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Abstract

A learning curve can serve as an indicator of the
“performance of trained models versus the training
set size” [1]. Recent research on learning curve
analysis has been carried out within the Learning
Curve Database (LCDB) [2]. This paper will inves-
tigate if there are similarities amongst these curves
by clustering those provided by the LCDB. The
experiment employs two distinct input parameters:
point vectors and statistical vectors. By conduct-
ing individual learner analysis, individual dataset
analysis, principal component analysis, and other
experiments, patterns are isolated for both input
sets. Upon further exploration of shapes and dis-
tributions, the concluding remark is that the point
vector clustering produced one key concrete pattern
amongst certain learning techniques. In contrast,
the statistical vector findings are more inconclusive
and do not exhibit a clear distinction that could be
linked to any dominant patterns.

1 Introduction
One of the general expectations within the Machine Learning
(ML) field is the idea that more training data results in a better
model performance [1]. Nevertheless, as the number of data
points increases, the time, complexity, and expense of the
process also increases. By indicating an estimate of the num-
ber of samples required for a certain model, such challenges
could potentially be mitigated. Learning curves, which dis-
play the “performance of trained models versus the training
set size” [1], are commonly used to gauge this. The current
state of research on learning curves is that it is not yet well-
understood. This refers to the absence of conclusive findings
that indicate a direct correlation between the performance of
a model and the shape, parameters, and other characteristics
of a learning curve.

This paper will investigate if any significant patterns can
be identified after the application of a K-Means clustering
algorithm on all learning curves within the given Learning
Curve Database (LCDB) [2], using the statistical features of
the dataset and raw curves. In search for concrete equivalence
relations, the unsupervised learning technique of distance-
based clustering was chosen to establish groups within the
LCDB data. The features considered include statistical and
point vectors extracted from the learning curves. By incorpo-
rating both sets of input data in this experiment, the goal is to
enhance the likelihood of pattern discovery and broaden the
research scope.

The Methodology outlined in Section 3 will indicate the
detailed research process, forms of measurements, and pre-
processing mechanisms. The Results & Discussion in Sec-
tion 5 will showcase the outcomes of the clustering algorithm
through both data and graphical visualisations of the formed
clusters and address the research question to discern patterns.
The Conclusions in Section 6 will assess the primary findings
and explore potential future additions to the experiment.

2 Relevant Work
Previous studies have delved into clustering concerning learn-
ing curves. In 2002, Meek [3] examined the application
of learning curve sampling method to model-based cluster-
ing. The main objective was to investigate the impact of
utilising finite mixture models to maintain accuracy and re-
duce the runtime of learning curves. In spite of the fact
that both model-based clustering and distance-based cluster-
ing are commonly used in unsupervised machine learning, the
research did not directly group learning curves. However, in
2005, Navarro and Lee [4] employed an alternative form of
model-based clustering to address the challenge of partition-
ing a set of learning curves. The application of minimum
description length-based clustering technique yielded an op-
timal solution, presenting six candidate solutions. Expanding
the scope to other curve variants such as principal curves, re-
search by Moraes et al. [5] applied a K-segment algorithm
on curves to identify clusters within a dataset. Additionally,
in 2012, Tarpey [6] also used the K-means algorithm with an
input data of estimated regression coefficients from a curve.
Endorsing the application of model-based clustering experi-
ments, similar to the aforementioned studies, Tarpey [6] ac-
knowledged that finite mixture models addressed the limita-
tions of the K-means algorithm that had impacted the results.

Nevertheless, research on clustering large sets of curves
based on point or statistical vectors remains an open research
area. There is also a gap in experiments with distance-based
clustering approaches, such as the K-means algorithm.

3 Methodology
The methodology consists of the tools used throughout the
project, pre-processing of data, and algorithmic approach.

3.1 Tools, Software, and Data
To explore learning curves, a Learning Curve Database3

(LCDB) is provided for experimentation. The system com-
prises of 20 working learners that can be applied to around
250 datasets. Python is the chosen programming language,
selected not only for its extensive package availability but
also because previous student projects within this research
group have consistently utilised Python and the LCDB. Ad-
hering to this standard facilitates seamless comparison and
information exchange with both prior research and the ongo-
ing work of the current team.

