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Abstract

Neonatal sepsis is a dangerous non-specific disease in babies, especially neonate/newborns. It is one of the
leading causes of neonate mortality rate, because of the difficulty to diagnose, leading to late or false treat-
ment. Previous research has found the promising feature of artificial intelligence or machine learning in
solving the problem. After analysing hours of the electronic health record data available, they are able to
diagnose sepsis condition on neonates. However, the accuracy and time needed before diagnosis are still
concerning considering the risk of mistreated or late diagnosed sepsis cases. In this research, machine learn-
ing and thermal imaging technology is used to explore the possibility of predicting sepsis. 57 thermal videos
from 26 babies are processed to track the highest skin temperature visible to the thermal camera. The tem-
perature data then is utilized to train and test several machine learning models for predicting sepsis cases.
Support Vector Machine (SVM) was found to be the best sepsis predictor using time-series variation of the
temperature data as the feature. The model needs 10-30 minutes of thermal recording, 19 minutes in aver-
age, to predict sepsis and achieved 82% accuracy. Simulation also shows the high possibility in increasing
the accuracy when more data/thermal videos are available to train the model. High accuracy model with fast
reacting sepsis prediction could help doctors precisely treat septic neonates in timely manner, decreasing the
mortality rate for sepsis cases.
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Introduction

1.1. Premature Baby

Preterm or premature baby is a baby born at fewer than 37th weeks’ gestational age (GA), or more than 3
weeks before the estimated due date. Every year, around 5%-18% babies, or estimated 15 million babies,
born in premature condition across 184 countries [1]. Preterm baby can be divided into more sub-categories:
moderately to late preterm (32-37 weeks of GA), very preterm (28-32 weeks of GA), and extremely preterm
(under 28 weeks of GA). Preterm babies are more susceptible to diseases and harms because of their not fully
developed organs and immune system. Hence, preterm infants usually are taken care inside an incubator,
to be able to control the suitable environment for the babies. Unfortunately, almost half of deaths in babies
under 5 years old happen in neonatal period (less than 4 weeks old) and premature birth complication is the
leading cause of them [2].

1.1.1. Neonatal Skin

Skin is the outer most organ of human body. It functions as protection against UV radiation and pathogens,
body temperature regulator and sensory preceptor. These functions are not fully developed yet for body skin
of the neonates, even less so in preterm ones. After birth, normally, the skin starts to develop those functions
and reaches maturity in the first year. For premature babies, this development starts after two to three weeks
after birth [3].

The skin consists of two layers: the epidermis, and dermis. The epidermis is a superficial layer, which acts
as a first line of defence against pathogens from outside of the body. The outer layer of epidermis, called
corneum stratum, is formed at 21 weeks of gestation. Both the epidermis and the corneum stratum have
lower thickness in preterm neonates than those of adults [4], which means it requires careful treatment to
the skin. The base layer which generates epidermis, can be easily damaged and consequently leads to scar
formation after healing [5].

In most neonatal care, skin sensors are used to monitor vital signs of the baby and the usage of those sensors
may damage the fragile and sensitive skin of preterm neonates and increase the risk of infection [6, 7]. The
removal of skin sensor also increases transepidermal water loss (TEWL) at the sensor location, which is cor-
related with damaged skin barrier function [8]. In an effort to control TEWL, restore skin elasticity, and skin
homeostatis sustenance, emollients can be applied to the skin [9]. There are some controversy surround-
ing emollients, as some claim it increases the risk of infection [10], while others have found a reduction of
nosomical infections when sunflower oil was topically applied, without side effects [11]. Another concern
due to the thin corneum stratum is that the skin is highly permeable to topically applied agents, which if ab-
sorbed, can cause toxic systemic effects and lead to illness or even death [12]. Similarly, repeatedly applying
disinfectant such as isopropyl alcohol to neonate skin can induce systemic intoxication and can cause severe
haemorrhagic skin necrosis [13].
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1.1.2. Thermoregulation and Temperature Measurement

Humans are homeotherm, which means they try to preserve their body temperature regardless of the envi-
ronmental condition. Normal core temperature of human body is around 37 °C. Few degrees higher or lower
of the core temperature is an indicator for abnormal condition in the body [14]. In neonates, their core tem-
perature needs to be in very specific range, 36.5-37.5 °C and a thermoneutral environment (TNE) to prevent
the neonate from thermal stress. The TNE temperature, however, depends greatly on weight, age of gestation,
and age of life of the baby, and also whether the neonate is clothed or not. For example, for a very preterm
neonate, the TNE temperature is kept at 34-35 °C when the baby is naked, and 28-30 °C while clothed [15].

Adults produce heat in response to cold temperature by several methods, peripheral vascular constriction, in-
hibition of sweating, voluntary muscle movements, involuntary muscle movements, and nonshivering ther-
mogenesis. Neonates also adapt in cold environment by increased metabolic rate [16], however, the heat
production is different compared to adults. Neonates primarily produce heat using nonshivering thermoge-
nesis [16]. The heat produced by a neonate is highly dependent on the body weight [17].

Monitoring and managing temperature of new-born infants are basic requirements in neonatal nursing care.
Similar to adult, temperature of a neonate can show a lot about the condition of the baby (e.g. adverse condi-
tion) [18-20], hence an accurate thermal measurement would really benefit the baby. Current common ther-
mal measurements for neonate are placed in rectum, axilla, ear, and forehead, with rectal and axillary thermal
measurement frequently regarded as the golden standard [21-23]. However, these golden standard temper-
ature measurements are not ideal for the baby as they could cause some degree of distress to the baby when
the measurements are taken. Other disadvantages such as perforation of the rectum, infection/hygienic con-
cern, and irritation also cause some concerns for rectal thermometer [24, 25]. For axillary thermometer, ba-
bies have to be in a certain position or handled in such a way in order to get accurate measurement. These
measurements are also done once in a period of time to minimize discomfort to the baby. For continuous
temperature measurement, a skin temperature sensor is used. However, as discussed before, skin sensor has
its downside, such as damaging the skin and increasing infection risk.

1.1.3. Incubator Care for Neonates

Figure 1.1: Dréger Caleo® incubator

Due to underdeveloped mechanisms to control their body temperature, it is crucial that neonates do not
lose excessive heat, or get too warm. In order to guard them against hypothermia or hyperthermia, they are
often placed in an incubator. An incubator is a transparent box with controlled environment inside and in
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which a neonate is taken care of. Different incubators have different features, for example, incubator Drager
Caleo has an air control mode, baby temperature control mode, powered vertical height adjustment as main
features, and humidity control, and oxygen level control as optional features. These features allow baby to be
taken care in optimal environment.

The environment is generally controlled by fan to circulate the air inside the incubator, servocontrol to con-
trol the heater, water dispenser for humidifying the incubator, and oxygen valve. Heat exchange between the
environment and the neonate happens by convection of the air to the skin of the baby. Air temperature colder
than the skin of the neonate would result in convective heat loss due to the velocity of the air flow. Higher ve-
locity would mean higher heat transfer from the skin to the environment. Modern incubators should thus not
have an air flow velocity higher than 6 to 8 cubic decimetre per second (cds). However, this low air flow also
does reduce the ability to warm hypothermic neonates as quickly as possible [26]. Despite the advantage of
being able to monitor and regulate the environment around the baby, incubator has some disadvantages: it
is expensive, both in purchase and in use, and creates barrier between mother and her new-born to bond and
breastfeed [27]. Moreover, heat is not distributed equally inside the incubator, creating hot and cold spots. In
one study, the cold spots in the incubator are found to have elevated levels of staphylococci bacteria, which
is the main cause for late-onset sepsis in preterm neonates [28].

