks methods is about 0.52-0.55 Hz. It is related to the Doppler
resolution. The length of the intervals determines the Doppler resolution. The interval
length is 2s in this section, the Doppler resolution is 0.5Hz. The frequency interval of
the FFT method is a little lower because the heartbeat signal in the frequency domain
after FFT is discrete with zero padding in MATLAB, and the selection of the peak point
in the frequency domain is not always precisely the peak of the main lobe curve. The
selected points may be the closest points on the left or right of the real peaks because of
the resolution of the curve.

The maximum relative errors of the FFT, GLRT, and counting peaks methods are
about 14.65%, 23.75%, and 25.59%. The FFT method has a lower error than the other
two methods. Because the heartbeat frequency is constant, the main lobe with the high-
est peak in the frequency domain after FFT is dominant and close to the frequency of the
heartbeat signal. The influence from the impulse-like artifacts is small and will not shift
or hide the main lobe. For GLRT and the counting peaks methods, the heartbeat signal
is almost perfectly periodic in simulation. It is easier to count the peaks of the heartbeat
activity in the time domain.

The average relative error over different patterns of non-constant ground truth fre-
quencies is shown in Figure 4.8. Three methods have relative errors lower than 17.68%
for all types of patterns. The average of average relative errors of all patterns of the FFT,
GLRT, and counting peaks methods are 8.56%,15.17%, and 10.99%. The FFT method still
has a lower error than the other two methods. The length of the interval is 2s, which is
short. Then, the heartbeat frequency does not change too much to generate more side-
lobes with peaks with high amplitude in the frequency domain to hide or shift the main
lobe of the heartbeat.

The GLRT method has a higher error than counting peaks because of the threshold of
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the eliminated peaks. When the time between sequential peaks is lower than 1/3=0.33 s
which means the frequency threshold is 3Hz, the peaks are not counted. This threshold
is too strict and makes some heartbeat peaks miss detected. After increasing the time
threshold to 1/3.5=0.29 s, the GLRT method is improved and has a lower error than the
counting peaks method shown in Figure 4.9.

Figure 4.8: Average relative error for different simulated people
with non-constant heartbeat frequency pattern (comparison of 3

methods)

Figure 4.9: Average relative error for different simulated people
with non-constant heartbeat frequency pattern (comparison of 3

methods with improved GLRT)

4.2. LENGTH OF OBSERVATION INTERVALS

The length of observation intervals is also called the observation time of the estimation.
The observation time is the inverse of the Doppler resolution. When the length of in-



4

32 4. SIMULATION RESULTS AND ANALYSIS

tervals increases to 12s, the Doppler resolution is 0.083Hz, which is much higher than
0.5Hz when the interval is 2 s shown in Figure 4.7.

Figure 4.10: Estimated and ground truth heartbeat frequencies(FFT method; observation interval=12s)

Most frequency points shown in Figure 4.10 are very close to the reference line where
the estimated heartbeat frequency equals the ground truth frequency because of the
higher Doppler resolution. Then the relative error is lower. The simulation results of
constant heartbeat frequency over different lengths of observation intervals are shown
in Figure 4.11. When the length of the intervals increases, the relative error is lower with a
higher Doppler resolution. A relative error lower than 8.37% can be achieved with a short
interval of 2s by three estimation methods. After increasing the interval longer than 20 s,
all three methods can achieve a relative error lower than 1%.

Figure 4.11: Average relative error of all people over different lengths of the observation intervals for three
methods (simulations with constant heartbeat frequency)
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The simulation results of non-constant heartbeat frequency over different lengths
of observation intervals are shown in Figure 4.12. Although the Doppler resolution is
higher with longer intervals, the frequency change in one interval is also higher. The

Figure 4.12: Average relative error of all people over different lengths of the observation intervals for three
methods (simulations with non-constant heartbeat frequency)

non-constant frequencies generate more sidelobes with high amplitude peaks that hide
or shift correct frequency peaks, and then the FFT method has a higher error. For exam-
ple, the ground truth frequency of one interval changes from 1.4, 1.24 to 1.08 Hz shown
in Figure 4.13, and the average frequency is 1.19Hz. The output of one interval of 30s

Figure 4.13: Ground truth frequency of one interval using FFT method

using the FFT method is shown in Figure 4.14 in the frequency domain. The selected
estimated frequency is 1.49 Hz, which is higher than any frequency defined in this inter-
val, and the desired correct peak is hidden. The error is about 25%, which is high. For
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the other two methods, they count the heartbeat activity in the time domain that is not
influenced by sidelobes in the frequency domain. The GLRT method has a lower error
than the counting peaks method because it eliminates the small and close peaks caused
by frequency changes.