3.2 Pre-processing of Data
The experiment is the clustering of curves based on differ-
ent input parameters. The two input parameters chosen for
this research question are point vectors and statistical vectors.
Each curve is initially extracted from the LCDB. However,
not all combinations of classifiers and datasets were available,
leading to fewer curves in the final input sets.

To prevent the shortcoming of distance-based unsuper-
vised learning strategies, the data undergoes min max scaling,
within the custom range [-1, 1].

The following pre-processing techniques were applied to
form the final input vectors for the algorithm:

3https://github.com/fmohr/lcdb/blob/main/README.md



Point Vector
A point vector consists of each point of the learning curve of
each dataset. The vector is composed of n points. Given the
varying lengths of the learning curves, linear interpolation is
used to ensure a consistent number of points n for each curve.
The interpolation process involves extending shorter curves to
match the maximum curve length within the LCDB.

In the LCDB, the curves comprise of observation at ”pow-
ers of, i.e. 16, 24, 32, 45, 64, 91, 128, ... until 90% of the
dataset size” as indicated by Mohr et al. [2]. This interpo-
lation process does not consider anchor point of the curves.
The current interpolation calculation utilises evenly spaced
numbers within a [0, 1] interval. This scaling technique es-
sentially represents a form of linearisation as well. Figure 1
illustrates the linear interpolation process applied to a shorter
curve as an example.

Figure 1: A comparison of a random curve extracted from the Extra
Tree classifier before (orange line) and after (blue line) undergoing

the linear interpolation procedure

Statistical Vector
A statistical vector consists of mean, standard deviation,
skew, and kurtosis. The selection of these features were a per-
sonal design choice, influenced by the widespread popularity
and familiarity with these mathematical indicators. The vec-
tor size is set at 4, corresponding to 4 features that form the
statistical basis for each curve. The mean validation scores
of each curve in the LCDB are used, and the np functions for
each feature is applied to calculate each element in the vector.

3.3 Clustering & Dimensionality Reduction
The chosen algorithm for clustering, categorised as a centroid
model based procedure, is the K-means algorithm. The core
objective of K-means is to assign a set of data points to one
of the K clusters where there is a minimisation of the sum of
distances between the data point and assigned cluster centroid
[7].

The K-means algorithm was chosen based on its simplic-
ity, scalability, and computational efficiency. The scalabil-
ity of K-means allows it to operate efficiently within high-
dimensional spaces. Lastly, coupled with its simplicity of in-
terpretation and scalability, it has a linear time complexity,
making it suitable for handling large sets of data [8].

However, it is crucial to take into account the drawbacks of
K-means. Potential disadvantages include distortion in clus-
tering due to outliers, the assumption of spherical shapes, and
the need for a predetermined number of K clusters [8]. To
guarantee a consistent result and prevent irregular clusters in-
fluenced by outliers, the algorithm was executed 100 times

for each input vector dataset. The average of the 100 clusters
was then considered the final result. The value K was calcu-
lated using the Silhouette Score, as discussed in the following
section.

Hyper-parameter Tuning
To implement this algorithm on a dataset, a value of K must
be assigned. The optimal K value can be defined as the
ideal splitting of the given dataset to create well-defined clus-
ters. Determining the ’best’ K value differs for each dataset
and can be accomplished through two prevalent modeling ap-
proaches: the Elbow Method and the Silhouette Score. Since
the Elbow Method is somewhat outdated and has shown to
not consistently indicate the best value of K [9], the Silhou-
ette Score has been used in this case.

The Silhouette Score is a quantitative measure of the op-
timal splitting of a given dataset [10]. It takes a range of K
values and indicates how well-defined the clusters are. Within
each cluster, the Silhouette Score quantifies how well the data
fits and how distinct it is in relation to the other created clus-
ters [10]. However, this method has certain drawbacks such
as its sensitivity to outliers and irregular shapes, leading to
varying results [10]. To ensure consistency and overcome
these issues, the Silhouette Score was executed 10 times, and
the average was computed to establish the final K value for
both input vector datasets.

A graph for each dataset can be generated to indicate the
optimal value of K. The graph displays the Silhouette Scores
across varying K values, with the highest Silhouette Score in-
dicating the ’best’ clustering value. This approach was tested
between K = 2 and K = 20, corresponding to the 20 learn-
ers.