1.1.4. Neonatal Infection (Sepsis)

Looking at the premature birth complication more closely, major causes of the complication are varied in
different areas of the world, but most researches agreed that neonatal infection/sepsis is one of the leading
causes [29-31]. Neonatal sepsis is a generalized systemic/whole body infection occurring in new-born in-
fants. In this report, more specific infections, such as meningitis and pneumonia, are included in the sepsis
definition. Infection is caused by invasion of virus, bacteria or other microorganism. It causes reaction from
the body immune system to fight the foreign organism, which usually involving inflammation [32]. Neonatal
sepsis can be acquired through several ways [33]:

e In utero transplacentally (through ruptured membranes)
e Intrapartum (in the birth canal during delivery)
* Postpartum (external source after birth)

neonatal sepsis usually divided into 2 categories, early onset neonatal sepsis (EONS) and late onset neonatal
sepsis (LONS). EONS occurs If the neonate shows sepsis symptoms within 3 days of birth. Usually, neonate
with EONS acquires the infection from organisms intrapartum. Meanwhile, LONS is when the sepsis symp-
toms occur more than 3 days after the birth, and the pathogens come from the environment or postpartum.

1.2. Research Goal

¢ Predicting infection (sepsis) in preterm infants using contactless monitoring system (infrared camera)



Technical Background and Research

2.1. Thermal Imaging

Thermal imaging is an imaging technique detecting infrared radiation, usually in the long-infrared range
(9-14 ym), and producing image of the radiation. Human body emits significant radiations of wavelength
in range 4 to 30 um, with peak at 9 pm [34], which is suitable for the thermal imaging. Thermal imaging has
been used in the medical scene more than 50 years, first used to find breast cancer in women. Compared to X-
ray, computed tomography (CT), and mammography, thermal imaging is not harmful as it does not emit any
radiation. It is a real time non-contact measurement method, like a normal camera. From the image of the
radiation, the difference of temperature between one object and the other can be seen, and also determine
the temperature of the object, even though the accuracy of the measurement depends on a lot of variables. In
case of thermal imaging on preterm infants, incubator environment is also affecting the measurement [35].
The hood of the incubator is generally made out of polymethyl methacrylate (PMMA) (also known as acrylic
or plexiglass) or polycarbonate. Unfortunately, these materials are very poor for infrared wave transmission,
so thermal imaging cannot look through these materials [36].

2.1.1. Thermal Radiation

Milimetric
Infrared Isub-
radiation milimetric

X-ray Ultraviolet

0.75 pm 300 Jmm ——3Wavelength 4 100km
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Figure 2.1: Infrared region within electromagnetic spectrum. [35]

The infrared (IR) band of the electromagnetic spectrum has been shown in detail in figure 2.1. IR can be
divided into five sub-bands: near, short, middle, long, and extreme. In the atmosphere, particles in the air,
such as H20, CO2, and many others absorb certain wavelengths of the radiation, reducing the transmission.
As seen in the figure 2.2, from 3 to 5um and from 7 to 14um the transmission is almost 100%, which is why
long infrared range is preferable for thermal imaging.

According to Planck’s Law, every object with temperature above absolute zero radiates electromagnetic radi-
ation, includes radiation in infrared wavelength. The radiation increases with increasing temperature as de-
scribed in Stefan-Boltzmann law, total radiant energy emitted by a surface of a black body is equal to Stefan-
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Figure 2.2: Infrared transmission in the atmosphere for wavelength 1-28um. [37]

Boltzmann constant, o = 5.670373x10 8 [Wm 2K %], multiplied with fourth order of the object temperature
in Kelvin [38].
Epy=0T* (2.1)

A black body is defined as a surface that absorbs incoming radiation and reflecting none, which means that
all the radiation emitted is originated from the black body itself. However, no real-world object is a black
body. Real object surface emits radiation less than a black body does. The percentage of black body emissive
power is called emissivity, e. Human skin has emissivity of 0.97-0.98 in wavelength range of 1lum < o < 14um
[39, 40], which means that around 2-3 percent of the radiation from human body is a reflection from objects
around the human body.

The radiant energy emitted from object then can be measured by infrared camera. This infrared camera
captures the infrared wave coming from the object and then using the formula from the manufacturer, cal-
culating the temperature of the object from the received infrared radiance. The calculation also compensates
for environment variables, such as humidity, distance, atmospheric temperature, etc, that would have effects
on the object radiance.

2.1.2. Thermal Measurement Model
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A generalized model of thermal measurement of neonate inside an incubator is shown in the figure 2.3. There
are 6 sources of radiation detected by the camera, (1) infrared window, (2) atmosphere outside the incubator,
(3) atmosphere inside the incubator, (4) the actual neonate that is being measured, (5) reflection of ambient
object inside incubator, and (6) reflection of ambient object outside incubator. The infrared window can be
an infrared transparent foil. If the measurement setup does not use window (open hole), sources number 1
and 6 can be disregarded.

From the model, an equation [35] can be written as:

(2.2)

where variable T, €, §, and R are temperature, emissivity, transmittance, and reflectance respectively, with de-
scription detector means the infrared camera, obj means object measured, ambl and amb2 mean ambient
objectinside and outside the incubator, atml and atm2 mean atmosphere inside and outside incubator, and
w means infrared window.

If there is no infrared window, the total radiation received by the camera can be segmented as radiation from
actual object measured, reflective radiation from other objects around the object measured, and radiation of
the atmosphere between object and infrared camera. The equation then, can be modified from equation 2.2
to:

(2.3)

Object Measured Radiation

The radiation coming from the object measured is the specific desired radiation to determine the temperature
of the object, in this case the neonate. However, the radiation will go through the atmosphere and infrared
window (if there is any), which will attenuate the radiation. if not compensated, the infrared camera will
underestimate the temperature of the object. The compensation is shown in the formula as dividing the
object temperature with transmittance of atmosphere and infrared window. Lower transmittance can be
caused by the window or particles in the atmosphere.

Reflective Radiation

In the infrared wavelength, neonate is not a black body, which means the neonate is reflecting some radia-
tion from objects around it. This reflectivity depends on the emissivity of the object, in this case emissivity
of neonate is 0.97-0.98 [39, 40]. High emissivity means that almost all radiation is coming from the actual
object, hence more accurate approximation of the temperature. Even so, 2-3% of the radiation is still coming
from the temperature of objects around the neonate. This yields small measurement error and needs to be
compensated. The compensation in the formula is in the T,,,;; part of the equation.

Atmospheric Radiation

Particles in the atmosphere can attenuate infrared radiation in air transmittance, however, these particles
also radiate heat because of their temperature, causing additional incoming radiation to the camera. Hence,
in the equation, the atmospheric temperature contribute to the total radiation.

2.1.3. Total Measurement Error

Temperature measurement of infrared camera would have error measurement which can be caused by error
of method, calibration error, and electronic path error. In real condition, error of method is coming from in-
correct evaluation of object emissivity, ambient temperature, atmospheric temperature, relative atmospheric
humidity, distance from camera to object, and atmospheric transmission and radiance [41]. There is also
contribution of detector noise in the camera.
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Based on the general model from figure 2.3, error simulation from Infrared Thermography : Errors and Un-
certainties (Minkina & Dudzik, 2009), and experiment, the total measurement error budget for a thermal
imaging measurement on neonate inside an incubator can be summarized in equation:

(2.4)

where T, o, is the total temperature error of the measurement, T, ; is the actual temperature of the object, e
is emissivity of the object, Tympiens is the temperature of objects around the measured object, Ty mosphere 1S
the atmospheric temperature, d is distance of object from camera, w is relative humidity of the environment,
T, is thermal noise from camera, T; is thermal lens forming error, and T is the calibration and electronic
path error.