Figure 4.14: An interval in the frequency domain using FFT method for the frequency estimation of Figure
4.13

4.3. RANDOM BODY MOVEMENT CANCELLATION
There are two kinds of movement models used to simulate RBM, such as shaking heads
and moving the chest. Both of them are large-scale movements that are much larger than
chest displacement due to heartbeat and respiration activities. The energy threshold of
the RBM detection is set as 3 after testing different values to detect the intervals with the
RBM as many as possible and reduce the false detection. The confusion matrix is used
to evaluate the performance of the RBM detection. "1" means the interval has an RBM,
and "0" means the interval does not have an RBM.

The first kind of RBM is not periodic and is defined by the velocity. An example of
RBM in the time domain of the first kind of RBM is shown in Figure 4.15.

Figure 4.15: Model of RBM 1 over time where the RBM is modeled with constant velocity
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The Monte Carlo simulation randomly selects constant velocity between 2-6 cm/s
and the RBM 1 occurs in four continuous frames which is about 5s. The confusion ma-
trixes of constant in Figure 4.16. The probability of the correct decision is 97. 6%, which
means that most RBM intervals are detected correctly. 109 out of 7021 intervals without
RBM are incorrectly detected as intervals with RBM, the false alarm probability is only
1.6%.

Figure 4.16: Confusion matrix of RBM 1 detection(constant ground truth heartbeat frequency pattern)

Figure 4.17: Confusion matrix of RBM 1 detection(non-constant ground truth heartbeat frequency pattern)

The confusion matrixes of non-constant heartbeat frequency simulations are shown
in Figure 4.17. The probability of the correct decision is 89.5%, meaning most of the
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RBM intervals are detected correctly. The false alarm probability is 3.8%. The detection
algorithm is effective for the first kind of RBM.

The second kind of RBM shown in Figure 4.18 is periodic with a frequency between
0.5-4Hz, including the frequency band of summed levels after the wavelet transform.
The movement is a cosine wave with an amplitude between 2-20cm.

Figure 4.18: Model of RBM 2 over time where the RBM is modeled with frequency

The confusion matrix of constant frequency simulations is shown in Figure 4.19. The
confusion matrix of non-constant heartbeat frequency simulations is shown in Figure
4.20. The probability of the correct decision is higher than 98.1%. The false alarm proba-
bility is lower than 2.1%. The detection algorithm is effective for the second kind of RBM
2.

Figure 4.19: Confusion matrix of RBM 2 detection(constant ground truth heartbeat frequency pattern)
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Figure 4.20: Confusion matrix of RBM 2 detection(non-constant ground truth heartbeat frequency pattern)

4.4. RESPIRATION ESTIMATION
The respiration frequency is between 0.1 and 0.3 Hz, and the summed level after the
wavelet transform is the 9th level which contains the frequency band of 0-0.37Hz. The
period of one respiration activity is between 3.33-10 s, then the time of the interval is
defined as 12s to make one interval contain at least one respiration period. The aver-
age errors and relative errors of constant respiration frequency over different lengths of
intervals are shown in Figure 4.21 and Figure 4.22. The FFT method has a lower error
between 1.66% with intervals of 14s and 13.11% with intervals of 60 s than the other two
methods. The counting peaks method has the highest error. The accuracy is higher with
longer intervals because of the higher Doppler resolution.

Figure 4.21: Average error of all people over different lengths of the intervals(constant ground truth heartbeat
frequency pattern)
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Figure 4.22: Average relative error of all people over different lengths of the intervals(constant ground truth
heartbeat frequency pattern)

The simulation results of non-constant respiration frequency over different lengths
of intervals are shown in Figure 4.23 and Figure 4.24. The GLRT method has a lower
relative error of 12.55%-45.95% than the other two methods. The FFT method does not
get higher accuracy when the intervals are longer because of the sidelobes caused by
changing frequencies in the spectrum.

