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A B S T R A C T

Taxiing aircraft using electric vehicles is seen as an effective solution to meet aviation targets of climate
neutrality. However, making the transition to electric taxiing operations is expected to significantly increase
the electricity demand at airports. In this paper we propose a mixed-integer linear program to schedule
electric vehicles for aircraft towing and battery charging, while considering a limit for the supply of energy.
The objective of the schedule is to maximize emissions savings. For computational tractability, we develop
an Adaptive Large Neighbourhood Search which makes use of multiple local search heuristics to identify
scheduling solutions. For daily scheduling with a small fleet size, the developed heuristic achieves solutions
with an average 4% gap to the best linear programming solution. The results show that charging the vehicles
during daytime is essential to maximize saved emissions: removing charging opportunities for a few hours
during the day reduces the performance by an average of 6.4%. In addition, it is found that fast charging
leads to low vehicle downtime, unless the battery size exceeds 750kWh, when charging rates over 150kW
become unnecessary. Overall, our model provides support for infrastructure planning of airports during the
transition to aircraft electric taxiing.
1. Introduction

The aerospace industry has committed to reducing net greenhouse
gas emissions to zero in the USA and to 10% of 1990 emissions in
the EU by 2050 [1,2]. In addition to emissions produced while flying,
the aerospace industry also produces ground-based emissions. Electric
taxiing is a promising technique for reducing these emissions. In this
work, the focus is on external electric taxi systems, where an electric
towing vehicle (ETV) tows aircraft from gates to runways and vice
versa. Electric towing vehicles are currently operational at several
airports, and are under further development [3]. Their implementation
is expected to reduce taxiing fuel use by up to 80% [4] and thus reduce
the airport emissions of greenhouse gases [5]. This is not only beneficial
for the emission goals of airlines, but also improves air quality and
reduces noise pollution for airport personnel, passengers and residents
of airport surroundings [6].

The technical feasibility of the external ETS has been investigated
in literature, and shown during early implementation. The next step
is to move towards large scale implementation, and to find out . how
many towing vehicles are needed for seamless surface movement. This
requires airport infrastructural planning and a strategy for operational
management of large fleets. Vehicle operation needs to be scheduled,
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taking into account airport routing, flight schedules and electricity use.
A model is needed that creates a daily towing schedule for ETVs to
aircraft. Such a model can be used by airport operators to manage
current or future ETV fleets at airports, and also by airport planners
to consider the infrastructural requirements needed. Below we review
existing studies addressing comparable problems in other domains.

Vehicle fleet scheduling
Many studies have developed models to optimize schedules for a

fleet of vehicles to perform certain tasks. Bunte and Kliewer [7] provide
an overview of modelling approaches and solution strategies from
literature for the vehicle scheduling problem: every vehicle in a fleet
performs a sequence of tasks, and all tasks are covered once. Extensions
to this problem can be the existence of multiple vehicle depots, vehicle
types and time windows. The discussed works aim to minimize fleet
size and/or operational costs. Hoff et al. [8] provide a similar overview,
focusing on the fleet size and mix vehicle routing problem, with many
more possible extensions. Recent examples of studies are: Rahman
and Nielsen [9], who employ a Mixed-Integer Linear Programming
(MILP) model, a Genetic Algorithm and an iterated greedy model for
scheduling automated transport vehicles. The results show that the
vailable online 5 March 2024
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use of the heuristics can increase the utilization of vehicle capacity
and allows for near real-time scheduling of tasks. Alizadeh Foroutan
et al. [10] consider both the routing and the scheduling problem
for a capacitated fixed-size mixed fleet, and aim to minimize CO2
emissions. A Simulated Annealing and Genetic Algorithm formulation
proved to be able to find near-optimal solutions for medium and large-
sized problem instances. Ganji et al. [11] consider a capacitated mixed
fleet problem with time windows and multiple objectives; minimizing
distribution costs, fuel, emissions and delivery tardiness. The authors
use Particle Swarm Optimization, Ant Colony Optimization and Genetic
Algorithms to solve the problem, where the latter showed the best
performance. Andrade-Michel et al. [12] consider the problem of bus
driver scheduling, minimizing the number of buses that cannot be
assigned a driver. The authors compare an MILP approach to a variable
neighbourhood search, and include stochastic simulations of driver
absenteeism. Comparisons to regular models that do not simulate driver
absenteeism show a decrease in operating costs and in driver swaps.

An increasing amount of studies is focusing on scheduling generic
electric vehicles (EVs) for operations and charging. Hiermann et al.
[13] consider a routing problem with a mixed fleet of EVs, where
vehicles are assigned to customers with time windows. They optimize
for the best fleet composition, choices of recharging moments and
locations. Routing is done using labelling algorithms, and schedul-
ing using branch-and-price and a heuristic based on Adaptive Large
Neighbourhood Search (ALNS). Schiffer and Walther [14] solve an
MILP-formulated location routing problem to find charging station lo-
cations, while optimizing for travelling distance, fleet size and number
of stations. Keskin and Çatay [15] apply ALNS to schedule EV tasks with
time windows, and allow partial recharging. In addition to customer
removal and insertion algorithms, the authors also introduce removal
and insertion algorithms for visits to charging stations. Emde et al. [16]
develop heuristics to schedule a fleet of EVs performing round trips
including recharging breaks. They aim to minimize the fleet size and
maximize fairness in workload for EV operators. Their neighbourhood
search heuristic based on operations ‘push’ and ‘swap’ performs best
and can solve problem instances in a few minutes. Frey et al. [17]
solve a vehicle routing and scheduling problem with customer time
windows. In addition to a branch-price-and-cut algorithm introduced
in earlier work, they introduce an ALNS approach. Their approach
allows moving to infeasible solutions, and penalizes such solutions in
the objective function. Several special removal operators based on the
spatial arrangement of customer locations are introduced. Last, Foda
et al. [18] develop a generic optimization model for electric bus fleets,
with a very broad approach, taking into account a mixture of multiple
objectives. Since the authors infer that all system parameters should
be included in the model as system parameters, their model outputs
include charging schedules, but also battery properties and optimal
charging infrastructure parameters.

Fleet scheduling approaches for electric taxiing vehicles
In recent years, several authors have started to research the routing

and scheduling challenges connected to ETV implementation. An im-
portant difference between EV and ETV scheduling is the split between
driving and towing: the speed, road usage, conflict avoidance and time
constraints are different when driving an ETV compared to towing an
aircraft. These aspects introduce additional constraints and complica-
tions that need to be taken into account when creating a realistic model
of airport surface movement with electric taxiing.

One of the first works concerning ETV scheduling is van Baaren and
Roling [19], who create an MILP model minimizing fuel consumption.
The model generates trips that can be performed on one battery charge.
The model is applied to two airports. The fuel savings and electricity
costs are calculated, and the minimum fleet size is ascertained. Soltani
et al. [20] develop an MILP model to assign diesel-powered towing
vehicles to 205 aircraft, and introduce extra variables and constraints
2

to ensure conflict and collision avoidance, while minimizing the sum
of taxiing delay costs, maintenance costs and labour costs. It is found
that the optimal number of vehicles for Montreal-Trudeau International
Airport (CYUL) is 12, reducing taxiing fuel consumption by 95%. Salihu
et al. [21] develop a discrete event simulation for scheduling a year
of ETV operation, with the goal of modelling the taxiway congestion
that can be expected from using electric taxiing. The taxi routes are
calculated in advance. It is assumed that all charging can be done
during the night. It is found that electric taxiing leads to a longer taxiing
time, as the ETVs taxi slower than the aircraft, and the aircraft have
to wait after requesting an ETV. Building on earlier work, Zaninotto
et al. [22] create a real-time simulation to schedule ETVs to aircraft.
Conflict avoidance is performed by slightly delaying aircraft (less than
3 min) where necessary, before selecting the ETV. The model mini-
mizes taxiing delays and route lengths. The ETV state of charge and
recharging are considered throughout the simulation. More than 80% of
flights were assigned to an ETV, with a fleet size of 25% of the airfield
hourly traffic. The tow truck utilization time was 30%. Also building
on their earlier work, van Oosterom et al. [23] develop an MILP and a
greedy model to dispatch multiple types of ETVs to aircraft. Deciding
which ETVs charges when is based on the residual state-of-charge of
the ETVs. The objective of the models is to minimize the fleet size
required to tow all flights in the daily flight schedule. A 5% optimality
gap is obtained by the greedy model compared to the MILP approach.
Applying both models in a rolling horizon approach and using a flight
schedule including historical flight delays, the authors show that 95%
of flights can still be towed by ETVs. Last, Ahmadi and Akgunduz [24]
develop a 1 h rolling horizon MILP model with the goal of showing
the best fleet size to be purchased by airports. The model minimizes
taxiing delay, total taxiing time and fuel consumption. Aircraft can
either be towed or taxi in the regular way. The rolling horizon approach
allows for solving realistic size problems in foreseeable time, and
accommodating for flight disruption during the day. The model does
not consider charging stations and charging times.