From the error budget equation, it is clear that from the 5 environmental variables (emissivity, ambient and
atmosphere temperature, distance, and humidity), most contribution is coming from the emissivity and am-
bient temperature. However, as the emissivity of human body is known, emissivity setting error would be
minimal, leaving ambient temperature as the major error contributor.
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2.2. Optical Flow Algorithm

Optical flow is the movement of objects or other feature points like edges, surfaces, etc. in a video source
caused by relative motion between the observer and the observed region [43]. This can be observed as change
of pixel colour or brightness. This means that optical flow is the apparent motion of individual pixels on the
image frame. This can be used to get a rough estimate of physical motion on the observer’s plane of view.
However, most methods that compute optical flow assume that the colour intensity of a pixel is invariant
under the displacement from one video frame to the next. This means that optical flow can be expressed in
2.5

I(x,y,t) = I(x+dx, y+dy, t+dt) (2.5)

where I(x,y,t) is the pixel intensity of a point(x,y) on a frame at a given time(t). Assuming that there is only
small intensity change in the pixels between two consecutive frames, equation 2.5 can be approximated using
Taylor series as

oI oI ol X1 0 0 o .
Ix+dx,y+dyt+dt) = I(x,y,1) + adx + O_ydy + Edt + n;za[(adx+ a—ydy+ Edﬂ 1 (2.6)

Then, truncating the higher order terms results in:

or . oI . oI
Lax+ Lay+Lar=o 2.7
ax T ey T 5 @7

Dividing equation 2.7 w.r.t. dt can be approximated by:

ol oI oI
= —u =

— — =0 2.8
ax" "oy T o (2.8)

_ dx _ ﬂ .. . . . . s O aI ol
where u = ; and v = 7, giving us the relative speed of the pixel intensity along each axis. 3y, 3 I and ; are

the frame’s gradients along their respective axes. This gives a good approximation of movement and/or di-
rection of an object from an observer’s point of view without using object detection. But u and v are unknown
variables and they are part of only one equation making the solution incomplete. However, there are meth-
ods to address this issue. There are two different types of optical flow algorithms based on computational
intensity; sparse and dense optical flow. Sparse optical flow calculates the flow vectors of special features like
edges or user selected feature points on a frame. It will be tracking the pixel intensity of the selected points
on the frame. It is not always accurate but fast and easy to compute. Implementations of sparse optical flow
include the Lucas—Kanade method, the Horn-Schunck method, the Buxton-Buxton method etc. Dense op-
tical flow gives the flow vectors of the entire frame i.e. all pixels are given a flow vector. Despite of having
higher accuracy, it is slow and computationally expensive. One example of dense optical flow is the Gunnar
Farneback algorithm.

2.2.1. Gunnar Farneback Optical Flow Algorithm
Gunnar Farneback Algorithm is a dense optical flow algorithm that uses polynomial expansion to approx-
imate the neighbourhood of each pixel [42]. It estimates the motion, or displacement, field from only two
frames and tries to compensate for the background motion. A local signal model can be expressed in a local
coordinate system as,

filx) = xTAlx + blTx +0 (2.9

where A is a symmetric matrix, b; a vector and c; a scalar. They are the global approximation coefficients of

an image. Let us construct a new signal f> by a global displacement by d:

L) =filx—d) = x-dTAj(x—ad) + bl (x—ad) + 1 (2.10)

= xTAyx + (by —2A1d) ' x + (AT Ayd - bl d) + ¢ (2.11)
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=x"Apx+blx+c (2.12)

=> A=A  by=(b-2Ad) ¢ =(d Aid-bld) +c) (2.13)

Looking at equation 2.13, it is possible to solve for d; given A; is non-singular

1
2A1d = (bp—by) => d-= 5A;l(bz—bl) (2.14)

Ideally from equation 2.13 A; = A; but in real applications, the average of the two is used for a good ap-
proximation. Instead of taking the global coefficients, A; (x), b; (x) & ¢; (x) would be the local approximation
coefficients. This gives the following equations,

Aq(x) + Az (x)

A(x) = — 5 (2.15)
Ab(x) = (b2(x) — by (%) (2.16)

This can be expressed as,
A(x)d(x) = Ab(x) (2.17)

where d(x) indicates that the global displacement d in equation 2.10 is replaced by displacement field varying
spatially. This is done assuming that the local polynomials in the two frames are equal except for a certain
displacement. The spatial variation in the polynomial expansions will introduce errors in the constraints
in equation 2.17. However, for small displacements the error is not problematic, but larger displacements
increase the problem. This can be solved when a priori knowledge about the displacement field is known
i.e. comparing the first signal polynomial at x to the second signal polynomial at x + d(x), where d(x) is the
a priori displacement field. Then the relative displacement can be estimated between the real value and the
rounded a priori estimate, giving the following equations,

T=x+dx (2.18)

Alx) = w (2.19)

Ab(x) = (b2(R) - b1 (x)) + Ax)d(x) (2.20)

2.2.2. Pyramid Scaling in Optical Flow

In order to filter out the small amplitude noise, optical flow also performs scaling down the image or frame
in lower resolutions to only respond to the major changes as shown in fig2.4 [43]. The process of scaling an
image to lower resolutions while parallelly considering the original resolution is called pyramid scaling. A
scaling factor(<=1) decides the fraction by which the image resolution is reduced i.e. for 0.5 scaling factor,
resolution of the image halves at every level or layer. The number of layers decide on the level to which the
scaling will be performed.
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. Optical flow computation at lowest resolution

Figure 2.4: Pyramid Scaling for Optical Flow [44]

In pyramid scaling, the image is being represented by image pyramid, with the lowest pyramid level is the
original image [43]. The image in higher pyramid levels can be defined as:

1
t(x,y) =ZIL_1(2x,2y)+

1

3 IFrex-12y) + I rex+ L2y + IF@x, 2y - D+ IFL2x, 2y + 1)+ (2.21)

1
E(IH(z;c— L2y-D+ 1 ex+1,2y+ D+ IF 1 @x— 1,2y + D+ 11 2x+ 1,2y - 1)

Where I is the image and L is the pyramid level.

Practical maximum L values are 2, 3, or 4. For an image of 640x480, the fourth pyramid image will have size
of 40x30, and it does not have any benefit to go beyond level 4.

Then, highest pyramid level is processed with optical flow to create initial guess flow vector g’, which con-
sists of x and y component (g and g}E). The flow vector is used to calculate pixel displacement vector d*,
which also consists of x and y component (d)% and df), that minimizes the matching error function between
2 consecutive image e’

L
u§+wx uy+wy

ehdpdn=Yy Y ('xy-JHx+gr+dny+gy+d)) (2.22)

x=ub-wy y=ub-w,

Where u = uy, uy is a point in the image I and w, and w,, is the neighborhood integration window size.

Moving down one level at a time, the new initial guess of the flow vector can be expressed as:

gt =2(gt+ah 2.23)

Then, the pixel displacement vector d*~! can also be calculated, until L reaches 0, which is the original image.
With this technique, calculation of d* can be kept as a very small number while computing high overall pixel
displacement, means less number crunching.



2.3. Feature Point Detection and Matching 11

2.3. Feature Point Detection and Matching

2.3.1. Image Feature Detectors and Descriptors

In order to compare similarities or correspondences between multiple images, it is required to isolate a set
of distinct features between these images in order to be able to classify and compare them. Feature point
detection is a low-level image processing operation which means that it is usually the first operation on an
image that examines every pixel to see if there is a feature present; like edges and corners or smooth regions
with similar features called blobs and ridges.There are two types of image features can be extracted form an
image, as mentioned in [45];

¢ Global Features: These try to describe an image as a whole and can classify the property of all the
pixels in the image; like colour histogram, texture etc into one multi-dimensional feature vector. This
can be used to find images of similar nature. However, these cannot distinguish between background
and foreground.

* Local Features : The image is represented based on its local structures or interest regions and some
of its salient features. This includes a set of local feature descriptors/vectors that are affine and scale
invariant. They are better suited for finding other occurrences of the similar objects or region of pixels
in the images.

These relevant features points or keypoints are then converted into an affine, orientation and scale invariant
feature vector representation for the image data around the detected features; providing feature descriptors.
These descriptors are later used to match the similarities between different images. The purpose of local
invariant features is to provide a representation that can efficiently match then with another image despite
there being shifting, scale or orientation changes. In order to detect feature points invariant of scale, affine
or orientation changes for the interest regions between images, there are methods that use a continuous
filter kernel to check for distribution or gradient or looking for a maximally stable region around the detected
feature points; as mentioned in [46]. Area around each keypoint that is considered for the descriptor is usually
taken in a circular or elliptical pattern.

In order to make sure that the feature point detectors and descriptors work efficiently, the following properties
[45] need to be satisfied;

¢ Robustness: to be able to detect the same feature points irrespective of shifting, rotation or noises.

¢ Repeatability: to be able to detect the same features of the same interest region repeatedly under
different viewing conditions.