Figure 4.23: Average error of all people over different lengths of the intervals(non-constant ground truth
heartbeat frequency pattern)



4.5. SUMMARY

4

39

Figure 4.24: Average relative error of all people over different lengths of the intervals(non-constant ground
truth heartbeat frequency pattern)

4.5. SUMMARY
The Monte Carlo strategy is used to evaluate the performance of the proposed pipeline
with simulations as a function of different key factors, such as the length of the obser-
vation intervals. The results are summarized below. Three methods for the heartbeat
estimation method are analyzed, including FFT, GLRT, and counting peaks.

• For constant heartbeat frequency, the FFT method has a lower relative error of
all people than the other two methods, even with a relatively short interval of 2s.
The error is limited by the interval length because of the Doppler resolution. The
other two methods have a closely aligned margin of error because the ground truth
frequency is stable with a perfect periodic heartbeat signal in the simulation.

• For non-constant heartbeat frequency, the FFT method has the lowest relative er-
ror with the length of the intervals as short as 2s. Because the interval length is
short, the sidelobes of changing frequency do not influence the accuracy of the
frequency peak selection in the spectrum. The GLRT method has a lower error
than the counting peaks method after eliminating close peaks in the time domain
caused by changing frequency.

The influence of the length of the observation intervals is analyzed in Section 4.2 and
summarized below.

• When the length of the intervals is longer, the estimation accuracy is higher be-
cause of the higher Doppler resolution.

• For a constant heartbeat frequency, all three considered methods have higher ac-
curacy with longer intervals. The FFT method has the lowest error of 4.88% with
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intervals of 2 s and 0. 17% with intervals of 60 s shown in Figure 4.11. All three
method can achieve a relative error lower than 1% when the length of the observa-
tion intervals is longer than 20 s.

• For non-constant heartbeat frequency, the FFT method has the lowest error when
the length of the intervals is shorter than 4s. When the intervals are longer, the FFT
method has a higher error than the other two methods because of the sidelobes
from changing frequencies in the frequency domain. The GLRT method has the
lowest error of 9.66% with intervals of 2s and 2.21% with intervals of 60 s shown in
Figure 4.12.

The algorithm for RBM cancellation is evaluated by the confusion matrixes in Section
4.3.

• Two developed RBM models represent two kinds of large-scale movement that
may occur in indoor healthcare when people are seated. They cannot simulate
all possible RBM, but they can be simple and typical movement simulations like
shaking the head and moving the chest.

• For both the constant and non-constant heartbeat frequency simulations, the de-
tection algorithm has a good performance. The detection probability is between
89.5%-100%. The false alarm probability is between 1.6%-3.8%. The detection al-
gorithm is effective.

• The intervals with detected RBM are discarded so that they do not influence the
accuracy of the heartbeat estimation.

For completeness, beyond the heartbeat, the ability to estimate respiration is sum-
marized below.

• For a constant respiration frequency, the accuracy is higher when the length of
the interval increases from 12 to 60 s. The FFT method has a lower error between
1.66% with intervals of 14s and 13.11% with intervals of 60 s than the other two
methods shown in Figure 4.22.

• For the non-constant respiration frequency, the GLRT method has a lower relative
error of 45.95% with intervals of 12 s than the other two methods.

The analysis of the orientations and overlap percentages are shown in Appendix 7.
The different orientations do not have a big effect on the results. The orientation is sim-
ply simulated by the radar cross section (RCS) of the chest with the plate, so it is not an
optimal model. So, further analysis of the different orientations based on the experimen-
tal data is necessary. The different overlap percentages are also observed not to influence
the estimation accuracy.



5
EXPERIMENTAL DATA COLLECTION

AND RESULTS

The proposed processing pipeline is validated in this chapter with experimental data col-
lected on purpose for this thesis. The experiment equipment and scenarios are introduced
in Section 5.1. The new waveform used in experiments is designed in Section 5.2.1. The
three estimation methods are discussed in Section 5.2.2. Section 5.2.3 and Section 5.2.6 an-
alyze the influence of the length of the observation intervals and orientations. In Section
5.2.4 The results of the respiration frequency estimation are shown in 5.2.6

