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ABSTRACT 1. INTRODUCTION

A novel approach for performance-based design iDesign requirements may contain linguistic informa-
presented, where Pareto optimality is pursued. Deion, which is difficult to bring into computation. For
sign requirements may contain linguistic informa-example one may require a very open space or a de-
tion, which is difficult to bring into computation or sign with high functionality. This difficulty is usu-
make consistent their impartial estimations from caselly not addressed for design tasks that are concerned
to case. Fuzzy logic and soft computing are the eswith a limited aspects of a design, where require-
sential means to deal with this matter. In this work amrments may be crisply defined for the sub-domain of
innovative neural fuzzy system is considered for softiesign performance, such as aspects of HVAC de-
computing in design. The system has a neural netign (Huang, Lam, 1997; Wright, 1996), structural
work structure with the properties of neural tree. Thelesign (Soh, Yang, 1996; Camp, et al., 1998; Ishida,
nonlinear processing units at the nodes are selectligiyama, 1995; Wang, Chen, 1996), and layout de-
as Gaussians, so that the system can be interpretedsign (Damsky, Gero, 1997; Gero, Kazakov, 1998;
fuzzy terms. Such a knowledge model can be subjedb, Gero, 1998). However, generally design require-
to employment in many diverse areas. In this workments have a linguistic character, which entails com-
it is used for a soft computing application in archi-plexity and imprecision forming a fundamental bot-
tectural design, where a number of linguistic infor-tleneck for computational design. In order to take
mation is used in the specification of requirementsthese issues into account, fuzzy logic and soft com-
The quantifications of qualitative descriptions in desputing are the essential means to be employed.

sign are integrated into the system and fuzzy com- _ _ _ _

putations are carried out in a neural network framelF'Uz2y l0gic was introduced into science more than
work. The application concerns a layout of multi-four decades ago. Due to its inherent limitations, it

ple housing units, involving multiple, conflicting re- Nad to be supported by other paradigms to increase

quirements, so that Pareto optimality is aimed forits merits and effectiveness. In this respect, artifi-

This is a much desirable aid in a design process 428! neural networks, which were developed essen-
it provides guidance for design enhancement, wherd®!ly afterwards, made an important impact on the
the design quality underlies the guaranteed desigiPPlication potential of fuzzy logic. The relation-

performance as to the specifications. ship between fuzzy logic and neural networks can be

seen as a symbiotic partnership, which is beneficial
KEYWORDS to both sides by jointly increasing their application

potential. Such systems are known as neuro-fuzzy
Neural fuzzy system, Pareto optimal design, sofsystems. These systems were central to computa-
computing, knowledge model, intelligent computing,tional intelligence research in the 90s. The essential
evolutionary computation limitations of a fuzzy logic system are due to the im-
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precision of (a) the membership function type (b) theknown as Analytical Hierarchy Process (AHP) or
number of membership functions (c) the location of aeigenvector method. Section 4 describes neural tree
membership function (d) the curse of dimensionalityas an underlying structure of domain knowledge.

. _ Section 5 describes the results obtained from the im-
Introduction of a neural network strategy into a fuzzy

. lementation of the model. This is followed by con-
system substantially reduces the effects of the sour% y

S > tlusions.
of limitations at the cost of transparency, which is
the essential feature of a fuzzy logic system that it
is praised for. Because of this, the hype of neuro2. NEURAL TREE MODELS

fuzzy systems of the 90s diminished in the new mil-

lennium, and the exploration of new avenues in thd* N€ural tree is composed of terminal nodes, non-

realm of fuzzy logic became desirable. In this re-terminal nodes, and weights of connection links be-

spect, neural tree structures introduced at the begif/€"N w0 nodes. The non-terminal nodes represent
ning of the 90s (Foresti, Micheloni, 2002; Sankar,neu_raI units and the_ neuron t)_/pe IS an elementlln.tro-
Mammone, 1991: Sirat, Nadal, 1990 d’A&{Buc, ducing a non-linearity s_lmulatlng a_neuronal a_ct|V|ty.

et al., 1994) together with evolutionary computa-'n the present case, this element is a Gaussian func-

tion can be another important paradigm boosting thgon which has several desirable features for the goals

fuzzy logic concept in order to deal with the complex(?]c the present stuo:y; _namelcyj/, 'r: s a rad'ﬁl ba&sj\unﬁ-
problems of design. tion ensuring a solution and the smoothness. At the

same time it plays the role of membership function
The goal of this paper is to present a novel method foin the tree structure which is considered to be a fuzzy
modelling design requirements and demonstrate itfgic system as its outcome is based on fuzzy logic
merits for performance assessment in computationalperations and thereby associated reasoning. An in-
design. Based on the views put forward above, in thistance of a neural tree is shown in Figure 1.