Principal Component Analysis
The LCDB contains over 4300 curves, resulting in a cluster
array of approximately the same size, making it challenging
to analyse and visualise effectively. To examine the gener-
ated clusters, Principal Component Analysis (PCA) can be
applied. PCA creates a graphical representation of the cluster
distribution by reducing dimensionality. Each component ex-
plains the maximum variance in data by projecting it onto the
eigenvectors of the covariance matrix of the data. The terms
2D and 3D PCA refer to the use of 2 and 3 principal com-
ponents, respectively. Both 2D and 3D PCA provide a better
insight of shape and data distribution.

4 Responsible Research
This section is of utmost importance to ensure that the entire
research process adheres to the expectations set by both TU
Delft and national research policies.

Throughout the process, prior research mentioned in Sec-
tion 2 is used to familiarise with the content, serving as a solid
foundation for the research question at hand. Prior research
involves both scientific papers, and online resources. It is im-
perative to appropriately reference such information, at the
precise location of its mention, throughout the entire paper.
This practice upholds academic integrity, enabling readers to
trace back to the cited research and understand the logical
flow of this project.



To understand the requirements behind academic integrity,
the TU Delft Vision on Integrity 2018-20244, and the Nether-
lands Code of Conduct for Research Integrity 20185 are used
as the guidelines. The core principles articulated in both doc-
uments have been integrated into the research process.

Lastly, it is important to ensure the proper reproducibil-
ity of results. Implementations of the pre-processing, K-
Means algorithm, PCA plots, and average cluster percent-
ages, should be made accessible within a repository6 upon
the project’s completion. In addition to code availability, clar-
ity should be maintained throughout all sections of the report
regarding the choices made. This transparency enables read-
ers to comprehend the rationale behind each step, facilitating
their ability to either understand, reproduce, or extend this
work in the future.

5 Results & Discussion
This section is divided into the Silhouette Scores of the K-
means algorithm, results for point vector, and results for sta-
tistical vector.

5.1 Silhouette Score
The Silhouette Score reached its peak at K = 2 for both
point and statistical vector input data, as depicted in Figure 2.
While there are additional peaks in both scores, none surpass
K = 2.

Figure 2: Silhouette Score plots for both point (blue line) and
statistical vector (orange line), respectively, indicating the same

optimal outcome of K = 2

When using the sklearn K-Means function, varying re-
sults may be produced based on the input parameter config-
urations. The function provides an inertia variable, which is
a parameter used to assess the similarity of clustering results.
If there is minimal fluctuation in inertia, the clusters can be
deemed as fairly stable. For the point vector dataset, the iner-
tia value fluctuated within a 0.01 range, while for the statisti-
cal vector dataset, there was an even smaller deviation within
a 0.0001 range. Both results indicate a high level of stability
in the formed clusters using K = 2.

4https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/tu-
delft-vision-on-integrity-2018-2024

5https://www.nwo.nl/en/netherlands-code-conduct-research-
integrity

6https://github.com/pravesha2000/CSE3000-Research-Project-
Learning-Curves-in-Machine-Learning

5.2 Point Vector
Percentages
Seeing as there are many datasets per learner, the average
cluster assignment per learner was calculated in an attempt
to identify any learner-related patterns within the results.

All learners, with the exception of the Quadratic Discrimi-
nant (QDA) Learner, were predominantly averaged into Clus-
ter 0. However, upon closer inspection of the percentages,
many learners demonstrated a relatively even distribution,
hovering around a 50-60% tipping point, with a slight pref-
erence for Cluster 0.

The methodology behind the QDA algorithm is most
similar to that of the Linear Discriminant learner (LDA).
The LDA also has a comparably low percentage at 54.6%.
Nonetheless, it can be argued that the results are not similar
enough.

An interesting group is formed at the 75-80% range with
the following classifiers: Extra Tree (Ensemble), Random
Forest, and Gradient Boosting. All three of these learners are
categorised as ensemble learning techniques [11]. In terms
of their underlying algorithm structure, this particular group
of learners are considered the most similar when compared to
the other 17 learners.

Regarding other possible significant findings, although
Sigmoid and Logistic Regression learners might be consid-
ered similar in their use of the sigmoid function, they are sep-
arated by a margin of 20.3%.