5.1. EXPERIMENTAL EQUIPMENT AND SCENARIO DESIGN

Seven test people are seated on a chair in front of the radar. The distance between the
radar and the people is about 0.8m to give enough place for the radar, chair, and legs and
provide higher signal-to-noise ratio (SNR) for the reflection signal from the chest. The
test people sit in the same position but rotate the body in three directions: front side,
left 30°and right 30°. The angle is the aspect angle to the line of sight (LoS) of the radar.
The height of the radar is about the same height as the chest, the low height may detect
the reflection from the abdomen, which may also have movements when breathing. The
back of the test people is against the back of the chair to make the chest more stable be-
cause the heartbeat activity is weak. The information of the people measured on gender,
height, BMI, age, and clothes are shown in Table 5.1. The measurement length is about
3 minutes to provide enough observation intervals. Figure 5.1 shows the scenario of the
experiments with the front side.

41
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Table 5.1: The information of the test people

Gender Age Height(cm) Weight(kg) BMI(kg/m²) Clothes
P1 Female 25 53 166 19.2 T-shirt
P2 Female 23 53 164 19.7 T-shirt
P3 Female 25 65 158 26 T-shirt
P4 Female 25 54 166 19.5 T-shirt
P5 Male 25 75 185 21.9 T-shirt
P6 Male 31 59 174 19.4 T-shirt
P7 Male 23 69 170 23.8 T-shirt

Figure 5.1: The scenario of the experiments with the front side facing the radar

The respiration belt is utilized to measure the ground truth respiration frequency
[65]. The wrist oximeter is used to measure ground truth heartbeat frequency wrist
oximeter CheckmeO2 Max [66]. The equipments are shown in Figure 5.2.

Figure 5.2: The respiration belt and wrist oximeter used as ground truth for the measurements



5.2. RESULTS AND ANALYSIS

5

43

5.2. RESULTS AND ANALYSIS

5.2.1. DIFFERENT WAVEFORMS

The waveform used in the simulation has a chirp time of 5260us. The frequency band of
the summed levels is 0.743-2.971 Hz, suitable for the heartbeat frequency of 1-3Hz. But
in the experimental scenarios, the test people sit on a chair without doing any sports and
have a heartbeat frequency typically lower than 2 Hz. The wrist oximeter will warn when
the heartbeat frequency is higher than 2 Hz when sitting. At the beginning of the mea-
surement test, it was found that one person sometimes had a low heartbeat frequency of
approximately 0.88 Hz, shown in Figure 5.3 during measurement. When the frequency
is close to the edge of the frequency band, the heartbeat signal is suppressed and the es-
timation error is higher. Therefore, the waveform is adjusted to fit the scenario of sitting
and the lower heartbeat frequency. The design of the new waveform is shown in the third
column of Table 3.1. The chirp time is set as 3900 us. Then, the new waveform can have a
frequency band of 0.501-2.003 Hz, which includes the possible heartbeat frequency and
makes the low frequency of 0.88 Hz far away from the edge of the frequency band and
has higher accuracy.

Figure 5.3: Ground truth heartbeat frequency measured by the wrist oximeter

5.2.2. HEARTBEAT FREQUENCY ESTIMATION METHODS

The error of different people with observation intervals of 2s by three estimation meth-
ods is shown in Figure 5.4. The results with observation intervals of 4s, 12s, and 40s are
shown in Appendix 7. The error of different people is the average error of all the observa-
tion intervals for each people. It is observed that the method of counting peaks has the
lowest error for most people. The FFT method has the highest error for all people.
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Figure 5.4: Average relative error for different people with observation intervals of 2s using three heartbeat
estimation methods

In the simulations, the impulse-like artifacts caused by the unwrapping step is very
small for the phase history difference. But in the experimental data, the impulse-like ar-
tifacts are very large, shown in Figure 5.5. The median filter can help reduce the impulse-
like artifacts but can not remove the influence entirely and may smooth the weak heart-
beat signal. The sidelobes caused by the noise in the frequency domain influence the
selection of correct heartbeat peaks.

Figure 5.5: Phase history difference over time with and without applying a median filter(zoom-in figure
between 60-70s in the lower right corner)

The GLRT method has a little higher error than the counting peaks method for most
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test people. Because the distribution of heartbeat signal in experiments shown in Figure
5.6 does not fit very well with the normal distribution like simulations. It influences the
precision of selecting a suitable amplitude threshold for counting heartbeat peaks.

