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Modern thermodynamic models indicate that fluids consisting of complex molecules
may display non-classical gasdynamic phenomena such as rarefaction shock waves
(RSWs) in the vapour phase. Since the thermodynamic region in which non-classical
phenomena are physically admissible is finite in terms of pressure, density and
temperature intervals, the intensity of RSWs is expected to exhibit a maximum for
any given fluid. The identification of the operating conditions leading to the RSW
with maximum intensity is of paramount importance for the experimental verification
of the existence of non-classical phenomena in the vapour phase and for technical
applications taking advantage of the peculiarities of the non-classical regime. This
study investigates the conditions resulting in an RSW with maximum intensity in
terms of pressure jump, wave Mach number and shock strength. The upstream
state of the RSW with maximum pressure drop is found to be located along the
double-sonic locus formed by the thermodynamic states associated with an RSW
having both pre- and post-shock sonic conditions. Correspondingly, the maximum-
Mach thermodynamic and maximum-strength loci locate the pre-shock states from
which the RSW with the maximum wave Mach number and shock strength can
originate. The qualitative results obtained with the simple van der Waals model are
confirmed with the more complex Stryjek–Vera–Peng–Robinson, Martin–Hou and
Span–Wagner equations of state for selected siloxane and perfluorocarbon fluids.
Among siloxanes, which are arguably the best fluids for experiments aimed at the
generation and measurement of an RSW, the state-of-the-art Span–Wagner multi-
parameter equation of state predicts a maximum wave Mach number close to 1.026
for D6 (dodecamethylcyclohexasiloxane, [O-Si-(CH3)2]6). Such value is well within the
capacity of the measurement system of a newly built experimental set-up aimed at
the first-ever demonstration of the existence of RSWs in dense vapours.
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1. Introduction
The existence of so-called non-classical gasdynamic phenomena in the single-phase

vapour region is still an open question of fluid mechanics. This kind of ‘exotic’
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gasdynamic specimens, which include rarefaction shock waves (RSWs) and mixed or
split waves (see Menikoff & Plohr 1989), have been observed experimentally in flows
displaying liquid–vapour phase transition by Thompson, Carofano & Kim (1986);
see also Thompson et al. (1987) and by Ivanov & Novikov (1961) in allotropic phase
changes in steel. Starting from the pioneering works of Bethe (1942), Zel’dovich
(1946), Weyl (1949) and Thompson (1971), the possibility of observing non-classical
gasdynamic phenomena also in the dense-vapour region has been investigated in
numerous theoretical and numerical studies. Indeed, modern thermodynamic models
indicate that a bounded thermodynamic region in the vapour phase where non-
classical gasdynamic phenomena are physically admissible may exist for a class of
fluids – named Bethe–Zel’dovich–Thompson (BZT) fluids – characterized by high
molecular complexity. According to predictions from several thermodynamic models
reported by Thompson & Lambrakis (1973), Cramer (1991), Colonna & Silva (2003),
Guardone & Argrow (2005), Colonna, Guardone & Nannan (2007) and others, heavy
hydrocarbons, perfluorocarbons and siloxanes can be classified as BZT fluids.

Despite the large amount of available theoretical and numerical studies on non-
classical gasdynamics, a limited amount of experimental work has been performed so
far, mainly due to the technical difficulties related to the observation of these kind
of waves, as discussed by Fergason, Guardone & Argrow (2003) and Colonna et al.
(2008a). A first attempt at measuring an RSW in Freon-13 (trifluorochloromethane,
CCl3F) has been carried out in the USSR by Borisov et al. (1983). Indeed, a rarefaction
wave propagating with a steady profile was measured, but recent interpretations
of that experiment explain the occurrence of such a wave as a result of critical-
point and two-phase effects, as discussed by Cramer & Sen (1986), Kutateladze,
Nakoryakov & Borisov (1987), Thompson (1991), Fergason et al. (2001), Fergason,
Guardone & Argrow (2003) and Nannan (2009). More recently, a shock-tube
experiment, documented by Fergason et al. (2003) and Guardone (2007), has been
pursued at the University of Colorado at Boulder, with the aim of producing an
RSW in perfluorocarbon fluid PP10 (Perfluorofluorene, C13F22). The non-classical
character of the rarefaction wave was to be determined by comparing the wave
velocity, measured by a simple time-of-flight approach, with the estimate of the speed
of sound in the unperturbed state; an RSW moves at supersonic speed, while a
classical rarefaction wave moves at the speed of sound. The Boulder experiment
eventually failed because the working fluid underwent thermal decomposition at the
extremely high operating temperature. In addition the lack of accurate information
on the thermophysical properties of the working fluid would have prevented the
estimation of the speed of sound with the accuracy needed to claim that the observed
wave was indeed supersonic.

Building on the experience acquired during the Boulder experiment, a novel set-up
for the generation of RSWs has been conceived, designed and constructed at the Delft
University of Technology, the Netherlands, with the participation of the Politecnico di
Milano, Italy (see Colonna et al. 2008a). The flexible asymmetric shock tube (FAST)
set-up is a dense gas Ludwieg tube, made of a high-pressure charge tube connected
to a low-pressure reservoir. The charge tube and the reservoir are separated by a
fast-opening valve. The fluid is initially at rest, and its temperature is kept uniform
by a suitable thermal control system. The experiment starts when the valve is opened,
thus connecting the charge tube to the reservoir. An RSW is expected to form and
propagate towards the end of the charge tube, where pressure transducers measure the
wave speed by means of a time-of-flight approach. The speed of the rarefaction front
is compared to the local value of the speed of sound to determine if the propagating
wave is a shock moving at supersonic speed. The speed of sound in the unperturbed
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state is accurately measured in a similar way prior to the experiment, by producing
small (acoustic) pressure waves propagating along the charge tube, thus eliminating
the need of computing the value of the speed of sound by means of a thermodynamic
model, whose accuracy in the region of interest is questionable. The working fluid
selected for the experiment is siloxane fluid D6 (dodecamethylcyclohexasiloxane,
[O-Si-(CH3)2]6). Comparably accurate thermodynamic models for siloxanes have been
recently developed (see Colonna et al. 2006; Colonna, Nannan & Guardone 2008b),
and they also rely on precise speed-of-sound measurements and molecular simulations
(see Nannan et al. 2007). Moreover, the thermal stability limit of siloxanes in stainless
steel has been experimentally investigated by Angelino & Invernizzi (1993) and
Colonna (1996), and suitable procedures to avoid or delay the thermal decompositions
of the working fluid have been devised (see Calderazzi & Colonna 1997). Despite
the mentioned improvements, the determination of the non-classical character of the
wave remains a difficult endeavour, as discussed by Colonna et al. (2008a).

