
TelaSol
A coach cockpit
application
L.V. Gerlach
B.F. Janssen
M. Kroon
S. Vijlbrief

Rcj_Qmj
A coach cockpit application

by

J,T, Ecpj_af
@,D, H_lqqcl
K, Ipmml
Q, Tghj`pgcd

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

to be defended publicly on Tuesday July 2, 2019 at 12:00.

Project duration: April 22, 2019 Ƚ July 5, 2019
TU Delft Coach: M.A. Migut
TU SEI Liason: R.R. Dukalski
Team Sunweb Liason: A.H.M. van Erp
Bachelor End Project Coordinators: Ir. O.W. Visser & Dr. H. Wang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary
Team Sunweb, a professional cycling team and our client, is constantly looking for innova-
tions to help them win races. They tasked us with creating an application which could assist
coaches with determining the strategy during a race. This application, which we dubbed
TelaSol, is supposed to run on a tablet that is mounted on the dashboard inside the coach
car. For this project we developed an application that allows races to be prepared on a desk-
top computer and tracked during a race on a tablet-optimized interactive dashboard. On
this dashboard, there will be information on the riders, the route and comments that can be
added before the race.

During development we have considered existing solutions, relevant literature and useful
technologies to get an idea of what was possible and how we could achieve our goal. We used
this knowledge to create our initial set of requirements. We then proceeded development
of application using an agile approach, which involves regular feedback moments from our
client to update the requirements and adjust our focus accordingly. To verify the quality
of our product we relied on a combination of automated tests, user testing and validation
through the client.

Initially the application was supposed to integrate live data coming from the riders during
the race, but due to a regulation change we had to change our focus. Instead, we focused
primarily on creating the application for playback purposes, while still keeping it adaptable
to live data. The application performs the main tasks that were initially defined properly.
After further development on live data and extensive situational testing, the app can be used
to its full potential. Using TelaSol, Team Sunweb will improve their ability to analyze races
and increase their chances of winning.

iii

Preface
Throughout this project, we have had excellent guidance by a few people. Gosia Migut,
as our coach, helped us continuously with improving our process, product and the report
you are currently reading. Our client Rado Dukalski provided us with much feedback on
our application and with his expertise, he had a large share in making the application as
functional as it currently is. Lastly, we would like to thank our liason at Team Sunweb, Teun
van Erp, for the insightful videocalls and for inviting us to Team Sunwebɂs headquarters in
Deventer to show off our product.

L.V. Gerlach
B.F. Janssen

M. Kroon
S. Vijlbrief

Delft, July 2019

v

Contents

1 Introduction 1

2 Research Phase 3
2.1 List of Requirements . 4

2.1.1 Stage 1 . 4
2.1.2 Stage 2 . 5

2.2 Literature Review . 7
2.2.1 Data in Professional Cycling . 7
2.2.2 Visualization in Sports . 7
2.2.3 Effective Data Visualization on Tablets . 8

2.3 Existing Solutions. 9
2.3.1 Strava . 9
2.3.2 Veloviewer . 9
2.3.3 Veloviewer Live . 11

2.4 Technology Options . 12
2.4.1 Data Visualization . 12
2.4.2 Mapping. 12
2.4.3 CSS Framework . 12
2.4.4 Front-end Framework . 13
2.4.5 Back-end Framework. 13

3 Method 15
3.1 Application Outline . 16
3.2 Development Principles . 16
3.3 Technology Choices . 17

3.3.1 Data Visualisation . 17
3.3.2 Mapping. 17
3.3.3 Front-end Framework . 17
3.3.4 Back-end Framework. 17

3.4 Core features . 17
3.4.1 Distance Calculation . 18
3.4.2 Client & Server Connection . 19
3.4.3 Creation of Comments . 21
3.4.4 Height Profile . 22
3.4.5 Data Input & Handling . 23

3.5 Development of the User Interface . 24
3.5.1 Initial Design . 24
3.5.2 Intermediate Design . 24
3.5.3 Final Design . 25

3.6 Ethical Considerations . 26

4 Interaction with the client 29
4.1 Rado Dukalski . 29
4.2 Teun van Erp . 29

4.2.1 Meeting 1: April 26th . 29
4.2.2 Meeting 2: May 10th . 29
4.2.3 Midterm Meeting: May 28th . 29

vii

viii Contents

5 Software Validation 31
5.1 Use Cases . 31

5.1.1 Add comments to a route . 31
5.1.2 Comment notification . 32
5.1.3 Analyze using the height profile . 32
5.1.4 Live weather information . 32
5.1.5 Analyze using playback option. 32

5.2 Requirements Evaluation . 33
5.2.1 Stage 1 . 33
5.2.2 Stage 2 . 33

5.3 User Interface Questionnaire . 34
5.4 Software Improvement Group . 35
5.5 Unit testing . 35
5.6 System testing . 35

6 Conclusion 37

A Meeting Notes 39
A.1 Rado . 39

A.1.1 04-06-2019 . 39
A.2 Teun . 40

A.2.1 26-04-2019 . 40
A.2.2 10-05-2019 . 40

A.3 Team Sunweb . 41
A.3.1 28-05-2019 . 41

B SIG Feedback 43
B.1 Initial Feedback . 43

C Original Project Description 45

D Technical Guide 47
D.1 Running the server . 47

D.1.1 Development or Production mode . 47
D.2 Vue elements . 47

D.2.1 Race overview page . 47
D.2.2 Dashboard . 48
D.2.3 Comments page . 48

E User Guide 49
E.1 Log in . 49
E.2 Add a race . 49
E.3 Delete or edit a race . 49
E.4 Adding comments to a race . 49

E.4.1 Adding a climb comment . 50
E.4.2 Adding a weather comment . 50

E.5 Play a race . 50
E.6 Weather information . 50

F Infosheet 51

Bibliography 53

/
Introduction

Professional cycling is a sport with a lot of history: This yearɂs Tour de France will be the
106th edition. Since that first race in 1903, the sport has seen many changes and innova-
tions. One of the more recent innovations is the usage of science and data. Riders have little
boxes on their bikes that measure all their vitals such as heart-rate, speed and power. Using
such data, riders themselves but also their team coaches can carefully plan their races. In
addition to this, coaches can know more precisely what their riders are capable of. These
new technologies have had a large share in Team Skyɂs (now Team INEOS) many victories. To
close this gap to Team INEOS, other cycling teams have sought out their own technological
solutions.