work, the potentials of neural trees for structuring in- i i i
formation are combined with the reasoning procesEaCh terminal node, also_called leaf, is labelled with
of fuzzy logic. This yields a special type of knowl- &" elemgnt from the terminal set 1, z», ""X”_}’
edge model, which is both, transparent and able t§/"€ré: is thei-th component of the external input
deal with complexity. In other words, the limitations X Which is a vector. Each link;j(:) represents a di-

of a fuzzy logic system in a complex environment ard €Cted connection from nodgto node:. A value
substantially circumvented by integrating the domairiVi; IS @ssociated with each link. In a neural tree, the
knowledge into a tree structure and determining th&€°Ct node is an output unit and the terminal nodes
fuzzy membership functions accordingly. In this way@r€ inPut units. The node outputs are computed in
a neural-fuzzy model is established that handles th&'€ Same way as computed in a feed-forward neural

common linguistic nature of the design performancd1€Work. In this way, neural trees can represent a
concept. broad class of feed-forward networks that have irreg-

ular connectivity and non-strictly layered structures.
The capability of the model for performance-basedn particular, in the present work the nodes are sim-
design is demonstrated by means of an implementalar to those used in a radial basis functions network
tion, where the model is used during multi-objective-with the Gaussian basis functions.
optimization-based positioning of houses in a resi-
dential neighbourhood. Optimal positioning satisfy-
ing multiple objectives is accomplished using a ge-
netic algorithm. These methods are extensively dis
cussed by Deb (Deb, 2001). In the present work th
neural-fuzzy knowledge model plays the role of fit-
ness function, and the search aims to identify Paretc
optimal solutions.

root node

internal

node level 1

The paper is organized as follows. In section 2ieaf node level 2

we describe the structure of a neural tree. In sec-
tion 3 we present the integration of the complex dOFigure 1
main knowledge into a neural tree structure. This
is accomplished by means of a matrix computation

The structure of a neural tree
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3. ANALYTICAL HIERARCHY PROCESS in the form of an external input. This is shown in
AND THE FORMATION OF A Figure 2.

NEURAL TREE STRUCTURE The centres of the basis functions are the same as the

The AHP method is a technique developed by Saatinput weights of that node. Therefore, for a termi-
(Saaty, 1980) to compute thpeiority vector, ranking Nnal node connected to a non-terminal node, we can
the relative importance of factors being comparedexpress the non-terminal node output denote@hy
The only inputs to be supplied by an expert in thesé@s

procedures are the pair-wise comparisons of relative 1 X — 12

importance of factors, taking two at a time. ThisO; = exp(— - Z [u} ) (3)
means, in an environment of complex relationships 2 i 95

among the va:riables, one follows the principle of “di-WhiCh becomes due to (2)

vide and rule”. If we denote the expert input compar-

ing thei-th variable with respect to thgth variable 1 = [wij(w; — 1) 2

by a;; = pi/p;, then the relative importance of the ¥j = exp(~ 3 > {07} ) (4)
j-th variable with respect to theth variable is rep- ¢ !

resented a$/a;; = p;/pi. wherej is the layer number; denotes thé-th input

Obviously, in an environment with high number of t0 the node;w; is the degree of membership at the
complex relations to make a judicious relational as@utput of the terminal nodey;;is the weight associ-
sertion is not easy. However, to make a simple Coma.ted with thel-th terminal node and the non-terminal
parison between any two attributes and to make Bodej.
judgment is much easier for an expert. Thex n|

matrix obtained by arranging these pair-wise com-
parison ratios is termed the reciprocal judgment ma-

trix and designated ad wheren is the number of

factors subjected to pair-wise comparison. The di- node | @
agonal elements of matri® are all unity. Since we

take the reciprocals, we have to fill the upper diago-

nal e_Iement_s which are aItoget_he(m —1)/2. The terminal
details of this technique are given by Saaty (Saatynode |
1980; Saaty, 2000).

4. NEURAL TREE AS UNDERLYING Figure 2 The detailed structure of a neural tree with re-
DOMAIN KNOWLEDGE STRUCTURE spect to different type of node connections

In the neural tree considered in this work the output
of 7-th terminal node is denotemi and it is intro- For a non-terminal node connected to a non-terminal
duced to a non-terminal node. A non-terminal nodéode, (3) becomes
consists of a Gaussian radial basis function. n 2

2 0; = exp(~ 5 S [Pty ©
) = w(||X —l?) (v 2 2 o
where¢(.) is the. Gauss_ian basis functi_cmj:_s the  \vhich becomes
centre of the basis function. The Gaussian is of par-
ticular interest and used in this research due to its rel- 1 w;ij (O — 1) 2
evance to fuzzy-logic. The width of the basis func- 7 — exp(— 5 > [ } )
tion o is used to measure the uncertainty associated
with the node inputs designated as external inut We can express (4) and (6) in the following form
The output ofi-th terminal nodey; is related taX by

‘ (6)
i 9j

n 2
the relation e L (wi —1)
Oj =exp(— 5 D [ paymel I (7
XZ' = W;W;ij (2)
n 2
whereuw;; is the weight connecting anodéo anode . _ exp(— 1 Z |:(Oi — 1)} ) @)
j. It connects the output of a basis function to a node ! 2 0j/wij
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This implies that the width of the Gaussian is scaled 4
by the input weightv;;. In other words, as to width,

the shape of Gaussian fuzzy membership function
is dependent on the input weights; of a node.

They are dependent on the neural tree structure and g
determined by the domain knowledge obtained us- T
ing the method of AHP, for instance. Note that this A
is a novel type of computation at each node which

Wi degree of membership

fuzzy membership

Wi degree of membership

is slightly different than conventional radial basis  lf---------------2 R fommy mom bershi
function (RBF) type computation, where the cen- i ”Z%'nrgﬁ’(m ership
tres are determined by other means, clustering for in- 0 :

|

[

stance. At the terminal nodes membership functions

are not necessarily Gaussian; they can be triangular,

among many other types depending on the applica-. . . .

tion. Some membership function types at the term%Igulre 3 Two possible fuzzy membership function type
. - among many others, at the terminal node

nal node are illustrated in Figure 3. Note that degree

of membership is denoted hy; for this case.

