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ABSTRACT

A novel approach for performance-based design is
presented, where Pareto optimality is pursued. De-
sign requirements may contain linguistic informa-
tion, which is difficult to bring into computation or
make consistent their impartial estimations from case
to case. Fuzzy logic and soft computing are the es-
sential means to deal with this matter. In this work an
innovative neural fuzzy system is considered for soft
computing in design. The system has a neural net-
work structure with the properties of neural tree. The
nonlinear processing units at the nodes are selected
as Gaussians, so that the system can be interpreted in
fuzzy terms. Such a knowledge model can be subject
to employment in many diverse areas. In this work
it is used for a soft computing application in archi-
tectural design, where a number of linguistic infor-
mation is used in the specification of requirements.
The quantifications of qualitative descriptions in de-
sign are integrated into the system and fuzzy com-
putations are carried out in a neural network frame-
work. The application concerns a layout of multi-
ple housing units, involving multiple, conflicting re-
quirements, so that Pareto optimality is aimed for.
This is a much desirable aid in a design process as
it provides guidance for design enhancement, where
the design quality underlies the guaranteed design
performance as to the specifications.
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1. INTRODUCTION

Design requirements may contain linguistic informa-
tion, which is difficult to bring into computation. For
example one may require a very open space or a de-
sign with high functionality. This difficulty is usu-
ally not addressed for design tasks that are concerned
with a limited aspects of a design, where require-
ments may be crisply defined for the sub-domain of
design performance, such as aspects of HVAC de-
sign (Huang, Lam, 1997; Wright, 1996), structural
design (Soh, Yang, 1996; Camp, et al., 1998; Ishida,
Sugiyama, 1995; Wang, Chen, 1996), and layout de-
sign (Damsky, Gero, 1997; Gero, Kazakov, 1998;
Jo, Gero, 1998). However, generally design require-
ments have a linguistic character, which entails com-
plexity and imprecision forming a fundamental bot-
tleneck for computational design. In order to take
these issues into account, fuzzy logic and soft com-
puting are the essential means to be employed.

Fuzzy logic was introduced into science more than
four decades ago. Due to its inherent limitations, it
had to be supported by other paradigms to increase
its merits and effectiveness. In this respect, artifi-
cial neural networks, which were developed essen-
tially afterwards, made an important impact on the
application potential of fuzzy logic. The relation-
ship between fuzzy logic and neural networks can be
seen as a symbiotic partnership, which is beneficial
to both sides by jointly increasing their application
potential. Such systems are known as neuro-fuzzy
systems. These systems were central to computa-
tional intelligence research in the 90s. The essential
limitations of a fuzzy logic system are due to the im-
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precision of (a) the membership function type (b) the
number of membership functions (c) the location of a
membership function (d) the curse of dimensionality.

Introduction of a neural network strategy into a fuzzy
system substantially reduces the effects of the source
of limitations at the cost of transparency, which is
the essential feature of a fuzzy logic system that it
is praised for. Because of this, the hype of neuro-
fuzzy systems of the 90s diminished in the new mil-
lennium, and the exploration of new avenues in the
realm of fuzzy logic became desirable. In this re-
spect, neural tree structures introduced at the begin-
ning of the 90s (Foresti, Micheloni, 2002; Sankar,
Mammone, 1991; Sirat, Nadal, 1990; d’Alché-Buc,
et al., 1994) together with evolutionary computa-
tion can be another important paradigm boosting the
fuzzy logic concept in order to deal with the complex
problems of design.

The goal of this paper is to present a novel method for
modelling design requirements and demonstrate its
merits for performance assessment in computational
design. Based on the views put forward above, in this
work, the potentials of neural trees for structuring in-
formation are combined with the reasoning process
of fuzzy logic. This yields a special type of knowl-
edge model, which is both, transparent and able to
deal with complexity. In other words, the limitations
of a fuzzy logic system in a complex environment are
substantially circumvented by integrating the domain
knowledge into a tree structure and determining the
fuzzy membership functions accordingly. In this way
a neural-fuzzy model is established that handles the
common linguistic nature of the design performance
concept.

The capability of the model for performance-based
design is demonstrated by means of an implementa-
tion, where the model is used during multi-objective-
optimization-based positioning of houses in a resi-
dential neighbourhood. Optimal positioning satisfy-
ing multiple objectives is accomplished using a ge-
netic algorithm. These methods are extensively dis-
cussed by Deb (Deb, 2001). In the present work the
neural-fuzzy knowledge model plays the role of fit-
ness function, and the search aims to identify Pareto-
optimal solutions.

The paper is organized as follows. In section 2
we describe the structure of a neural tree. In sec-
tion 3 we present the integration of the complex do-
main knowledge into a neural tree structure. This
is accomplished by means of a matrix computation

known as Analytical Hierarchy Process (AHP) or
eigenvector method. Section 4 describes neural tree
as an underlying structure of domain knowledge.
Section 5 describes the results obtained from the im-
plementation of the model. This is followed by con-
clusions.

2. NEURAL TREE MODELS

A neural tree is composed of terminal nodes, non-
terminal nodes, and weights of connection links be-
tween two nodes. The non-terminal nodes represent
neural units and the neuron type is an element intro-
ducing a non-linearity simulating a neuronal activity.
In the present case, this element is a Gaussian func-
tion which has several desirable features for the goals
of the present study; namely, it is a radial basis func-
tion ensuring a solution and the smoothness. At the
same time it plays the role of membership function
in the tree structure which is considered to be a fuzzy
logic system as its outcome is based on fuzzy logic
operations and thereby associated reasoning. An in-
stance of a neural tree is shown in Figure 1.