There is a variety of scientific areas that contribute to innovations in the area of profes-
sional cycling. Some examples of important studies in the field are: the physiology of riders
[24], the ideal cadence to cycle at [22] and of course motion physics of bicycles [23]. But also
other scientific areas such as nutrition [20] [25].

The field of computer science enhances innovations in professional cycling through data
analysis and visualizations. Currently, coaches rarely have an idea of what their riders are up
to during a race, besides through infrequent contact via earpieces. To improve this, profes-
sional teams have been looking at applications that are connected to the data of their riders,
to get a more clear overview of the race. An example of such an application, is VeloViewer
[13]. This application can be used for static analysis of past races and trainings. It also
features a live version that can be used during races. The current issue with applications
such as VeloViewer however, is that they are very expensive and do not provide teams with
much freedom to input their own features.

To address these issues, the professional cycling team ɆTeam SunwebɆ has tasked us to
build a coach cockpit application. Our project addresses the cost- and freedom-related issues
mentioned in the previous paragraph and provides the user with a great deal of integrated
features, both on live and past races. In addition to that, the app is built lightweight and
adaptable and as such can be adjusted to the userɂs wishes. In this way, our application
serves us an attractive alternative over the currently available applications.

In this report we describe the process of building the application along with the scientific
background and evaluation of the product. In chapter 2 we line out the research we have
performed leading up to the application. In chapter 3 we describe the different phases of
the application and the various implementation choices we made. Our interaction with the
client and the way we validated the functioning of our software, are described in chapter 4
and chapter 5. Our conclusion about the project can be found in chapter 6. The appendices
features a variety of supporting documents such as meeting notes, SIG feedback, the original
project description, a user guide, technical guide and the info sheet.

1

0
Research Phase

Before we start building the application, research should be performed. We have split this
research up into four different parts:

1. List of Requirements: We record which requirements we have for the project and how
we prioritize them.

2. Literature Review: We evaluate existing literature on subjects relevant to our applica-
tion.

3. Existing Tools: We consider existing applications that perform similar tasks and eval-
uate which of their features we consider valuable for our own application.

4. Technology Options: We note down our different options for various technologies for
the application.

3

4 2. Research Phase

2.1. List of Requirements
In collaboration with Team Sunweb, we propose the following list of requirements. Our liason
at the team, Teun van Erp, has cooperated with us in composing this list. For these require-
ments, we will consider two different attributes: Feasibility and Importance. The explanation
of the attributes can be found below this paragraph. The aggregation of these two attributes
will be used to divide the requirements over the different categories of the MoSCoW method
[16]. As an example, if a requirement has both a high feasibility and a high importance, it
will most likely be considered as a ɆMust HaveɆ from the MoSCoW method.

The initial list of requirements will be defined at the beginning of the project (Stage 1).
We will also redefine this list another time, after the midterm meeting with Team Sunweb
(Stage 2). This midterm redefinition will allow us to clearly lay out the issues for the latter
half of the project. There will also be two evaluation moments to see how many of these
requirements were completed, which can be found in section 5.2. These evaluation moments
will be halfway through the project for Stage 1 (during/after the midterm meeting with Team
Sunweb) and at the end for Stage 2 (during/after the final meeting with Team Sunweb).

Classification

Ɋ Feasibility: The level to which we believe we will be able to create this feature within the
given time and financial constraints (values can be between 0 and 3).

Ɋ Importance: The degree to which we believe this feature to be important. This is based
on our meetings with the client and our own insights into their wishes (values also
between 0 and 3).

2.1.1. Stage 1
1. Live data from the cyclists (e.g. Heart Rate, Cadence)

All the riders from the team in race should have their main details displayed on the
screen. As there will be 6-8 riders, we intend to use the right half of the screen to
display all of these at the same time. When clicked on a specific rider, the screen (or
half) will be covered with more detailed information. A potential extra feature would be
all the riders currently in course (thus also those of other teams). This adds the extra
difficulty of obtaining their data which will most likely be much more limited.
Feasibility: 3/3, Importance: 3/3

2. Live position of the riders on a map
The left half of the screen should be covered by a map of the race. On this map the
riders should be moving through the course as they are in the race. More details about
the rider can be found when clicked on.
Feasibility: 3/3, Importance: 3/3

3. Add notes from team leader in advance with Google Streetview
Team Leaders want to be able to explore the race beforehand. They want to use streetview
to make annotations about dangerous points on the race course. This could be inte-
grated into the app but itɂs undecided whether this will receive an extra screen or not.
Feasibility: 2/3, Importance: 3/3

4. Tablet based design
The app should be functioning for tablets. As this is the main platform the team leaders
will use the application on, it is essential that the app is adjusted to perform on this
platform. The power of the tablet is fairly unimportant at this point in time.
Feasibility: 3/3, Importance: 3/3

5. Ideally working with unreliable connection
Our application should accommodate for a loss of internet connection, as the coach
cars will be without a connection in the mountains throughout a large portion of the
race. Fixing this is also not a major focus of the app at this point as we will first focus