Figure 5.6: Histogram of HB and nHB values and fitted distributions of the experimental data(facing the radar
with the front side and without RBM)

5.2.3. LENGTHS OF OBSERVATION INTERVALS
Figure 5.7 shows the average error over different lengths of observation intervals. When
the length of observation intervals increases from 2s to 4s, the error decreases signifi-
cantly for the three methods because the Doppler resolution increases from 0.5 Hz to
0.25 Hz. After increasing the interval higher than 4 s, the accuracy increases slower. Be-
cause the Doppler resolution is high enough, the selection of the estimation method is
the critical factor determining the error. When the observation intervals are 34s, the FFT
and GLRT methods achieve the lowest errors of 19.93% and 12.54%. The lowest error for
the counting peaks methods is 8.14% with observation intervals of 44 s.

Figure 5.7: Average relative error of all people over different lengths of observation intervals
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5.2.4. RANDOM BODY MOVEMENT CANCELLATION

There are two RBM models simulated in the simulations. It makes the RBM simple and
determined. In experiments, RBM is random and larger than chest displacement due to
the vital sign. The test people can move the chest in all directions, hands up, touch the
head by hands, shake the head, and so on. The duration of the RBM is 15s which means
the people can do multiple RBM. The left hand with the Wrist oximeter can not move to
keep the high accuracy of the ground truth data.

The confusion matrix of RBM detection for all the people is shown in Figure 5.8. The
performance of detection is good enough. The correct decision probability is 92.1%,
meaning most of the RBM intervals are detected. The false alarm probability is 3.4%,
indicating that not many observation intervals without RBM are wrongly detected.

Figure 5.8: Confusion matrix of undetermined RBM detection of seven test people

5.2.5. ORIENTATION OF TARGETS

The average error of different orientations over different people is estimated by three
methods shown in Appendix 7. The length of the observation intervals is 2s. The results
are organized in Table 5.2. The front side has the lowest error of 22.38%. Because the
orientations of the target influence the RCS, which is proportional to the received power
of the signal. When people are facing the radar, the chest has the highest RCS. The higher
SNR can increase the phase sensitivity for the heartbeat frequency estimation based on
the phase history difference [48]. The counting peaks method has better performance in
all orientations.
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Table 5.2: Average relative error of all people of heartbeat estimation in different orientations

FFT GLRT counting peaks
Average relative
error of different
methods(%)

Front 32.62 19.72 17.81 22.38
left 30 degrees 35.19 22.07 21.40 26.22
right 30 degrees 33.29 22.24 21.70 25.74
Average relative
error of different
orientations(%)

33.70 21.34 20.30

5.2.6. RESPIRATION ESTIMATION

The average relative error over different lengths of observation intervals is shown in Fig-
ure 5.9. When the observation intervals are shorter than 30 s, the FFT method has the
lowest error between 5.96% and 17.68%. When the length of the observation intervals
increases higher than 40 s, the GLRT method has an error between 3.35% with intervals
of 110 s and 9.25% with intervals of 40 s. The counting peaks method has an error be-
tween 16.03% with intervals of 100 s and 35.02% with intervals of 10 s. Overall, the GLRT
method has higher accuracy in estimating respiration with longer observation intervals.

Figure 5.9: Average relative error of all people over different lengths of observation intervals(respiration)

The length of observation intervals is defined as 10s. The average error of all peo-
ple over different orientations by three methods is shown in Appendix 7. The results
are summarized in 5.3. The front side and left 30°have lower errors. The FFT method
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performs better in all orientations, as shown in Figure 5.9.

Table 5.3: Average relative error of all people of respiration estimation in different orientations

FFT GLRT counting peaks
Average relative
error of different
methods(%)

Front 17.69 25.05 35.02 25.92
left 30 degrees 15.61 23.16 36.94 25.24
right 30 degrees 32.04 25.43 37.49 31.66
Average relative
error of different
orientations(%)

21.78 24.55 36.48

5.3. PERFORMANCE COMPARISON
The performance of the processing pipeline proposed in this project is compared to an-
other representative paper using FMCW radars in Table 5.4. The algorithm using band-
pass filter and FFT to estimate the frequency of vital signs [32] is applied to the same
datasets without RBM measured by Waveform 2 in this thesis project.