Fergason et al. (2001) observed that experimental constraints can be significantly
relaxed by producing a strong RSW. For example, by maximizing the wave Mach
number – the ratio of the wave speed to the speed of sound in the still fluid – the
requirements on the accuracy for the determination of both the wave speed and the
local value of the speed of sound are minimized. Accordingly, Fergason et al. (2001)
derived an empirical procedure to determine the initial shock-tube states that would
result in the largest pressure difference across the wave, with the understanding that
such an RSW would also exhibit a large Mach number.

This study moves from a previous work by Zamfirescu, Guardone & Colonna
(2008), and it is focused on the determination of the states which generate the RSW
with the largest intensity for a given BZT fluid. An analytical procedure is derived
to identify the thermodynamic states resulting in the RSW exhibiting the maximum
pressure difference, the RSW with maximum Mach number and the RSW with the
largest strength, over the entire dense-vapour thermodynamic region. Note that these
conditions are not equivalent and that three different waves are to be computed
for each fluid. The identification of these special RSWs is important for both the
experimental activities currently under way and the design of machinery to be operated
in the non-classical regime. A notable example of a possible industrial application
is the organic Rankine cycle turbine, in which non-classical phenomena could be
induced in order to reduce losses due to the occurrence of classical compression shock
waves (see Brown & Argrow 2000) or due to boundary-layer separation following
the interaction of a compression shock with the boundary layer (see Cramer & Park
1999).

The structure of the paper is as follows. In § 2, relevant results on RSWs are briefly
recalled. Section 3 details a procedure to determine the RSW with maximum pressure
jump, wave Mach number and strength for a given fluid, using the simple van der
Waals (1873) model. In § 4, accurate multi-parameter models are used to compute the
RSW with maximum intensity for selected siloxanes and perfluorocarbons. Section 5
presents final remarks and comments.

2. Rarefaction shock waves (RSWs) in dense gases
For the sake of clarity, relevant results on the theory of RSWs are briefly recalled

here, starting from the definition of the fundamental derivative of gasdynamics,

Γ ≡ v3

2c2

(
∂2P

∂v2

)
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Figure 1. Liquid–vapour saturation curve (—) and the Γ < 0 region (shaded region) for a
BZT fluid in the volume–pressure plane computed from the polytropic van der Waals model
with N =2000. Selected isentropes (· · · ) and the critical isotherm T = Tc (− −) are also
indicated. Note that the isentropes are concave down in the Γ < 0 region. The isentrope sτ is
tangent to the Γ = 0 line in τ .

where v is the specific volume; P is the pressure; and c ≡ −v(∂P/∂v)1/2s is the speed of
sound. The subscript s indicates that the pressure derivative is computed at constant
entropy. The fundamental derivative of gasdynamics was introduced by Thompson
(1971) to identify thermodynamic states possibly leading to non-classical behaviour,
which is heralded by negative values of Γ . Indeed, Bethe (1942) and Weyl (1949)
independently showed that an RSW is physically admissible if it connects two states
within the Γ < 0 region, due to the negative curvature of the isentropes – and hence
of the shock adiabats – in this region. As is well known, for a polytropic (constant
isochoric heat capacity) ideal gas both the isentropes and the shock adiabats are
always concave up and RSWs are not thermodynamically admissible.

According to the polytropic van der Waals model, fluids with large molecular
complexity exhibit a Γ < 0 region in the dense-vapour phase, close to the liquid–
vapour equilibrium line and close to the critical point. The size of this region
increases with increasing molecular complexity, which, for a polytropic van der
Waals gas, depends only on the (constant) number of active degrees of freedom of
the molecule N (see Colonna & Guardone 2006). For the temperatures of interest
here, these include the translational, rotational and vibrational modes only. From
the energy equipartition principle (see Callen 1985), one has N = 2cv/R, with cv

(constant) isochoric specific heat and R = R/M , with R = 8.314 J mol−1 the universal
gas constant and M the molecular weight. The existence of a Γ < 0 region in the
vapour phase and its dependence on molecular complexity is confirmed also by
more complex thermodynamic models (see for example Thompson & Lambrakis
1973; Cramer 1991; Colonna & Silva 2003; Colonna et al. 2007, under review),
although the location and size of the Γ < 0 region strongly depends on the considered
thermodynamic model (see Guardone & Argrow 2005; Colonna et al., under review).
Figure 1 shows representative isentropes close to the liquid-saturation curve, together
with the critical isotherm T = Tc and the Γ < 0 region, for a polytropic van der Waals
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gas with N = 2000. This value of N is unrealistically high, and it is considered here
only for explanatory purposes.