¢ Accuracy: to accurately localize the same image features in different images; especially for image
matching tasks.

¢ Generality: to be able to detect features that can be used in different applications.

* Efficiency: to be able to detect features in images fast enough to support real-time applications.

¢ Quantity: to be able to detect all or most of the features in the image.

Some of the examples of commonly used image feature descriptor algorithms are;
1. Scale Invariant Feature Transform (SIFT): This algorithm consists of four steps [46];

(a) Estimate a scale space extrema using the Difference of Gaussian (DoG).
(b) Keypoints are localized and refined by removing the low contrast points.
(c) Orientation is estimated based on local image gradient.

(d) Generate descriptors for each feature point of image based on image gradient and the estimated
orientation.

It is useful for cases like image rotation, affine transformations, intensity or perspective change.

2. Gradient Location-Orientation Histogram (GLOH): It is very similar to the SIFT descriptor, but uses
log-polar coordinates for keypoints instead and then tries to reduce the size of the descriptor [47].
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3. Speeded-Up Robust Features Descriptor (SURF): it is an alternative to SIFT [46]; but much faster and
more robust. The steps for this algorithm are;

(a) Instead of DOG averaging, squares are used for localizing keypoints since it is less complex and
much faster.

(b) Uses a scale invariant blob detector around the detect a stable neighbourhood of pixels around
the keypoints.

(c) Wavelet response for each of the keypoints’ regions is taken in both horizontal and vertical direc-
tions and their responses are used for the feature point descriptors.

This also allows the detector to be parallelly run on different image scales, making it capable of much
faster performance.

4. Binary Robust Independent Elementary Features (BRIEF): This algorithm performs simple binary com-
parison test and uses hamming distance for comparison tests [45]. This means that the algorithm
compares the pixel intensity around the detected feature points which gives sufficient information and
provides with binary feature descriptors, which is faster and more efficient. The descriptors are then
matched based on the hamming distance between them. This algorithm relies on a relatively small
number of tests to represent an interest region as a binary string and also tends to yield higher recogni-
tion rates, provided there are no large in-plane rotations.

5. Features from Accelerated Segment Test (FAST): It uses corner detection method to extract the feature
points and is very suitable for real-time applications because of its higher speed [45]. The steps for this
algorithm are;

Consider 16

>11 contiguous

el METHESE pixels are Interest pixel is
|nterest‘p|xels plxgls Lt brighter or darker a corner
across image the interest
than threshold?

pixel

Interest pixel is
not a corner

Figure 2.5: FAST algorithm flowchart

(a) Select interest points across the image and take 16 pixels surrounding each of these points under
consideration; pixels that would lie on the path of a circle with radius of 3 pixels drawn from each
feature point.

(b) In the 16-point set for each interest point, check if there are a set of continuous pixels that are
either brighter or darker that the pixel intensity of the feature points by a set threshold value.

(c) Only if the condition is satisfied, the interest point is taken as a corner. This process is iterated
over all interest points or for all pixels in the image.

The performance of this algorithm depends on the threshold value and the limit for minimum number
of continuous pixels that need to be considered for the corner test; usually around 12. This process
however has some disadvantages;

¢ The algorithm does not work well if the limit for minimum continuous pixels is less than 12 be-
cause there will be too many insignificant pixel included as interest points.

* The order of testing the 16 neighbouring pixels also determines the speed of the algorithm.

¢ It does not have any orientation component or detects scaling.
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6. Oriented FAST and Rotated BRIEF (ORB): It is a fusion of the FAST key point detector and BRIEF de-
scriptor; both these algorithms contribute to ORB’s computational speed and efficiency; as mentioned
in [48]. The steps for this algorithm are;

(@

(b)

(c)

Initially to determine the key points, it uses the FAST algorithm. Since FAST does not have any
orientation or scaling features, ORB creates a scaled image pyramid; similar to the one in fig.2.4,
where it contains the down sampled versions of the same image and the FAST algorithm is run on
every level. This makes the detected key points scale invariant.

Orientation is assigned based on the levels of pixel intensity change around the key points. In ORB
it is done by using intensity centroid where it is assumed that a corner’s intensity is offset from its
centre, and the vector between the two points may be used to impute an orientation. For this, the
moments of order (p + q) of a patch m,, is calculated; which is defined as,

Mpq = ;/x”yql(x, ») (2.24)

where (x,y) is the pixel coordinates and I(x,y) is the respective pixel intensity. With these moments,
the intensity centroid is calculated as;

mig m
c=—==2 (2.25)
moyo Moo
This can be used to construct the vector from the centre of the keypoint to the intensity centroid;

giving the orientation of the patch as,
0 = atan2(mgy;, mio) (2.26)
This can be used to rotate the patch and compute the descriptor with rotation invariance.

BRIEF takes all keypoints found in the previous step and converts it into a binary feature vec-
tor of around 128-512 bits string so that together they can represent an object. Then, the image
is smoothed by using a Gaussian filter to remove any high frequency noises. After the image is
smoothed, a patch p is taken and a binary test 7 is performed; which is defined as,

1 p)<p®y
(p;x,y) = P Py (2.27)
0 1 p(x) = py)
where p(x) is the intensity of point x in the patch p; both x and y are points inside the same patch.
The feature point is defined as a vector of n binary tests:

fap) =Y 2" 2(psx,y) (2.28)
l<isn
As the performance of BRIEF falls off sharply for in-plane rotation of more than a few degrees, ORB
uses another method to steer BRIEF according to the orientation of the keypoints. For a feature
point with n tests and key point coordinate (x;, ¥;), a 2 x n matrix is defined as;

X1, X2, e X
s:{l 21 eeeee-Xin (2.29)

With the patch orientation 6 and its corresponding rotation matrix Ry, the steered version of the
S matrix; namely Sy is defined as;
So = RyS (2.30)

Now the steered BRIEF operator can be written as;

&n(p,0) = fu(p)|(xi,yi) € Sp 2.3D)

Using equation 2.31, a lookup table of pre-computed BRIEF patterns is generated with an angle
increment of 277/30 = 12°. As long as there is consistency in the keypoint orientation angle 8, the
respective Sg can be used for computing its descriptor.

ORB algorithm specifies the rotated BRIEF algorithm with the following steps:
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i. Run the test equation 2.28 against all available patches.

ii. Order the results of the tests by their hamming distance from a mean value of 0.5,resulting in
the vector T.

iii. A greedy search is performed on all the values in vector T:
A. Remove the first test from T into the result vector R.

B. Remove the next test from T and compare it against all tests in R. The test is discarded if
its absolute correlation is greater than a previously set threshold value. If not, then the
testadd to R.

C. Repeat the process until there are 256 tests in R. If there are no more tests in T and there
are fewer than 256 tests in R, raise the threshold value and repeat the process.

2.3.2. Feature Matching

Once the features and their descriptors have been created from multiple images, they need to be matched in
order to look for similarities between the images. In order to achieve that, a matcher is used in combination
with the feature point detector to use the information provided by the descriptors and match the interest
regions from the query image to the others.

The feature matchers commonly used along with the feature descriptors are;

1. Brute-Force (BF): This algorithm compares each feature point from the first image to every other fea-
ture point on the other image by calculating distance between the feature points; as mentioned in [45].
As the feature points are multi-dimensional vectors describing the aspects of their respective images,
the Euclidean distance calculated between them is calculated. However, if the descriptors are binary
in nature like BRIEE then the Hamming between them is calculated. After that, the points are sorted
in ascending order based on distance. A match between two feature points is viable only when both
points are the best matches for each other. This means that for any feature point p in the first image
and feature point q in the second, p and q are a valid match with each other when q has the shortest
distance with p of all points in the first image and p has the shortest distance with q of all points in the
second image.

2. Fast Library for Approximate Nearest Neighbours (FLANN): This algorithm is optimized to be much
faster that Brute-Force matcher; as mentioned in [49]. Instead of looking for the best match like the BF
matcher, FLANN only finds a nearest neighbour. It builds a k-d tree of the feature points that will be
used to search for an approximate neighbour. A k-d tree is a binary search tree, where each node of
the tree is a k;;, dimensional vector. This means that the matches provided by FLANN are fast but less
accurate as compared to BF matcher.