And finally, both Linear & Polynomial and MLP & Per-
ceptron pairs are within a 10% difference of one another.

The average cluster assignment per dataset was also com-
puted in an effort to discern any patterns related to the datasets
within the clustering. If a classifier-dataset combination, of-
ten referred to as a single curve, is grouped within a cluster,
the respective dataset is counted as a dataset occurrence.

Although majority of individual datasets were classified
within Cluster 0, there was also an even distribution among
the dataset percentages. There were 211 dataset occurrences
in Cluster 0, and 172 in Cluster 1. In Cluster 0, 11 datasets
were perfectly clustered, and 21 datasets had less than 5 in-
stances of Cluster 0, indicating that majority fell within the
range of 10-20 instances of Cluster 0. In Cluster 1, 20 datasets
were perfectly clustered, and 62 datasets had less than 5 in-
stances of Cluster 1.

The dataset statistics align with the trends observed in the
learner statistics, such as a fairly uniform distribution. There
are 100 datasets with fewer than 60% of learners in Cluster 0
and 108 datasets with over 60% of learners in Cluster 0. A
similar pattern is found in Cluster 1. In addition to this, the
difference in dataset occurrences of Cluster 0 and Cluster 1 is
39. Combining the findings from the learner analysis and the
difference in dataset occurrences, it can be inferred that the
two clusters are relatively similar, resulting in tipping ranges
(50-60%).

In Figure 3, 100 random curves from Cluster 0 and Cluster
1 are plotted. The curves in Cluster 1 indicate a steady rise
in performance, and eventually plateauing around 5-10 in-
stances of training. On the other hand, several curves in Clus-
ter 0 fluctuate heavily and begin with a higher average per-
formance than Cluster 1. Despite the more non-monotonous



behavior observed in the curves of Cluster 0, there are still
instances of similar curves between the two clusters. These
matching curves typically initiate at around 0.6 prediction
performance and slowly increase.

(a) (b)

Figure 3: 100 random curves from Cluster 0 and Cluster 1,
respectively, for point vector

The datasets found with 100% of learners in Cluster 0 show
the most non-monotonous shapes. For example, dataset 1067
and 30, are shown in Figure 4. In contrast, the curves found
with 95% of learners in Cluster 1 are quite flat, with a slow in-
crease in performance across training instances. For instance,
dataset 40975 and 21, are shown in Figure 5. Curves found
with 25% of learners in both clusters showcase a more rapid
and pronounced increase in performance. This suggests that
the K-means algorithm created clusters based on monotonic-
ity of the curves. Cluster 0 consisting of fluctuating curves,
and Cluster 1 containing slowly progressing curves.

(a) (b)

Figure 4: Datasets 1067 and 30, respectively, that are perfectly
classified in Cluster 0 for point vector, and demonstrate notably

non-monotonous behaviour

(a) (b)

Figure 5: Datasets 40975 and 21, respectively, that are 95%
classified in Cluster 1 for point vector, and show predominant linear

shapes

PCA Plots
The output of K-Means algorithm for the input point vector
dataset is indicated in Figure 6. The two clusters are denoted
as Cluster 0 and Cluster 1, represented by blue and orange

respectively. The cluster centroids are indicated by the red
crosses. Out of the total of 4367 points, 2702 points were al-
located to Cluster 0, and 1165 point were assigned to Cluster
1.

The clusters formed are widely distributed across Princi-
pal Component 1, indicating a fairly even distribution of data
along the x-axis. Cluster 0 has a smaller area compared to
Cluster 1 but includes 1537 more data points. This suggests
a more concentrated distribution of points within Cluster 0.
Within the range of [-0.5, -1] of Principal Component 2 on
the graph, there is a line formed across both Cluster 0 and
Cluster 1. This line along the y-axis of the Principal Compo-
nent 2 suggests an alignment in variability in the data. Both
clusters are not spread apart from another, converging in the
middle of the graph. The cluster centroids are relatively close
to each other, both falling within the [-1, 1] range of Principal
Component 1. The close proximity of cluster centroids could
support the observation that average cluster percentages fall
within a tipping range (50-60%), favouring either Cluster 0 or
Cluster 1. Therefore, despite the optimum being K = 2, ac-
cording to the Silhouette Score, which implies the optimum
formation of well-defined clusters, the clusters remain rela-
tively similar and closely located.