Transport electrification at airports
The transport industry has far-reaching ambitions for electrifica-

tion, e.g. the EU will only allow zero-emission vehicles from 2035
onwards [25]. There has been research interest into the electrical
infrastructure requirements to meet such ambitions.

Some authors investigate the option of supplying the electrical grid
with energy from idle EVs, i.e. electric vehicle-to-grid delivery, such
as Mahmud et al. [26] and Li et al. [27]. In a review paper, Uddin et al.
[28] identify this as one of the three major strategies considered in liter-
ature for peak load shaving, along with demand side management, and
making use of energy storage systems (ESS). However, rather than using
EV charge to mitigate demand peaks, such peaks can also occur when
charging these EVs. Solutions suggested in literature include ESSs, bat-
tery swapping [29] and time-based electricity pricing [30]. Generally,
it is expected that the electricity demand will form a temporary bot-
tleneck for certain electrification developments. For example, Forrest
et al. [31], a large scale study of energy infrastructure requirements
for EVs in California, find that smart charging technology such as V2G
and smart energy storage facilities can help provide in energy demands
at off-peak hours. However, they stress that such techniques would
still require a large excess of renewable energy generation in the first
place. Moon et al. [32] estimate future electricity demand due to EVs
in South Korea and determine where and at which time demand peaks
will appear. They predict that current power grid infrastructure in parts
of the country may not be able to cover the predicted demand.

The electricity demand at airports without considering transport
electrification stems mainly from HVAC systems and lighting, report
[33], who describe the main airport energy sources and consumers,
and suggest ways to reduce electricity consumption at airports. Uysal
and Sogut [34] apply a holistic architecture-based approach to airport
energy demand and report large potential savings for light and thermal

management in terminal buildings. In [35] energy demand patterns at
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Santander Airport (LEXJ) are characterized and analysed on a daily
and yearly basis, by studying their electrical load profiles. Current
peak electricity demand for this medium-sized airport does not exceed
600 kW.

However, when accounting for transport electrification, more and
more systems start to make their appeal on the airport electricity
capacity. Electric vehicles charging at airport parking spaces, electri-
fied ground support equipment [36], and electric aircraft [37] are all
expected to contribute to the future electricity demand. Improving the
electricity infrastructure or local power grid to keep up with these
demands will take time. This suggests that it is wise to take into account
that for a certain period the airport might only reserve limited electric-
ity capacity for electric towing, while it is transitioning to sustainable
airport surface movement.

In order to gain insight into the possibilities of electric taxiing under
such circumstances, it is necessary to create a scheduling model that
can adhere to electricity capacity constraints. The model should closely
monitor state-of-charge of ETVs and decide when and where they are
charged. The schedule created by this model should cover a full day
of operation, to find the best schedule given specific daily electricity
capacity profiles for ETV charging. In addition, to emulate realistic
airport scenarios, the model should incorporate practical considerations
such as a realistic airside airport model, ETV connecting/disconnecting
times and conflict avoidance.

To the best of our knowledge, there is no previous work addressing
the issue of the effect of limited electricity capacity at airports on the
expected emission benefits of electric towing. In this paper we propose
two models to assign ETVs to aircraft that take limited electricity
capacity at airports into account. The main contributions of this paper
are:

• We propose an MILP formulation for the ETV-to-aircraft assign-
ment problem, that takes into account a limited electricity ca-
pacity at an airport. The model also tracks the state of charge
and electricity demand of every ETV throughout the day, which
is omitted in the majority of previous works.

• We propose an ALNS method including tailored removal/insertion
heuristics to obtain time-efficient solutions of the full-day ETV-to-
aircraft assignment problem.

• We apply our models for a large airport, and for various ETV
electricity capacity profiles. We investigate the effects of having
a limited electricity capacity on the ETV operations for these
profiles.

The remainder of this paper is divided as follows: Section 2 intro-
duces the ETV scheduling problem and the input data and parameters
required. In Section 3 a model to calculate the emissions savings
from the electric towing distance is described. Section 4 states the
linear programming formulation describing the scheduling problem and
Section 5 describes how this problem is solved using ALNS. Local search
heuristics and notation for the ALNS algorithm are defined, as well as
the local search framework. In Section 6 both models are applied to
various instances of the ETV scheduling problem, to determine their
efficacy, as well as the influence of ETV electricity capacity profiles and
ETV battery properties on the results. Section 7 provides concluding
remarks and future research directions.

2. Problem description and formulation

In this section the problem of scheduling ETVs to tow aircraft is
defined, and the model developed to create the schedule is presented.
The schedule consists of a towing schedule and a charging schedule. The
former defines for each vehicle when it tows which aircraft, and the
latter defines for each vehicle when and where it will be charged. An
arriving or departing aircraft either performs regular taxiing (using
the jet engines) or electric taxiing (being towed by an ETV). The
ETVs tow aircraft, and charge at charging stations to replenish their
3

Fig. 1. Schematic overview of an example airport. Two runways are shown in black.
Grey lines indicate taxiways (𝐸𝑋 ) and thin red lines indicate service roads (𝐸𝑆 ).
Runway entry/exit points R1–R4 are indicated with green circles. Gate group nodes
G1-2 are indicated with blue squares. Charging stations C1-2 are indicated with red
rectangles. The airport traffic in this example consists of towing vehicles 1–6 and two
aircraft.

battery. A limited amount of electricity capacity is assumed available
at the airport for the charging of ETVs. The scheduling problem is
therefore extended with constraints that track the electricity demand
and capacity at discrete time steps. The problem is formulated as a
Mixed Integer Linear Programming (MILP) model.

Airport layout
We assume a taxiing system consisting of service roads (used only

by ETVs at speed 𝑣𝑆 ) and taxiways (used by aircraft or ETV + aircraft
combinations at speed 𝑣𝑋). The taxiing system is represented by a
graph 𝐺, which is the union of a taxiway graph 𝐺𝑋 = (𝑁𝑋 , 𝐸𝑋 ) and a
service road graph 𝐺𝑆 = (𝑁𝑆 , 𝐸𝑆 ). The edges correspond to the service
roads and taxiways, and the nodes correspond to junctions, gate groups
or runway entrance/exit points. The airport is assumed to have 𝑁𝑐𝑠
charging stations for the ETVs, one of which also has the function of
ETV depot 𝑛dp. Fig. 1 shows an example airport with the road types
indicated, as well as nodes for gates, runways and charging stations.
An example of the airport traffic with electric taxiing is shown; towing
vehicle 5 tows an aircraft along a taxiway towards a runway. Vehicle
6 arrives at the runway from a service road to start towing another
aircraft. Vehicle 1 and 4 are charging at charging stations. Vehicle 2
and 3 wait their turn for charging, since in this example the charging
capacity of the stations is limited to that of one vehicle.