2.1. List of Requirements 5

on making an app based on a reliable connection. After the app has been established
with a reliable connection, we can look at connectionless expansion.
Feasibility: 1/3, Importance: 2/3

6. Extensible for data sources other than csv file
Currently we will be provided with a .csv file containing a clear overview of the riders
in the race. This might not always be the case, especially when concerning data from
other teams (this is thus directly related to point 1). After having built the app using
the available data, we can take a look at expansion options.
Feasibility: 2/3, Importance: 1/3

7. First on recorded race, then also on live data
At first we will built the app with data of an already finished race. We intend to add a
scrollbar at the bottom of the screen such that moments in the race can be manually
selected. We will also add a play button that allows the user to play the race as if it
were occurring in real time. In this way, a live race is simulated already. As such, the
difficulty of adding a live race will be limited to the data inflow only.
Feasibility: 2/3, Importance: 3/3

8. Integration with video images
There are many videos to be found of races. These can be very useful for teams to
evaluate their decisions and results. As an extra feature we could integrate these video
images into our application such that they can be evaluated alongside the data in our
application.
Feasibility: 2/3, Importance: 1/3

Below the four categories from theMoSCoWmethod can be found along with the aforemen-
tioned requirements, sorted by category. Every requirement will feature a brief explanation
of why we categorize it as such.

Ɋ Must Have 1, 2, 3: These are core features of the Veloviewer and Veloviewer live app
that need to be combined into our application. These features form the core of our
application.

Ɋ Should Have 6: A very relevant issue for this stage. The application should already
support as much as possible to prevent problems later on. Not having it now however,
will make the product still function albeit less.

Ɋ Could Have 4: While this feature is quite important for the end product, it is not of vital
importance to have this finished at this stage of the product.
7 : This feature could potentially already be added at this stage. For this feature to
be incorporated however, Team Sunweb needs to provide us with their live connection
which is very unlikely at this stage.
8: While it is technically possible to add this, it is not of great importance at this stage
and will thus be added only if time allows it.

Ɋ Wonɂt Have (at this stage) 5: While potentially important, this is something for much
later in the application, if even still relevant at that point.

2.1.2. Stage 2
In this subsection we will highlight the most important requirements from the second phase
of the project, in the same way that we did for the first phase. Some from the previous stage
that were unfinished will logically be carried over.

1. Tablet based design
The app should be functioning for tablets. As this is the main platform the team leaders
will use the application on, it is essential that the app is adjusted to perform on this
platform. The power of the tablet is fairly unimportant at this point in time.
Feasibility: 3/3, Importance: 3/3

6 2. Research Phase

2. First on recorded race, then also on live data
At first we will built the app with data of an already finished race. We intend to add a
scrollbar at the bottom of the screen such that moments in the race can be manually
selected. We will also add a play button that allows the user to play the race as if it
were occurring in real time. In this way, a live race is simulated already. As such, the
difficulty of adding a live race will be limited to the data inflow only.
Feasibility: 2/3, Importance: 3/3

3. Integration with video images
There are many videos to be found of races. These can be very useful for teams to
evaluate their decisions and results. As an extra feature we could integrate these video
images into our application such that they can be evaluated alongside the data in our
application.
Feasibility: 2/3, Importance: 2/3

4. Ideally working with unreliable connection
As the cars will be without an internet connection in the mountains throughout a large
portion of the race, our app should accommodate for this. This is also not a major focus
of the app at this point as we will first focus on making an app based on a reliable
connection. After this has been established, we can look at connectionless expansion.
Feasibility: 1/3, Importance: 1/3

5. Race and Training versions
As the Interational Cycling Union (UCI) has forbidden the use of live rider data during
a race (more details on this in subsection 4.2.2), there needs to be a version of the app
that is permissible during live races. All the other features that we have built which are
currently not allowed under UCI regulations, still need to exist in the training version
of the app.
Feasibility 3/3, Importance: 3/3

6. More information about climbs
As climbing is one of the important characteristics of many cycling races, it is important
that climbs are displayed well in our application. We plan to achieve this by having
specific comments for climbs, altitude profiles accompanying those comments and a
more elaborate height profile.
Feasibility 2/3, Importance: 3/3

Below the four categories from theMoSCoWmethod can be found along with the aforemen-
tioned requirements, sorted by category. Every requirement will feature a brief explanation
of why we categorize it as such.

Ɋ Must Have 1, 2, 5, 6: These features are very important to meet Team Sunwebɂs wishes
of a functional app that is a better alternative over Veloviewer (live). These are absolute
core features of the second stage of the project.

Ɋ Should Have 3: While this is a requested feature that could really improve the app, the
technical feasibility as well as the actual usefulness of it, remains to be determined. As
such, this feature is of less importance, yet still quite important.

Ɋ Could Have 4: This issue did not come up specifically during the midterm meeting with
Team Sunweb. We will however maintain it as a ɆCould HaveɆ since it could still come
up during the implementation of the live version.

Ɋ Wonɂt Have (at this stage)

2.2. Literature Review 7

2.2. Literature Review
In this section we evaluate existing literature in order to gain understanding about the field
in which we are building this application. We consider the core aspects of our application
and look for relevant literature on those. The relevant questions we ask ourselves are:

Ɋ What data is available in professional cycling and which parts are important?

Ɋ What are the state-of-the-art solutions in sport visualization?

Ɋ What are the design guidelines for creating a tablet-based application?

We will now discuss our findings and point out what we think is relevant knowledge from
each of these fields ahead of developing our application.

2.2.1. Data in Professional Cycling
Professional cycling has been quickly moving into the digital age and the reliability on data
has become very significant. Teams are analyzing everything they can get to know about their
riders and an increasing number of teams are taking a highly scientific approach to training
and racing. This approach has been paying off, as teams that are leading in this scientific
approach like Team INEOS and Team Sunweb have been getting great results.