Xi

For the inputw; = 1,ws = 1,...,w, = 1, the ra- degree of membership
dial basis function output at the non-terminal node

is also 1; namely, in (7), the centres of the basis

~,

N, .
N\ fuzzy membership

|
|
\ :
functions are given by a vecter= [1,1,1,...,1], | Nunction
that isc; = 1. This implies that the Gaussian fuzzy : SSeeen
membership functions have their maximum value at 1 O

the point where allv; inputs are unity. For a non-
terminal node, the same situation is illustrated in FigFigure 4 Fuzzy membership function at non-terminal
ure 4. In this neural tree structure, only the root node node

performs a simple weighted summation of the inputs
coming from the immediate layer below. Termino-

logically, this is the de-fuzzification process for the ~MeMPership functions may be taken other than

final outcome, which corresponds to a logical OR op-,
eration.

Using the above described approach the locations
of the Gaussian membership functions at the non-
terminal nodes are well-defined. Furthermore, the
following observations are essential.

1008

Referring to (7), the centre location of the mem-
bership functions at the terminal node is always
located at the point; = 1. Sincew; is never
greater than unity, the right hand side of the Gaus-
sian is represented with broken line in Figure 4. ®
Referring to (8), the centre location of the mem-
bership functions at the non-terminal node con-
nected to a non terminal node is always located
at the pointO; = 1. This is indicated in Fig- ©
ure 4. Since0; is never greater than unity, the
right hand side of the Gaussian is represented with
broken line.

Although at the non-terminal nodes, the type of
the fuzzy membership functions are determined
as Gaussians, their shape, i.e., the widths, remains
to be determined. However, at the terminal nodes,

Gaussian as well as Gaussian.

The number of Gaussian fuzzy membership func-
tions relevant to a non-terminal node is the same
as the number of inputs; or O; to that node. We
can consider this differently referring to a multidi-
mensional Gaussian fuzzy membership function.
A multidimensional Gaussian membership func-
tion is a radial basis function and it can be decom-
posed into single-dimensional membership func-
tions the number of which is equal to the number
of inputs to that node.

The curse of dimensionality is circumvented since
the radial basis function centre of each node is de-
terminedag = [1,1,1,..., 1], which is indepen-
dent of other nodes.

With the increasing membership function values
w; at the terminal nodes, the output at the root
node increases as well. In the fuzzy logic termi-
nology, approaching to the maximum of the fuzzy
membership function at the input is reflected to
the output of the model; that is with respect to de-
gree of membership;, the output of the neural
tree follows the same trend at the input.

I. Sevil Sariyildiz, Michael S. Bittermann, Ozer Ciftcioglu



In the above discussion the shape of the fuzzyouses, which are situated along a line parallel to the
membership functions at the non-terminal nodes arperimeter of the neighbourhood. It was an initial ba-
Gaussians due to logic operations. Namely, each irsic choice of the architect to align these houses with
put to a node has contribution to the output of thatespect to each other, and this is respected as an ar-
node based on a logic AND operation. The centrehitectural premise throughout the implementation,
location of thei-th Gaussian membership function is so that any computational solution identified later on
selected as;; due to the particular neural tree struc-has this property. These houses have a square shaped
ture put forward in this research, where the systenfioor plan of 8m by 8m and they are located along a
structure, namely the connection weights connectingine at equal distance from each other. The south di-
the nodes, are established by means of the domanection in the situation is towards the street indicated
knowledge. This is exemplified in the following ar- asNoordelijke stadsasin Figure 5. The configuration

chitectural design application. shown in the figure is a design proposed by an urban
design office. In the design task for optimal position-
5. IMPLEMENTATION OF THE MODEL ing two partially conflicting aspects are considered.

The important feature of this concept put forward isThe first one is the visual privacy of the buildings,

the possibility of effective decision-making in a de-2and the second one is the size of the gardens.

sign process, while decision-making on a complex . .

design issue is boiled down a single parameter a3-1. Assessment of visual privacy

design performance expressed in fuzzy logic terms. aspects

The model is implemented in an architectural desigiFigure 6 shows the same situation as Figure 5 from

application. The design task is the identification ofthe viewpoint of a virtual observer labellevatar,

optimal locations of a number of housing units onwhich is standing nearby hous&4 and is view-

their respective lots. The streets and lots are provideijg the scene. The figure illustrates the principle

in advance in this design case. Figure 5 shows 2fhodel behind the computation of the perception-

houses. 17 of them are subject to optimal positionbasedvisual privacy. The perception is obtained us-

ing. ing a probabilistic perception theory (Ciftcioglu, et
al., 2006).

avatar

Figure 5 The buildings subject to optimal positioning, Figure 6 Implementation of the probabilistic perception

except buildings E1, E2, and E3, which are model by means of an avatar: The amount of
existing buildings sightlines interacting with the objects in view
guantifies the degree of awareness for the ob-
The houses that are not subject to positioningfre Jects

E2 and E3,since they are existing buildings. All

buildings are two storeys high. Housg4, £2 and In the perception theory the visual attention an ob-
E3 have varying floor plan dimensions and orienta-server pays to a scene is modelled as a probability
tions; housed/1 — H7 are 12m long, 8m wide and density function (pdf). This is illustrated in Figure 6
their longer axis is oriented in east-west direction; thdoy means of a number of vision rays that are leav-
houseg7,1—G,6 andG,1—Gy4 form two groups of  ing the eyes of the avatar in random directions. The
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randomness of the directions is shaped in accordandiging rooms and openings to the garden are oriented
with the probability density involved in the prob- to the south side of the buildings, and these areas are
abilistic perception theory mentioned above. Inteconsidered the most important ones with respect to
gration of the pdf over a certain domain yields per-privacy perception in this design. Figure 8 illustrates
ception that becomes a probability. This probabilitythe implementation of the visual privacy computation
guantifies the degree an observer is mentally awar®r the houses of the housing complex.

of the objects in his/her environment. This method is

implemented into the computational design process
so that the perception of one building from another™
one is quantified. Figure 7 illustrates the computa:
tion of visual perception of the buildingd1, H2, =
H3, and H4 from building E'1. Here the viewpoint
of the observer is taken as the geometric centre poir
of the north facade of building'1.