BF matcher will provide accurate results but it will perform an exhaustive search comparing every feature
point between the images, making is slow for large number of feature points. FLANN is much faster than BF
but with a trade-off in accuracy. For data sets much larger than 1000 feature points, it would be more efficient
to use FLANN as a matcher. Otherwise. BF matcher is a better approach.

2.4. TCP/IP Communication

Transmission Control Protocol/Internet Protocol(TCP/IP) is a reliable, heavy-weight and ordered commu-
nication protocol used to connect devices over an IP network, as mentioned in [50]; it consists of a large
overhead/header of around 20-80 bytes; but most implementations have 40 bytes header. It is a connection-
oriented protocol, which means that a connection needs to be established between the communicating de-
vices i.e. the client and the server before transmitting data and should close after transmitting. In order to
establish a connection, TCP/IP performs a three-way handshake[50]. The server is passive open; looking for
connection requests from clients if not already established. When a connection is formed between a client to
a server;

1. The client first sends a synchronize (SYN) bit set to the server requesting to start communication and
what sequence number the client will use for its segments.



2.4. TCP/IP Communication 15

2. The server then responds to the client’s request with SYN and the acknowledge (ACK) signal set, ac-
knowledging the message from the client and informing its own sequence number it will be using to
the client.

3. The client finally sends another ACK bit set to acknowledge the server’s segment and then the data
transfer process begins.

The TCP/IP model consists of four layers [50];

¢ Application Layer : It's responsible for implementing the communication part of the program. It in-
cludes node-to-node communication, synchronizing, user-interface specifications etc. Some of the
protocols present in this layer are: Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP),
Secure Shell (SSH), etc.

* Transport Layer : It is responsible for the reliability of the link over the network and maintaining it
through methods like flow control, correction of data, multiplexing, etc.

 Internet Layer : It is responsible for dealing with the packets and providing a functional method for
transferring packets by connecting to independent networks for data transfer.

* Network Access Layer : It is responsible for determining how the data should be sent physically be-
tween devices over the same network. It is the lowest layer in the model.

The structure in fig.2.6 shows the format used for a TCP/IP message segment. It consists of around five or
six 32 bits / 4 bytes long words of header, but the Options and Padding in the header can go upto 40 bytes
depending on the connection parameters. As mentioned earlier, the commonly used size of the header is
around 40 bytes; with Options and Padding around 20 bytes. The checksum in each header segment is used
by the server to verify that the data is undamaged. If the data received is undamaged, the server sends a
positive acknowledgment back to the client confirming a successful transfer. If the data is damaged, the
server discards it and after a timeout period, the client will transmit the same data again until it receives the
positive acknowledgment.

Lt Bits >
b | Lok ok Rk
0 4 4 2 ] 0 4 8 1
1 Source Port ‘ Destination Port
) Sequence Number
= 3 Acknowledgment Number %;
= 4 offet | Rened | flag Window £
5 (hecksum Urgent Pointer
6 Options Padding

data begins here...

Figure 2.6: TCP/IP Segment Format[50]

With 40 bytes header, it is important to reduce overhead; it is the ratio between the header size to the message
size. The maximum segment size (MSS) for a TCP/IP is the largest amount of data that the protocol can
transport over the network; it is usually around 1460 bytes. Payload size larger than that is either discarded or
segmented into multiple TCP segments. If the data payload is fragmented into multiple segments, then each
segment gets its own header which adds extra 40 bytes for each segment.

Overhead(%) = 100 * INT[(Payload Size! MSS) + 1] * (Header Size) | Payload Size (2.32)

The overhead that constitutes the message packets after segmentation is mentioned in equation 2.32; which
is only valid if the payload is not an integral multiple of the MSS. If the payload size is an integral multiple of
the MSS, then it achieves the lowest possible overhead depending on the header size and the MSS.
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Lowest Overhead Possible(%) = 100 * Header Size| MSS (2.33)

For a header size of 40 bytes and MSS of 1460 bytes, the lowest overhead that can be achieved is 2.7397%.
As seen in fig.2.7; for the formerly mentioned parameters, the overhead forms a saw-tooth shaped function
where it dips to 2.7397% when the package size is an integral multiple of MSS(1460 bytes). This is why it is
preferable to have a payload size.
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Figure 2.7: Overhead (%) for different message size

2.5. Infection (Sepsis)

Neonatal infection/sepsis proved to be a serious problem. In response to infection, the body releases anti-
inflammatory substances that can damage healthy organs. It is especially dangerous to preterm infants, as
their organs are not fully developed. Hence, it is important to treat sepsis as soon as the baby is diagnosed.

The first gateway to treat infection or sepsis in preterm infant is detecting and diagnosing it accurately. Once
diagnosed, infection management with antibiotics can be administered to the baby. However, sepsis diagno-
sis is proven to be a difficult task. The clinical characteristics of neonatal sepsis are non-specific and difficult
to differentiate to other conditions [51, 52].

The golden standard on diagnosing a sepsis is blood culture. Blood sample from the suspected baby is cul-
tured to let the bacteria causing the sepsis grow. Then, the blood is tested to identify the bacteria, if there is
any. However, this method takes time, 2-3 days after receiving blood sample, which is undesirable for timely
treatment. Even more, there are still several problems regarding this diagnostic method and even the result
may not be reliable. Antibiotic usage during pregnancy delivery, blood volume, and laboratory capabilities
can affect the result of the diagnosis [52-54]. Based on interview with a neonatology doctor, blood culture
produces only 10-20% positive result from all babies with suspected sepsis cases, even when the baby is di-
agnosed with sepsis by the doctor.

Other blood features, such as white blood cell count, proteins, and other bio-markers, are also studied for
indication of sepsis. Unfortunately, most blood features are not sensitive enough to be in routine clinical use
[55]. Doctor interview stated that those biomarkers are not definitive enough yet to be a standard diagnosing
method. Moreover, it cannot be generalized that all hospitals to have access to laboratory tests, especially in
developing countries [52].

Clinical symptoms are usually the first signs to be used to diagnose a disease, however, as discussed, neonatal
sepsis has non-specific and varying symptoms. It means that the symptoms may indicate diseases other than
sepsis, which would have to be treated differently. Even though the symptoms are not definitive, in the prac-
tice, combination of several symptoms on the baby can be concluded in sepsis diagnosis (most commonly
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defined as clinical-sepsis, rather than proven-sepsis as in blood cultured proven), even before the result of
blood culture test is out. This is also confirmed by a neonatology doctor, as she does not want to take any
chance of missing a sepsis case. After being diagnosed, antibiotic treatment starts immediately.

2.5.1. Sepsis Risk and Clinical Symptoms

Since blood culture is taking a lot of time to give result and sepsis has non-specific symptoms, diagnosing a
sepsis based on clinical symptoms alone usually depends on the experience of the doctor. To help the doctor,
there is a guideline in the hospital where the research is done, to determine if a baby needs to be treated for
sepsis. This guideline includes maternal risk, clinical symptoms, and decision flow of sepsis diagnosis. The
guideline (in Dutch) and translation are included in the appendix .1.

The clinical symptoms mentioned in the guideline are similar to symptoms reported in researches, which
are respiratory distress, lethargy, fever, hypothermia, poor feeding, apnea, tachypnea, grunting, tachycardia,
bradycardia, etc [40, 55].

2.5.2. Core-peripheral Temperature Difference

Other than widely known symptoms of sepsis above, researchers are exploring other symptoms to hopefully
discover specific symptom for sepsis. One promising symptom found is core-peripheral temperature differ-
ence (cpTD) of the baby. Core temperature of the baby is defined as rectal, axillary, or chest or back skin
temperature of the baby. Peripheral temperature is defined as temperature of foot sole of the baby. Inside
incubator, where the environment temperature is set to optimum, the difference between core and periph-
eral temperature of neonate should not be more than 2 °C. Several studies found and agree that cpTD of
more than 2 °C for over 3-4 hours or more, even with adjustment to incubator temperature, is a strong in-
dication of neonatal sepsis [56-61]. Result from the studies showed that cpTD has high sensitivity (65-80%)
and specificity (82-86%) for neonatal sepsis. With such high sensitivity and specificity, this symptom could
be introduced and added to the list of symptoms for sepsis detection, and may become primary screening
symptom for neonatal sepsis.