The data that is most essential for our application is the live tracking data of the riders
during a race. This data is a combination of bicycle data (e.g. speed, cadence), physiological
measurements (e.g. heartrate) and GPS coordinates. All these types of data are collected
from a small sensor fitted under the saddle, which sends it to a data collection hub, from
which it can be distributed to all interested parties [17]. These include the broadcasters, as
spectators are interested to know where their favorite riders are and how they are faring in
the race, but they also include the team coaches driving alongside the riders. The coaches
use the data from their riders to decide on the tactics of the team.

As such, the aim of our application is to use this variety of collected rider data and visualize
it in an intuitive way. The app should provide coaches with the ability to make decisions in
the race, based on the displayed data. Displaying the right data and displaying the data
in the right way, is the challenge of the application. These issues will be discussed in the
following sections.

2.2.2. Visualization in Sports
With the quick development of technology, the access to all kinds of live data and statistics
is increasing rapidly, and with it are the options for visualization. In their paper about the
state of the art of sports data visualization, Perin et al. [27] specify three categories of sports
data: box-score data, tracking data and metadata. For our application we are mostly inter-
ested in visualizing tracking data, since that is the category under which the live race data
falls. The description given by Perin et al. for Ʌtracking dataɆ is that it is often a series of
spatio-temporal events that consist of multiple dimensions. This is indeed the case for the
data which we use, since the data consists of the location of a rider at a certain point in time
combined with the speed, power, heart rate etc. as the other dimensions of the data. We will
consider how we can apply methods of data mining and smart algorithm methods to aid us
in the creation of our application in accordance with the instructions of the client.

Identifying the type of data that we will be displaying is merely the initial step. The crucial
issue in our application is how to visualize it properly. Proper visualization is especially
important as the team coach needs to be able to quickly analyze the position of the riders
as well as their vital data signs. In their paper about visualizing measurements to improve
performance, Nieuwenhuizen [26] describes different visual analysis tools based on the given
data. One of these tools is a trajectory plot for positional data. This is something we also
need in our application to display the route, riders and comments on a map.

8 2. Research Phase

2.2.3. Effective Data Visualization on Tablets
The application that we build , will mostly be used on tablets. This means that it must be
compatible with a screen that is smaller than a PC screen. In addition to this, the app should
be functional with touch controls. There are some control elements such as dragging and
double clicking that are very hard to use on touchscreens. Therefore, avoiding features such
as these should be an important base of our development process. Another challenge we
face is the balance between showing a lot of data concurrently while keeping the interface
organized. These problems are the reason that some research on data visualization on tablets
is needed.

In their paper about effective data visualization on tablets, Games & Joshi [19] point out
a handful of pitfalls and give some recommendations. We will briefly highlight the ones most
relevant for our application:

Ɋ Avoid overloading on widgets: A large amount of interactive data elements will create
confusion and will make the user have to tap too much to use the application to its full
potential.

Ɋ Avoid adding interactive functionality to numeric quantities: Users do not see num-
bers as interactive elements. Since our application will definitely display a multitude of
numeric values we should take this advice into account.

Ɋ Use tables and charts: This has been proven to be effective, since users find them the
easiest form of visualization to understand.

Due to the chaotic nature of cycling races, it is important for the application to minimize
errors made by the coaches during the races. Coaches must be able to access the most
relevant information quickly and effortlessly. One of the guidelines we will use to ensure
this, is Fittsɂs Law. This law dictates that the time required for a human to accurately move
to a specific control (e.g. a button) depends on the distance to the target control, and the
size of the given control. The law is described in detail in the paper by Fitts [18], and is a
very useful and relevant model to adhere to in modern interface design. We will incorporate
this into our application by ensuring buttons that are likely to be pressed together are close
together, to minimize travel time between the control elements. In addition, we will ensure all
controls and buttons are large and easy to click. An example of this is the action of switching
between riders; instead of having a small button on the rider to move them into focus, the
entire rider card can be clicked, which thus provides a very large control element.

2.3. Existing Solutions 9

2.3. Existing Solutions
In order to develop a tablet-based coach cockpit application, it is important to research ex-
isting tools that provide similar solutions. By familiarizing ourselves with these tools, we can
determine whether a certain feature is useful for our application and in which areas these
other tools are lacking. The tools that will be described in this chapter can be divided into two
categories: Live Data and Evaluation Data. Live data applications, such as Veloviewer Live
[13], are used to display the data of the cyclists during a race. Evaluation data applications,
such as Strava [12] and Veloviewer, are used to visualize the data after the race. In the next
sections, these applications will be described in more detail and we will consider which of
their features are useful for our application.

2.3.1. Strava
Strava is an application for runners and cyclists to track their data using GPS. During train-
ings and races, each cyclist has a Quarq Qollector [10], which is a small box behind the
seatpost, which captures data such as power, heart rate, gear selection, footpod stride rate,
location and speed. After the session, this data can be uploaded to Strava which then displays
a very clear overview of the riderɂs activity. There are many more features, such as making
training plans, connecting with friends and sharing data amongst them, but those are not
really used by the cycling teams. Strava is primarily used to load its data into Veloviewer,
which is described in the next paragraph.

2.3.2. Veloviewer
Veloviewer is an alternative for viewing your Strava data and since it is especially designed
for cycling, it is a better option for the cycling teams. Besides the general data like total
distance, average and maximum speed, cadence, heart rate, energy, etc., there are also some
more advanced features which are described below.

Map This is a very simple but certainly not unimportant feature. It shows not only the
route of the race, but also a 3D-route map of the stage allowing the user to anticipate the
next climb.

Figure 2.1: The race course in Veloviewer

10 2. Research Phase

Data Using the data tab, the user can select any point during the race on a 2D-profile of
the stage, and view his data at that specific point like speed, power, cadence, heart rate, etc.