A

\ i

Figure 8 lllustration of the visual privacy computation
based on the probabilistic perception model
indicated in Figure 7

attention
fAz

perception [/ l
@)
|

/]

Every south facade is perceived from several view-
points and the visual privacy for each house is com-
puted. In the computation of the perceptions in this
implementation, occlusion is considered. This is
done by a simplified test of the visibility of a building
viewed from another one. The mechanism is sending
Figure 7 Sketch indicating the computation of the de- 3 ray from the centre location of the first building to
gree of perceptions of the housésl, H2,  the viewpoint identifying if the ray is intercepted by
andH 3 from the viewpointZ1 another building located in between them. If this is

_ __this case the perception of the building from the sec-
The curves plotted along the z axis are the probabilityng one is considered to be zero.

density functions belonging to the perceptions of the
houses1— H4, which gives the degree of visual at- 5.2,  Assessment of garden aspects
tention along a building. The integral of the pdf over
the length of the south facade of each house is ind
cated as a shaded area and it quantifies the percepti'(kﬂﬁJ
of the respective facade. Based on the probabilisti a

perception in this implementation the visual privacy, ° . )
belonging to an area is quantified as the reciprocatf) direct sunlight Th_erefore the garden performan_ce
calculated regarding the south garden. In partic-

of the summed up perception of the area obtaine} . : )
from the relevant observation points in an environ /3" the size of the south garden is considered to be

ment. Explicitly we calculate the visual privacy of '[iegrfva%:e-ligtes %;'ﬁ'ggfﬁoigif zr]:)ror?i:r?t:é(?ﬁzast_
an objectO as j

west direction. Therefore, next to the garden in south
(9) direction, the gardens west of the buildings are con-
sidered. In this case the west direction is used and
whereP (0, V,,) is the degree of perception of object not the east direction, assuming that for this design
O from then-th viewpoint. In this implementation task the residents of the houséd and H5 appreci-
we consider the visual privacy of the south facade ohte more to have direct sunlightin their garden during
the building, because in this design it is expected thahe evening rather than in the morning.

(9\ second aspect considered in the design of the hous-
complex is the size of the gardens. We consider
t in general a garden located south of the build-
Ing it belongs to is most desirable due to exposure

_ 1
Yirivacy(O) = S P(OVI)+P(O,Va)+..+P(O,Vy,)
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Figure 10 Neural tree structure for assessment of design performance

Figure 9 Calculation of the garden performance

In order to determine the garden performance the si
of the garden in south direction is hormalized with
respect to the maximally possible size of the garde
in this direction. The maximum size of the garden in

two sub-domains, namely the performance of the
garden and the performance in terms of the visual
privacy at one level below from the root node, des-
ignated as level 2. At one level further below is the
terminal level except with respect to the garden per-
formance of houseé/4 and H5, where the garden
performance has additional two sub-aspects. These
aspects are the performance of the garden to the west
and the south side of the house respectively. Another
exception is the privacy performance of the houses
G,1 — G,6, which together form an additional sub-
aspect of the privacy performance. The determinants
of the design performance on the terminal level are
given in Table 1.

Table 1 Determinants of the design performance

ze

Garden performance | Visual privacy perfor-
n mance

Garden of houséf 1 Privacy of housdi 1

south direction is restricted by the minimum distance

Garden of housé/2

Privacy of housdi2

between the boundaries for placement in north an

dGarden of housé/ 3

Privacy of housdd 3

south direction and the width of the house. This is

illustrated in Figure 9 using hougél as an example.

In the figure the boundary of the lot is shown as g

solid line while the placement boundary is shown as

a dashed line. Explicitly the garden performarice
is given byg/gmaz-

5.3. Establishing the knowledge model

Garden of houséi 4 Privacy of housdi4
Garden of houséf5 Privacy of hous&?5
Garden of housé/6 Privacy of house&f6
Garden of housé/ 7 Privacy of house{7
Garden of housé/, 1 Privacy of groupG,,

Garden of housé&r;, 1

These determinants form a multidimensional search

In the fuzzy neural model, the knowledge about thespace, which is complex with respect to its dimen-
performance of the design is represented as followsionality. In this space, Pareto optimality is most de-
The neural tree structure for this case is establishesirable for multi criteria based search. This will be
as shown in Figure 10. In the context of the desigrelaborated later on. For the tree structure established,

application the design performance is determined b

PERFORMANCE-BASED PARETO OPTIMAL DESIGN

the connection weights at each level assessed by do-
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Table 2 Weights of the neural tree for the design perfor- AW, Wiy, Wiy Wyg W, Wy, AW, Wog, W,

mance 1 e o
weight |1 (2 |3 |4 |5 |6 |7 |8 |9
nr.
level 2 |.60 |.40
level 1 |.11 (.09 |.15
level 0 |.28 (.33 /.08 .08 (.18 |.05|.45(.16 |.14