Remarkably enough, the occurrence of RSWs is not limited to state points within
the Γ < 0 region. Thompson & Lambrakis (1973) were the first researchers who
observed that an RSW can possibly occur also between two states with Γ > 0,
provided that the supporting Rankine–Hugoniot curve crosses the Γ < 0 region. With
reference to figure 1, note that an RSW cannot originate from any state with s > sτ ,
where sτ is the entropy associated with the isentrope that is tangent to the Γ =0
curve. This is due to the fact that the post-shock entropy is always larger than the
pre-shock one, and therefore shock adiabats starting from a state with s > sτ do not
cross the Γ < 0 region.

To identify all possible flow conditions leading to the formation of an RSW,
including those connecting thermodynamic states with Γ > 0, some basic properties
of RSWs are briefly illustrated. As is well known, all flow discontinuities, including
RSWs, satisfy the Rankine–Hugoniot relations between the two states A and B
separated by the shock (see e.g. Hayes 1960),

uA/vA = uB/vB,

PA + u2
A/vA = PB + u2

B/vB,

h(PA, vA) +
1

2
u2

A = h(PB, vB) +
1

2
u2

B,

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

where the enthalpy h is computed from the pressure and the specific volume via
enthalpy-explicit equation of state h = h(P, v). The flow velocity u is evaluated in a
reference frame moving at the velocity of the shock. The above system allows one to
compute the post-shock state B corresponding to a given pre-shock condition A. By
combining the mass, momentum and energy conservation laws in system (2.2), one
immediately obtains h(PB, vB) − h(PA, vA) − (PB − PA)(vA + vB)/2 = 0, which provides
the implicit definition of the Rankine–Hugoniot curve or shock adiabat centred at A,
i.e.

PB = P H(vB, PA, vA), (2.3)

where P H is the so-called Hugoniot pressure function. (2.3) allows one to compute the
post-shock value of the pressure PB as a function of the post-shock specific volume
vB for a given pre-shock state A, defined in terms of both the pre-shock pressure and
specific volume, PA and vA respectively. By combining the conservation of mass and
momentum equations in system (2.2), the Rayleigh line is obtained as

PB = P R(vB, PA, vA, uA) = PA +

(
1 − vB

vA

)
u2

A

vA

, (2.4)

with P R the Rayleigh pressure function. Eventually, the downstream specific volume
vB is found by solving for vB the equation

P H(vB; PA, vA) = P R(vB; PA, vA, uA), (2.5)

in which the pre-shock values of the pressure, specific volume and velocity are known.
By substituting the value of vB from (2.5) into system (2.2) the remaining post-shock
variables are easily computed.

Zamfirescu et al. (2008) proved the existence and the uniqueness of the solution
to the shock problem (2.5) for a dense gas using the theorem of Liu (1975) for a
general, i.e. non-ideal, gas. The unique admissible downstream state among all possible
solutions to (2.5) is selected by imposing the entropy condition �s > 0 (see Oleinik
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Figure 2. Selected pre-shock points AD, A′ and A′′ along the isentrope s = s < sτ for a van der
Waals polytropic gas with N = 2000. Points I ′ and I ′′ are the intersections of s = s with the
Γ = 0 curve. The vapour–liquid equilibrium (VLE) line is drawn together with the double-sonic
locus (DSL).

1959; Smoller 1983), which, together with the shock stability or speed orienting
condition MA � 1 � MB , with M = |u|/c the Mach number (see Lax 1957), gives

dP H

dvB
|
A

�
dP R

dvB
|
A

≡ PA − PB

vA − vB

≡ dP R

dvB
|
B

�
dP H

dvB
|
B
, (2.6)

where equalities hold for sonic pre- or post-shock states (see Kluwick 2001). Note that
neither pre-shock sonic nor post-shock sonic shocks are admissible for ideal polytropic
gases. Criterion (2.6) provides a simple geometrical condition for the admissibility of
rarefaction shock waves in dense gases. According to (2.6), the (constant) slope of
the Rayleigh line in the v–P plane must be smaller than that of the tangent to the
shock adiabats in A and larger than that at the post-shock state B. Consequently, for
an RSW to be admissible the shock adiabat necessarily exhibits downward concavity,
at least in a limited portion of the shock adiabat itself; admissible shock waves are
such that the associated Rayleigh line lies completely below the shock adiabat (see
Cramer & Sen 1990).

Scenarios for the formation of an RSW in a BZT vapour are treated extensively
in Menikoff & Plohr (1989), Kluwick (2001) and Zamfirescu et al. (2008). Relevant
results are briefly recalled here with the help of figures 2 and 3. Figure 2 shows
a portion of the specific volume–pressure thermodynamic plane for a BZT fluid in
which selected pre-shock state points AD, A′ and A′′ along one and the same isentrope
s = s < sτ are indicated. All isentropes with s < sτ exhibit the same qualitative shape,
with two inflection points at the intersections I′ and I′′ with the Γ = 0 curve. Possible
cases for the formation of an RSW can be inspected in figure 3, where the shock
adiabats and the isentropes through the pre-shock state are plotted for selected pre-
shock state points AD, A′ and A′′ together with representative Rayleigh lines and
post-shock states corresponding to admissible RSWs. Note that all Rayleigh lines lie
below the shock adiabats, and therefore the associated RSWs satisfy the admissibility
condition (2.6). Figure 3(a) corresponds to a quite peculiar situation in which the
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Figure 3. Shock adiabat from the pre-shock state A (—) and Rayleigh line A–B (- - -)
for different initial pre-shock states along an isentrope crossing the Γ < 0 region in the
vapour phase. (a) From point AD(s), only a double-sonic RSW AD–BD is admissible, where
BD = BD(s). (b) From point A′, located in the Γ > 0 region in between the DSL and the
Γ = 0 curve, possible RSWs include the pre-shock sonic RSW A′–BP

A′ and the post-shock sonic

RSW A′–BS
A′ . All shocks connecting A′ to state points in between BP

A′ and BS
A′ , such as A′–B ′,

are admissible and are neither pre- nor post-shock sonic. (c) From A′′, which lies within the
Γ < 0 region, no pre-shock sonic RSWs are admissible. The post-shock sonic RSW A′′–BS