Figure 2.2: The data of a rider in Veloviewer

Best Splits The best splits tab can be used to discover the userɂs best splits over any
distance or time period. The user can specify a time or distance and it will display their best
splits. When clicking on a specific split (dist/times, speed, heart rate, power, cadence or
elevation gained), it will highlight that part of the race.

Figure 2.3: The best splits in Veloviewer

2.3. Existing Solutions 11

2.3.3. Veloviewer Live
Veloviewer Live is the application that is used during the races. Before the race, way markers
can be added to the route in the teamɂs race hub. This can be feed zones, hazards, sprint
points or anything else of interest. These markers are listed on the right of the screen as a
countdown which updates constantly based on the location of the device. When tapping on
a way marker, more information will be shown. Once the driver is within 5 kilometers, the
way marker goes orange and it will go red when within 2 kilometers. Above the list of way
markers, it displays the distance travelled from the start and the distance to the finish as
well as a coloured profile of the next station of the route based on the gradient of the road.

Figure 2.4: The user interface of Veloviewer Live

Shortcomings Unfortunately, VeloViewer Live does not give the users of the application a
lot of control over exactly what markers they want to use. The selection of markers is dictated
by VeloViewer which limits the teams in their ability to use markers suitable for them. In
addition, VeloViewer Live requires substantial payments for usage which is problematic for
teams on limited resources.

12 2. Research Phase

2.4. Technology Options
In this chapter we will discuss the most relevant technological aspects for our application.
These aspects are:

Ɋ Data Visualization

Ɋ Mapping

Ɋ CSS Framework

Ɋ Front-end framework

Ɋ Back-end framework

2.4.1. Data Visualization
Data visualization is an important part of our application, and picking a suitable library for
this is quite challenging. There are many different options that are all a trade off between
complexity and customizability, but unfortunately some of the best choices are not free.

One of the options is Chart.js [4], a very simple but free library. Unfortunately we believe
this will be too limiting for our purposes and, additionally, does not handle large datasets
well at all. While most of the data per graph will be relatively small, our application will
also be running a map and updating both the map and charts in real-time. This means that
optimal performance is key to getting our application to run well.

Highcharts [9] is a much more powerful and efficient library that we have experience with
from previous projects. This would likely be our choice for this project also, except for one
major downside: Highcharts requires a considerable amount of money to use for commercial
purposes, which we would like to avoid if possible.

Google [7] offers a set of good-looking mobile friendly visualization options that are easy
to use. Unfortunately they are very limited in customization options and require a connec-
tion to Google servers to use. As we already are dependent on Google this may not be a
major problem, but the lack of customizability may be as we need a small number of more
complicated components.

Lastly we have D3 [6], which is a very powerful but complex library. Additionally it is
entirely free and offers many different examples and documentation. We may use this for
at least some of our components, but perhaps we could consider using another library in
addition for some of the less complex components that would benefit more from simplicity.

2.4.2. Mapping
The most common choice for mapping libraries is Google Maps [8]. However, unfortunately
Google Maps is not free and as such we would like to consider different options before settling
for this. Additionally it may not be the most privacy-sensitive option.

Cesium [3] is a powerful library for displaying maps, specifically 3Dmaps and globes. This
is an excellent choice that will give us a huge amount of customizability, as well as being fully
open source which can be helpful in some cases. Unfortunately, Cesium requires payment
for larger companies, and does not offer Street View, which we may need for our application.

2.4.3. CSS Framework
To alleviate some of the CSS-related work, we should find a suitable front-end CSS library for
use in our project. While there are numerous options available, we believe Bootstrap [2] to be
the best choice because of their well-designed grid system. In addition, we have experience
in using Bootstrap, which means we will save ourselves valuable time by using this. Overall
the choice for this library is not the most important as it will only help us set up the layout
and give us a consistent style, we can always customize or replace it if we feel it does not
need our requirements later on in the project.

2.4. Technology Options 13

2.4.4. Front-end Framework
For our front-end framework there are a number of competing choices to consider. For our
choice, we will considering the following points:

Ɋ Experience with the options

Ɋ Speed of loading the page

Ɋ Development velocity

Ɋ Simplicity

One option is to use simple HTML with jQuery. While this will work just fine and provide
us with great speed, as well as being experienced in using this, it will be extremely slow to
develop as we have to write a lot of code that other options will automate for us. On top of
this, the code will grow to be hard to read and make matters even worse. As such we should
consider a different option.

Angular [1] is an option developed by Google that is unfortunately somewhat outdated
already. Most Angular developers seem to dislike the framework a lot and as such, we think
it would be wise for us to stay away from it. It is simply too complicated and slow to develop.

React [11] is developed by Facebook and is very popular. However, React is quite com-
plicated and cannot be easily mixed with regular HTML. This means that our application be
needlessly complex. In addition, React is a very large code base and requires time consuming
compilation to work during development, as well as being slow for loading pages.

Lastly we have Vue [14], which is a small and lightweight framework that will still offer us
numerous benefits by automating tasks and providing a good structure for our code. Page
loads may be slower than plain HTML, but it will help us in improving the simplicity of our
application and, more importantly, significantly speeding up development. Vue can also be
mixed quite well with plain HTML which will help improve page load times and keep simple
parts of the application simple.

2.4.5. Back-end Framework
For our back-end, the main choices available are PHP and Node.js. Both of these have their
advantages and disadvantages. However, we know that our application will be sending live
updates to clients. This is best done using websockets [15], a technology to allow contin-
uous connections between the client and server. These websockets are unfortunately not
supported at all on PHP, which means that we cannot build our application optionally us-
ing PHP. Therefore we will have to use Node.js to host our back-end. This has some other
advantages too, such as ensuring that our back-end can maintain its own connection to a
cloud provider (such as Strava) to collect the data. With Node.js, we will use the well-known
Express library as it is ubiquitous and easy to use. We are also experienced in using this
which will save us some development time.