Aircraft and ETV routing
The routes taken by the aircraft and vehicles are calculated in

advance. Distances from any node 𝑚 to 𝑛 are calculated using Dijkstra’s
shortest path algorithm, and are indicated on 𝐺𝑋 with 𝑑𝑋 (𝑚, 𝑛), and on
𝐺𝑆 with 𝑑𝑆 (𝑚, 𝑛). The schedule is created for a time period 𝑃 , which
spans the interval [𝑡𝑠, 𝑡𝑒]. The set of 𝑁𝐹 ,𝑆 aircraft arriving or departing
at the airport within this period form the set 𝐴𝑆 . From the flight
schedule, the scheduled landing time (SLDT) of arriving flights and the
scheduled off-block time (SOBT) of departing flights are collected. They
are the pick-up time 𝑡𝑝𝑎 of aircraft 𝑎, the moment an ETV starts towing
the aircraft. The moment an ETV stops towing the aircraft is referred
to as the drop-off time 𝑡𝑑𝑎 , and is calculated as:

𝑡𝑑𝑎 = 𝑡𝑝𝑎 + 𝑑𝑋 (𝑛𝑝𝑎, 𝑛
𝑑
𝑎 )∕𝑣

𝑋 = 𝑡𝑝𝑎 + 𝑡𝑋 (𝑛𝑝𝑎, 𝑛
𝑑
𝑎 ), ∀𝑎 ∈ 𝐴𝑆 , (1)

with 𝑡𝑋 (𝑛𝑝𝑎, 𝑛𝑑𝑎 ) the towing time for aircraft 𝑎, and 𝑛𝑝𝑎 and 𝑛𝑑𝑎 its pick-up
and drop-off nodes, respectively. They correspond to the gate or runway
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𝑡

t
𝐸
t

where the pick-up or drop-off takes place, which are taken from the
flight schedule. The towing distance for any aircraft 𝑎 ∈ 𝐴𝑆 is denoted
with the shorthand 𝑑𝑋𝑎 = 𝑑𝑋 (𝑛𝑝𝑎, 𝑛𝑑𝑎 ).

All ETVs start and end the period 𝑃 at the depot 𝑛dp. For every
towing task, an ETV 𝑣 assigned to aircraft 𝑎 travels to the pick-up node
𝑛𝑝𝑎, and arrives at 𝑡𝑝𝑎 − 𝑡𝑐 . There the ETV connects to the aircraft, which
takes a time of 𝑡𝑐 . Between 𝑡𝑝𝑎 and 𝑡𝑑𝑎 the ETV tows aircraft 𝑎, and upon
arrival the ETV disconnects from the aircraft until 𝑡𝑑𝑎 + 𝑡𝑐 . Then the ETV
travels towards its next towing task or a charging station. The travel
time for a non-towing ETV from node 𝑚 to 𝑛 is given as:

𝑆 (𝑚, 𝑛) = 𝑑𝑆 (𝑚, 𝑛)∕𝑣𝑆 , ∀𝑚, 𝑛 ∈ 𝑁𝑆 (2)

The fleet of ETVs is denoted as 𝑉 and has size 𝑁𝑉 . For a more detailed
description of the electric towing procedure, we refer to Zoutendijk
et al. [38].

Aircraft route conflicts need to be avoided. We say an aircraft has
a route conflict when (a) an aircraft is using the same node or edge
as an another aircraft at the same time, or (b) an aircraft is violating
the minimum separation time 𝑡𝑠𝑒𝑝; the taxiing time between it and an
aircraft taxiing in front of it. Deconflicting routes is done for all aircraft
in 𝐴𝑆 at the same time, before making the ETV-to-aircraft schedule: the
routes for all aircraft in 𝐴𝑆 are calculated. Then, we iterate through
the time period 𝑃 in time steps of size 𝑡𝑠𝑒𝑝. At any time step, for every
aircraft 𝑎 ∈ 𝐴𝑆 , we check whether another aircraft is planned to (a)
occupy the same node as aircraft 𝑎 or (b) approach aircraft 𝑎 on a one-
directional edge in 𝐸𝑋 . In that case aircraft 𝑎 is held at its previous
node until it can proceed without a conflict with any other aircraft and
the separation time is respected.

It is assumed that there is no taxiing delay for the aircraft, except
due to deconflicting routes. For the ETVs it is assumed that decon-
flicting is not required, since the service roads are assumed to provide
enough opportunities of passing other vehicles, and no separation time
is required.

Electricity model for electric towing vehicles (ETVs)
The state of charge (SOC) of each ETV 𝑣 is tracked during the

time period 𝑃 . This requires a battery capacity 𝑄, determined by the
specifications of the ETV, a charging rate 𝑃 𝑐 , determined by the spec-
ifications of the ETV and the charging station used, and a discharging
rate. The discharging rate can be obtained by considering the power
needed to drive an ETV, and to tow an aircraft. This power can be
found using the mass, velocity and rolling resistance of the vehicle and
aircraft. The power consumed by an ETV during towing at speed 𝑣𝑋

is denoted as 𝑃𝑋 , and the power consumed during driving at speed
𝑣𝑆 is denoted as 𝑃 𝑆 . In this work the ETVs are assumed to travel at
constant speed, without accounting for acceleration and deceleration.
The energy consumption of the ETV for any (part of a) route is found
using the power and the time taken to traverse the route.

In addition to the characteristics of the ETV, we define the elec-
tricity capacity of the airport charging network. The electricity that
is available at the airport for various electrical processes throughout
the day is referred to as the electricity capacity profile. The processes
unrelated to ETV charging require a part of the electricity capacity.
Subtracting this demand from the electricity capacity profile yields the
electricity capacity profile for ETVs. This is the airport electricity capacity
that is specifically available to charge ETVs. In order to keep track of
the electricity demand at different times of day we divide the time
period 𝑃 in 𝑁𝑇 = 144 time steps 𝑡 of length 𝛥 = 10 min. The start
of each time step is the time associated with the time step, e.g. 𝑇0 = 𝑡𝑠

and 𝑇𝑁𝑇 −1 = 𝑡𝑒 − 𝛥. The electricity capacity for ETVs at time step 𝑡 is
4

then denoted as 𝐶𝑡. i
3. Emissions saved by electric taxiing

Several studies determine the amount of fuel or emissions spent us-
ing aircraft taxiing and other airport surface movement, e.g. [39], who
find an average of 75% reduction in fuel use when towing with diesel-
powered tugs compared to regular taxiing, van Baaren and Roling [19],
who arrive at 82% reduction for a large airport and 65% for a small
airport, and Dzikus et al. [40], who find an average fuel saving of 2.4%
of total flight fuel. In this section, we derive the amount of emissions
saved per kilometre of self-taxiing that is replaced by electric towing.
We consider the following assumptions:

• When calculating the emissions avoided by using electric towing,
we consider only the emissions avoided by consuming less jet fuel.
In this work we focus on CO2 emissions.

• We consider towing vehicles that are electric battery-powered.
• The amount of emissions per km taxiing varies with the size

of the aircraft. In this section, we calculate a value based on
narrow-body aircraft, which is a lower bound for the actual value
considering the mix of aircraft at the airport.

• When calculating the energy spent by ETVs, we consider only
the energy spent while towing aircraft, since towing aircraft
takes many times more energy than driving. This can be seen by
comparing towing and driving power in Section 6.

Gross taxi emissions saved
We are interested to find an estimation for the emissions saved by

towing an aircraft for 1 km instead of it self-taxiing that distance. We
start with finding the fuel spent while self-taxiing an aircraft.

From the work of Zhang et al. [41] we obtain that an A320 aircraft
spends 88.0 kg jet fuel when taxiing a 2.5 km route at Shanghai Pudong
Airport (ZSPD). In this calculation, acceleration, deceleration and idling
have been included. Using these values leads to a value of 35.2 kg of
jet fuel per km of taxiing for a narrow-body aircraft.

It is known that using jet fuel in an aircraft engine leads to 3.16 kg
CO2 per kg of jet fuel, see e.g. [42]. This leads to an emission saving
of 111 kg CO2 per km of taxiing.