/ visual privacy

o 13% o

weight (10 |11 |12 |13 |14 |15 |16 |17 |18 AW

nr. 1 o })f’ ']‘ /)r»
level 0 |.28.33|.08|.08 .18 |.05|.45|.16 |.14

\

=]

visual privacy
r

)]

weight [19 |20 21 |22 |23
nr.

level O |.28].33].08|.08 .18 0 — visual privacy}_ 0 " visual privacyr

g 97 ) 15

main experts are given in Table 2. These weights ) ) _

indicate the relative importance of a sub-aspect confrigure 11 Membership functions at the terminal nodes
pared to other sub-aspects. The structure can be con-

sidered as constitution of domain knowledge, wheréie shapes are selected by domain experts. Explic-
the connecting weights between the nodes are detdtly, the fuzzy functions are the representations of
mined by expert judgment. the requirement specifications of the design. Please

Each aspect is considered in the context of desigHOte that the functions selected for the privacy.perfor—
performance of the housing complex and eventually"@nce measurement all have the same basic shape,

assessed between zero and unity. This assessm&Qvever the output maxima are at different loca-
may be accomplished by using the method of AHptIoNs to express the dlﬁ_erent requirements thg? are
in a complex design task. The assessments ha\9|-ue to the dn‘ferent_housmg types and lot conditions
ing been made duly, they are used as connectigfivolved. Conceming the garden performance the
weightsuw;; in the neural tree. Determining the pa- fuz2y membership function used is simply = z
rameter values in this structure, namely the weight§ecause the garden performange- g/gina. in Fig-

and the individual width of the Gaussians at the non!€ 9 is already normalized between zero and one, so
terminal nodes, a knowledge model is formed. Théhat it directly serves as the node output of the re-
model should comply with the condition stated asSPective terminal node.

the greater the membership value w; of an aspect, As far as non-terminal nodes are concerned the
the greater the design performance. Due to the pe- widths of the Gaussians are still to be determined and
culiarity of this structure described in the precedingthey are obtained by means of the consistency condi-
section, only the left half side of the Gaussians betion, which serves as boundary condition for the neu-
yond the terminal nodes are used during the compural tree model. This is explained below.

tations. Therefore the structure represents a multi-

variable increasing function for the whole region be-5.4. Training of the neural tree

yondt;[he rt]t_armlrllal no;jes. This ens#rgs that greatefhe neural tree output follows the trend of the termi-
membership value; ot an aspectattheinputtoara- ., e outputsy; representing the associated de-
dial basis functl_on yields greater node outp_ut. Note, e of membership. Considering this property, the
that the mo_del is completely know_ledge-dnven an onsistency refers to the fact that in the knowledge
highly no_n—lmear due to the Gaussians at_ least al_t th&omain if all the inputsu; are unity, all system de-
nonh-termln_al r;OdeS and fuzzy membership funCtlon?erminants have the value where the associated fuzzy
atthe terminals. membership functions at the terminal node take the
TThe membership functions at the terminal nodes arealue of 1; as result of this, all the non-terminal node
application dependent, and therefore their shapes amditputs are accordingly 1 and therefore system out-
locations are determined accordingly. The memberput at the root node is also 1. This condition is in-
ship functions used in the present case are shown imerently satisfied in the present neural tree structure
Figure 11. and this is easily seen by (7) and (8); namely if all
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w; are 1, then all non-terminal node outpuls are  clearly defined exhibiting features of transparency in
1 and then the neural tree output is 1. This is moré¢he model.

explicitly explained by the following example. Since Although the input/output data set given in Tables 3
the research is carried out in a department of archlénd 4 is seemingly simple, imposition of this sim-
tecture, an example from the architectural domain is|o yata set on the highly’non-linear fuzzy knowl-

more relgvant. If'aII the design determinants belon dge model requires adaptive or genetic learning. In
to a design that IS by all means m(_)dern, where thﬂ'\e present implementation adaptive learning is used
attribute modern is reflected by a high output at thg,, high accuracy. The approximation error for this

terminal level, then the final design output belongs;aia set is relatively higher for the lower input/output
also to a modern type of architecture and the neubairs This is seen from Table 5

ral tree output is high. The reverse of this situation

state that, if all the design determinants belong to Fable 3 Dataset at the input of the neural tree to estab-
design that is by no means modern, then, the final de- lish the consistency condition

sign output does not belong to a modern type of ar,

chitecture, meaning that output vanishes. This Iatt"rldi;n;?ﬁplel .11 _21 ?’1 fll _51 213
condition cannot be strictly satisfied since the Gaus=qatasample2 [ 2 [ 2 [ 2 [ 2 | 2 D)
sians extend to infinity and therefore still give some gatasample3 | 3 | 3 | 3 | 3 | .3 3
value as an output even when the inputs at the tef-datasample4 | 4 | 4 | 4 | 4 | 4 4
minal nodew; vanish. Because of this very reason| datasample5 | .5 [ .5 [ 5 | .5 [ .5 5
any non-terminal node outpa; theoretically never | datasample6 | .6 | .6 | .6 | .6 | .6 6
vanishes but may take sufficiently small values. datasample7 | .7 | .7 | .7 | .7 | .7 7

datasample8 | .8 | .8 | 8 | .8 | .8 8
Following the above example the case, which can bedatasample9 | .9 | 9 | 9 | .9 | .9 9

described by taking all the input determinants as, say

0.5 would yield the neural tree output also as 0.57aple 4 Neural tree output to establish the consistency
Note that, this does not mean the systemis linear. On condition

the contrary, the system is highly non-linear. How-—qgi3 data data data data
ever, the consistency condition as given above is stip-sample 1 | sample 2 | sample 3 | sample 4 | sample 5
ulated on it. This imposition is accomplished as def 1 5 3 4 5
scribed below. In the formation of the modelling the

domain knowledge, the system determinants selectéd data data data data

should be carefully verified in advance that they obt sample 6 | sample 7 | sample 8 | sample 9

serve this stipulation designed as consistency condi- -6 7 -8 9

tion. In general, the consistency condition is a kind

of boundary condition, which should be satisfied byTable 5 Adaptive learning results from the datasets
the fuzzy knowledge model represented by the neural given in Table 3 and Table 4

tree structure.