A′′ is

admissible, as well as all non-sonic shock connecting A′′ to state points in between A′′ and BS
A′′ ,

such as A′′–B ′′.

only admissible RSW is a double-sonic shock, namely a shock in which both the
pre-shock Mach number MAD and the post-shock Mach number MBD are unity (see
Thompson & Lambrakis 1973; Cramer & Sen 1990). The Rayleigh line is tangent to
the shock adiabat from AD at both the pre-shock state and the post-shock state BD.
Similar to an acoustic wave, a double-sonic RSW moves at sonic speed, but different
from the former, through the RSW a finite jump in the thermodynamic properties of
the fluid and in its local velocity occurs. As demonstrated by Zamfirescu et al. (2008),
along each isentrope only one double-sonic RSW is admissible. By varying the value
of the pre-shock entropy, one can draw the double-sonic locus (DSL) of the pre-shock
states AD = AD(s) and the post-shock states BD = BD(s) which can be connected by
a double-sonic RSW. Note that sBD �= sAD . The Γ < 0 region lies within the DSL and
the VLE; no RSW can originate from state points outside the DSL, which is indicated
by Zamfirescu et al. (2008) as the boundary of the rarefaction shock region (RSR)
comprising all state points that can be connected by an RSW (see figure 4b). Figure
3(b) shows admissible RSWs for pre-shock states located in between the DSL and the
Γ = 0 curve, on the left of the Γ < 0 region in figure 2. These are the pre-shock sonic
(MA′ =1) RSW A′–BP

A′ , the post-shock sonic (MBS = 1) RSW A′–BS
A′ and all non-sonic

shocks with post-shock states in between BP
A′ and BS

A′ , such as A′–B ′. Note that the
Rayleigh line is tangent to the shock adiabat from A′ at the pre-shock state for the
pre-shock sonic shock A′–BP

A′ and to the post-shock state BS
A′ for the post-shock sonic

one. No pre-shock sonic RSW can originate from pre-shock states lying within the
Γ < 0 region, e.g. point A′′ in figure 3(c). Instead, only post-shock sonic RSW such
as shock A′′–BS

A′′ are possible, together with non-sonic shocks with post-shock states
in between A′′ and BS

A′′ , such as A′′–B ′′. Finally, no RSW can originate from state
points located in between the Γ = 0 curve and the DSL, on the right of the Γ < 0
region, because the rarefactive portion of the shock adiabat is always concave up for
all possible pre-shock states.

To each pre-shock state A from which an RSW can possibly originate corresponds
one and only one post-shock state B leading to post-shock sonic conditions. This state
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can be easily computed by complementing system (2.2) with the additional condition
uB = c(PB, vB). The existence and uniqueness of the post-shock sonic state follows
immediately from the above discussion and from the uniqueness of the solution of
the Riemann problem for dense gases proved by Zamfirescu et al. (2008).

In the following, post-shock sonic states are indicated as BS
A =BS

A(sA, vA), to
underline their dependence on the pre-shock state A only and the fact that they
correspond to sonic conditions. The same nomenclature is used for all quantities
evaluated at BS

A, such as MS
A(sA, vA) ≡ 1. Similarly, for double-sonic states, the pre-

and post-shock pressures are indicated as P D
A and P D

B , respectively.

3. Maximum intensity of rarefaction shock waves (RSWs)
Here, the pre- and post-shock states resulting in the RSW with maximum intensity

are derived. In this context, an RSW has the maximum intensity if some relevant
fluid properties display maximal variation across it. The properties of interest are the
wave Mach number, the pressure variation across the wave and the shock strength.
As stated in § 1 the supersonic wave Mach number is arguably the quantity that
can be more easily detected in an experiment aimed at demonstrating the existence
of RSWs. The pressure difference and the shock strength, providing a measure of
the pressure perturbations in relation to the flow velocity, are relevant to possible
process applications. Variations involving the temperature are less important, as the
temperature does not change much in the studied phenomenon due to the high
specific heat of BZT fluids.

As recalled in the previous section, the post-shock state along a given Rankine–
Hugoniot curve is completely determined by selecting the value of a single post-shock
quantity, e.g. the post-shock specific volume vB. The definition of the Rankine–
Hugoniot curve itself depends instead on two thermodynamic variables at state
A, such as the pre-shock specific volume vA and the pressure PA. It follows that
the determination of the RSW with maximum intensity is a three-dimensional
maximization problem for PA, vA and vB over the entire RSW region. It is however
possible to reduce the order of the maximization problem by recalling the RSW
properties reported in the previous section. This is done in § 3.1 to determine the

RSW with maximum pressure difference �̂P , in § 3.2 for the RSW with maximum
wave Mach number and in § 3.3 for the RSW with maximum shock strength. For
simplicity, all the results presented in this section have been obtained from the van
der Waals (1873) model. Section 4 shows that the same results can be obtained with
more complex and realistic thermodynamic models.

3.1. Maximum pressure difference

Herein, the pre- and post-shock states defining the RSW supporting the largest

pressure difference �̂P , with

�̂P = max
sA,vA,vB

[
P H(sA, vA, vB) − P (sA, vA)

]
,

are determined. Note that both the pre- and post-shock states A and B lie within the
RSW region. From the Rankine–Hugoniot system (2.2) one immediately has

−(uA/vA)2 = �P/�v = −(uB/vB)2 < 0,

with �P = PB − PA and �v = vB − vA. Therefore, �P < 0 if �v > 0 and the Rankine–
Hugoniot curve is a monotonically decreasing function of the post-shock specific



Maximum intensity of rarefaction shock waves for dense gases 135

v/vc

(P
S B

-P
A

)/
P

1.00.8 1.2

(a) (b)

1.4 1.6 1.8

v/vc

1.0 1.5 2.0 2.5

0

0.1

0.2

0.3

A
D
L

A
D

(s
_
)

A′

A′′

s =
 s

L

τ

D
S

L

BD(s
_
)

s =
 s

_

PSV

RSR

B
D
L

τ

D
SL

Γ
 =

 0

V
LE

A
D
L

I′′
VLE

I
VLE

P
/P

c

0.6

0.8

1.0

1.2

Limiting
Rankine–Hugoniot

curve

Gas
phase

Two-phase region
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sonic from VLE (PSV) line is also drawn, comprising all post-shock point connected to the
VLE by a post-shock sonic RSW.

volume (see e.g. Thompson 1988). It follows that the largest pressure difference is
observed for a shock wave encompassing the largest difference in specific volumes.