1
Method

This chapter will outline the way in which we built our application. It is divided into several
parts:

1. Application Outline: A general description of what our application offers.

2. Development Principles: The basis for development process.

3. Technology Options: A brief description of what technologies and libraries we made
use of.

4. Core Features: This section features a description of five of the most important features
in our application. The subsections explain both how the features work technically and
what their function is.

5. Development of User Interface: This section outlines several stages of the user inter-
face and describes why and how it changes throughout the development cycle.

6. Ethical Considerations: During this project, we had to handle some sensitive data. In
this section we will shortly describe the ethical choices we made.

15

16 3. Method

3.1. Application Outline
Our own solution, TelaSol, takes the most desired features of the applications mentioned in
chapter 2, such as VeloViewer (Live) and Strava, while eliminating the most critical flaws.
Our application supports adding comments and viewing them and their distances during a
live race, similar to VeloViewer Live. However, our application allows the user to have full
control over which markers they want to use. Unlike VeloViewer Live, our application will
not come pre-loaded with all of the upcoming races. Instead this is left up to the teams
themselves, giving them greater control and allowing them to add training races.

Additionally, TelaSol builds on the live view by showing the positions of the riders in real-
time. This is a huge improvement over existing solutions which are limited to the position of
the current user, which is typically a coach car. This way, our application can offer greater
insight into the status of the riders and provide the coaches with more useful and accurate
information. There is also a height profile of the race present, which is also synced with the
live display of riders.

Syncing is an important feature of our application. When the application is opened on
two different systems, their playback is fully synced. This means two coaches can follow a
race at the same time.

3.2. Development Principles
For the development of our application, it is important to be responsive to user feedback as
the needs and requirements of our client are constantly changing due to new regulations,
new ideas and innovations in technology. As such we have worked according to the princi-
ples outlined in the Agile Manifesto [21]. We have chosen not to implement the well-known
SCRUM method directly as we feel some of the aspects of this, such as the clearly defined
roles and added process, may hinder our development.

Primarily, we implement the following points in our process:

Ɋ Conduct regular meetings between our project group to collaborate, discuss progress
and (re-)assign tasks.

Ɋ Conduct regular meetings with our coach and customer to adjust our requirements and
ensure our project is meeting the requirements.

Ɋ Maintain a board with issues and tasks that must be completed either in the long term
or in the short term to keep track of our progress. This board is regularly updated to
reflect changing goals and requirements.

Ɋ Ensure our master branch is always a fully functional version of our application so that
we are able to deliver new versions of our application at any moment.

In addition to this process, we have decided to use a pull-based development method that
involves thorough code reviews to ensure our project remains maintainable, consistent and
functional at all times.

3.3. Technology Choices 17

3.3. Technology Choices
3.3.1. Data Visualisation
Due to the shifting focus of our project, we never needed to make use of a data visualisation
library. The only aspect for which we required the use of data visualisation was the height
profile, however, we determined our needs for this to be too specific to use a general purpose
library. We therefore decided to forego the usage of a library here and to implement our own
solution.

3.3.2. Mapping
For the creation of maps, we found that our application needs Street View or an equivalent
to function well. The only offering for such a technology is by Google. We decided that it
would make sense for us to use a full Google technology stack for the mapping aspects of our
project rather than to piece together multiple ones. This lead us to go for the Google Maps
API for our project.

3.3.3. Front-end Framework
Due to the development velocity advantages of Vue, as well as maintaining sufficient simplic-
ity, we found Vue to be the most suitable choice for our project. Therefore we have chosen to
implement our user interface entirely in Vue, with plain HTML mixed in for non-interactive
and static sections.

3.3.4. Back-end Framework
Due to the need for websockets in our projects, PHP was unfortunately not a realistic choice
for our project. Therefore, we went with the most common alternative option of Node.js.
Overall we were quite satisfied with this choice and Node.js was very capable of running our
server on a variety of different platforms and operating systems without much trouble.

3.4. Core features
The five features that will be described in this section are:

1. Distance Calculation: A description of the way we do the distance calculation in the
application.

2. Client & Server Connection: A description of how the client and server interact in the
application.

3. Creation of Comments: A description of how the comment feature works.

4. Height Profile: A description of how we implemented the height profile, our main data
visualization aspect.

5. Data Input & Handling: A description of how the comment feature works.

18 3. Method

3.4.1. Distance Calculation
In the application, there are several points at which a distance between two points needs to
be calculated. Our method will calculate the distance of a rider or the coach car to the finish
or a certain location along the route. The first action performed, is the analysis of the race
route, when it is loaded in. The route of a race is a list of points on the map represented by
coordinates, with the actual route being the line segments that you can draw between those
points.

The first step for our distance calculation method is to calculate the distance to the finish
or last point for every one of the points that make up the race route, this gets saved and we
use it later. This is shown in Figure 3.1. The finish point has a distance to the end of 0. For
each other point, the lengths of each line segment from the finish to that point are summed
up and the distance value is stored in the point.

Figure 3.1: Distance calculation values, line segment lengths are shown under the line segments in red whereas the computed
distance value for each point is shown in black above the point. The rightmost point with red dashed line is the finish.

These distances are used to calculate the distance to the end for the tracked location, but
also when creating the comments.

Since the distance to the tracked location has to be done every second, we originally
decided this had to be done as efficiently as possible. Therefore, we implemented an algorithm
similar to the logarithmic time binary search algorithm, in which we would constantly check
whether the point was closer to the first or last point in the race. Unfortunately, this proved to
be unsuitable for curvy routes. Consequently, we decided to switch to an iterative approach
to find the closest point in linear time. While somewhat less efficient, this method provides
greater accuracy while being performant enough to run at the required speed within the
constraints of our application.