Each terminal node, also called leaf, is labelled with
an element from the terminal set T={x1, x2, . . . ,xn},
wherexi is thei-th component of the external input
x which is a vector. Each link (j, i) represents a di-
rected connection from nodej to nodei. A value
wij is associated with each link. In a neural tree, the
root node is an output unit and the terminal nodes
are input units. The node outputs are computed in
the same way as computed in a feed-forward neural
network. In this way, neural trees can represent a
broad class of feed-forward networks that have irreg-
ular connectivity and non-strictly layered structures.
In particular, in the present work the nodes are sim-
ilar to those used in a radial basis functions network
with the Gaussian basis functions.

Figure 1 The structure of a neural tree
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3. ANALYTICAL HIERARCHY PROCESS
AND THE FORMATION OF A
NEURAL TREE STRUCTURE

The AHP method is a technique developed by Saaty
(Saaty, 1980) to compute thepriority vector, ranking
the relative importance of factors being compared.
The only inputs to be supplied by an expert in these
procedures are the pair-wise comparisons of relative
importance of factors, taking two at a time. This
means, in an environment of complex relationships
among the variables, one follows the principle of “di-
vide and rule”. If we denote the expert input compar-
ing thei-th variable with respect to thej-th variable
by aij = pi/pj , then the relative importance of the
j-th variable with respect to thei-th variable is rep-
resented as1/aij = pj/pi.

Obviously, in an environment with high number of
complex relations to make a judicious relational as-
sertion is not easy. However, to make a simple com-
parison between any two attributes and to make a
judgment is much easier for an expert. The[n × n]
matrix obtained by arranging these pair-wise com-
parison ratios is termed the reciprocal judgment ma-
trix and designated asA wheren is the number of
factors subjected to pair-wise comparison. The di-
agonal elements of matrixA are all unity. Since we
take the reciprocals, we have to fill the upper diago-
nal elements which are altogethern(n − 1)/2. The
details of this technique are given by Saaty (Saaty,
1980; Saaty, 2000).

4. NEURAL TREE AS UNDERLYING
DOMAIN KNOWLEDGE STRUCTURE

In the neural tree considered in this work the output
of i-th terminal node is denotedwi and it is intro-
duced to a non-terminal node. A non-terminal node
consists of a Gaussian radial basis function.

f(X) = w φ(||X − c||2) (1)

whereφ(.) is the Gaussian basis function,c is the
centre of the basis function. The Gaussian is of par-
ticular interest and used in this research due to its rel-
evance to fuzzy-logic. The width of the basis func-
tion σ is used to measure the uncertainty associated
with the node inputs designated as external inputX.
The output ofi-th terminal nodewi is related toX by
the relation

Xi = wiwij (2)

wherewij is the weight connecting a nodei to a node
j. It connects the output of a basis function to a node

in the form of an external input. This is shown in
Figure 2.

The centres of the basis functions are the same as the
input weights of that node. Therefore, for a termi-
nal node connected to a non-terminal node, we can
express the non-terminal node output denoted byOj ,
as

Oj = exp(−
1

2

n
∑

i

[

Xi − wij

σj

]2

) (3)

which becomes due to (2)

Oj = exp(−
1

2

n
∑

i

[

wij(wi − 1)

σj

]2

) (4)

wherej is the layer number;i denotes thei-th input
to the node;wi is the degree of membership at the
output of the terminal node;wij is the weight associ-
ated with thei-th terminal node and the non-terminal
nodej.
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Figure 2 The detailed structure of a neural tree with re-
spect to different type of node connections

For a non-terminal node connected to a non-terminal
node, (3) becomes

Oj = exp(−
1

2

n
∑
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wijOi − wij

σj

]2

) (5)

which becomes

Oj = exp(−
1

2
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) (6)

We can express (4) and (6) in the following form

Oj = exp(−
1

2

n
∑

i

[

(wi − 1)

σj/wij
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) (7)

Oj = exp(−
1
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) (8)
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This implies that the width of the Gaussian is scaled
by the input weightwij . In other words, as to width,
the shape of Gaussian fuzzy membership function
is dependent on the input weightswij of a node.
They are dependent on the neural tree structure and
determined by the domain knowledge obtained us-
ing the method of AHP, for instance. Note that this
is a novel type of computation at each node which
is slightly different than conventional radial basis
function (RBF) type computation, where the cen-
tres are determined by other means, clustering for in-
stance. At the terminal nodes membership functions
are not necessarily Gaussian; they can be triangular,
among many other types depending on the applica-
tion. Some membership function types at the termi-
nal node are illustrated in Figure 3. Note that degree
of membership is denoted bywi for this case.

For the inputw1 = 1, w2 = 1, . . . , wn = 1, the ra-
dial basis function output at the non-terminal node
is also 1; namely, in (7), the centres of the basis
functions are given by a vectorc = [1, 1, 1, . . . , 1],
that isci = 1. This implies that the Gaussian fuzzy
membership functions have their maximum value at
the point where allwi inputs are unity. For a non-
terminal node, the same situation is illustrated in Fig-
ure 4. In this neural tree structure, only the root node
performs a simple weighted summation of the inputs
coming from the immediate layer below. Termino-
logically, this is the de-fuzzification process for the
final outcome, which corresponds to a logical OR op-
eration.