2.6. Machine Learning for Sepsis Prediction

Machine learning (ML) is one of many applications of artificial intelligence that provides a statistical model
that learns and improves from experience in the learning process without programmed explicitly. In the
learning process, the model is being fed with training data set and adjust the model itself based on the pat-
tern in the data. Once trained, the model would be able to receive new input data and give the output based
on the experience of the learning process. ML models can be divided into three groups, supervised learning,
unsupervised learning, and reinforcement learning. In supervised learning, each training data set has input
data and known output. This is called labelled training data. Supervised learning is usually used for classi-
fication and regression problems. On the other hand, unsupervised learning would have only input data as
the training data. The model is used to group similar input data or find structure from the input data. Lastly,
reinforcement learning deals with known system environment and goal, without knowing the perfect solu-
tion. This specific learning is used to find the best sequential decision making in certain system state. In this
research, supervised learning model is better suited, because a classifier model is needed. The model will be
given input of vital signs from the neonate and it will classify whether the neonate is having sepsis or not.

Disease prediction or early detection using machine learning has been widely explored in the medical field
[62]. However, almost all studies for sepsis prediction had adults as the research subject [63]. Many studies
used different type of machine learning model, with the most common models are Naive Bayes (NB), Support
Vector Machine (SVM), Decision Tree (DT) or Random Forest (RF), and Logistic Regression (LR).

2.6.1. Logistic Regression

Logistic regression is a statistical model that uses logistic function to model binary dependent variable. The
dependent variable has two possible values, usually labelled as 1 and 0 or pass or fail. The logistic regression
model itself only models the probability of output based on the input. To make it a classifier, a cutoff value
is chosen and the point with probability greater than the cutoff value is classified as pass or 1 and the point
below as fail or 0.

The logistic regression model can be written as:
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where z=wo+ w1 - X1 +W2 - X2+ ...+ Wy - Xp.

wy, ..., Wy, are the regression coefficient of the model and will be calculated using Maximum Likelihood Esti-
mation (MLE) and xy, ..., X, are the features of input point of the dataset. F(z) will calculate the probability of
the binary outcome from the input point.

2.6.2. Naive Bayes

Naive Bayes classifier is a simple probabilistic classifier using Bayes’ theorem with independence (naive) as-
sumptions between the features. Bayes’ theorem calculates the probability of an event occurring given the
condition that other event has already occurred. It is usually written as:

P(B|A)P(A)
P(A|B) = W (2.35)

where A and B are the events mentioned. P(A|B) means that the probability of event A occurs if event B has

occurred. P(A) and P(B) are the probability of event A and B, respectively, occurs. Bayes’ theorem can be
applied to the machine learning data set as:

P(X|y)P(y)
PylX)=—— 2.36
¥1X) PX) ( )
where y is the class variable and X is the features of the dependent variable (X = (x1, X2, ..., X5)). Then, it can
be expressed as [65]:

POTIT Plxily)

(2.37)
P(x11y)P(x2|y)...P(xnly)

P(J’|x1; eeey xn) =

Then, because the denominator remains constant for one input, it can be removed and rewritten as:

i=1
P(yIx1,.., Xp) o< P(y) [ | P(xily) (2.38)

n
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Now, to make a classifier model, the probability of all possible values has to be found for class y given the set
features of the input X. This can be expressed as:

i=1
y=argmaxyP(y) H P(xily) (2.39)
n

Finally, the calculations left are the P(y) and P(x;|y). If there are only two possible classes of y, the result of
the calculation for both classes are compared. The input X then will be classified as the class with greater
probability.

2.6.3. Support Vector Machine

SVM separates the patterns of two classes by constructing a hyperplane or set of hyperplanes in one or several
dimensional space. The hyperplane can be written as @ - X; — b = y;, where @ is the normal vector to the
hyperplane, b is the bias, X is the point of each data set, and y is either 1 or -1, indicating the class to which the
point belongs. If the two-class data set are linearly separable, there will be a hyperplane that passes between
the two classes evenly. Given that there are no points on this hyperplane, a buffer zone can be created, as
a translated version of the hyperplane itself. The width of this buffer zone is called the margin and can be

2

calculated to as Tol;- Whether a hyperplane correctly classifies a point can be written as:

max(0,1-y;(®-X;—-b),i=1,..,n (2.40)

If a point is correctly classified, the equation will equal 0, and a positive value otherwise. Then the goal of a
good classifier is to minimize the equation:

1 n
=Y max(0,1-y;(@- % - b)) | + Ml (2.41)
i=1

where A determines the trade-off between increasing the size of margin and ensuring that the x; is classified
on the correct side of the margin.

WY

Figure 2.9: Maximum-margin hyperplane and margin for an SVM trained on two classes. [66]

2.6.4. K-Nearest Neighbour

KNN is a supervised learning algorithm and can be used for regression or classification problems. It is also
categorized as lazy learning method, which means it does not calculate a predictive model from training
data, instead, it tries to predict the result locally based on the whole available data set at the time the query
is made. It relies on the value of the nearest neighbours and the distance from the data it wants to predict.
Since distance to each neighbour is important, normalizing data set will improve the performance of this
model type. Without normalization, features with different range would affect the prediction in different
weight.
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Figure 2.10: Example of KNN classification

To make a prediction, KNN model will use the entire data set and place every data in a multidimensional
space. Each dimension represent each feature available from the data set. Then, k number of neighbours,
which is defined by the user, from the test data in the space is retrieved. These neighbours will determine the
label of the test data. It can use majority voting from the neighbours or another option also to include the
distance of the neighbour as a factor (1/distance factor to the label calculation).

To determine the nearest neighbor, many distance metrics can be used, e.g. Eucledian, Manhattan, Ham-
ming, etc. Eucledian distance for example, measures distance of straight line between 2 points in Eucledian
space, as follows:

n

dx,y) =4/ (xi—yi)? (2.42)
i=1

While Manhattan distance measures distance as sum of absolute differences of Cartesian coordinates, as
follows:

n
dx,y) =) (xi—yi) (2.43)
i=1

These distance metrics will affect how the KNN algorithm choose the k-nearest neighbors, hence possibly
producing different results.

2.6.5. Decision Tree and Random Forest

Decision tree learning is one of the predictive modelling machine learning algorithm using decision tree to
make a conclusion of a problem from observations of the input variables. It can be used for classification or
regression problems. Decision tree consists of nodes, branches, and leaves. Node is the test for the value of
the attribute. Branch corresponds to the result of the node and connects to other node or leaf. Leaf is the
terminal node where the outcome is predicted (label or distribution).
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Is a person have
healthy lifestyle?

Overweight?

Yes No
Exercise a lot? Smoke?
Yes No Yes No

Healthy Not healthy Not healthy  Healthy

Figure 2.11: An example of decision tree

Decision trees are using recursive partitioning method or known as divide and conquer, as they split the
data into subsets repeatedly until the algorithm determines that the subset data are homogenous or other
stopping criteria has been met. To create a decision tree classifier, it starts by splitting the data at the tree
root with feature that results in highest information gain (reduction in uncertainty towards the final result).
Then, the data will be split again in an iterative process, until the samples in each leaf belong to a same class.
However, this would likely cause overfitting if the depth of the tree is not limited.

Random forest is an ensemble learning method, means using multiple learning algorithm to get better pre-
dictive value, by constructing multiple decision trees and combining the output of each tree with average or
majority voting. By using more trees, random forest can reduce the risk of overfitting from the decision tree
model. This is because of two key point of random forest, random sampling of training data on each tree of
the forest and random subsets of features considered in splitting the nodes. The idea is by training different
trees train using different training data and each tree would have high risk of overfit to the respective training
data, when combined, the forest will have lower risk of overfit.