For a given pre-shock state A, the largest pressure difference occurs across the only
RSW admitting a downstream sonic point, and the three-dimensional maximization
problem simplifies to

�̂P = max
sA,vA

[
P S

B (sA, vA) − P (sA, vA)
]

= max
sA

[
P D

B (sA) − P D
A (sA)

]
.

Indeed, �v and hence �P are maximal along a given isentrope sA if state A lies on
the DSL line (see figure 4a), namely if the RSW is a double-sonic shock.

Furthermore, with reference to figure 4, �P = �v = 0 at sA = sτ and �P increases
monotonically with decreasing entropy. The maximum pressure difference across the
shock waves is therefore obtained for the double-sonic shock originating from the
state point with the lowest possible entropy sA = sL. This corresponds to the isentrope
through AD

L ; thus

�̂P = P D
B (sL) − P D

A (sL). (3.1)

In figure 4(b), the limiting Rankine–Hugoniot curve connecting the pre- and post-
shock states AD

L and BD
L is drawn, together with the DSL and the PSV line of all

post-shock point connected to the VLE by a post-shock sonic RSW. The shaded
region is the RSR comprising all state points that can be connected by an RSW.

Thompson & Lambrakis (1973) were the first to identify double-sonic shocks as
those exhibiting the largest pressure jump. However, different from the derivation
presented here, in their discussion the authors resorted to an isentropic description of
the flow.
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3.2. Maximum wave Mach number

This section is dedicated to the identification of pre- and post-shock states leading
to the RSW with maximum wave Mach number. The wave Mach number MW is
defined as the ratio of the wave velocity to the speed of sound in the unperturbed
fluid. If the fluid is at rest in the pre-shock state, then the fluid velocity in the shock
reference frame is equal to the shock wave velocity in the laboratory frame; hence
MW ≡ MA = uA/cA and from relation (2.4) one immediately obtains

[M̂W ]2 = − min
sA,vA,vB

[
vA

c(sA, vA)

]2
P H(sA, vA, vB) − P (sA, vA)

vB − vA

. (3.2)

Note that a maximum for M2
W is also an extremum for MW . For a given upstream

state A, MW is maximized if �P/�v is minimized, that is if the slope of the Rayleigh
line is minimized. The minimum of the slope is obtained at the post-shock sonic
state, where the Rayleigh line is tangent to the shock adiabat through A. Therefore,
if the post-shock value of the specific volume is chosen as vB = vS

B(sA, vA), the three-
dimensional maximization problem (3.2) reduces to the following two-dimensional
one:

[M̂W ]2 = − min
sA,vA

[
vA

c(sA, vA)

]2
P S

B (sA, vA) − P (sA, vA)

vS
B(sA, vA) − vA

.

Since B is sonic, from the definition of the Rayleigh line (2.4) and the shock condition
P R =P H, one also has

P S
B (sA, vA) − P (sA, vA)

vS
B(sA, vA) − vA

≡ −
[
uB

vB

]2

= −
[
cS
B(sA, vA)

vS
B(sA, vA)

]2

, (3.3)

and therefore

M̂W = max
sA,vA

MS
W (sA, vA) = max

sA,vA

vA

c(sA, vA)

cS
B(sA, vA)

vS
B(sA, vA)

,

where the function MS
W = MS

W (sA, vA) gives the wave Mach number of a post-shock
sonic RSW from state (sA, vA). From the identity

∂

∂vA

[
vA

c(sA, vA)

]2

= 2
vA

c2(sA, vA)

[
1 − vA

c(sA, vA)

∂c(sA, vA)

∂vA

]
= 2vA

Γ (sA, vA)

c2(sA, vA)

the derivative of the function M̂S
W (sA, vA) is easily obtained as

MS
W

∂MS
W

∂vA

= vA

Γ (sA, vA)

c2(sA, vA)

[
cS
B(sA, vA)

vS
B(sA, vA)

]2

+
1

2

[
vA

c(sA, vA)

]2
∂

∂vA

[
cS
B(sA, vA)

vS
B(sA, vA)

]2

. (3.4)

Since v > 0, the sign of the first term of (3.4) is the sign of Γ . From (3.3), the second
term of (3.4) is always positive, since the slope of the Rayleigh line increases if the
pre-shock state specific volume is increased (see figure 3). Therefore, along a given
isentrope, the extrema of the function MS

W are located within the Γ < 0 region, where
the two terms in (3.4) have opposite sign. Moreover, since the Mach number is unity
at AD and BD, and since ∂MS

W/∂vA > 0 if Γ > 0, as is the case in the region bounded
by the DSL and the Γ = 0 line, at least one maximum value of the wave Mach
number must exist between AD and BD.