Using the above described approach the locations
of the Gaussian membership functions at the non-
terminal nodes are well-defined. Furthermore, the
following observations are essential.
• Referring to (7), the centre location of the mem-

bership functions at the terminal node is always
located at the pointci = 1. Sincewi is never
greater than unity, the right hand side of the Gaus-
sian is represented with broken line in Figure 4.

• Referring to (8), the centre location of the mem-
bership functions at the non-terminal node con-
nected to a non terminal node is always located
at the pointOi = 1. This is indicated in Fig-
ure 4. SinceOj is never greater than unity, the
right hand side of the Gaussian is represented with
broken line.

• Although at the non-terminal nodes, the type of
the fuzzy membership functions are determined
as Gaussians, their shape, i.e., the widths, remains
to be determined. However, at the terminal nodes,

0
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degree of membership

fuzzy membership
function

wi

0

1

xi

degree of membership

fuzzy membership
function

wi

Figure 3 Two possible fuzzy membership function type
among many others, at the terminal node

0

1

Oi

degree of membership

fuzzy membership
function

1

Figure 4 Fuzzy membership function at non-terminal
node

membership functions may be taken other than
Gaussian as well as Gaussian.

• The number of Gaussian fuzzy membership func-
tions relevant to a non-terminal node is the same
as the number of inputswi or Oi to that node. We
can consider this differently referring to a multidi-
mensional Gaussian fuzzy membership function.
A multidimensional Gaussian membership func-
tion is a radial basis function and it can be decom-
posed into single-dimensional membership func-
tions the number of which is equal to the number
of inputs to that node.

• The curse of dimensionality is circumvented since
the radial basis function centre of each node is de-
termined asc = [1, 1, 1, . . . , 1], which is indepen-
dent of other nodes.

• With the increasing membership function values
wi at the terminal nodes, the output at the root
node increases as well. In the fuzzy logic termi-
nology, approaching to the maximum of the fuzzy
membership function at the input is reflected to
the output of the model; that is with respect to de-
gree of membershipwi, the output of the neural
tree follows the same trend at the input.
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In the above discussion the shape of the fuzzy
membership functions at the non-terminal nodes are
Gaussians due to logic operations. Namely, each in-
put to a node has contribution to the output of that
node based on a logic AND operation. The centre
location of thei-th Gaussian membership function is
selected aswij due to the particular neural tree struc-
ture put forward in this research, where the system
structure, namely the connection weights connecting
the nodes, are established by means of the domain
knowledge. This is exemplified in the following ar-
chitectural design application.

5. IMPLEMENTATION OF THE MODEL

The important feature of this concept put forward is
the possibility of effective decision-making in a de-
sign process, while decision-making on a complex
design issue is boiled down a single parameter as
design performance expressed in fuzzy logic terms.
The model is implemented in an architectural design
application. The design task is the identification of
optimal locations of a number of housing units on
their respective lots. The streets and lots are provided
in advance in this design case. Figure 5 shows 20
houses. 17 of them are subject to optimal position-
ing.

Figure 5 The buildings subject to optimal positioning,
except buildings E1, E2, and E3, which are
existing buildings

The houses that are not subject to positioning areE1,
E2 and E3,since they are existing buildings. All
buildings are two storeys high. HousesE1, E2 and
E3 have varying floor plan dimensions and orienta-
tions; housesH1 − H7 are 12m long, 8m wide and
their longer axis is oriented in east-west direction; the
housesGa1−Ga6 andGb1−Gb4 form two groups of

houses, which are situated along a line parallel to the
perimeter of the neighbourhood. It was an initial ba-
sic choice of the architect to align these houses with
respect to each other, and this is respected as an ar-
chitectural premise throughout the implementation,
so that any computational solution identified later on
has this property. These houses have a square shaped
floor plan of 8m by 8m and they are located along a
line at equal distance from each other. The south di-
rection in the situation is towards the street indicated
asNoordelijke stadsas in Figure 5. The configuration
shown in the figure is a design proposed by an urban
design office. In the design task for optimal position-
ing two partially conflicting aspects are considered.
The first one is the visual privacy of the buildings,
and the second one is the size of the gardens.

5.1. Assessment of visual privacy
aspects

Figure 6 shows the same situation as Figure 5 from
the viewpoint of a virtual observer labelledavatar,
which is standing nearby houseH4 and is view-
ing the scene. The figure illustrates the principle
model behind the computation of the perception-
basedvisual privacy. The perception is obtained us-
ing a probabilistic perception theory (Ciftcioglu, et
al., 2006).

Figure 6 Implementation of the probabilistic perception
model by means of an avatar: The amount of
sightlines interacting with the objects in view
quantifies the degree of awareness for the ob-
jects

In the perception theory the visual attention an ob-
server pays to a scene is modelled as a probability
density function (pdf). This is illustrated in Figure 6
by means of a number of vision rays that are leav-
ing the eyes of the avatar in random directions. The
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randomness of the directions is shaped in accordance
with the probability density involved in the prob-
abilistic perception theory mentioned above. Inte-
gration of the pdf over a certain domain yields per-
ception that becomes a probability. This probability
quantifies the degree an observer is mentally aware
of the objects in his/her environment. This method is
implemented into the computational design process,
so that the perception of one building from another
one is quantified. Figure 7 illustrates the computa-
tion of visual perception of the buildingsH1, H2,
H3, andH4 from buildingE1. Here the viewpoint
of the observer is taken as the geometric centre point
of the north facade of buildingE1.