Given for all inputs| Approximation | Error
The consistency condition as boundary condition is imodotgcerrloot output 16810 585102
application dependent and the condition or possibly 2:00 1071 2:30 10 _3:00 10°2
a set of conditions should be imposed on the knowlr3 55 75T 306107" 506107
edge model. Therefore, care has to be exercised thag g5 10T 395107 547107
the problem formulation is carried out appropriately] 500 16 * 49110° 8621073
so that the consistency is inherently present in thiS6.00 10T 5.8010° 1.12 102
formulation. Peculiar to the application being pre-| 7.00 16 * 6.7910°! 2.1110°
sented, the consistency condition is a set of multir 8.00 10°* 7.80101 1.9810°
input single-output data as given in Table 3 and Ta} 9.00 10" 9.4310" -4.3410°°

ble 4, respectively. The imposition of the consis-
tency or boundary conditions can be carried out b L .
adaptive or genetic learning. As result of the Iearn%'S' :jder_]tlflcatlon of Pareto optimal

ing process, the width of each individual Gaussian at esigns

each non-terminal node is established. In this wayHaving established the fuzzy neural tree the design
the cascade feed-forward fuzzy logic operations artask is to maximize the output at the root node by
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Table 6 Resulting widths of the Gaussians at the non-maximalz andz coordinates for the positions of the

terminal nodes housesH1 — H7, G,1 — G,6 andG,1 — Gp4. The
Node nr. 1 2 3 boundaries are selected, so that the facades of the
o 7.2210% [33610"' |1.9510" buildings are at a distance greater than 3m from the
boundary of the lot, as this is required by legal regu-
Node nr. 4 5 lations in this design case. For the sake of simplicity
a 17710" [15510" of the implementation the boundaries of the place-

ment are taken parallel to theand z axis. Thez

identifying optimal location of the buildings. This is @Xis is in north direction, and the axis is in east
accomplished by genetic search. The output at théirection.

root node, which expresses the design performanQF bl lut
by a scalar number, can be used as the represent:f— e7 Solution space

tion of the fitness of the respective chromosome. IpHouse H1 H?2 H3
this way the genetic algorithm (GA) uses the knowl- z z z z z z
edge embedded in the neural tree during its search fofin | 25.0 |26.0 |26.0 |46.0 |56.0 |47.0
obtaining maximal performance, while the search is ™ 31.0 |34.0 [36.0 [56.0 |69.0 |56.0
essentially treated as a single-objective problem.

) ) House H4 o5 H6
However, a GA used for this type of problem is usu- z Z z Z z Z

ally sensitive to small changes in the objective func{ min [ 81.0 [34.0 [86.0 [52.0 [21.0 |6.0
tion coefficients, which correspond in the presenfmax |117.0|38.0 |114.0|57.0 [28.0 |16.0
case to the weight factors and widths of the Gaus
sians in the neural tree. Another drawback is that aHouse H7 Gal Gl
GA applied in this way converges to a single solu- z z z z x z
tion, and does not provide information about alternatMn__ | 3.0 [70.0 |27.0 |67.0 |76.0 |7.0
tive solutions that are equally valid in Pareto sense.™ 100 |80.0 |32.0 |81.0 |79.0 |22.0
Therefore we apply GA using a different approach,

which is based on the concept of Pareto optimality,;igure 12 shows a design at the beginning of the ge-

The two objectives, to maximize the garden and theetic search process, which is a random configura-
privacy performance of the design simultaneouslyio * |t has 4 design performance of 0.41, which is
are conflicting. The conflictis that satisfaction of oney, o output value at the root node of the tree. The

objective diminishes satisfaction of the other one. marked areas on the lot are the locations originally
In such multi-objective optimization problems existsproposed by the urban design office. The result of
a set of solutions which argon-dominated. This the search process is shown in Figure 13, where the
means for each solution of this set there is no othebest fithess that occurred during the search is plotted
solution in the population that performs better withtogether with the average fithess of the chromosomes
respect to all objectives. In the objective space the séor each generation.

of non-dominated solutions lie on a surface know a%lease note that the fitness shown in Figure 13 is
the Pareto-optimal frontier (Fonseca, 1995). We Usg e output at the root node. Figures 14-16 show the

GA.tO i_dent;]fy tfhis irontier. Tr?is Is accomplished byl erformance of each chromosome in the population
assigning the fitness to a chromosome In & populgs e with respect to its privacy perception perfor-

:jlon erc_end!ngcohn how many othherchromodsonjes affance and garden performance values. In the be-
ominating it. Chromosomes that are not dominatedy;, ing of the search process the population is dis-

are assigned fitnegs,q,, while the fitness in general 1 e d evenly in terms of garden and privacy perfor-

is calculated as the reciprocal of the amount of chrog, - - o This is shown in Figure 14. After five gen-

mosomes that dominate the chromosome in quUestioRa1iqns the GA found a convex Pareto optimal fron-