Table 5.4: Estimation accuracy comparison to other paper

Method
WT and
FFT

WT and
GLRT

WT and
counting
peaks

Bandpass filter
and FFT [32]

Radar 60GHz FMCW radar
80 GHz
FMCW radar

Length of observation
intervals(s)

2s-60s for heartbeat,
10s-120s for respiration

100s

Heartbeat error(%)
(observation interval)

19.93(34s)-
32.61(2s)

12.54(34s)-
19.71(2s)

8.14(44s)-
17.80(2s)

25.08

Respiration error(%)
(observation interval)

4.88(110s)-
17.69(10s)

3.35(110s)-
25.05(10s)

16.04(100s)-
35.01(10s)

15.88

The length of observation intervals is a crucial parameter for the estimation accu-
racy. The algorithm in the paper [32] uses the intervals of 100s. All three estimation
methods proposed in this project can achieve a lower error with shorter intervals in es-
timating heartbeat frequency than the bandpass filter and FFT method. The FFT and
GLRT methods also can achieve lower errors in estimating respiration frequency with
shorter intervals. The proposed processing pipeline uses MODWT in this thesis project,
which is robust to the noise and more accurate in separating the vital sign signal and
noise compared with the bandpass filter and FFT method in the paper. The median filter
also helps reduce the impulse-like artifacts caused by unwrapping. Furthermore, there
are also other methods in the literature review that can be compared to the proposed
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processing pipeline. However, due to the time limitation of this thesis project, it can be
explored in future work.

5.4. SUMMARY
The proposed processing pipeline is validated by experimental radar data collected for
the purpose of this thesis and involving seven participants. The main conclusions of this
chapter are summarized below.

• The waveform defined in the third column of Table 3.1 is improved to fit the sce-
nario of sitting people. It was found that the phase history difference suffered
from the impulse-like artifacts caused by the unwrapping step. The median filter
is added to reduce them.

• For the heartbeat estimation method, the FFT method has the highest error be-
cause there are still some impulse-like artifacts left in the phase history difference.
The GLRT method has a slightly higher error than the counting peaks method be-
cause of the fitting distribution for most test people.

• For the length of the observation intervals, the higher resolution, the error for the
three methods is lower because of the higher Doppler resolution. The test people
have a stable heartbeat frequency during the measurement. The counting method
has a lower error than the other two methods and can achieve a relative error of
8.14% with intervals of 44s and 17.81% with intervals of 2s.

• The influence of orientations of the front, left 30° and right 30° is discussed in Sec-
tion 5.2.6. The front side has better performance because of the larger RCS. The
counting peaks method has a lower error in three directions.

• For the results of the respiration estimation, the FFT method has the lowest er-
ror when the intervals are shorter than the 30s. The GLRT method has a higher
accuracy when the interval is longer. The FFT method performs better in all ori-
entations. The front side and left 30° have lower errors.

• The proposed processing pipeline is compared with the bandpass and FFT method
with the same datasets measured by Waveform 2. The GLRT and FFT methods
implemented in this thesis project have higher accuracy with shorter observation
intervals in the heartbeat and respiration frequency estimation referred to Table
5.4.
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CONCLUSIONS AND

RECOMMENDATIONS

The conclusions of the whole thesis project are drawn in 6.1. The recommendations de-
scribe the limitations of this project in Section 6.2.

6.1. CONCLUSIONS
This thesis has designed a new waveform and a processing pipeline for heartbeat es-
timation and validated it with simulations and experiments. The main conclusions of
the proposed processing pipeline, the simulation results, and the experiment results are
drawn below.

• The heartbeat and respiration can be detected by the same radar waveform de-
signed in Section 3.1.2 and Section 5.2.1. The phase history difference over the
slow time is selected to extract the weak heartbeat signal. The wavelet transform
algorithm can be applied for heartbeat and respiration estimation with multi-resolution
analysis.

• Three estimation methods, including FFT, GLRT, and counting peaks, are discussed
to calculate the heartbeat frequency in frequency and time domains. Monte Carlo
simulation and experimental data are used to evaluate the performance of the al-
gorithm.