2.6.6. Adaboost

Adaboost also uses ensemble method to solve classification and regression problem. Different from random
forest, adaboost is a sequential learner, which means a new weak learner is created to learn and improve the
accuracy of previous learners rather than generating weak models in parallel (parallel learner). A weak learner
is added to the group of previous learners in order to reduce the error until the training data is perfectly fitted
or maximum number of learners has achieved. Usually, adaboost uses short decision tree called stump as the
weak learner.

Adaboost can also be written in form of:

T
Fr(x)=)_ fi(x) (2.44)
=1

where f;(x) is the weak learner used to create the adaboost algorithm and x is the input to the algorithm.

In the iterative steps of adding new weak learners, adaboost will adjust the weight of each training data in the
data set. It will decrease the weight of correctly classified data and increase the weight of wrongly classified
data. It highlights the data which has not been correctly classified in the previous step, hence will force the
next weak learner to focus more on the wrongly classified data. Once the wrongly classified data is minimal
or the maximum number of iterations has been achieved, the iteration stops. Then, each weak learner in the
group will be weighted based on the performance to the training set. The final model then will classify the
test data with the majority voting calculated from all weak learners with their respective weight.



2.6. Machine Learning for Sepsis Prediction 22

The adaboost algorithm building process to minimize classifying error E;(x) can be written in form of:

E;(x) = E[Fi1(x) + f1(x)] (2.45)
where f;(x) is the weak learner assessed to be added to the final classifier.

2.6.7. Gradient Boosting

Gradient boosting is similar to adaboost in which it is stage-wise additive model using weak learners to cre-
ate a strong learner. The difference in both is how each model optimize the next addition of weak learner.
While adaboost increases the weight of misclassified data for the optimization method, gradient boost tries
to minimize loss function, which is a measure on how good the model is in fitting the training data. The loss
function could be user specified; hence gradient boosting is more flexible than adaboost.

The building process of gradient boosting can be written in form of:

Fri1(x) = Fr(x) + fr(x) (2.46)

or equivalently:

ft(x) = Fry1(x) — Fr(x) (2.47)

where F;(x) is the current imperfect model, f;(x) is the weak learner considered to be added to the model,
and F;4+1 (x) is the model after the weak learner is added. f;(x) will be fitted so that the residual Fy; (x) — F;(x)
is minimal. Each addition of weak learner will correct the error of the previous version of the model.

Another difference between the two is that in predicting the test data, all learners in the gradient boosting
group have equal weight rather than adjusted weight based on each individual learner accuracy. This is be-
cause the loss function is calculated from the whole group rather than each and every weak learner. Another
small different is that usually adaboost uses decision tree with only 1 split, while gradient boosting could use
larger tree up to 8 splits, but still remains weak.

2.6.8. Feature Selection

Other than machine learning model, feature selection plays important part in determining the performance
of the machine learning prediction. Feature selection is the process of selecting subset of important features
for the model. Feature selection is used in order to simplify the model, shorten the training times, reduce the
dimensional of the model, and generalize the model by reducing overfitting. This is because it is assumed that
in the overall data, there may be redundant and irrelevant features which can be removed without sacrificing
much information.

There are mainly three categories of feature selection method, wrapper, filter, and embedded;

* Wrapper method use the model to score the feature subsets. Every feature subset is scored and then
compared to find the most effective subset. This method is the most computationally expensive be-
cause of running the model on every combination of features. Examples of this method are forward
selection, backward elimination, and genetic algorithm.

* Filter method use proxy measure to score the feature subsets. Common measures include Pearson cor-
relation coefficient, mutual information, significance test, and many more. This method is less com-
putationally expensive but usually result in lower prediction performance than wrapper method.

¢ Embedded method performs feature selection inside the model construction, by penalizing feature
weight inside the model if the feature is calculated to be not important. The most common embed-
ded methods are L1 (known as LASSO) and L2 (known as ridge regression) regularization. In term of
computational complexity, embedded method usually comes between wrapper and filter method.

In the disease prediction studies using machine learning, researchers explored different sets of features for
different diseases, such as electrocardiogram (ECG) wave record for heart disease and blood tests result for
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diabetes. For sepsis prediction, wide array of features was explored, including vital signs (heart rate, respi-
ratory rate, temperature, etc), blood cell and protein count, demographic data, and observation from the
doctor [63]. There are only few studies about neonatal sepsis prediction using machine learning and the fea-
tures included in the studies comprise clinical assessment, comorbidities, laboratory tests, vital signs, need
of support, ECG recording, and heart rate variabilities [64, 67, 68]. Broad spectrum of features was explored
because of the fact that neonatal sepsis symptoms are non-specific. Thus, by expanding the search area, the
algorithms were expected to find and select the best features representing neonatal sepsis and predict the
sepsis accurately.
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3.1. Incubator Temperature Measurement
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3.2. Thermal Lens Forming and Optical Flow
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3.3. Infrared Transparent Foil




3.4. Thermal Wall
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4.1. Camera Thermal Noise




4.3. Global and Local ROI Tracking
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5.1. Object Distance and Length Calculation
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6.3. PT100 Temperature Sensor and HP-3478A Multimeter Interface
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6.4. TMP116 Interfaced with STM321L476G-DISCO




6.5. Front-End GUI
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6.6. Dense Optical Flow Analysis of Infrared Camera Recording
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Conclusion

7.1. Conclusion
The conclusions of this thesis are:

* Doctors depend a lot on their experience to diagnose neonatal sepsis because it has non-specific symp-
toms. The system developed predicts neonatal sepsis automatically without any sensor attached to the

neonate.

while previous researches used 12 hours of neonates clinical records [68] and 44 hours of neonates
electronic health record data (heart rate, breathrate, temperature, etc.) [64] as the dataset.

¢ Based on simulations, the achieved accuracy could be improved by, in estimate, 5%.

7.2. Future Recommendation
The following points can be taken into account for future recommendations of sepsis prediction research:
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$FLIR

FLIR SC305

Speed up your design with Infrared

The SC305 is designed from the ground-up to deliver
the accurate thermographic imaging and repeatable
temperature measurement necessary in demanding
science and R&D applications. Each crisp thermal image
is built from over 76,000 individual picture elements
that are sampled by the camera’s on-board electronics
and firmware. SC305 features include:

Key features and Benefits:

* Uncooled Microbolometer Detector — Maintenance-free and provides excellent
long wave imaging performance

* Optics and Focus — standard built-in 25° lens with optional 6°, 15°, 45°, and 90°
lenses available to achieve other fields of view; manual and auto focus standard

* Microscopy and Close-up Measurement — Optional 100 ym, 50 ym, and 25 pm
microscope optics and microscope stand are available for small target imaging
and measurement

* Precise Timing and Control — Optically-isolated digital I/0O connections eliminate
communication latencies with digital in and out for shutter disable and program

control along with a V-sync connector for triggering and synchronization 320 x 240 pixels IR resolution and thermal sensitivity of
50mK provides optimized image details and temperate

¢ Plug-and-Play Compatibility — Ideal system integration solution with universal plug  difference information.
and play and GigE Vision Control protocols. The camera can be fully configured
from the PC, allowing command, control, and collection of full frame data from the
camera in real time.

o Versatility — Compact, rugged, and lightweight with straightforward 3-sided
mounting feature that permits quick installation and easy movement for new
application requirements

* Fast Data Transfer — Equipped with an RJ-45 gigabit Ethernet connection that
supplies a 16-bit 320 x 240 images at rates as high as 60 Hz along with linear
temperature data; GenlCam and GigE Vision Compliant

* Tailored to Your Application — FLIR Systems offers a complete line of accessories
including optics, enclosures, data systems, and software tools to suit the most
N ! R Infrared measurement allows you to see a thermal
demandlng appllcatlons. problem and measure temperature over surfaces
accurately.

Typical applications:

The FLIR SC305 camera is an excellent choice for those who want to work in R&D
but do not need the highest frame rates or a resolution higher than 320 x 240 pixels.
For those who need to use the camera in R&D, it is highly recommended to use the
FLIR ResearchlR software.



FLIR SC305 Technical Specifications

Imaging and optical data
Field of view (FOV)
Minimum focus distance
Focal Length

Spatial resolution

Lens identification
F-number

Thermal sensitivity / NETD
Image frequency

Focus

25°x 18.8°

04m (1.31ft)

18 mm (0.7 n.)