𝐶𝐺
km = 𝐶kg CO2

𝐹tow∕𝑑 = 111 kg CO2 , (3)

where 𝐶𝐺
km is the gross amount of emissions saved per km taxiing,

𝐶kg CO2
the amount of emissions per kg jet fuel, 𝐹tow the average

amount of jet fuel used during one towing event, and 𝑑 the taxied
distance during this towing event.

Net taxi emissions saved
From the flight schedule for 27-12-2021 at Schiphol [43] we obtain

an average taxiing distance of 3.79 km. From the energy consumption
model in Section 2, we find that the energy needed for an average tow
of a narrow-body aircraft at Schiphol is 19.9 kWh. From Scarlat et al.
[44] we obtain that the carbon intensity of electricity generation in
Europe was 0.334 kg CO2/kWh in 2019. This means that during the
generation of the electricity needed to tow an aircraft for 1 km, 1.75 kg
CO2 is emitted. In summary, under the assumptions described above,
we obtain that for each km of electric towing, 109 kg CO2 is saved
when comparing the process of electric taxiing to self-taxiing. In this
paper, we will use this value to calculate emission savings obtained
from distances travelled using electric towing.

𝐶𝑁
km = 𝐶𝐺

km − 𝐶𝐸
km = 𝐶𝐺

km −
𝐸tow𝐸el

𝑑av
= 111 − 1.75 = 109 kg CO2 , (4)

where 𝐶𝑁
km is the net amount of emissions saved per km taxiing, 𝐶𝐸

km
he amount of emissions spent generating electricity per km taxiing,
tow the energy needed for an average narrow-body aircraft tow, 𝑑av

he average towing distance per aircraft movement, and 𝐸el the carbon
ntensity of electricity generation.



Energy 294 (2024) 130924M. Zoutendijk and M. Mitici

t

4

(
a
t

𝑎

e
𝐴
n

𝑞

w

t

i

𝐴

m
d

𝑥

𝑥

Total flight emissions
In addition to estimations of the absolute amount of emissions saved

using this technology, it is insightful to obtain an estimate for the
effect of optimizing the emission savings of electric towing on the total
flight emissions. An example of total fuel consumption of a narrow-
body, medium-haul flight is given in [45]: an A320 aircraft on a flight
between Los Angeles and New York uses 11.6 tons of jet fuel. If we
assume two taxiing events similar to the one at Shanghai Airport,
and note again that CO2 emissions are directly proportional to fuel
consumption through the factor 3.16, we obtain that using electric
taxiing saves 1.5% of the total flight emissions for this flight example:
𝐶saved
𝐶total

=
2𝐹tow
𝐹total

= 2 ⋅ 88.0
11.6 ⋅ 103

= 1.5%, (5)

with 𝐶saved
𝐶total

the fraction of saved total flight emissions, and 𝐹total the

otal fuel consumption spent on the indicated flight.

. Mathematical formulation for vehicle-to-aircraft scheduling

In this section we formulate the mixed-integer linear program
MILP) for ETV-to-aircraft assignment, adapted from [46]. Note that
glossary with terms and notation used in this work can be found in

he appendix.
First, we introduce a set of 𝑁𝑉 artificial aircraft 𝐴𝑒. The aircraft

∈ 𝐴𝑒 have 𝑛𝑝𝑎 = 𝑛𝑑𝑎 = 𝑛dp, 𝑑𝑋𝑎 = 0 and 𝑡𝑑𝑎 = 𝑡𝑝𝑎 = 𝑡𝑒. Such artificial
aircraft are necessary to enforce a state of charge value for every vehicle
𝑣 at the end time 𝑡𝑒. All artificial aircraft will always be scheduled for
lectric towing, at no cost. The set of all aircraft will be denoted as
= 𝐴𝑆 ∪ 𝐴𝑒 with size 𝑁𝐹 = 𝑁𝐹 ,𝑆 + 𝑁𝑉 . Furthermore, we introduce

otation describing various quantities of energy, required in the MILP:

𝑞𝑋 (𝑎) = 𝑃𝑋 𝑡𝑋 (𝑛𝑝𝑎, 𝑛
𝑑
𝑎 ) ∀𝑎 ∈ 𝐴, (6)

𝑆 (𝑛, 𝑚) = 𝑃 𝑆 𝑡𝑋 (𝑛, 𝑚) ∀𝑚, 𝑛 ∈ 𝑁𝑆 , (7)

𝑞𝑆 (𝑎, 𝑏) = 𝑞𝑆 (𝑛𝑑𝑎 , 𝑛
𝑝
𝑏) ∀𝑎, 𝑏 ∈ 𝐴, (8)

𝑞𝑆𝑓 (𝑎) = 𝑞𝑆 (𝑛dp, 𝑛
𝑝
𝑎) ∀𝑎 ∈ 𝐴, (9)

𝑞𝐶 (𝑎, 𝑏) = min𝑖≤𝑁cs{𝑞
𝑆 (𝑛𝑑𝑎 , 𝑛cs,𝑖) + 𝑞𝑆 (𝑛cs,𝑖, 𝑛

𝑝
𝑏)} ∀𝑎, 𝑏 ∈ 𝐴, (10)

𝑞𝐶1 (𝑎) = min𝑖≤𝑁cs{𝑞
𝑆 (𝑛cs,𝑖, 𝑛

𝑝
𝑎)} ∀𝑎 ∈ 𝐴, (11)

𝑞𝐶2 (𝑎) = min𝑖≤𝑁cs{𝑞
𝑆 (𝑛𝑑𝑎 , 𝑛cs,𝑖)} ∀𝑎 ∈ 𝐴, (12)

𝑡𝐶 (𝑎, 𝑏) = max(𝑡𝑝𝑏 − 𝑡𝑑𝑎 − 𝑡𝑆 (𝑛𝑑𝑎 , 𝑛
𝑝
𝑏) − 2𝑡𝑐 , 0) ∀𝑎, 𝑏 ∈ 𝐴, (13)

ith 𝑞𝑋 (𝑎) the energy needed to tow aircraft 𝑎 on 𝐺𝑋 , 𝑞𝑆 (𝑛, 𝑚) the
energy needed by an ETV to travel from node 𝑛 to 𝑚 on 𝐺𝑆 , 𝑞𝑆 (𝑎, 𝑏) the
energy needed by an ETV to travel from the dropoff point of aircraft 𝑎
o the pickup point of aircraft 𝑏 on 𝐺𝑆 , 𝑞𝑆𝑓 (𝑎) the energy needed by

an ETV to travel from the depot 𝑛dp to the pickup point of aircraft
𝑎, 𝑞𝐶 (𝑎, 𝑏) the minimal energy needed by an ETV to travel from the
dropoff point of aircraft 𝑎 to the pickup point of aircraft 𝑏 on 𝐺𝑆 , via a
charging station 𝑛cs,𝑖, 𝑞𝐶1 (𝑎) the energy needed by an ETV to travel from
the closest charging station to the pickup point of aircraft 𝑎, 𝑞𝐶2 (𝑎) the
energy needed by an ETV to travel from the dropoff point of aircraft
𝑎 to the closest charging station, and 𝑡𝐶 (𝑎, 𝑏) the time between towing
consecutive aircraft 𝑎 and 𝑏 that is freely available to the ETV towing
them.

Using 𝑡𝐶 (𝑎, 𝑏) and the set of aircraft 𝐴, we define:

𝐴out
𝑎 = {𝑏 ∈ 𝐴 ∶ 𝑡𝐶 (𝑎, 𝑏) > 0} ∀𝑎 ∈ 𝐴,

(14)
𝐴in
𝑎 = {𝑏 ∈ 𝐴 ∶ 𝑡𝐶 (𝑏, 𝑎) > 0} ∀𝑎 ∈ 𝐴,

(15)
𝐴PC
𝑎 = {𝑏 ∈ 𝐴out(𝑎) ∶ 𝑞𝐶 (𝑎, 𝑏) − 𝑞𝑆 (𝑎, 𝑏) < 𝑃 𝑐 (𝑡𝐶 (𝑎, 𝑏) − 𝑡𝐶min)} ∀𝑎 ∈ 𝐴.