• In simulations, it was found that the FFT method is suitable for the constant heart-
beat frequency. This can achieve 4.88% with short observation intervals of 2s and
0.17% with observation intervals of 60s referred to Figure 4.11. The FFT method
is not robust to the non-constant heartbeat frequency because of the sidelobes
caused by changing frequency in the frequency domain. It has a higher error
of 6.71% with intervals of 6s and 23.11% with intervals of 36s referred to Figure
4.12. The counting peaks and GLRT methods perform well for constant and non-
constant heartbeat frequencies. The GLRT method has higher accuracy for the
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non-constant frequency because of two thresholds to select heartbeat peaks and
can achieve 9.66% with intervals of 2s and 2.21% with intervals of 56s shown in Fig-
ure 4.12. The counting peaks method has a relative error of 10.99% with intervals
of 2s and 3.98% with intervals of 60s for non-constant heartbeat frequency shown
in Figure 4.12.

• In experiments, seven test people were seated and measured. The counting peaks
method has better performance than the other two methods in heartbeat frequency
estimation with intervals of 2 s shown in Figure 5.7. Although the heartbeat fre-
quency is stable during measurements, it was found that the impulse-like artifacts
were caused by unwrapping, the median filter was added to try and smoothen
them out. However, the signal is not as clean as the simulation. Then, the FFT
method is affected by this and has lower accuracy. The GLRT method has a higher
error because the distribution of the heartbeat and no heartbeat points does not
fit very well with the normal distribution like simulations.

• The length of the intervals is the crucial parameter to determine the estimation
accuracy for heartbeat and respiration frequency estimation. When the length of
observation intervals is longer, the Doppler resolution to detect the vital signs sig-
nal is higher. The counting peaks method can get a lower relative error than the
other two methods and can achieve a relative error of 8.14% with intervals of 44s
and 17.80% with intervals of 2s in heartbeat frequency estimation in experiments
referred to Figure 5.7. For respiration frequency estimation, the GLRT method can
achieve the lowest error of 3.35% with observation intervals of 110s shown in Fig-
ure 5.9. For shorter intervals of 30 s, the FFT method has a lower relative error of
5.96%.

• The energy threshold of phase history difference is used to detect the random body
movement. Two simple models of large-scale movement are simulated, and the al-
gorithm works well. More undetermined random movements like shaking hands,
touching the head, and moving the chest in random directions are tested in the
experiments. The detection algorithm is effective and can achieve a correct de-
cision probability of 92.1% in experiments shown in Figure 5.8. The false alarm
probability is 3.4%.

• The different orientations are simulated by different RCS of a plate, which is not
an optimal simulation model. There is no big difference between different orien-
tations in simulations. The orientations of the front side left 30°, and right 30°are
tested in experiments. The front side is found to have a higher heartbeat and res-
piration frequency estimation accuracy because of the larger RCS of the chest re-
flection to the radar.

• The proposed processing pipeline is compared with the bandpass and FFT method
with the same datasets. The GLRT and FFT methods implemented in this thesis
project have higher accuracy with shorter observation intervals in the heartbeat
and respiration frequency estimation referred to Table 5.4.
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6.2. RECOMMENDATIONS
The recommendations of this project are described below.

• The group of test people is not too large, more test people with various ages and
clothes can support a thorough validation of the robustness of the algorithm.

• The people are seated in this project, and more scenarios like standing, moving,
and so on can be tested and studied. The range between the people tested and
the radar is fixed, and the influence of the range can be tested and discussed. The
orientation selection of this project is limited by time, more orientations like left,
right, and back sides can be tested.

• The large-scale random body movement is detected and discarded in this project.
There are also some RBM with a small scale that can be studied and canceled. The
algorithm in this thesis project discarded the observation intervals with RBM. If
there are too many RBM in some scenarios such as walking, the effectiveness of
capturing the heartbeat frequency is low. The approaches to recover the data with
RBM like [27] and estimate the vital sign frequency can be explored.

• This thesis project utilized the FMCW radar to measure vital signs. Other radars
such as the impulse radio ultra-wideband (IR-UWB) radar [38], are also applied
to extract vital signs in other papers with high accuracy. The algorithm can also
be applied to the data measured by IR-UWB radars and compare the performance
with the FMCW radar.
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APPENDICES

APPENDIX A

The ten patterns of non-constant heartbeat frequency in simulations are shown in the
figures below. The patterns have rising and falling or mutating heartbeats during the
simulation time, to mimic different people or scenarios.