]Icn the p_res;:nt |rr;tplementat|q2,m 'S Setbtobilp. Ihe tier. This is shown in Figure 15. After 20 generations
Itness Is thereaiter converted to a probability Tor rey, o 1 jjation of the GA clustered at four locations

produg:tion ?‘pP'V‘”Q the well-known roulette WheeIon the Pareto frontier. This is shown in Figure 16.
selection principle (Goldberg, 1989). This behaviour of the evolutionary algorithm is due
The boundary of the space for the locations of theo its inherent “pressure” towards the Pareto optimal
houses is given in Table 7, namely the minimal androntier, which is achieved by the dominance based
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Figure 12

design performance
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lllustration of a design with a design perfor-
mance of 0.41 at the beginning of the Geneti
search process
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Figure 13 Genetic search process results

selection procedure of the GA described above. T
resulting designs along the Pareto optimal front a
equally valid solutions, while each solution has a di
ferent tradeoff with respect to the design criteria.

Four Pareto optimal designs are shown in Figures 1
20. The designs shown in the figures belong to tl

solutions indicated as nr.
ure 16, respectively. The design shown in Figure 1Figure 15

1, 2, 3, and 4 in Fig-
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Figure 14 Privacy performance and garden perfor-

privacy perception performance
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o
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has the greatest garden performance of the four de-
signs shown. This is because all houses have large
south gardens, respectively west gardens in the case
of housesH 4 and H5. In Figure 17 the visual pri-

vacy is relatively low compared to the other designs
because many houses are located quite close to a

are directly facing the south fagade of neighbourin
buildings.

H4 thereby increasing privacy di 4.

o
N
|

mance belonging to each chromosome of the
population in the first generation of the GA

o
w

0,4 0,5

T T T T
0,6 0,7 0.8 0.9 1

garden performance

Forming the Pareto optimal front: privacy
performance and garden performance be-
longing to each chromosome of the popula-
tion in the 8" generation of the GA

Additionally H4 is located not directly below{5,
that the privacy of{5 is increased compared to

q:igure 17. Figure 19 is similar to Figure 18 with the

difference that housé/4 is moved directly south of
The design shown in Figure 18 provides a higher vi-H5. Therefore the privacy performance of Figure 19
sual privacy compared to the design from Figure 17is reduced compared to Figure 18. Figure 20 is sim-
This can be explained from the fact that the housesar to Figure 18 with the difference that the houses
Gyl — G4 are located at greater distance from housér, 1 — G4 are at a greater distance frafiy, so that
the privacy is increased and garden performance is
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Figure 17 Resulting Pareto-optimal design indicated as
solution nr. 1 in Figure 16
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garden performance
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Figure 16 Pareto optimal front formed by privacy per-
formance and garden performance belonging
to each chromosome of the population in the
201" generation of the GA /4

reduced in Figure 20 compared to Figure 18.

A designer may select any of the designs on th
Pareto-optimal front for further elaboration; having
certainty that each of the solutions he/she is choosin
from is Pareto-optimal with respect to the design cri-
teria put forward. In order to make a decision abou

which design to pick, higher-level design criteria can_
he brought |_nt0 play. In Fhe present case It '§ nat_Figure 18 Resulting Pareto-optimal design indicated as
ural to consider the relative mp_ortance of_ privacy solution nr. 2 in Figure 16

and garden performance, as this is already integrated

into the defuzzification process in the neural model

formed earlier. Explicitly in this case the garden per-due to the transparency of the approach. This is seen
formance is considered 60/40 times more relevannh Table 9. In the figures both design alternatives,
than the privacy performance. Based on this highemamely the one proposed by the computational de-
level criterion we select a certain design located orsign system, and the design proposed by the human
the Pareto front, which is both, non-dominated andlesign professionals based on conventional methods
has the highest output value at the root-node of thare shown. The latter one is indicated by rectangles
neural tree. This means the design selected has maon the respective lots on the ground plane, which are
imal design performance at the same time. the projections of the professional design onto the
glane. This is done, so that the computational de-

The selected design is shown in Figure 21. It has o .
design performance of 0.85. For this design the re3'9ns can be easily visually compared with the con-

sulting design parameters as location of the buildinggemIonal one.

are given in Table 8. The outputs of the tree node# the following we compare the selected Pareto op-
for the designs shown in Figure 5 and 21 are given itimal design shown in Figure 21 with the conven-
Table 9 for comparison. The results indicate that theéional design. We note that the computational de-
combination of fuzzy neural tree and genetic algo-sign is similar to the conventional one with respect to
rithm is able to identify Pareto optimal designs withthe positions of housed 7 and the group of houses
maximal design performance, while insight into theG,1 — G,6. There are also differences: In the com-
contributions of the model constituents is providedputational result the groug’,1 — G4 and houses
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Figure 19 Resulting Pareto-optimal design indicated as

solution nr. 3 in Figure 16 Figure 21 Selected Pareto-optimal design with design
performance .85, where garden performance
is .87 and visual privacy performance is .82