Figure 5(a) reports the wave Mach number along different isentropes crossing the
Γ < 0 region. Along a given isentrope, MS

W is found to exhibit only one maximum
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Figure 5. (a) Wave Mach number along selected isentropes for a van der Waals polytropic
fluid with N = 2000. The initial states AD, A′ and A′′ in figure 2 are also indicated. Along each
isentrope, the wave Mach number exhibits only one maximum M̂S

W (s); the maximum Mach
locus (MML) connects these extrema. For a van der Waals polytropic fluid with N = 2000 the
maximum wave Mach number in the vapour phase is 28.2 (see figure 7). (b) The MML in the
reduced volume–pressure plane v/vc–P/Pc . The MML connects point τ , where MW is one, to
point AM̂ at the intersection with the VLE line, where MW is maximum. Note that the MML
lies entirely within the Γ < 0 region.

value, which is located within the Γ < 0 region. By varying the pre-shock entropy sA,
these extrema describe the maximum Mach locus (MML) depicted in figures 5(a) and
5(b). Along the MML, the wave Mach number starts from unity at τ and increases
for decreasing entropies. Therefore, the maximum wave Mach number for a given
fluid is obtained for a post-shock sonic RSW with pre-shock state located at the

intersection AM̂ of the MML with the VLE curve.

3.3. Maximum shock strength

The shock conditions leading to an RSW with maximum strength Π̂ are now
discussed. The shock strength Π is defined as

Π = Π(PB, PA, vA) ≡ PB − PA

c2(PA, vA)/vA

, (3.5)

and it depends on both a single post-shock thermodynamic variable, e.g. the pressure
PB, and the complete thermodynamic state in A. Note that for an ideal polytropic gas
one has c2

A = γPAvA, and therefore the strength of a (classical) shock simply reads
Π = [PB/PA − 1]/γ ; i.e. it depends only on the dimensionless pressure ratio PB/PA

and on γ . By following the procedure detailed in the previous sections, the maximum

strength Π̂ is computed as

Π̂ = max
sA,vA,vB

vA

c2(sA, vA)

[
P H(sA, vA, vB) − P (sA, vA)

]
= max

sA,vA

vA

c2(sA, vA)

[
P S

B (sA, vA) − P (sA, vA)
]
,

where in the last expression only the post-shock sonic conditions are considered, since
those lead to the largest �P for a given pre-shock state A.
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Figure 6. (a) RSW strength for the post-shock sonic RSW along selected isentropes for a
van der Waals fluid with N = 2000. Along each isentrope, the post-shock strength is found
to exhibit a maximum. All extrema are connected by the MSL. (b) The MSL in the reduced
volume–pressure v/vc–P/Pc thermodynamic plane, together with the DSL, the MML, the VLE
and the Γ = 0 curves. The intersection of the MSL and the VLE curve defines the pre-shock
state AΠ̂ from which the RSW with maximum strength Π̂ originates.

Similar to what was observed in the problem of the maximization of the wave
Mach number (§ 3.2), the strength of post-shock sonic shocks is found to exhibit only
one maximum along each isentrope crossing the RSR (see figure 6a). It is therefore
possible to define a maximum strength locus (MSL) connecting the extrema of each
isentrope. The value of Π increases along the MSL from one at τ to a maximum at

AΠ̂ , where the MSL intersects the VLE curve (see figure 6b).

3.4. Influence of molecular complexity

The extension of the RSR and hence the maximum intensity of admissible RSW
for a given fluid strongly depend on molecular complexity, as discussed for example
by Thompson & Lambrakis (1973), Guardone & Argrow (2005) and Colonna &
Guardone (2006). In particular, the higher the molecular complexity, the larger the
size – in terms of the pressure and temperature ranges – of the RSR and hence the
intensity of admissible RSWs.

Figure 7 reports the minimum value Γmin of the fundamental derivative of
gasdynamics in the single-phase vapour, the maximum reduced pressure difference

�̂P /Pc across an RSW, the maximum Mach number M̂ and the maximum RSW

strength Π̂ for polytropic van der Waals fluids of different molecular complexity.
In accordance with the cited references, the value of Γmin, which is found at fluid
states located on the vapour side of the liquid–vapour coexistence curve, decreases
with increasing molecular-complexity parameter N , defined in § 2. Correspondingly,
the size of the Γ -negative region and that of the RSR increases with N . Therefore,

�̂P /Pc, M̂ and Π̂ all increase with N . In figure 7, the reduced pressure difference

across the RSW exhibiting the largest wave Mach number M̂ is also depicted, which
is significantly different from �̂P /Pc for all N . Moreover, the maximum reduced
pressure difference �̂P /Pc rapidly saturates to about 1/3 at N ∼ 200 and slowly
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Figure 7. Dependence of the maximum intensity of RSWs for fluids with different molecular
complexity N , for a polytropic van der Waals gas.

increases for larger values of N . This is not the case for the maximum Mach number
and shock strength, as can be appreciated from figure 7.

To conclude, Zamfirescu et al. (2008) noted that the shape of the RSR also
depends on the molecular complexity of the fluid. In particular, for N � 38.46, at
both intersections of the DSL with the VLE one has v >vc, a situation depicted in
figure 8 for a polytropic van der Waals fluid with N =20. In this case, the pre-shock
state leading to the RSW with maximum pressure difference is no longer located on
the DSL, but instead it lies on the vapour side along the VLE curve. The state leading
to the RSW with maximum pressure difference is indicated in figure 8 as A�̂P , and
different from the case depicted in figure 4 for N =2000, it is not coincident with AD

L .
Remarkably enough, for N � 38.46 the RSW with maximum pressure difference is
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not a double-sonic shock but a post-shock sonic shock, and it connects the supersonic

pre-shock state A�̂P along the VLE curve to the post-shock sonic state B�̂P along
the PSV curve. Similarly, the RSW with the maximum wave Mach number no longer
originates at the intersection of the MML with the VLE curve, but instead it lies on

the VLE and, it is indicated in figure 8 as AM̂ .
The more complex and realistic thermodynamic models considered in the next

section all predict a considerably smaller Γ -negative region and hence a smaller RSR,
whose shape is though always qualitatively similar to that reported in figure 8.