Figure 7.1: Non-constant heartbeat frequency
(pattern 1)

Figure 7.2: Non-constant heartbeat frequency
(pattern 2)
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Figure 7.3: Non-constant heartbeat frequency
(pattern 3)

Figure 7.4: Non-constant heartbeat frequency
(pattern 4)

Figure 7.5: Non-constant heartbeat frequency
(pattern 5)

Figure 7.6: Non-constant heartbeat frequency
(pattern 6)

Figure 7.7: Non-constant heartbeat frequency
(pattern 7)

Figure 7.8: Non-constant heartbeat frequency
(pattern 8)
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Figure 7.9: Non-constant heartbeat frequency
(pattern 9)

Figure 7.10: Non-constant heartbeat frequency
(pattern 10)
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APPENDIX B

OVERLAP OF INTERVALS

The influence of the overlap percentage on the estimation accuracy is also in simula-
tions. The average relative error over different overlap percentages of constant simula-
tions is shown in Figure 7.11. The length of the intervals is 12s. When the percentage of
overlap between sequential intervals increases, the errors of the three methods do not
change above 0.1%. The overlap does not provide more information for the constant
heartbeat frequency estimation.

The average relative error over different overlap percentages of non-constant simu-
lations is shown in Figure 7.12. The FFT method has the highest error of 9.74% because
the length of observation intervals of 12 s is long for changing frequency. The GLRT
method has the lowest error of 4.26% with observation intervals of 50 s. When the over-
lap percentage increases, the difference between the minimum and maximum error is
not higher than 2.56% for the three methods. So the overlap can not improve the estima-
tion accuracy when the ground truth heartbeat frequency changes over time.

Figure 7.11: Average relative error of all people over different overlap percentage(constant ground truth
heartbeat frequency pattern)
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Figure 7.12: Average relative error of all people over different overlap percentage(non-constant ground truth
heartbeat frequency pattern)

ORIENTATION OF TARGETS

The orientation of the targets changes the RCS (Radar Cross Section) which measures
the power reflected to the radar and is proportional to the received power. It depends on
the ratio of the physical size and the wavelength. If considering the RCS of the chest as a
flat plate, the RCS of the chest is derived by Equation 7.1.

σ= 4πa2b2

λ2 (7.1)

Here, a and b are the height and width of the plate, and λ is the wavelength of the radar
which is determined by the frequency.

If the RCS of the front side is defined as the reference RCS which equals 1. Then the
RCS of the target with different angles can be defined as (cos(θ))2 based on Equation
7.1. θ is the angle between the line of sight of the radar and the target’s front side, which
is (0°,90°). The average error over different angles of constant frequency simulation is
shown in Figure 7.13. The average error over different angles of non-constant frequency
simulation is shown in Figure 7.14. The distribution of error over different orientations
is irregular.
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Figure 7.13: Average relative error over different angles(constant ground truth heartbeat frequency pattern)

Figure 7.14: Average relative error over different angles(non-constant ground truth heartbeat frequency
pattern)
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APPENDIX C
The experimental results with observation intervals of 4s,12s, and 40s of different people
are shown below.

Figure 7.15: Average relative error of different people with intervals of 4s using three estimation methods

Figure 7.16: Average relative error of different people with intervals of 12s using three estimation methods
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Figure 7.17: Average relative error of different people with intervals of 40s using three estimation methods
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APPENDIX D
The average error over different overlap percentages of the experiments is shown in Fig-
ure 7.18. The length of intervals is 12s. The conclusion of the results is similar to the
simulation of the constant heartbeat frequency. The change of average relative error is
small than 2% when the overlap percentage changes.

Figure 7.18: Average error of all people over different overlap percentage using three estimation methods
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APPENDIX E
In this project, there are three different orientations: front side, left 30 degrees, and right
30 degrees in experiments. The average error with different orientations of different peo-
ple is estimated by three methods shown below. The length of the observation intervals
is 2 s.

Figure 7.19: Average relative error of different people over different orientations(FFT method)

Figure 7.20: Average relative error of different people over different orientations(GLRT method)



69

Figure 7.21: Average relative error of different people over different orientations(counting peaks method)
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APPENDIX F
The length of the interval is defined as 10s. The average error of all people with different
orientations by three methods is shown below.

Figure 7.22: Average relative error of different people with different orientations(respiration,FFT method)

Figure 7.23: Average relative error of different people with different orientations(respiration,GLRT method)



71

Figure 7.24: Average relative error of different people with different orientations(respiration,counting peaks
method)
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