However, due to the nature of PCA as a dimensionality re-
duction technique, there is a potential loss in information dur-
ing the process. As a result, clusters may seem to overlap in a
lower dimensional space while retaining distinct separations
in the original dimensional space. Similarly, the way clus-
ter centroids appear on the PCA plot may change in a higher
dimensional space.

Figure 6: 2D PCA plot for point vector

For a more in-depth assessment of the cluster shapes, 3D
PCA plots were generated. As seen in Figure 7b, the line
identified in the 2D PCA plot is densely populated with points
in the direction of the newly introduced Principal Component
3. Both Cluster 0 and Cluster 1 exhibit similar lengths along
the third component. This may imply that using point vectors
as input does not lead to distinctly separable clusters, par-
ticularly given the similarity of points and when considering
scaling.



(a) (b)

Figure 7: 3D PCA plots for point vector from two different
perspectives, indicating similar distribution in the newly introduced

axis

5.3 Statistical Vector
Pre-processing of Data
In the initial phase of constructing the statistical feature vec-
tor, 88 precision errors occurred. These errors were found
during the calculations of either skew or kurtosis, leading to
the automatic assignment of NaN values. Since the K-Means
algorithm cannot handle NaN values, it required manual in-
tervention. The first approach was to replace the NaN value
with a default float value within the custom range [-1, 1], ini-
tially set to 1.0. However, due to K-Means sensitivity to such
changes, the second option was to exclude all vectors contain-
ing a NaN value. Given that only 88 out of the 4367 vectors
had NaN values, the final K-Means clustering for the statisti-
cal vector was conducted without these points.

Percentages
All learners are classified within Cluster 0, which is logical
considering around 97% of all data points are within Cluster
0. Two learners, ExtraTreeClassifier (Tree), and MLPClassi-
fier, are perfectly classified with 100% of the datasets grouped
in Cluster 0. The remaining learners all fall within the 90-
99% range, signifying an overwhelming majority for Cluster
0.

In the point vector analysis, ensemble learning technique
learners showed similar behaviour. Extra Tree (Ensemble)
and Gradient Boosting differed by 0.2%, which suggests an-
other potential likeness. However, Random Forest is located
at the 96% range. Although this is an incredibly small differ-
ence - relative to percentages seen in the point vector results
- of around 2% from the other two learners, it is still not as
close as Extra Tree (Ensemble) and Gradient Boosting.

Relating to the occurrences of NaN values, the learn-
ers with the most occurrences NaN values (Polynomial,
BernoulliNB, RBF, and Sigmoid) happen to be the learners
with the lowest percentages within the 92-94% range. It could
be argued that if the precision error was eliminated and these
values were included, that the range could be higher. Al-
though there is no data to support that notion, it is interest-
ing that those 4 learners are also the learners with the lowest
average clustering percentages.

Within a difference of 178 dataset occurrences, there is
overwhelming majority for Cluster 0. The distribution of
datasets matches that of the learners. Having 70 of the
datasets with 100% of learners in Cluster 0 and no datasets
with less than 25% of learners in Cluster 0 makes it clear that

there is a strong correlation among the points of Cluster 0.
This could lead to the notion that Cluster 1 is compiled of
outliers. There are no datasets with 100% of learners in Clus-
ter 1. The overall distribution of datasets within Cluster 1 is
bottom-heavy, suggesting no clear preference for this cluster
by any dataset.

In Figure 8, 100 random curves from Cluster 0 and Cluster
1 are depicted. The curves in Cluster 0 are primarily concave,
showing a gradual and steady performance increase followed
by an extended flatted stretch. The curves in Cluster 1 are less
concave, with majority being either flat or frequently fluctuat-
ing. There is minimal resemblance between the curves found
in two clusters.

(a) (b)

Figure 8: 100 random curves from Cluster 0 and Cluster 1,
respectively, for statistical vector

The datasets with 100% of their learners in Cluster 0 show
the most consistent concave shapes. For example, dataset 6
and 11 are shown in Figure 9. However, datasets such as
1236 and 42742 in Figure 10 within Cluster 1 show the highly
fluctuating curves, accompanied by some instances of nearly
horizontal curves.