Once the closest point has been found, we look at the next point in the order of the race
route. We do this in order to determine whether the location for which the location is being
calculated, lies before or past the closest point. If the distance to the next point is smaller
than the distance between the closest point and the next point, the location will be past the
closest point. This means the the distance to the closest point needs to be subtracted from
the already calculated distance to the finish that belongs to the closest point, otherwise you
will have to add the distance to it. Since the distance to finish for every comment has been
determined when creating them before starting a race, it is easy to obtain the distance to the
comments by subtracting this value from the calculated distance to the finish of the tracking
location. This process is shown in Figure 3.2, where the grey point is closest to the second
point from the right.

3.4. Core features 19

Figure 3.2: The rider is the grey point, the computed distance is the one of the closest point plus the distance to that point.

3.4.2. Client & Server Connection
An important part of our application is how the client and server communicate together. We
have a few requirements that this part of the application needs to meet:

Ɋ Communication must be relatively low-latency to ensure data is given as close to live as
possible.

Ɋ Data must be be ɂliveɂ, meaning the server needs to be able to send data to the client
when it wants and the client should not have to ask for data periodically.

Ɋ Different clients opening pages at the same time must be synchronized to prevent in-
consistencies in (e.g. to prevent two users adding the same race).

For this, we have designed a global data-flow sequence diagram as shown in Figure 3.3.
This diagram shows the communication between a single client and the server, as well as the
elevation API (using the Google Elevation API) used to retrieve the information for the height
profile and the datastore used to store the race information. The diagram is read from top to
bottom:

1. The server retrieves the race information from the datastore on startup.

2. The client connects and the server immediately sends a list with the basic race infor-
mation.

3. The client creates a new race, which is then confirmed by the server and stored in the
datastore.

4. The client retrieves the elevation map. This is a slow process, during which the client
can input the rest of the race information.

5. The client uploads .fit files for each of the riders, containing information on the route
cycled by the rider.

6. The client saves the race, which is then stored in the datastore by the server.

7. The client has opened the comments page and requested the list of comments, which
are retrieved from the datastore and sent to the client. For a new race, there will not be
any comments initially.

8. The client adds new comments which are immediately stored in the datastore.

We have an additional diagram for the data-flow of the dashboard page. This is described
in Figure 3.4. Note that this diagram describes non-live race data only. One detail not made
clear in the diagram is that the access to the weather API is only done through the server due
to a restriction of the API preventing client-side access. In this case, the server only functions
as a proxy and therefore we have decided to leave this as a separate item in the sequence
diagram.

1. When a client connects to the server, it is sent the initial race information including
the route, comments and list of riders. The client then starts by loading the race and
retrieving the weather information from the weather API.

20 3. Method

2. When one of the clients clicks on play, the server starts sending rider data packets to
all of the clients. These are sent once per second and include the position and other
data (e.g. heart-rate, cadence, power) for each of the riders.

3. When a client changes the playback time, the server starts sending packets starting at
the new playback time. This is changed for all clients.

4. When a client changes the playback speed, the server informs all clients of the changed
playback speed and starts sending data packets at a higher speed.

5. Periodically, the client will retrieve additional weather information from the server.

Figure 3.3: Data flow diagram of the entire application workflow.

3.4. Core features 21

Figure 3.4: Data flow diagram of the dashboard page.

3.4.3. Creation of Comments
To allow coaches to create useful comments about the route of a race we use a combination
of Google Maps and Google Street View. The route of a race is displayed on a map with a
container next to it for Google Street View. This way the user can look at the race route on
the map to identify tricky parts of a race and then visualize them using Google Street View.
Once a user has identified a location of the course that requires special attention, they give
the comment a type, possibly add some extra info as text and then save it. The location of
the comment will then get annotated on the map, both on the comment creation page as well
as on the actual race dashboard screen. When saving a comment the distance to the finish

22 3. Method

of that comment is also calculated and stored, by looking at the closest point of the route
and the distance to it. The final design of the comment screen is shown in Figure 3.5

Figure 3.5: Final version of the comment screen.

Some comment types have unique properties, for example a wind comment provides you
the up-to-date wind speed and direction for the annotated location during a race. The com-
ments that require some extra work when creating are the climb comments, since they are
made up of two parts, a start and a summit. When creating a comment for a climb, the user
will start by selecting the start location of the climb and confirming it. Once the user confirms
the start location of the climb, a prediction algorithm will try to predict where the summit of
the climb is and move the selected location on the map and of the Street View window to the
predicted top of the climb. This prediction algorithm loops through the route of the race in
order, starting from the point closest to the selected start, and it looks for the highest point
coming up. Naturally, this point might be the summit of the climb that the user wishes to
highlight. To make sure this will not be the top of the next climb, a check has been put in
place. This checks that if it is unable to find a higher point than the current highest point
encountered within a reasonable distance of the current highest point, the current highest
point will be the summit. This ensures that the top of the next climb will not be indicated
as the top of this climb. While the top of the next climb might be higher, it still allows for
relatively short, flat or descending sections of a climb. The predicted summit can be verified
by looking at the height profile or by checking with the course information. The summit
location can always be changed if it is not completely accurate or satisfactory to the user.

3.4.4. Height Profile
To visualize the height profile of a race, we start by retrieving and storing the elevation data
for each point of our race. Typically this is several thousands of points. Loading the elevation
data for these is limited by the rate limits of the Google Maps Elevation API. As such, loading
these may take about a minute, depending on the number of points in the race route.

3.4. Core features 23

Figure 3.6: Final version of the height profile without any zoom.