(16)
5

Here 𝐴out
𝑎 is the set of aircraft that can be towed by an ETV after it tows

aircraft 𝑎, 𝐴in
𝑎 is the set of aircraft that can be towed by an ETV before

t tows aircraft 𝑎, and 𝐴PC
𝑎 is the set of aircraft that can be towed by

an ETV after it tows aircraft 𝑎 and for which there is at least 𝑡𝐶min time
in between for effective charging, which is charging that occurs after
the energy loss due to the rerouting to the charging station has been
replenished. The time 𝑡𝐶min is called the minimum charging time. Note that

PC
𝑎 ⊆ 𝐴out

𝑎 .
For brevity, define 𝑣𝑎 as the vehicle 𝑣 that tows aircraft 𝑎. Further-

ore, we define 𝑀 ∈ R as a large number. We consider the following
ecision variables:

𝑎𝑏 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑎, 𝑏 ∈ 𝐴 are towed consecutively

0 else
(17)

𝑥𝑓𝑎 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑎 ∈ 𝐴 is the first aircraft an ETV tows

0 else
(18)

𝑥𝑙𝑎 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑎 ∈ 𝐴 is the last aircraft an ETV tows

0 else
(19)

𝑞𝑎 ∈ [𝑞𝑋 (𝑎), 𝑄] ETV state of charge at the start of towing 𝑎 ∈ 𝐴
(20)

𝑐𝑎 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if after towing aircraft 𝑎, the ETV travels to a

charging station and is charged

0 else

(21)

𝑐𝑡𝑎 ∈ [0, 𝑄∕𝑃 𝑐 ] charging time of ETV 𝑣𝑎 (22)

𝑐𝑠𝑎 ∈ 𝑇 start time of charging of ETV 𝑣𝑎 (23)

𝛼𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

1 if charging of ETV 𝑣𝑎 starts earlier than timestep 𝑡

0 else
(24)

𝛽𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

1 if charging of ETV 𝑣𝑎 finishes later than timestep 𝑡

0 else
(25)

𝛾𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

1 if ETV 𝑣𝑎 is charged during timestep 𝑡

0 else
(26)

𝑦𝑎 =

⎧

⎪

⎨

⎪

⎩

1 if 𝑎 ∈ 𝐴 is towed by an ETV

0 if 𝑎 ∈ 𝐴 is taxiing by itself
(27)

The objective function and constraints are given by:

max
,𝑞,𝑦,𝑐

∑

𝑎∈𝐴
𝑑𝑋𝑎 𝑦𝑎, (28)

s.t. 𝑥𝑓𝑎 +
∑

𝑏∈𝐴in
𝑎

𝑥𝑏𝑎 = 𝑦𝑎 ∀𝑎 ∈ 𝐴, (29)

∑

𝑏∉𝐴in
𝑎

𝑥𝑏𝑎 = 0 ∀𝑎 ∈ 𝐴, (30)

𝑥𝑙𝑎 +
∑

𝑏∈𝐴out
𝑎

𝑥𝑎𝑏 = 𝑦𝑎 ∀𝑎 ∈ 𝐴, (31)

∑

𝑏∉𝐴out
𝑎

𝑥𝑎𝑏 = 0 ∀𝑎 ∈ 𝐴, (32)

𝑞𝑎 ≤ 𝑥𝑓𝑎 (𝑄 − 𝑞𝑆𝑓 (𝑎)) +𝑄(1 − 𝑥𝑓𝑎 ) ∀𝑎 ∈ 𝐴, (33)
𝑓 𝑆 𝑓
𝑞𝑎 ≥ 𝑥𝑎 (𝑄 − 𝑞𝑓 (𝑎)) −𝑄(1 − 𝑥𝑎 ) ∀𝑎 ∈ 𝐴, (34)
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𝑞𝑏 ≤ 𝑞𝑎 − 𝑥𝑎𝑏(𝑞𝑋 (𝑎) + 𝑞𝑆 (𝑎, 𝑏))

+𝑄(1 − 𝑥𝑎𝑏)
∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴out

𝑎 ⧵ 𝐴PC
𝑎 ,

(35)
𝑞𝑏 ≥ 𝑞𝑎 − 𝑥𝑎𝑏(𝑞𝑋 (𝑎) + 𝑞𝑆 (𝑎, 𝑏))

−𝑄(1 − 𝑥𝑎𝑏)
∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴out

𝑎 ⧵ 𝐴PC
𝑎 ,

(36)
𝑞𝑏 ≤ 𝑞𝑎 − 𝑥𝑎𝑏(𝑞𝑋 (𝑎) + 𝑞𝐶 (𝑎, 𝑏))

+(1 − 𝑐𝑎)(𝑞𝐶 (𝑎, 𝑏) − 𝑞𝑆 (𝑎, 𝑏))

+𝑃 𝑐𝑐𝑡𝑎 +𝑄(1 − 𝑥𝑎𝑏)

∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴PC
𝑎 , (37)

𝑞𝑏 ≥ 𝑞𝑎 − 𝑥𝑎𝑏(𝑞𝑋 (𝑎) + 𝑞𝐶 (𝑎, 𝑏))

+(1 − 𝑐𝑎)(𝑞𝐶 (𝑎, 𝑏) − 𝑞𝑆 (𝑎, 𝑏))

+𝑃 𝑐𝑐𝑡𝑎 −𝑄(1 − 𝑥𝑎𝑏)

∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴PC
𝑎 , (38)

𝑁𝑉 ≥
∑

𝑎∈𝐴
𝑥𝑓𝑎 , (39)

𝑦𝑎 = 1 ∀𝑎 ∈ 𝐴𝑒, (40)

𝑞𝑎 ≥ 𝑞𝑒 ∀𝑎 ∈ 𝐴𝑒, (41)

𝑐𝑠𝑎 ≥ 𝑡𝑑𝑎 + 𝑡𝑐 + 𝑞𝐶2 (𝑎)∕𝑃
𝑆 −𝑀(1 − 𝑐𝑎) ∀𝑎 ∈ 𝐴, (42)

𝑐𝑠𝑎 + 𝑐𝑡𝑎 ≤ 𝑡𝑝𝑏 − 𝑡𝑐 − 𝑞𝐶1 (𝑏)∕𝑃
𝑆

+𝑀(1 − 𝑥𝑎𝑏) +𝑀(1 − 𝑐𝑎)
∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴out

𝑎 , (43)

𝑐𝑡𝑎 ≥ 𝑡𝐶min𝑐𝑎 ∀𝑎 ∈ 𝐴, (44)

𝑐𝑡𝑎 ≤
∑

𝑏∈𝐴PC
𝑎

𝑥𝑎𝑏𝑡
𝐶 (𝑎, 𝑏) ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴PC

𝑎 , (45)

𝑐𝑎 ≥ 𝑀−1𝑐𝑡𝑎 ∀𝑎 ∈ 𝐴, (46)

𝑐𝑠𝑎 ≤ 𝑇𝑡 + 𝛥 +𝑀(1 − 𝛼𝑎𝑡) ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (47)

𝑐𝑠𝑎 ≥ 𝑇𝑡 + 𝛥 −𝑀𝛼𝑎𝑡 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (48)

𝑐𝑠𝑎 + 𝑐𝑡𝑎 +𝑀(1 − 𝛽𝑎𝑡) ≥ 𝑇𝑡 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (49)

𝑐𝑠𝑎 + 𝑐𝑡𝑎 −𝑀𝛽𝑎𝑡 ≤ 𝑇𝑡 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (50)

𝛾𝑎𝑡 ≥ 𝛼𝑎𝑡 + 𝛽𝑎𝑡 − 1 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (51)

𝛾𝑎𝑡 ≤ 𝛼𝑎𝑡 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (52)

𝛾𝑎𝑡 ≤ 𝛽𝑎𝑡 ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝑃 , (53)

𝑃 𝑐
∑

𝑎∈𝐴
𝛾𝑎𝑡 ≤ 𝐶𝑡 ∀𝑡 ∈ 𝑃 . (54)