4. Results for selected siloxanes and perfluorocarbons
The results obtained in the previous section using the simple polytropic van der

Waals model are now tested against the more complex non-polytropic Stryjek–Vera–
Peng-Robinson (see Stryjek & Vera 1986), Martin–Hou (see Martin & Hou 1955;
Martin, Kapoor & De Nevers 1958) and Span–Wagner (see Span & Wagner 2003a ,b)
equations of state. These complex equations, whose accuracy in computing the value
of Γ has been discussed by Colonna et al. (under review), have been applied to the
selected linear and cyclic siloxane and perfluorocabons fluids listed in table 1, where
relevant thermophysical properties are also reported for the reader’s convenience.
Additional information on the thermophysical properties of these fluids and their
gasdynamic behaviour can be found in Nannan et al. (2007) and Colonna et al.
(2006, 2008b) for siloxanes and Lambrakis & Thompson (1972), Cramer (1989, 1991)
and Guardone & Argrow (2005) for perfluorocarbons. The minimum value of Γ

obtained from the three thermodynamic models is also reported. These complex
models include various thermophysical parameters, such as the acentric factor ω, in
their functional forms, and therefore the number of active degrees of freedom, N , no
longer represents molecular complexity, as discussed by Guardone & Argrow (2005).
Therefore, the minimum value of the fundamental derivative in the vapour phase,
Γmin, which occurs at a state point along the VLE line, is used in the following



Maximum intensity of rarefaction shock waves for dense gases 141

Γmin

Name M (g mole−1) Tc (K) Pc (kPa) Tb (K) PRSV MH SW

D4 296.618 586.49 1332 448.50 −0.02420 −0.06952 –
D5 370.773 619.23 1161 484.05 −0.14512 −0.28052 –
D6 444.924 645.78 961 518.14 −0.22120 −0.38364 −0.23020
MD4M 459.000 653.20 877 532.72 −0.30407 −0.38457 −0.06900
MD5M 533.150 671.80 763 599.95 – −0.44376 –
MD6M 607.310 688.90 677 584.65 – −0.49949 –
PP5 462 565.2 1753 415 −0.11041 −0.29834 –
PP9 512 586.6 1682 433 – −0.43055 –
PP10 574 630.2 1641 467 – −0.67376 –
PP11 624 650.2 1460 488 – −0.43891 –
PP24 686 701.2 1530 517 – −0.10737 –
PP25 774 673.6 1149 533 – −0.20145 –

Table 1. Molecular weight M , critical pressure Pc and critical temperature Tc for selected
siloxane and perfluorocarbon fluids; Tb is the boiling temperature at 1 atm; Γmin is
minimum value of the fundamental derivative in the vapour phase calculated using different
thermodynamic models, namely the Stryjek–Vera–Peng–Robinson cubic equation of state
(PRSV) and the Martin–Hou (MH) and Span–Wagner (SW) multi-parameter equations of
state. Properties are taken from Stewart, Jacobsen & Penocello (1969), Lambrakis & Thompson
(1972), Cramer (1989, 1991), Guardone & Argrow (2005), Nannan et al. (2007) and Colonna
et al. (2006, 2008b).

to evaluate the molecular complexity of a given substance. In particular, molecular
complexity increases as Γmin decreases, in accordance with figure 7(a). Indeed, for a
polytropic van der Waals gas, Γmin is shown to be a monotonically decreasing function
of N . The minimum value of Γ obtained from the three thermodynamic models is
reported in table 1. It is remarkable that the predicted value of Γ , being a derived
thermodynamic property, strongly depends on the considered thermodynamic model,
as discussed by Thompson & Lambrakis (1973), Guardone & Argrow (2005) and
Colonna et al. (under review).

Results from the more complex thermodynamic models are listed in table 2, where

the maximum pressure difference �̂P , wave Mach number M̂W and wave strength

Π̂ are reported, together with the pressure and temperature of the corresponding

pre-shock state. Figure 9 shows �̂P , M̂W and Π̂ plotted against the minimum value
Γmin of the fundamental derivative of gasdynamics in the single-phase vapour region.
Note that, different from figure 7, molecular complexity increases from left to right.
Figure 9 confirms, at least qualitatively, the results obtained in the previous section
using the simple van der Waals model (see figure 7). In particular, the maximum
wave Mach number and the shock strength are found to monotonically increase with
decreasing Γmin, namely for increasing molecular complexity (figures 7c, 7d, 9b and

9c). It is worthwhile noticing that the values of M̂W and Π̂ strongly depend on the
considered thermodynamic model. This is believed to be caused by the differences in
the computed value of Γmin (see table 1). Indeed, for a given value of Γmin, all models

agree fairly well in the computed value of M̂W and Π̂ .
Considering now the maximum pressure drop across an RSW (figure 9a), the data

appear to be more scattered, whereas the polytropic van der Waals model predicts
a monotonic dependence of �̂P on molecular complexity (see figure 7). Note that,
different from the polytropic van der Waals case, in figure 9(a) the pressure differences
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Maximum pressure Maximum wave Maximum wave
difference Mach number strength

PA TA �̂P PA TA M̂W PA TA Π̂
Name EOS (kPa) (K) (kPa) (kPa) (K) (−) (kPa) (K) (−)

D4 MH 1268 310.02 1.205 1233 308.05 1.004 1268 310.02 0.376
PRSV 1215 306.74 0.297 1200 305.89 1.000 1216 306.79 0.079

D5 MH 1150 345.44 2.395 1123 343.85 1.045 1150 345.44 1.092
PRSV 1124 343.78 1.334 1087 341.38 1.011 1124 343.78 0.502

D6 MH 955.9 372.30 2.226 935.7 370.90 1.072 955.9 372.30 1.327
PRSV 943.8 371.37 1.444 912.7 369.00 1.023 943.8 371.37 0.716
SW 947.2 371.67 1.570 917.8 369.57 1.026 947.2 371.67 0.768