Table 8 Selected Pareto-optimal design shown in
Figure 21

House H1 H?2 H3

value [ 29.0 [33.6 |28.1 |555 |615 |55.1

House H4 Hb5 H6

value |85.0 |36.5 |113.5(56.9 |21.5 |14.3

House H7 G,l Gl

Figure 20 Resulting Pareto-optimal design indicated as value |5.0 |78.8 [29.64/80.2 | 77.2 | 13.0
solution nr. 4 in Figure 16

method of analytical hierarchy process is one alter-
H3, H4, H5 andH6 are located further north than in native, which can be made use of during the consti-
the conventional design, so that the south gardens d¢iition of the structure. In this feed-forward struc-
these houses are larger in the computational case. Fare the output of a node is obtained with fuzzy logic
the same reason the privacy of the group of housesperations using the inputs of the node. This is ac-
G,1 — G,6 is reduced in the computational case.complished by Gaussian membership functions. The
HousesH5 and H4 are moved further apart in the model is finally determined by learning where learn-
computational design, so that the visual privacy ofing refers to the integration of the conditions stipu-
H5 is increased compared to the conventional caséated by the knowledge being modelled. It is note-
HouseH 2 is moved to the north west of its lot, so that worthy to mention, that the nodes of the neural tree
both its garden is larger and its privacy is increasedorrespond to fuzzy logic rules, so that the outcome
in the computational design compared to the conversf the model is result of a number of logic operations
tional one. and finally de-fuzzification at the root node.

The equivalence between neural networks and fuzzy
6. DISCUSSION logic for Gaussian fuzzy membership functions is
The knowledge model presented in this work has &nown in the literature (Jang, Sun, 1993; Li, Chen,
neural tree structure with fuzzy logic processors em2000). The neural tree with fuzzy logic presented
bedded as the inner nodes of the structure. Dependt this research forms a fuzzy model especially as
ing on the complexity of the domain knowledge, thedescribed by Hunt, Haas and Murray (Hunt, et al.,
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Table 9 Node outputs belonging to the designs shownthe consistency condition, the execution of the logi-

in Figure 10 and 11 cal operations in the tree can be considered real-time.
Initial | Selected|  \ye pote that in the present application the perfor-
Sﬁg\l/%] (F));tri?rt\; mance aspects considered are th(_e visu_al priyacies and
Node Output | in Fig- | design the sizes of the gardens of the resu_jentlal units, ex_clu—
ure 10 | shown sively. Other aspects, which a designer may consider
in  Fig- relevant constituents of design performance, such as
ure 20 other perceptual aspects, may be easily integrated
Design performance] O 411 .850 into the neural tree model presented. In this case it is
Garden performance O(1) | .463 .869 required that also for these aspects fuzzification at the
Visual privacy 0(2) | .333 821 leaf node be defined, i.e. there has to be some map-
performance ping from properties of the design to the degree of
GardenH 1 wq 917 951 satisfaction of the perceptual requirement concerned.
GardenH?2 wy | .895 996 These features are the manifestations of the transpar-
gg:gggz w3 822 ggg ent nature of the structure, where the meaning of each
W4 . . H
Gardenf7 ws | 802 | .883 node is known.
GardenG,1 we .052 .944 Knowledge driven fuzzy modelling is described for
GardenG 1 wr 0479 | .397 identification of performance-based Pareto optimal
South gardert 4 ws | .338 110 architectural designs. The novel knowledge mod-
West gardert/ 4 wy | .194 621 elling method is described in detail and its significant
\?\7eustth %‘?‘;‘é?ﬂd? Wi ‘3% 'ggi merits are pointed out in a fuzzy framework having
Vi gar Y |- : transparent fuzzy modelling properties and address-
isual privacyG, 1 W12 .007 .796 . o .
Visual privacyG,2 wis | 204 957 ing complexity issues at the same t_|me. The poten-
Visual privacy(,3 w1120 640 tial of the novel method for design is demonstrated
Visual privacyG, 4 ws | 181 999 by means of an implementation, where the model is
Visual privacyG,5 Wie 013 088 used for knowledge-based performance assessment
Visual privacyG .6 wr .694 746 during a computational design process. Particularly
Visual privacyH 1 wig | .999 .763 the model plays the role of fitness-function during a
Visual privacy 42 wig | .780 705 genetic search. The search aims to find optimal so-
Visual privacyH3 wyo | 703 914 lutions in Pareto-sense, while the search procedure is
&23:: E:zgggg o 'gg; ?gg equipped with the detailed knowledge of the designer
22 - . ; i
Visual privacy T7 02 008 507 on how to evaluate the alternatives. Due to the multi-

objective nature of the design task, application of the
Pareto concept is most appropriate for effective and
1996), where some strict conditions stipulated on thefficient solution identification. The results indicate
equivalency earlier are relaxed. This implies thatthe suitability of the work for a wide range of similar
neural tree structures provide additional possibilitiesipplications of technological, industrial and practical
to fuzzy logic systems enhancing their transparencinterest.

and soft computing possibilities for dealing with soft Ranking by Pareto dominance on problems with an

issues, as they are meant to. increased number of objectives might not longer be
Integration of evolutionary algorithms into such stud-effective (Hughes, 2005; Purshoe, Fleming, 2003).
ies opens new avenues for the effectiveness of th@ne of the important issues to address in this respect
neuro-fuzzy applications. It is emphasized that thés the diversity of the Pareto solutions with minimal
consistency condition introduced in this research isggregation at the Pareto front (Aguirre, Kiyoshi,
application dependentin general. The peculiarities 02007). The aggregation of the solutions in this work
a particular application beyond the knowledge-basés seen in Figure 16. This state-of-the-art issue is ad-
associated with the application can be embedded idressed in the literature and novel methods are pro-
the knowledge model in a natural way in the formposed (Sato, et al.,, 2007). The adaptation of such
of boundary condition. With respect to the com-methods is anticipated as an improvement of similar
putational power required using the neural tree weesearches including the present one and therefore re-
note that once the structure is established fulfillingmains as a future work.
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