The objective (28) is to maximize the total towing distance by the
TV fleet. Constraints (29) and (31) ensure that every aircraft 𝑎 that
s towed by an ETV, is either the first (last) to be towed by an ETV,
r has another aircraft 𝑏 preceding (following) it. Constraints (30) and
32) ensure that any aircraft 𝑏 cannot precede (follow) aircraft 𝑎, if
∉ 𝐴in

𝑎 (𝐴out
𝑎 ). Constraints (33) and (34) set the state of charge of

ll vehicles at the start of their first towing task. Constraints (35)–
38) set the new state of charge of a vehicle after towing aircraft
. Constraints (35)–(36) concern towing an aircraft without charging
fterwards and Constraints (37)–(38) concern towing and charging.
onstraint (39) enforces the fleet size of 𝑁𝑉 . Constraints (40)–(41)
efine the artificial flights in 𝐴𝑒. Constraints (42)–(43) set the earliest
ime for a charging period to start and the latest time for it to end.
onstraints (44)–(45) set the bounds for the charging time, based on the
inimum charging time 𝑡𝐶min and the maximum possible charging time

or the aircraft 𝑎 and 𝑏. Constraint (46) sets the charging indicator 𝑐𝑎 to
1 if the charging time 𝑐𝑡𝑎 is strictly positive. Finally, Constraints (47)–
(53) keep track of the time steps during which an ETV is being charged,
so that this can be limited to the electricity capacity for ETVs at time
step 𝑡 with Constraint (54).

The MILP is solved using Gurobi. Recall that the goal is to create
an ETV-to-aircraft schedule for a full day. The number of constraints
in the model is bounded by 9𝑁𝐹 + 6𝑁𝐹 2 + 2𝑁𝑉 + 7𝑁𝐹𝑁𝑇 +𝑁𝑇 . The
6

MILP model is expected to have a large runtime. An effective way to s
reduce the number of constraints is to adapt Eqs. (14)–(15) in such a
way that an aircraft 𝑏 that is scheduled more than e.g. a few hours later
than aircraft 𝑎 will not appear in 𝐴out

𝑎 . Nevertheless, the number of con-
straints grows roughly quadratically with 𝑁𝐹 . Solving the MILP model
is feasible for time periods of a few hours, but becomes intractable for
periods 𝑃 longer than 8 h. Another approach is necessary, and such an
approach will be introduced in the following section.

5. An ALNS approach to electricity capacitated ETV scheduling

The MILP formulation introduced in Section 4 is not able to provide
a solution for problem instances of a full day. To find such solutions, we
present here a heuristics-based approach to the ETV-to-aircraft assign-
ment problem. The approach is based on the framework of Adaptive
Large Neighbourhood Search (ALNS), originally developed by Ropke
and Pisinger [47].

ALNS algorithms work by removing a relatively large part of a
given solution, and then building a new solution with new values.
Which part of the solution is removed or inserted is governed by
several removal and insertion heuristics, respectively. It is desirable to
explore new solutions without getting stuck in local minima. The local
search framework ensures that not all candidate solutions obtained are
accepted.

The ALNS metaheuristic has been chosen because of the possibility
to develop insertion and removal heuristics tailored to the problem.
For the ETV scheduling problem, it is important to keep precise track
of the locations and state of charge of every vehicle. Furthermore,
the scheduled tasks have a fixed time, and cannot be reordered, nor
can the problem be split in parts without compromising the goal of
investigating the effects of the electricity capacity on the effectivity
of operations throughout the whole day. This reduces the options for
decomposition or relaxation of the problem, on which many other
heuristics are based.

5.1. Adapting ALNS for ETV to aircraft scheduling

The ALNS algorithm cannot be used directly for the ETV-to-aircraft
scheduling problem. Some alterations and definitions are necessary,
and are discussed in this section.

First, we define a solution 𝑠, representing a towing schedule, as a
ector of the decision values introduced in Section 2. The objective
alue associated with 𝑠 is denoted as 𝑓 (𝑠), and calculated as in Eq. (28).
lgorithm 1 shows the procedure followed in the ALNS algorithm,
dapted from Ropke and Pisinger [47] and Pisinger and Ropke [48].
n this section, the steps in the algorithm are clarified.

easible steps
The removal and insertion heuristics select certain aircraft from a

iven solution 𝑠 to remove or insert. The aircraft are then removed
r inserted sequentially, if the resulting solution is feasible. Not all
ircraft can be readily removed from the solution or added to it,
ithout breaking some of the Constraints (29)–(54), most pertinently
onstraints (41), (44), and (54). This means that when applying a
euristic, it should be known for every aircraft whether it may or
ay not be removed or inserted from the current schedule. We view

he situation after removing or inserting any single aircraft as a new
olution step. These steps are not stored during the ALNS algorithm.
hile applying the removal and insertion requests from the heuristic,

he algorithm first calculates whether it is allowed for an aircraft to be
nserted or removed from the current solution step, and if it is not, the
ircraft is skipped. If it is allowed, the insertion or removal is executed,
nd the relevant decision variables are changed. At any point during the
lgorithm, the set of aircraft that are allowed to be removed is denoted
s 𝐴rem, and the set of aircraft that are allowed to be inserted into the

ins
chedule of vehicle 𝑣 is denoted as 𝐴𝑣 .
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Algorithm 1 Adaptive Large Neighborhood Search for ETV-to-aircraft
assignment
Require: 𝑠𝑖 initial solution (Section (5.1)), 𝑁−, 𝑁+ number of re-

moval and insertion heuristics, 𝜎1, 𝜎2, 𝜎3 score values, 𝑁 seg segment
length.

1: 𝑠𝑏 = 𝑠𝑙 = 𝑠𝑖, 𝑠all = {𝑠𝑙}.
2: 𝜋̄− = 𝜋− = [1∕𝑁−, ..., 1∕𝑁−], 𝜋̄+ = 𝜋+ = [1∕𝑁+, ..., 1∕𝑁+].
3: for 𝑘 = 1, 2, ..., 𝑁it do
4: Select removal and insertion heuristic ℎ+𝑖 and ℎ−𝑗 using 𝜋+ and

𝜋− (Section (5.2.2)-(5.2.3)).
5: 𝑠𝑐 = ℎ+𝑖 (ℎ

−
𝑗 (𝑠

𝑙))
6: if 𝑓 (𝑠𝑐 ) > 𝑓 (𝑠𝑏) then
7: 𝑠𝑏 = 𝑠𝑙 = 𝑠𝑐 . 𝑠all = 𝑠all ∪ 𝑠𝑙.
8: 𝜋̄+

𝑖 += 𝜎1, 𝜋̄−
𝑗 += 𝜎1

9: else if 𝑠𝑐 not in 𝑠all and 𝑓 (𝑠𝑐 ) > 𝑓 (𝑠𝑙) then
10: 𝑠𝑙 = 𝑠𝑐 . 𝑠all = 𝑠all ∪ 𝑠𝑙.
11: 𝜋̄+

𝑖 += 𝜎2, 𝜋̄−
𝑗 += 𝜎2

12: else if 𝑠𝑐 not in 𝑠all and 𝑠𝑐 is accepted (Section (5.3)) then
13: 𝑠𝑙 = 𝑠𝑐 . 𝑠all = 𝑠all ∪ 𝑠𝑙.
14: 𝜋̄+

𝑖 += 𝜎3, 𝜋̄−
𝑗 += 𝜎3

15: end if
16: if mod(𝑘,𝑁 seg) = 0 then
17: Calculate 𝜋− and 𝜋+ (Section 5.2.1)
18: end if
19: end for

When an aircraft 𝑎 is added to the towing schedule of an ETV,
he total energy required by that ETV will increase. To make sure
hat Constraint (41) is respected, the vehicle should recharge longer.
n existing charging period is selected and lengthened where allowed

w.r.t Constraint (54)). If there is no charging period that can be
engthened, the addition of 𝑎 is not allowed. Similarly, when removing

an aircraft 𝑎, a charging period should be shortened. In that case it
is important that Constraint (44) is still respected for each charging
period.