When the heigh profile is drawn, the number of bars depends on the size of the window,
where each bar is 1 pixel wide. In addition, we apply smoothing by averaging the height of
each bar over the neighbouring bar. The exact number of bars used for smoothing varies
based on the number of bars in the race and the zoom level. For a race of 6000 points (with
the default zoom), this is around 30. After smoothing, the slopes are computed for each of
the bars by looking at a few bars ahead and behind. The bars are then colored based on the
computed slope.

To allow users to focus on the most relevant part of the race, we have zooming functionality
built in that will zoom in on the part of the race where the rider currently is. The zoomed in
area will automatically follow the current active rider.

Figure 3.7: Final version of the height profile zoomed in to 4 times.

Lastly we have labelled axes to make it clear where in the race we are and what kind
of distance the height profile is zoomed to. Note that the distance reads from the highest
number on the left to the lowest on the right, as it indicates the distance left and not the
distance from the start of the race.

3.4.5. Data Input & Handling
In the application we make use of two key pieces of input, the race course stored in a
KML/KMZ file and the rider data, which is kept in separate FIT files. The FIT files con-
tain rider data of past races. At the start of the project, there was also the intention of having
live rider data as input, but due to complications with supply of this data from Team Sunweb
this was not possible to implement during the duration of the project.

The race course (KML/KMZ file) has to be entered immediately at the start when you
creating a new race. At this point the file gets read, the relevant data gets extracted, sent to
the server in JSON and the server then stores it in a JSON file. The relevant data for each
point of the entered race course are the coordinates in latitude and longitude, the distance
to the finish and the altitude. The coordinates can directly be read from the KML/KMZ file,
the distance to finish gets calculated point by point using Googleɂs geometry library and the
altitude gets requested for each point using Google Mapsɂs Elevation API.

The rider data that is collected during a race is stored in FIT files, which are used for the
playback function of our application. These files contain data about the rider for each second,
including the riderɂs location, data from bike sensors and possibly data from a physiological
sensor. Initially we opened the files using the program Golden Cheetah [5], in which we
could export it to other file formats. We started by exporting the data to csv files to build
the first prototype of our application, because this was the simplest format available. We

24 3. Method

quickly ran into problems using this format, because it lacked important metadata such as
the exact start time of the riderɂs activity. To fix this issue we exported the data to JSON files
created by Golden Cheetah and used this format instead. Finally when we implemented the
functionality to send the FIT files to the server we decided that it was better to save the FIT
files on the server and parse them using a dependency.

3.5. Development of the User Interface

3.5.1. Initial Design

The initial user interface is displayed in Figure 3.8. Every rider and his corresponding data is
displayed on the right as well as on the map. There are two sliders, big and small, respectively
for the time scale and the speed-up.

Figure 3.8: Initial design of the user interface.

3.5.2. Intermediate Design

A first big change in the design of user interface, was the addition of the height profile of
the course below the map upon clientɂs request (section A.2). Another requested change was
the display of the riders. Instead of showing all riders on the right at the same time, only
one rider can be selected whose data is then shown. Each rider gets a unique color. Each
rider can also be found on the map, indicated by their bike in the corresponding color. The
center function on the map and the position on the height profile are also based on this
rider. The last requested addition was the comment section between the map and the riders.
A screenshot of this design is displayed in Figure 3.9.

3.5. Development of the User Interface 25

Figure 3.9: Intermediate design of the user interface.

3.5.3. Final Design
The final design of the user interface is displayed in Figure 3.10, 3.11 and 3.12 as the ap-
plication contains multiple important screens. Compared with the previous version of the
user interface, many things have changed. First of all, a set-up screen is added to make,
delete and edit races. This is shown in Figure 3.10. Another screen that is added, is the
comment editing screen. This allows the user to mark a specific point on the course. This is
shown in Figure 3.11. The screen of the race itself, is displayed in Figure 3.12. This is the
race dashboard, which was also available in the previous two versions, but now with many
improvements, among which are weather information, height profile zooming, the display of
the comments and the synchronized video.

Figure 3.10: Final design of the set-up page.

	Introduction
	Research Phase
	List of Requirements
	Stage 1
	Stage 2

	Literature Review
	Data in Professional Cycling
	Visualization in Sports
	Effective Data Visualization on Tablets

	Existing Solutions
	Strava
	Veloviewer
	Veloviewer Live

	Technology Options
	Data Visualization
	Mapping
	CSS Framework
	Front-end Framework
	Back-end Framework

	Method
	Application Outline
	Development Principles
	Technology Choices
	Data Visualisation
	Mapping
	Front-end Framework
	Back-end Framework

	Core features
	Distance Calculation
	Client & Server Connection
	Creation of Comments
	Height Profile
	Data Input & Handling

	Development of the User Interface
	Initial Design
	Intermediate Design
	Final Design

	Ethical Considerations

	Interaction with the client
	Rado Dukalski
	Teun van Erp
	Meeting 1: April 26th
	Meeting 2: May 10th
	Midterm Meeting: May 28th

	Software Validation
	Use Cases
	Add comments to a route
	Comment notification
	Analyze using the height profile
	Live weather information
	Analyze using playback option

	Requirements Evaluation
	Stage 1
	Stage 2

	User Interface Questionnaire
	Software Improvement Group
	Unit testing
	System testing

	Conclusion
	Meeting Notes
	Rado
	04-06-2019

	Teun
	26-04-2019
	10-05-2019

	Team Sunweb
	28-05-2019

	SIG Feedback
	Initial Feedback

	Original Project Description
	Technical Guide
	Running the server
	Development or Production mode

	Vue elements
	Race overview page
	Dashboard
	Comments page

	User Guide
	Log in
	Add a race
	Delete or edit a race
	Adding comments to a race
	Adding a climb comment
	Adding a weather comment

	Play a race
	Weather information

	Infosheet
	Bibliography