Figure 7 Sketch indicating the computation of the de-
gree of perceptions of the housesH1, H2,
andH3 from the viewpointE1

The curves plotted along the z axis are the probability
density functions belonging to the perceptions of the
housesH1−H4, which gives the degree of visual at-
tention along a building. The integral of the pdf over
the length of the south facade of each house is indi-
cated as a shaded area and it quantifies the perception
of the respective facade. Based on the probabilistic
perception in this implementation the visual privacy
belonging to an area is quantified as the reciprocal
of the summed up perception of the area obtained
from the relevant observation points in an environ-
ment. Explicitly we calculate the visual privacy of
an objectO as

Yprivacy(O) = 1
P

P (O,V1)+P (O,V2)+...+P (O,Vn) (9)

whereP (O, Vn) is the degree of perception of object
O from then-th viewpoint. In this implementation
we consider the visual privacy of the south facade of
the building, because in this design it is expected that

living rooms and openings to the garden are oriented
to the south side of the buildings, and these areas are
considered the most important ones with respect to
privacy perception in this design. Figure 8 illustrates
the implementation of the visual privacy computation
for the houses of the housing complex.

Figure 8 Illustration of the visual privacy computation
based on the probabilistic perception model
indicated in Figure 7

Every south facade is perceived from several view-
points and the visual privacy for each house is com-
puted. In the computation of the perceptions in this
implementation, occlusion is considered. This is
done by a simplified test of the visibility of a building
viewed from another one. The mechanism is sending
a ray from the centre location of the first building to
the viewpoint identifying if the ray is intercepted by
another building located in between them. If this is
this case the perception of the building from the sec-
ond one is considered to be zero.

5.2. Assessment of garden aspects

A second aspect considered in the design of the hous-
ing complex is the size of the gardens. We consider
that in general a garden located south of the build-
ing it belongs to is most desirable due to exposure
to direct sunlight. Therefore the garden performance
is calculated regarding the south garden. In partic-
ular the size of the south garden is considered to be
relevant. The buildingsH4 andH5 form an excep-
tion. The lots of these houses are oriented in east-
west direction. Therefore, next to the garden in south
direction, the gardens west of the buildings are con-
sidered. In this case the west direction is used and
not the east direction, assuming that for this design
task the residents of the housesH4 andH5 appreci-
ate more to have direct sunlight in their garden during
the evening rather than in the morning.
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Figure 10 Neural tree structure for assessment of design performance

Figure 9 Calculation of the garden performance

In order to determine the garden performance the size
of the garden in south direction is normalized with
respect to the maximally possible size of the garden
in this direction. The maximum size of the garden in
south direction is restricted by the minimum distance
between the boundaries for placement in north and
south direction and the width of the house. This is
illustrated in Figure 9 using houseH1 as an example.

In the figure the boundary of the lot is shown as a
solid line while the placement boundary is shown as
a dashed line. Explicitly the garden performanceG
is given byg/gmax.

5.3. Establishing the knowledge model

In the fuzzy neural model, the knowledge about the
performance of the design is represented as follows.
The neural tree structure for this case is established
as shown in Figure 10. In the context of the design
application the design performance is determined by

two sub-domains, namely the performance of the
garden and the performance in terms of the visual
privacy at one level below from the root node, des-
ignated as level 2. At one level further below is the
terminal level except with respect to the garden per-
formance of housesH4 andH5, where the garden
performance has additional two sub-aspects. These
aspects are the performance of the garden to the west
and the south side of the house respectively. Another
exception is the privacy performance of the houses
Ga1 − Ga6, which together form an additional sub-
aspect of the privacy performance. The determinants
of the design performance on the terminal level are
given in Table 1.

Table 1 Determinants of the design performance

Garden performance Visual privacy perfor-
mance

Garden of houseH1 Privacy of houseH1
Garden of houseH2 Privacy of houseH2
Garden of houseH3 Privacy of houseH3
Garden of houseH4 Privacy of houseH4
Garden of houseH5 Privacy of houseH5
Garden of houseH6 Privacy of houseH6
Garden of houseH7 Privacy of houseH7
Garden of houseGa1 Privacy of groupGa

Garden of houseGb1

These determinants form a multidimensional search
space, which is complex with respect to its dimen-
sionality. In this space, Pareto optimality is most de-
sirable for multi criteria based search. This will be
elaborated later on. For the tree structure established,
the connection weights at each level assessed by do-

PERFORMANCE-BASED PARETO OPTIMAL DESIGN 1011



Table 2 Weights of the neural tree for the design perfor-
mance

weight
nr.

1 2 3 4 5 6 7 8 9

level 2 .60 .40
level 1 .11 .09 .15
level 0 .28 .33 .08 .08 .18 .05 .45 .16 .14

weight
nr.

10 11 12 13 14 15 16 17 18

level 0 .28 .33 .08 .08 .18 .05 .45 .16 .14

weight
nr.

19 20 21 22 23

level 0 .28 .33 .08 .08 .18

main experts are given in Table 2. These weights
indicate the relative importance of a sub-aspect com-
pared to other sub-aspects. The structure can be con-
sidered as constitution of domain knowledge, where
the connecting weights between the nodes are deter-
mined by expert judgment.