1.36 mrad

Automatic

13

<0.05°C @ +30°C (+86°F) / 50 mK
9Hz

Automatic or manual (built in motor)

Detector data
Detector type

Spectral range

IR resolution

Detector pitch
Detector time constant

Focal Plane Array (FPA), uncooled
microbolometer

7.5-13pm

320 x 240 pixels

25 pm

Typical 12ms

Measurement
Object temperature range

Accuracy

-20°C to +120°C
0to +350°C
+2°C or +2% of reading

Measurement Analysis
Atmosphere transmission correction

Optics transmission correction
Emissivity correction

Reflected apparent temperature
correction

External optics / windows correction

Measurement corrections

Automatic, based on inputs for distance,
atmospheric temperature and relative
humidity

Automatic, based on signals from internal
sensors

Variable from 0.01to 1.0

Automatic, based on input of reflected
temperature

Automatic, based on input of optics /
window transmission and temperature
Global object parameters

Ethernet

Ethernet, type

Ethernet, standard
Ethernet, connector type
Ethernet, communication

Ethernet, image streaming

Ethernet, protocols

Digital input / output
Digital input, purpose

Digital input
Digital output, purpose

Digital output

Digital I/0, isolation voltage
Digital I/0, supply voltage
Digital I/0, connector type
Power system

External power operation
External power, connector type
Voltage

Control and image

Gigabit Ethernet

IEEE 802.3

RJ-45

TCP/IP socket-based FLIR proprietary and
GenlCam protocol

16-bit 320 x 240 pixels @ 9 Hz

- Signal linear

- Temperature linear

- Radiometric

GigE Vision and GenlCam compatible
TCP, UDP, SNTP, RTSP, RTP, HTTP, ICMP,
IGMP, ftp, SMTP, SMB (CIFS), DHCP,
MDNS (Bonjour), uPnP

Image tag (start, stop, general), Image
flow ctrl. (Stream on/off), Input ext.
device (programmatically read)

2 opto-isolated, 10-30 VDC

Output to ext. device
(programmatically set)

2 opto-isolated, 10-30 VDC, max 100 mA
500 VRMS

12/24 VDC, max 200 mA

6-pole jackable screw terminal

12/24VDC, 24 W absolute max
2-pole jackable screw terminal
Allowed range 10-30 VDC

Environmental data

Operating temperature range -15°C to +50°C

Storage temperature range -40°C to +70°C

Humidity (operating and storage) IEC 60068-2-30/24 h 95% relative humidity
+25°C to +40°C

EMC « EN 61000-6-2:2001 (Immunity)

« EN 61000-6-3:2001 (Emission)

* FCC 47 CFR Part 15 Class B (Emission)
1P 40 (IEC 60529)

25 g (IEC 60028-2-29)

2 g (IEC 60068-2-6)

Encapsulation
Bump
Vibration

Physical data |
Weight 0.7 kg
Camera size (Lx W x H) 170 x 70 x 70 mm

UNC1/4"-20 (on three sides)
2 x M4 thread mounting holes
(on three sides)

Aluminium

Tripod mounting
Base mounting

Housing material

Scope of delive

Hard transport case or cardboard box

Infrared camera with lens

Calibration certificate

Ethernet™ cable

Mains cable

Power cable, pig-tailed

Power supply

Printed Getting Started Guide

Printed Important Information Guide

User documentation CD-ROM

Utility CD-ROM

Warranty extension card or Registration card

Optional accessories

IR lens f =30 mm, 15% incl. case

IR lens f =10 mm, 45° incl. case

Close-up 4x (100 pm) incl. case

Close-up 2x (50 pm) incl. case

Lens 76 mm (6°) with case and mounting support for A/SC3XX
Lens 4 mm (90°) with case and mounting support for A/SC3XX
Close-up 1x (25 pm) incl. case and mounting support for A/SC3XX
High temp. option +1200°C/+2192°F for FLIR T/B2XX to T/B4XX and A/SC3XX Series
Power supply for A/SC3XX and A/SC6XX

Power cord EU

Power cord US

Power cord UK

Ethernet cable CAT-6, 2m/6.6 ft.

Power cable, pig-tailed

Hard transport case for A/SC3XX and A/SC6XX series
Delivery Box for A/SC3XX

- ThermoVision (TM) Systems Developers Kit
- FLIR ResearchIR
- FLIR QuickPlot

I

Specifications and prices subject to change without notice. Copyright © 2010 FLIR Systems. Al right reserved including the right of reproduction in whole or in part in any form.
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e-Mail: flir@flir.com.h

India Representative Office
Tel: +91 114606 7100

Fax: +91 114606 7110
e-mail: fir@flir.com.nk

SFLIR

www. flir.com/thg

100929 SC305 datasheet EN



.3. Appendix: Ethics research proposal to Medisch Ethische Toetsingscommissie (METC)





































	Introduction
	Premature Baby
	Neonatal Skin
	Thermoregulation and Temperature Measurement
	Incubator Care for Neonates
	Neonatal Infection (Sepsis)

	Research Goal

	Technical Background and Research
	Thermal Imaging
	Thermal Radiation
	Thermal Measurement Model
	Total Measurement Error

	Optical Flow Algorithm
	Gunnar Farneback Optical Flow Algorithm
	Pyramid Scaling in Optical Flow

	Feature Point Detection and Matching
	Image Feature Detectors and Descriptors
	Feature Matching

	TCP/IP Communication
	Infection (Sepsis)
	Sepsis Risk and Clinical Symptoms
	Core-peripheral Temperature Difference

	Machine Learning for Sepsis Prediction
	Logistic Regression
	Naive Bayes
	Support Vector Machine
	K-Nearest Neighbour
	Decision Tree and Random Forest
	Adaboost
	Gradient Boosting
	Feature Selection


	Experiments and Results
	Incubator Temperature Measurement
	Air Temperature
	Incubator Wall

	Thermal Lens Forming and Optical Flow
	Infrared Transparent Foil
	Thermal Wall
	Thermal Camera Temperature Calculation Accuracy

	Pre-processing Filter Chain
	Camera Thermal Noise
	Thermal Data Normalization
	Global and Local ROI Tracking
	Adaptive Thresholding
	Contouring (Isotherm)
	Contour Simplification Using Douglas-Peucker Algorithm
	Contour Level Noise Compensation (ROI Deformation)
	External Disturbance Detection on Virtual FOV

	Thermal Measurement Error Compensation
	Simplified Thermal Measurement Error
	Thermal Noise Compensation and Temperature Value Calculation


	System Implementation
	Object Distance and Length Calculation
	Calculation Formula
	Data Simulation
	Object Area in Frame Scaling
	Distance Calculation Work Flow
	Distance Calculation Experiment
	Distance Calculation Protocol

	Machine Learning Algorithm Training
	Converting FLIR ResearchIR File Format to Binary
	Pre-processing Thermal Video
	Feature Extraction and Dimension Reduction
	Stratified K-fold Cross Validation
	Training and Evaluating ML Models
	Neural Network (Deep Learning)
	Creating Synthetic Thermal Video
	SVM Model with Synthetic Data
	Minimum Measurement Duration and Frame Per Second


	Supplementary System Implementation
	Pine ROCKPro64
	FLIR Infrared Camera and ResearchIR Software
	Installation Procedure

	PT100 Temperature Sensor and HP-3478A Multimeter Interface
	Software Used

	TMP116 Interfaced with STM32L476G-DISCO
	Software Used

	Front-End GUI
	Software Used

	Dense Optical Flow Analysis of Infrared Camera Recording
	Incubator Data
	BME280 Sensor
	Software Used

	Client/Server Communication and IPC on Client
	Software Used


	Conclusion
	Conclusion
	Future Recommendation

	Bibliography
	Appendix: Sepsis Maternal Risk and Clinical Symptoms Guideline from Reinier De Graaf (in Dutch) and Translation
	Appendix: FLIR SC305 Datasheet
	Appendix: Ethics research proposal to Medisch Ethische Toetsingscommissie (METC)