Moving charging periods
Note that the removal and insertion heuristics can only lengthen

and shorten existing charging periods. The heuristics cannot be used
to move a charge period within the time period, or split or merge
charging periods. For this reason, the model might not be able to
reach all feasible (and possibly better) solutions. To make this possible,
the model includes a procedure to change charging periods within
schedules.

For every pair of aircraft that are towed consecutively, we name
the period of time in between the task gap. A task gap can contain a
charging period. When (a part of) a charging period is moved from one
task gap to another, the former is named the donator and the latter the
receiver. For every existing charging period, we calculate the amount
of charge that may be moved to a different task gap. This amount is
named the available charge. Here we take into account the minimum
charging time 𝑡𝐶min of both the receiver and donator task gaps, as well
as the bounds for the state of charge 𝑞𝑎 of the vehicle at its arrival
at any of the aircraft it will tow. From all existing charging periods
with positive available charge, one is selected randomly. The available
charge is moved from the donator to the receiver by changing the
associated decision variables. If none of the charging periods have pos-
itive available charge, no changes are made. In every ALNS iteration 𝑘,
this procedure is performed ⌈0.2𝑁𝑉

⌉ times between using the removal
and insertion heuristic and then once more after using the insertion
heuristic. It was found that increasing the occurrence of the moving
charge procedure did not improve the ALNS solution finding process.

Another way of changing the charging periods would be to intro-
duce charging station removal and insertion heuristics, in addition to
7

the current aircraft removal and insertion heuristics. Such an approach
was taken by Keskin and Çatay [15]. We opted for the above method,
because it allows the moving of charging periods during the removal
and insertion of aircraft, where more options for charge movement are
possible, rather than only in between applying heuristics.

Initial solution
Before the algorithm starts using the removal and insertion heuris-

tics, it needs an initial solution 𝑠𝑖. The initial solution should be a
feasible solution to Problem (28)–(54), and it should be possible to
move to other solutions by adding and removing aircraft and changing
charging periods. Note that e.g. the solution with only the aircraft in 𝐴𝑒

and no charging is feasible, but other solutions are unreachable from
this solution due to Constraint (44).

Given the capacity profile for ETVs, period 𝑃 and flight schedule, a
valid initial solution can readily be constructed:

• For every vehicle, assign several aircraft that need to be towed
near the start of 𝑃 , and together need more than the minimum
charging time 𝑡𝐶min to be replenished.

• For every vehicle, calculate the needed charging time to replenish
the battery. Set this charging in such a place that Constraint (54)
is respected: start by putting charging periods for each vehicle
near the end of 𝑃 , moving backwards in time when required by
this constraint.

The initial solution thus constructed can serve as input for the removal
and insertion heuristics, which will be introduced next.

5.2. Local search heuristics

The choice of local search heuristics for removal and insertion is an
essential part of the ALNS algorithm. Selecting a diverse set of heuristics
contributes to the ability of the algorithm to explore the solution space
and to escape local minima [48]. The heuristics in the set are being used
throughout the run of the algorithm, and are selected with weighted
random selection.

5.2.1. Heuristic weights
The weight updates are performed as described by Pisinger and

Ropke [48]. The total number of ALNS iterations is divided into equally
sized segments. Two sets of scores exist: the segment score 𝜋̄−

𝑖,𝑗 and
the overall score 𝜋−

𝑖,𝑗 for removal heuristic 𝑖 and iteration segment 𝑗.
Similarly, we have scores 𝜋̄+

𝑖,𝑗 and 𝜋+
𝑖,𝑗 for the insertion heuristics. The

segment score has an initial value of 0 at the beginning of every
segment. During the segment, the segment score is increased with
scores that depend on the quality of the candidate solution 𝑠𝑐 :

• The candidate solution is a new best solution: increase segment
score by 𝜎1

• The candidate solution has a larger objective function than the
latest solution 𝑠𝑙: increase segment score by 𝜎2

• The candidate solution has a smaller objective function than the
latest solution but is accepted by the local search framework:
increase segment score by 𝜎3

• The candidate solution is not accepted by the local search frame-
work: the segment scores remain the same.

ere 𝜎1 ≥ 𝜎2 ≥ 𝜎3. At the end of segment 𝑗 the overall scores are
alculated with:

−
𝑖,𝑗+1 = 𝜌

𝜋̄−
𝑖,𝑗

𝑎−𝑖,𝑗
+ (1 − 𝜌)𝜋−

𝑖,𝑗 , (55)

with 𝜌 the reaction factor and 𝑎−𝑖,𝑗 the amount of times removal heuristic
𝑖 has been selected in segment 𝑗. The overall insertion scores are calcu-
lated analogously. Finally, the overall scores 𝜋− and 𝜋+ are normalized,
and the result forms the updated heuristic weights.
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5.2.2. Removal heuristics
In previous research regarding vehicle routing problems and

scheduling problems, many removal and insertion heuristics have been
developed. Some heuristics used in this work are taken or adapted
from existing literature. In a typical application of ALNS for routing
and scheduling problems, tasks can be inserted at other times and in
different orders compared to previous solution. By contrast, in our
application, the time of a towing tasks always remains the same. In
addition, removal and insertion is complicated by restrictions regarding
the state of charge and allowed charging moments of vehicles. This
means that, in contrast to works such as Frey et al. [17], we opted
to disallow moving through infeasible regions of the solution space.
Repairing an infeasible solution is expected to be difficult to automate
and to be costly in computation time, given the many constraints in
this problem.

We use six removal heuristics:

1. Random removal (from [47]). Select 𝑁 rem aircraft randomly from
𝐴rem and remove these from the schedule.

2. Vehicle removal. For every ETV, select one aircraft that is cur-
rently in its towing schedule and in 𝐴rem, and remove that
aircraft from the schedule.

3. Cluster removal (from [48]). Consider the ETV that tows the
fewest aircraft during the schedule from all ETV in the fleet.
Remove as many aircraft as possible from the schedule of that
vehicle. This will leave a few aircraft and one charging period
with charging time near 𝑡𝐶min. The idea of this heuristic is that if
the schedule for an ETV is stuck in a suboptimal position, one
can take out everything for that ETV and start over.

4. Time-oriented removal (from [48]). Select randomly a time period
of one hour in 𝑃 . Remove as many aircraft as possible for which
the towing period lies within this interval. This heuristic allows
for a reorganization of the schedule around a time period, which
can help resolve possible charging capacity conflicts in that
period.

5. Worst removal (after [47]). For every aircraft in the schedule and
in 𝐴rem: calculate the amount of time in the task gap between the
aircraft and its successor, and between its predecessor and itself
(where applicable). Note that this is the time 𝑡𝐶 (𝑎, 𝑏) defined
in Eq. (13). Then select the aircraft with the largest average
task gap length for removal. Repeat until 𝑁 rem aircraft have
been removed. This heuristic is based on the notion that aircraft
with more task gap length before and after their scheduled
towing time can easier be assigned a more efficient place in the
schedule.

6. Time-based worst removal. For every aircraft in the schedule and
in 𝐴rem, calculate the travelling energy 𝑞travel saved by removing
the aircraft from the schedule. For example, when towing an
aircraft 𝑏 after towing aircraft 𝑎 and before towing aircraft 𝑐:

𝑞travel
𝑏 = 𝑞𝑆 (𝑎, 𝑏) + 𝑞𝑆 (𝑏, 𝑐) − 𝑞𝑆 (𝑎, 𝑐). (56)

Then select the aircraft with the largest saved travelling energy
for removal. Repeat until 𝑁 rem aircraft have been removed. This
heuristic aims to optimize the route of an ETV and avoid large
detours.

5.2.3. Insertion heuristics
We use four insertion heuristics. For all insertion heuristics, the

procedure described below is repeated until no more aircraft can be
inserted. All selected insertion heuristics are of the parallel category;
they build on the routes of the entire problem at the same time, not
one ETV at once.