Each aspect is considered in the context of design
performance of the housing complex and eventually
assessed between zero and unity. This assessment
may be accomplished by using the method of AHP,
in a complex design task. The assessments hav-
ing been made duly, they are used as connection
weightswij in the neural tree. Determining the pa-
rameter values in this structure, namely the weights
and the individual width of the Gaussians at the non-
terminal nodes, a knowledge model is formed. The
model should comply with the condition stated as
the greater the membership value wi of an aspect,
the greater the design performance. Due to the pe-
culiarity of this structure described in the preceding
section, only the left half side of the Gaussians be-
yond the terminal nodes are used during the compu-
tations. Therefore the structure represents a multi-
variable increasing function for the whole region be-
yond the terminal nodes. This ensures that greater
membership valuewi of an aspect at the input to a ra-
dial basis function yields greater node output. Note
that the model is completely knowledge-driven and
highly non-linear due to the Gaussians at least at the
non-terminal nodes and fuzzy membership functions
at the terminals.

TThe membership functions at the terminal nodes are
application dependent, and therefore their shapes and
locations are determined accordingly. The member-
ship functions used in the present case are shown in
Figure 11.

Figure 11 Membership functions at the terminal nodes

he shapes are selected by domain experts. Explic-
itly, the fuzzy functions are the representations of
the requirement specifications of the design. Please
note that the functions selected for the privacy perfor-
mance measurement all have the same basic shape,
however the output maxima are at different loca-
tions to express the different requirements that are
due to the different housing types and lot conditions
involved. Concerning the garden performance the
fuzzy membership function used is simplywi = x
because the garden performanceG = g/gmax in Fig-
ure 9 is already normalized between zero and one, so
that it directly serves as the node output of the re-
spective terminal node.

As far as non-terminal nodes are concerned the
widths of the Gaussians are still to be determined and
they are obtained by means of the consistency condi-
tion, which serves as boundary condition for the neu-
ral tree model. This is explained below.

5.4. Training of the neural tree

The neural tree output follows the trend of the termi-
nal node outputswi representing the associated de-
gree of membership. Considering this property, the
consistency refers to the fact that in the knowledge
domain if all the inputswi are unity, all system de-
terminants have the value where the associated fuzzy
membership functions at the terminal node take the
value of 1; as result of this, all the non-terminal node
outputs are accordingly 1 and therefore system out-
put at the root node is also 1. This condition is in-
herently satisfied in the present neural tree structure
and this is easily seen by (7) and (8); namely if all
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wi are 1, then all non-terminal node outputsOi are
1 and then the neural tree output is 1. This is more
explicitly explained by the following example. Since
the research is carried out in a department of archi-
tecture, an example from the architectural domain is
more relevant. If all the design determinants belong
to a design that is by all means modern, where the
attribute modern is reflected by a high output at the
terminal level, then the final design output belongs
also to a modern type of architecture and the neu-
ral tree output is high. The reverse of this situation
state that, if all the design determinants belong to a
design that is by no means modern, then, the final de-
sign output does not belong to a modern type of ar-
chitecture, meaning that output vanishes. This latter
condition cannot be strictly satisfied since the Gaus-
sians extend to infinity and therefore still give some
value as an output even when the inputs at the ter-
minal nodewi vanish. Because of this very reason
any non-terminal node outputOi theoretically never
vanishes but may take sufficiently small values.

Following the above example the case, which can be
described by taking all the input determinants as, say
0.5 would yield the neural tree output also as 0.5.
Note that, this does not mean the system is linear. On
the contrary, the system is highly non-linear. How-
ever, the consistency condition as given above is stip-
ulated on it. This imposition is accomplished as de-
scribed below. In the formation of the modelling the
domain knowledge, the system determinants selected
should be carefully verified in advance that they ob-
serve this stipulation designed as consistency condi-
tion. In general, the consistency condition is a kind
of boundary condition, which should be satisfied by
the fuzzy knowledge model represented by the neural
tree structure.

The consistency condition as boundary condition is
application dependent and the condition or possibly
a set of conditions should be imposed on the knowl-
edge model. Therefore, care has to be exercised that
the problem formulation is carried out appropriately,
so that the consistency is inherently present in this
formulation. Peculiar to the application being pre-
sented, the consistency condition is a set of multi-
input single-output data as given in Table 3 and Ta-
ble 4, respectively. The imposition of the consis-
tency or boundary conditions can be carried out by
adaptive or genetic learning. As result of the learn-
ing process, the width of each individual Gaussian at
each non-terminal node is established. In this way,
the cascade feed-forward fuzzy logic operations are

clearly defined exhibiting features of transparency in
the model.

Although the input/output data set given in Tables 3
and 4 is seemingly simple, imposition of this sim-
ple data set on the highly non-linear fuzzy knowl-
edge model requires adaptive or genetic learning. In
the present implementation adaptive learning is used
for high accuracy. The approximation error for this
data set is relatively higher for the lower input/output
pairs. This is seen from Table 5.