(a) (b)

Figure 9: Datasets 6 and 11, respectively, that are perfectly
classified in Cluster 0 for statistical vector, and present quite

smooth curves

(a) (b)

Figure 10: Datasets 1236 and 42742, respectively, that are
classified in Cluster 1 for statistical vector, revealing fairly irregular

shapes when compared to Figure 9

As anticipated, the curves produced by both perfectly clus-
tered learners in Cluster 0, Extra Tree (Tree) and MLP, reveals



that they consistently showcase the overall concave shapes
recognised in Figure 8a, Figure 9a, and Figure 9b.

PCA Plots
The result of K-means algorithm for the input statistical vec-
tor dataset is indicated in Figure 11. With a total of 4279
points, 4169 points were assigned to Cluster 0 and 110 points
were assigned to Cluster 1.

The 2D PCA plot indicates that most of the points grouped
in Cluster 0 are densely concentrated within a linear strip,
within the [-0.2, 1.0] range of Principal Component 2. This
implies a strong correlation among all of the learner’s statis-
tical features, given that over 4000 points are situated in that
small area in a similar direction.

In Cluster 1, there is a much more circular and evenly dis-
tributed arrangement of points, resembling the classic shape
that K-Means aims to generate. However, the spread of points
across both clusters is highly disproportionate as there are
only 110 points in Cluster 1.

Considering most average cluster percentages are within
the 90-100% range, no single learner is predominantly found
in Cluster 1. This reiterates that all points in Cluster 1 may
simply be outliers, and that majority of the statistical features
of the curves are very similar to one another, making them
indistinguishable through the K-means algorithm.

Figure 11: 2D PCA plot for statistical vector

Seeing the presence of a distinct, highly concentrated lin-
ear strip identified in the 2D PCA plot, a 3D PCA plot was
generated to observe how the data is distributed along the z-
axis direction. As illustrated in Figure 12, Cluster 0 forms a
parabolic shape that does not stretch far across the third Prin-
cipal Component, indicating once again a highly concentrated
segment within all three dimensions. No additional informa-
tion can be discerned that is not already evident in the 2D
PCA plot.

(a) (b)

Figure 12: 3D PCA plots for statistical vector from two different
perspectives, illustrating the dense population within Cluster 0

Mean Std Skew Kurtosis
Dataset -0.835 -0.965 -0.067 -0.857

Cluster 0 -0.841 -0.971 -0.073 -0.876
Cluster 1 -0.774 -0.942 -0.095 -0.823

Table 1: Average of each statistical feature for the entire dataset,
Cluster 0, and Cluster 1, respectively

Statistical Features
As shown in Table 1, the average of each statistical feature in
the vector was computed. The first row represents the average
for all the statistical vectors, allowing for comparison with the
created clusters. Across all features, it is evident that Cluster
1 deviates the most from the overall dataset average. Partic-
ularly with the average mean element, Cluster 1 deviates by
0.061, whereas Cluster 0 deviates by 0.006. This is mainly
attributed to the majority of points in the entire dataset being
located within Cluster 0. Moreover, the relatively high devia-
tion between the dataset averages and Cluster 1 reinforces the
notion that only the significantly outlying curves are placed
in Cluster 1.

Scaling led to alterations in the statistical feature averages.
The average numbers without scaling reveal a comparable
pattern to Table 1, with Cluster 0 showing a stronger devi-
ation from the overall dataset average.

An additional experiment involved modifying the custom
range from [-1,1] to [0,1]. While this adjustment shifted the
results along the x-axis, it did not alter the fundamental pat-
terns and shapes identified.

6 Conclusions
Conclusions is divided into potential future work and final
findings derived from the Results & Discussion in Section 5.

6.1 Final Findings
Clear isolated patterns could not be determined after cluster-
ing the point vectors. An apparent relation among ensemble
learning techniques surfaced in the learner analysis. With re-
gards to outliers, the Quadratic Discriminant classifier was
the sole learner favouring Cluster 1, while all other learners
had a tipping average clustering percentage. The dataset anal-
ysis further confirmed the wide distribution and lack of cor-
relation within both clusters. Ultimately, the 2D PCA graph
visualised the clusters, showcasing the extensive dispersion
of both groupings. The 3D PCA graph indicated a similar
shape and distribution in the z-axis.