MD4M MH 873.2 379.74 2.051 855.0 378.35 1.076 873.2 379.74 1.472
PRSV 869.0 379.37 1.564 841.1 377.09 1.039 869.0 379.37 0.917
SW 837.9 377.13 0.603 809.1 374.90 1.003 837.9 377.13 0.294

MD5M MH 760.3 398.43 1.871 746.3 397.25 1.094 760.3 398.43 1.589
PRSV 623.0 384.91 2.825 736.0 396.17 1.050 623.0 384.91 1.243

MD6M MH 674.5 384.91 1.691 663.3 414.51 1.113 674.5 384.91 1.725
PP5 MH 1688 289.38 2.054 1633 287.03 1.009 1688 289.38 0.524

PRSV 1719 288.96 1.706 1663 286.53 1.007 1719 288.96 0.398
PP9 MH 1652 312.12 2.895 1597 309.70 1.025 1652 312.12 0.882
PP10 MH 1627 356.34 3.431 1585 354.40 1.048 1627 356.34 1.126
PP11 MH 1455 376.73 3.506 1421 374.89 1.084 1455 376.73 1.536
PP24 MH 1522 427.66 3.811 1507 426.80 1.158 1522 427.66 1.881
PP25 MH 1145 400.21 2.791 1121 398.71 1.092 1145 400.21 1.666

Table 2. RSW shock waves with maximum pressure drop, maximum wave Mach number and
strength for the fluids listed in table 1, according to the PRSV, MH and SW equations of state
(EOS). The pre-shock state A is also reported.

have not been reduced using the critical pressure Pc, which assumes a different value
for each fluid. However, despite the large dispersion of the results, the trend observed
in § 3 is confirmed by the more complex thermodynamic model, namely the maximum
pressure difference across an RSW slowly increases with Γmin for Γmin � −0.2.

If the analysis is limited to the most recently developed thermodynamic model (see
Span & Wagner 2003a ,b; Colonna et al. 2007, 2008b), which is arguably the most
reliable, the RSW with maximum wave Mach number is obtained for fluid D6, for

which one has M̂W � 1.026.

5. Conclusions
The pre- and post-shock conditions leading to an RSW with the maximum pressure

difference, wave Mach number and strength have been investigated. The identification
of such states is of the utmost importance in experiments aimed at proving the
existence of non-classical gasdynamic phenomena in the vapour phase. These results
are also of interest in practical applications aiming at making use of molecularly
complex fluids operating close to or within the non-classical gasdynamic region such
as the organic Rankine cycle turbines.

The pre- and post-shock states leading to rarefaction shocks with maximum
intensity have been identified by means of a three-parameter maximization procedure.
Further inspection of the properties of the Rankine–Hugoniot curves in the non-
classical region allowed further simplification of the maximization problem.
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Figure 9. Maximum intensity of RSWs, calculated with the Stryjek–Vera–Peng–Robinson
(�), Martin–Hou (�) and Span–Wagner (�) equations for the siloxane and perfluorocarbon
fluids listed in tables 1. (a) Maximum pressure difference across an RSW, (b) maximum Mach
number for an RSW and (c) maximum strength for an RSW.

In a general case, the pre-shock state leading to the maximum pressure difference
is located along the DSL of state points that can be connected by a double-sonic
shock. The resulting RSW is indeed a double-sonic shock wave. The pre-shock state
is found at the intersection of the DSL with the limiting Rankine–Hugoniot curve
which is tangent to the VLE curve. Along each isentrope crossing the Γ < 0 region,
the wave Mach number has been found to exhibit only one maximum value. These
extrema define a curve in the volume–pressure thermodynamic plane that has been
christened the MML. The pre-shock state leading to the maximum wave Mach
number is located at the intersection of the MML and the VLE curve. Similarly,
the MSL connects the state points along different isentropes from which the RSW
with maximum strength can possibly originate. The pre-shock state leading to the
strongest shock in the single-phase region is found at the intersection of the MSL and
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the VLE curve. Minor modifications to the above procedure are required for fluids
with lower molecular complexity.

The simple polytropic van der Waals gas model has been used to determine the
dependence of the maximum pressure difference, wave Mach number and strength
on the molecular complexity of the fluid. The molecular complexity for this simple
model is in a one-to-one correspondence with the number of active degree of freedom
of the molecules, including the translational, rotational and vibrational modes. All
the indicators of the wave intensity increase with increasing molecular complexity.
However, the maximum pressure difference is found to rapidly saturate to a value of
about one third of the critical pressure.

These results have been confirmed by the more complex Stryjek–Vera–Peng–
Robinson, Martin–Hou and Span–Wagner thermodynamic models. If these equations
of state are applied, the maximum value of the pressure difference across an
RSW does not depend monotonically on the molecular complexity, which, for
complex thermodynamic models, correlates to the minimum value of the fundamental
derivative of gasdynamics, Γ , in the single-phase vapour region. According to the
multi-parameter Span–Wagner equation of state, the RSW with maximum wave Mach

number is obtained for fluid D6, for which one has M̂W � 1.026.
The theoretical results herein illustrated have been already employed to design, in

collaboration with the Politecnico di Milano, a dense gas Ludwieg tube experiment
which is currently under way at the Delft University of Technology. The goal of this
experiment is the proof of the existence of non-classical RSWs. Initial fluid states
for the experiments will be set with the aim of maximizing the wave Mach number,
which are estimated using the theory illustrated in this work. Additional information
on the experiment can be found in Colonna et al. (2008a).

This research has been supported by the Dutch Technology Foundation STW,
Applied Science Division of NWO and the Technology Program of the Ministry of
Economic Affairs, DSF 6573. The authors acknowledge the contribution of their
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