Table 3 Dataset at the input of the neural tree to estab-
lish the consistency condition

leaf node 1 2 3 4 5 . . . 23
data sample 1 .1 .1 .1 .1 .1 . . . .1
data sample 2 .2 .2 .2 .2 .2 . . . .2
data sample 3 .3 .3 .3 .3 .3 . . . .3
data sample 4 .4 .4 .4 .4 .4 . . . .4
data sample 5 .5 .5 .5 .5 .5 . . . .5
data sample 6 .6 .6 .6 .6 .6 . . . .6
data sample 7 .7 .7 .7 .7 .7 . . . .7
data sample 8 .8 .8 .8 .8 .8 . . . .8
data sample 9 .9 .9 .9 .9 .9 . . . .9

Table 4 Neural tree output to establish the consistency
condition

data data data data data
sample 1 sample 2 sample 3 sample 4 sample 5

.1 .2 .3 .4 .5

data data data data
sample 6 sample 7 sample 8 sample 9

.6 .7 .8 .9

Table 5 Adaptive learning results from the datasets
given in Table 3 and Table 4

Given for all inputs
and the root output

Approximation Error

1.00 10−1 1.68 10−1 -6.82 10−2

2.00 10−1 2.30 10−1 -3.00 10−2

3.00 10−1 3.06 10−1 -5.96 10−3

4.00 10−1 3.95 10−1 5.47 10−3

5.00 10−1 4.91 10−1 8.62 10−3

6.00 10−1 5.89 10−1 1.12 10−2

7.00 10−1 6.79 10−1 2.11 10−2

8.00 10−1 7.80 10−1 1.98 10−2

9.00 10−1 9.43 10−1 -4.34 10−2

5.5. Identification of Pareto optimal
designs

Having established the fuzzy neural tree the design
task is to maximize the output at the root node by
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Table 6 Resulting widths of the Gaussians at the non-
terminal nodes

Node nr. 1 2 3
σ 7.22 10−2 3.36 10−1 1.95 10−1

Node nr. 4 5
σ 1.77 10−1 1.55 10−1

identifying optimal location of the buildings. This is
accomplished by genetic search. The output at the
root node, which expresses the design performance
by a scalar number, can be used as the representa-
tion of the fitness of the respective chromosome. In
this way the genetic algorithm (GA) uses the knowl-
edge embedded in the neural tree during its search for
obtaining maximal performance, while the search is
essentially treated as a single-objective problem.

However, a GA used for this type of problem is usu-
ally sensitive to small changes in the objective func-
tion coefficients, which correspond in the present
case to the weight factors and widths of the Gaus-
sians in the neural tree. Another drawback is that a
GA applied in this way converges to a single solu-
tion, and does not provide information about alterna-
tive solutions that are equally valid in Pareto sense.
Therefore we apply GA using a different approach,
which is based on the concept of Pareto optimality.
The two objectives, to maximize the garden and the
privacy performance of the design simultaneously,
are conflicting. The conflict is that satisfaction of one
objective diminishes satisfaction of the other one.

In such multi-objective optimization problems exists
a set of solutions which arenon-dominated. This
means for each solution of this set there is no other
solution in the population that performs better with
respect to all objectives. In the objective space the set
of non-dominated solutions lie on a surface know as
the Pareto-optimal frontier (Fonseca, 1995). We use
GA to identify this frontier. This is accomplished by
assigning the fitness to a chromosome in a popula-
tion depending on how many other chromosomes are
dominating it. Chromosomes that are not dominated
are assigned fitnessfmax, while the fitness in general
is calculated as the reciprocal of the amount of chro-
mosomes that dominate the chromosome in question.
In the present implementationfmax is set to 10. The
fitness is thereafter converted to a probability for re-
production applying the well-known roulette wheel
selection principle (Goldberg, 1989).

The boundary of the space for the locations of the
houses is given in Table 7, namely the minimal and

maximalx andz coordinates for the positions of the
housesH1 − H7, Ga1 − Ga6 andGb1 − Gb4. The
boundaries are selected, so that the facades of the
buildings are at a distance greater than 3m from the
boundary of the lot, as this is required by legal regu-
lations in this design case. For the sake of simplicity
of the implementation the boundaries of the place-
ment are taken parallel to thex andz axis. Thez
axis is in north direction, and thex axis is in east
direction.

Table 7 Solution space

House H1 H2 H3
x z x z x z

min 25.0 26.0 26.0 46.0 56.0 47.0
max 31.0 34.0 36.0 56.0 69.0 56.0

House H4 H5 H6
x z x z x z

min 81.0 34.0 86.0 52.0 21.0 6.0
max 117.0 38.0 114.0 57.0 28.0 16.0

House H7 Ga1 Gb1
x z x z x z

min 3.0 70.0 27.0 67.0 76.0 7.0
max 10.0 80.0 32.0 81.0 79.0 22.0

Figure 12 shows a design at the beginning of the ge-
netic search process, which is a random configura-
tion. It has a design performance of 0.41, which is
the output value at the root node of the tree. The
marked areas on the lot are the locations originally
proposed by the urban design office. The result of
the search process is shown in Figure 13, where the
best fitness that occurred during the search is plotted
together with the average fitness of the chromosomes
for each generation.

Please note that the fitness shown in Figure 13 is
the output at the root node. Figures 14-16 show the
performance of each chromosome in the population
plotted with respect to its privacy perception perfor-
mance and garden performance values. In the be-
ginning of the search process the population is dis-
tributed evenly in terms of garden and privacy perfor-
mance. This is shown in Figure 14. After five gen-
erations the GA found a convex Pareto optimal fron-
tier. This is shown in Figure 15. After 20 generations
the population of the GA clustered at four locations
on the Pareto frontier. This is shown in Figure 16.
This behaviour of the evolutionary algorithm is due
to its inherent “pressure” towards the Pareto optimal
frontier, which is achieved by the dominance based

1014 I. Sevil Sariyildiz, Michael S. Bittermann, Özer Ciftcioglu



Figure 12 Illustration of a design with a design perfor-
mance of 0.41 at the beginning of the Genetic
search process
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Figure 13 Genetic search process results

selection procedure of the GA described above. The
resulting designs along the Pareto optimal front are
equally valid solutions, while each solution has a dif-
ferent tradeoff with respect to the design criteria.