In the statistical vectors, two clearly defined non-
overlapping clusters emerged. With a significant 97% of
the vectors in Cluster 0, it was clear that Cluster 1 con-
sisted of outlier curves that did not follow the typical con-
cave shapes of standard learning curves. The highly con-
centrated Cluster 0 proved challenging to further analyse, as
both the learner and dataset analysis indicated that all percent-
ages were closely aligned, unlike the results for the point vec-
tor. More definitive patterns could not be uncovered through
a secondary clustering analysis, performed exclusively on
Cluster 0.



In conclusion, exact equivalence relations could not be es-
tablished through K-means clustering.

6.2 Future Work
To further investigate potential patterns, there are several ex-
tensions that can be made within the existing scope of re-
search.

In contradiction to Tarpey [6], the clusters formed within
the PCA plots for the point vector seemed to overlap. How-
ever, as mentioned earlier, this could be a result of informa-
tion loss during dimensionality reduction. Further research
into the reasons behind K-means possibly failing to generate
non-overlapping clusters in this particular instance could be
explored.

For specifically the point vector analysis, the current inter-
polation does not consider anchor point of the curves. This
may influence the clustering outcome, which is why this
could be incorporated and compared with the original re-
sults to identify if there are any noteworthy changes. Another
aspect regarding interpolation is that the shorter curves are
lengthened to align with the maximum curve length within
the LCDB. It would be intriguing to explore whether revers-
ing this process, specifically shortening the longer curves,
could result in a different clustering.

Focusing on the statistical vector analysis, the largest clus-
ter consisted of over 4000 data points. To understand whether
patterns can be determined within that group, the K-means
algorithm was applied once again on itself. Nevertheless,
this led to the formation of another densely populated cluster
without any clear dominant patterns. Similarly, for the point
vector, employing the second most optimal value of K = 3
yielded identical PCA plots regarding shape and distribution.

Concerning both statistical and point vectors, one could ar-
gue that K-means did not adequately take into account their
distinctive features. As highlighted in Tarpey’s 2012 pa-
per [6], which investigates distance-based clustering, model-
based clustering leverages valid parametric assumptions - a
crucial aspect overlooked by K-means. A possible extension
could be exploring the application of a model-based cluster-
ing algorithm on both point and statistical vectors.

In summary, the investigation of a model-based clustering
algorithm could enhance the research by assessing parametric
assumptions within the curves. It is also suggested that sta-
tistical and point vectors may not be the most suitable input
data for identifying patterns in curve database.

A Appendix
A.1 Percentages of Clustering
Within Section 5 Results & Discussion, the statistical sum-
maries are presented. Specific percentages for each learner
are detailed in Figure 13 below.

(a) (b)

Figure 13: Exact percentage of datasets in Cluster 0 per learner for
point and statistical vector, respectively

A.2 Other Experiments
K=3 for Point Vector
When running the K-means algorithm with K = 3, three
clusters were formed, aligning perfectly with the shape and
distribution of the original two clusters. Although there is an
extra segmentation, the overall shape remained unchanged.
This meant that neither of the optimal values K = 2 and
K = 3 resulted in clearly separated clusters. Figure 14 shows
the PCA plot produced.

Figure 14: 2D PCA plot for point vector using K = 3

Statistical Vector Clustering
Since a densely populated region was observed within the
statistical vector clustering, an additional K-means clustering
was performed exclusively on that particular cluster. Never-
theless, no significant results were obtained, as depicted in
Figure 15.



Figure 15: 2D PCA plot for statistical vector on only Cluster 0
using K = 2

Range of Scaling
An extra PCA graph was produced to show the impact of
changing the scales from [-1,1] to [0,1] in the statistical vector
clustering. Figure 16 displays the change in PCA graph.

Figure 16: 2D PCA plot for statistical vector using [0,1] custom
range instead of [-1,1]

A.3 Large Language Model
Reference: OpenAI. (2024). ChatGPT (Jan 2024 ver-
sion) [Large Language Model]. https://chat.openai.com/chat.
Prompt: ”Rephrase: ... [insert sentence]”.
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