Four Pareto optimal designs are shown in Figures 17-
20. The designs shown in the figures belong to the
solutions indicated as nr. 1, 2, 3, and 4 in Fig-
ure 16, respectively. The design shown in Figure 17
has the greatest garden performance of the four de-
signs shown. This is because all houses have large
south gardens, respectively west gardens in the case
of housesH4 andH5. In Figure 17 the visual pri-
vacy is relatively low compared to the other designs,
because many houses are located quite close to and
are directly facing the south façade of neighbouring
buildings.

The design shown in Figure 18 provides a higher vi-
sual privacy compared to the design from Figure 17.
This can be explained from the fact that the houses
Gb1−Gb4 are located at greater distance from house
H4 thereby increasing privacy ofH4.
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Figure 14 Privacy performance and garden perfor-
mance belonging to each chromosome of the
population in the first generation of the GA
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Figure 15 Forming the Pareto optimal front: privacy
performance and garden performance be-
longing to each chromosome of the popula-
tion in the 5th generation of the GA

Additionally H4 is located not directly belowH5,
so that the privacy ofH5 is increased compared to
Figure 17. Figure 19 is similar to Figure 18 with the
difference that houseH4 is moved directly south of
H5. Therefore the privacy performance of Figure 19
is reduced compared to Figure 18. Figure 20 is sim-
ilar to Figure 18 with the difference that the houses
Gb1−Gb4 are at a greater distance fromH4, so that
the privacy is increased and garden performance is
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Figure 16 Pareto optimal front formed by privacy per-
formance and garden performance belonging
to each chromosome of the population in the
20th generation of the GA

reduced in Figure 20 compared to Figure 18.

A designer may select any of the designs on the
Pareto-optimal front for further elaboration; having
certainty that each of the solutions he/she is choosing
from is Pareto-optimal with respect to the design cri-
teria put forward. In order to make a decision about
which design to pick, higher-level design criteria can
be brought into play. In the present case it is nat-
ural to consider the relative importance of privacy
and garden performance, as this is already integrated
into the defuzzification process in the neural model
formed earlier. Explicitly in this case the garden per-
formance is considered 60/40 times more relevant
than the privacy performance. Based on this higher-
level criterion we select a certain design located on
the Pareto front, which is both, non-dominated and
has the highest output value at the root-node of the
neural tree. This means the design selected has max-
imal design performance at the same time.

The selected design is shown in Figure 21. It has a
design performance of 0.85. For this design the re-
sulting design parameters as location of the buildings
are given in Table 8. The outputs of the tree nodes
for the designs shown in Figure 5 and 21 are given in
Table 9 for comparison. The results indicate that the
combination of fuzzy neural tree and genetic algo-
rithm is able to identify Pareto optimal designs with
maximal design performance, while insight into the
contributions of the model constituents is provided

Figure 17 Resulting Pareto-optimal design indicated as
solution nr. 1 in Figure 16

Figure 18 Resulting Pareto-optimal design indicated as
solution nr. 2 in Figure 16

due to the transparency of the approach. This is seen
in Table 9. In the figures both design alternatives,
namely the one proposed by the computational de-
sign system, and the design proposed by the human
design professionals based on conventional methods
are shown. The latter one is indicated by rectangles
on the respective lots on the ground plane, which are
the projections of the professional design onto the
plane. This is done, so that the computational de-
signs can be easily visually compared with the con-
ventional one.

In the following we compare the selected Pareto op-
timal design shown in Figure 21 with the conven-
tional design. We note that the computational de-
sign is similar to the conventional one with respect to
the positions of housesH7 and the group of houses
Ga1 − Ga6. There are also differences: In the com-
putational result the groupGb1 − Gb4 and houses
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Figure 19 Resulting Pareto-optimal design indicated as
solution nr. 3 in Figure 16

Figure 20 Resulting Pareto-optimal design indicated as
solution nr. 4 in Figure 16

H3, H4, H5 andH6 are located further north than in
the conventional design, so that the south gardens of
these houses are larger in the computational case. For
the same reason the privacy of the group of houses
Ga1 − Ga6 is reduced in the computational case.
HousesH5 andH4 are moved further apart in the
computational design, so that the visual privacy of
H5 is increased compared to the conventional case.
HouseH2 is moved to the north west of its lot, so that
both its garden is larger and its privacy is increased
in the computational design compared to the conven-
tional one.

6. DISCUSSION

The knowledge model presented in this work has a
neural tree structure with fuzzy logic processors em-
bedded as the inner nodes of the structure. Depend-
ing on the complexity of the domain knowledge, the

Figure 21 Selected Pareto-optimal design with design
performance .85, where garden performance
is .87 and visual privacy performance is .82

Table 8 Selected Pareto-optimal design shown in
Figure 21

House H1 H2 H3
x z x z x z

value 29.0 33.6 28.1 55.5 61.5 55.1

House H4 H5 H6
x z x z x z

value 85.0 36.5 113.5 56.9 21.5 14.3

House H7 Ga1 Gb1
x z x z x z

value 5.0 78.8 29.64 80.2 77.2 13.0

method of analytical hierarchy process is one alter-
native, which can be made use of during the consti-
tution of the structure. In this feed-forward struc-
ture the output of a node is obtained with fuzzy logic
operations using the inputs of the node. This is ac-
complished by Gaussian membership functions. The
model is finally determined by learning where learn-
ing refers to the integration of the conditions stipu-
lated by the knowledge being modelled. It is note-
worthy to mention, that the nodes of the neural tree
correspond to fuzzy logic rules, so that the outcome
of the model is result of a number of logic operations
and finally de-fuzzification at the root node.

The equivalence between neural networks and fuzzy
logic for Gaussian fuzzy membership functions is
known in the literature (Jang, Sun, 1993; Li, Chen,
2000). The neural tree with fuzzy logic presented
in this research forms a fuzzy model especially as
described by Hunt, Haas and Murray (Hunt, et al.,
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Table 9 Node outputs belonging to the designs shown
in Figure 10 and 11

Node Output

Initial
design
shown
in Fig-
ure 10

Selected
Pareto-
optimal
design
shown
in Fig-
ure 20

Design performance O3 .411 .850

Garden performance O2(1) .463 .869
Visual privacy
performance

O2(2) .333 .821

GardenH1 w1 .917 .951
GardenH2 w2 .895 .996
GardenH3 w3 .098 .897
GardenH6 w4 .048 .825
GardenH7 w5 .802 .883
GardenGa1 w6 .052 .944
GardenGb1 w7 .0479 .397
South gardenH4 w8 .338 .110
West gardenH4 w9 .194 .621
South gardenH5 w10 .297 .981
West gardenH5 w11 .270 .981
Visual privacyGa1 w12 .007 .796
Visual privacyGa2 w13 .204 .957
Visual privacyGa3 w14 .120 .640
Visual privacyGa4 w15 .181 .999
Visual privacyGa5 w16 .013 .988
Visual privacyGa6 w7 .694 .746
Visual privacyH1 w18 .999 .763
Visual privacyH2 w19 .780 .705
Visual privacyH3 w20 .703 .914
Visual privacyH4 w21 .277 .598
Visual privacyH5 w22 .062 .708
Visual privacyH7 w23 .608 .892

1996), where some strict conditions stipulated on the
equivalency earlier are relaxed. This implies that,
neural tree structures provide additional possibilities
to fuzzy logic systems enhancing their transparency
and soft computing possibilities for dealing with soft
issues, as they are meant to.

Integration of evolutionary algorithms into such stud-
ies opens new avenues for the effectiveness of the
neuro-fuzzy applications. It is emphasized that the
consistency condition introduced in this research is
application dependent in general. The peculiarities of
a particular application beyond the knowledge-base
associated with the application can be embedded in
the knowledge model in a natural way in the form
of boundary condition. With respect to the com-
putational power required using the neural tree we
note that once the structure is established fulfilling

the consistency condition, the execution of the logi-
cal operations in the tree can be considered real-time.

We note that in the present application the perfor-
mance aspects considered are the visual privacies and
the sizes of the gardens of the residential units, exclu-
sively. Other aspects, which a designer may consider
relevant constituents of design performance, such as
other perceptual aspects, may be easily integrated
into the neural tree model presented. In this case it is
required that also for these aspects fuzzification at the
leaf node be defined, i.e. there has to be some map-
ping from properties of the design to the degree of
satisfaction of the perceptual requirement concerned.
These features are the manifestations of the transpar-
ent nature of the structure, where the meaning of each
node is known.

Knowledge driven fuzzy modelling is described for
identification of performance-based Pareto optimal
architectural designs. The novel knowledge mod-
elling method is described in detail and its significant
merits are pointed out in a fuzzy framework having
transparent fuzzy modelling properties and address-
ing complexity issues at the same time. The poten-
tial of the novel method for design is demonstrated
by means of an implementation, where the model is
used for knowledge-based performance assessment
during a computational design process. Particularly
the model plays the role of fitness-function during a
genetic search. The search aims to find optimal so-
lutions in Pareto-sense, while the search procedure is
equipped with the detailed knowledge of the designer
on how to evaluate the alternatives. Due to the multi-
objective nature of the design task, application of the
Pareto concept is most appropriate for effective and
efficient solution identification. The results indicate
the suitability of the work for a wide range of similar
applications of technological, industrial and practical
interest.

Ranking by Pareto dominance on problems with an
increased number of objectives might not longer be
effective (Hughes, 2005; Purshoe, Fleming, 2003).
One of the important issues to address in this respect
is the diversity of the Pareto solutions with minimal
aggregation at the Pareto front (Aguirre, Kiyoshi,
2007). The aggregation of the solutions in this work
is seen in Figure 16. This state-of-the-art issue is ad-
dressed in the literature and novel methods are pro-
posed (Sato, et al., 2007). The adaptation of such
methods is anticipated as an improvement of similar
researches including the present one and therefore re-
mains as a future work.
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7. CONCLUSIONS

The marked significance of this work is that de-
signer’s knowledge on the design requirements can
be put in the play effectively and efficiently in ar-
chitectural design. In particular the uncertainty and
imprecision issues that naturally occur when a de-
signer evaluates design alternatives using conven-
tional means are alleviated. This is accomplished
by consistently synthesizing designer’s knowledge
with a higher level of granulation, making the meta-
knowledge known that has been previously un-
known.
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