1. Random insertion (from [47]). Consider all aircraft and vehicle
combinations in 𝐴ins

𝑣 . Select one randomly and insert the aircraft
into the schedule of that vehicle.
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2. Greedy towing distance insertion. Consider the vehicle 𝑣g that has
the most total task gap length in its schedule. Let 𝑆pair

𝑣 be the
set of aircraft pairs towed consecutively by vehicle 𝑣. Then 𝑣g is
selected as in Eq, (58).

𝑆pair
𝑣 = {{𝑎, 𝑏} ∈ [𝐴 × 𝐴] ∶ 𝑎 is towed by 𝑣 ∧ 𝑥𝑎𝑏 = 1} ∀𝑣 ∈ 𝑉

(57)

𝑣g = max
𝑣∈𝑉

∑

{𝑎,𝑏}∈𝑆pair
𝑣

𝑡𝐶 (𝑎, 𝑏) (58)

Consider all aircraft in 𝐴ins
𝑣g . Insert the aircraft with the largest

towing distance.
3. Greedy tight insertion. Iterate through all vehicles in the fleet.

Given vehicle 𝑣, consider all aircraft in 𝐴ins
𝑣 . Insert the aircraft

for which the task gap length 𝑡𝐶 (𝑎, 𝑏) between its predecessor
and itself or between itself and its successor is minimized. The
goal is to put aircraft as close together as possible in the towing
schedule of an ETV, so that more aircraft might be added to the
schedule. This heuristic is the opposite of removal heuristic 5.

4. Time-based best insertion. Iterate through all vehicles in the fleet.
Given vehicle 𝑣, consider all aircraft in 𝐴ins

𝑣 , and calculate the
travelling energy needed to insert the aircraft into the schedule,
as for the time-based worst removal heuristic (nr. 6). Then
select the aircraft with the smallest needed travelling energy
for insertion. Like its counterpart in the removal heuristics, this
heuristic aims to optimize the route of an ETV by inserting
aircraft that lead to the smallest detours.

Note that for all removal and insertion heuristics, removing/
inserting an aircraft will only be performed if it does not result in an
infeasible solution (see also Section 5.1). Furthermore, aircraft in 𝐴𝑒

are never considered for removal/insertion, as they are always in the
schedule.

5.3. Local search framework

The local search framework is the mechanism that decides whether
a candidate solution 𝑠𝑐 is accepted or rejected. After applying a re-
moval and insertion heuristic the candidate solution is checked using
Simulated Annealing and Tabu Search.

Simulated Annealing [49] is a method that aims to guide the local
search towards the global optimum. At the start of the search, it allows
for more exploration, while near the end of the search, exploration
is restricted, and improvement of the objective value is increasingly
required for a solution to be accepted.

During the search, Simulated Annealing makes use of the tempera-
ture parameter 𝑇 . At the beginning, the temperature has value 𝑇 = 𝑇 st.
At every iteration of the ALNS algorithm, the temperature is decreased
as 𝑇 ∶= 𝑇 𝑐, with 0 < 𝑐 < 1. To set the value of 𝑇 st, the method uses
the start temperature control parameter 𝑤. At the start of the algorithm,
a candidate solution 𝑠𝑐 may be 𝑤% worse than the latest solution
𝑠𝑙 to be accepted with probability 0.5. As the algorithm progresses,
the acceptance probability for a given 𝑇 and 𝑤 decreases, following
Eq. (59):

𝑝accept = 𝑒−(𝑓 (𝑠
𝑙 )−𝑓 (𝑠𝑐 ))∕𝑓 (𝑠𝑙 )∕𝑇 (59)

Setting 𝑐 and 𝑤 correctly for a given problem instance requires trial
and error. Model parameters that have a large influence on the optimal
values for 𝑐 and 𝑤 are the length of the time period 𝑃 , the fleet size
𝑁𝑉 and the number of flights 𝑁𝐹 .

In addition to the check performed by Simulated Annealing, we
make sure that the candidate solution 𝑠𝑐 has not been accepted before,

i.e. we incorporate Tabu Search [50].
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Table 1
Parameters used in the scheduling models and their standard values.

Symbol Name Value Unit Source

ETV properties

𝑃 𝑐 Charging rate 100 kW van Oosterom et al. [52]
𝑃𝑋 Towing power 222 kW Zoutendijk et al. [46]
𝑃 𝑆 Driving power 20.5 kW Zoutendijk et al. [46]
𝑄 Battery capacity 400 kWh van Oosterom et al. [52]
𝑣𝑠 Speed on service roads 30 km/h Schiphol [53] and Munich International Airport [54]
𝑣𝑥 Speed on taxiways 42 km/h Smart Airport Systems [3]
𝑡𝑐 Connecting/Disconnecting time 3.0 min Schiphol [55]

Airport infrastructure

𝑡sep Separation time 20 s Zoutendijk et al. [46]
𝑡𝐶min Minimum charging time 30 min
𝛥 Time step 10 min
𝑁cs Number of charging stations 3 –

ALNS algorithm

𝑁 it Number of ALNS iterations 1000 –
𝑁 seg Nr of iterations in ALNS segment 10 –
𝑁 rem Nr of aircraft removed in heuristic 𝑁𝑉 –

Simulated Annealing

𝜎1 Global solution reward 2 –
𝜎2 Previous solution reward 0.6 –
𝜎3 Accepted solution reward 0.2 –
𝜌 Reaction factor 0.25 –
𝑤 Start temperature control parameter 1.05 –
𝑐 Cooling rate 0.997 –
Table 2
Parameter values of problem instances ran with the models. Times indicated are on
27th (to 28th) of December 2021.

Instance 𝑃 𝑁𝑉 𝑁𝐹 𝑁 it 𝑐 𝑤 𝑡𝐶min

1 08:00–14:00 4 49 2500 1.10 0.9993 20
2 18:00–04:00 4 57 4000 1.25 0.9985 30
3 04:00–04:00 2 80 4000 1.25 0.9980 30
4 04:00–04:00 4 138 4500 1.25 0.9985 30
5 04:00–04:00 6 193 3500 1.25 0.9985 30

6. Results

In this section results are presented that are obtained by applying
the models introduced in Sections 4 and 5 to historical flight schedules
at Amsterdam Airport Schiphol. The schedules are obtained from the
Schiphol Flight API within the Schiphol Developer Center [43]. For
each flight, the schedules contain the gate number and scheduled and
actual arrival/departure times. The runway for each flight is found from
runway use data [51]. A general overview of parameters contained in
the models is provided in Table 1. The values indicated in the table
are the standard values for our model, and are used unless otherwise
indicated.

6.1. Model comparison with small scale problem instances

In order to illustrate the performance of the MILP and ALNS models,
several problem instances have been defined, summarized in Table 2.
All instances refer to the flight schedule of 27-12-2021 (or up until
04:00 on the day after) at Amsterdam Airport Schiphol. The capacity
profile for each instance in Table 2 is given by: 100% capacity during
04:00–06:00 and 23:00–04:00, 200 kW capacity elsewhere. Parameters
not appearing in this table have the values as indicated in Table 1. The
values of 𝑁 it, 𝑐 and 𝑤 have been manually tuned for each instance to
obtain the best performance.

Fig. 2 shows a side-by-side comparison of example results for the
ALNS and MILP models, for a run of instance 2. These schedules show
for each ETV when it is towing an aircraft, travelling along service
roads, connecting/disconnecting to/from an aircraft, or charging at a
charging station. For this instance, 40 (out of 57 possible) aircraft are
9

towed by 4 ETVs in the optimal solution. In the solution created by
ALNS, more aircraft are towed, but the total towing distance, and there-
fore the emission savings, are lower. By optimizing for total towing
distance, the models are incentivized to schedule towing tasks with
longer towing distance, rather than as many short tasks as possible.

The ALNS solution shown is the best solution found after 4000
iterations. The selection probability at a certain iteration for each
removal or insertion heuristic is a measure for its effectiveness in
improving the solution during the previous iterations. Fig. 3 shows the
selection probabilities of all removal and insertion heuristics, listed in
Sections 5.2.2–5.2.3, for twenty runs of problem instance 2. Observing
the average selection probabilities provides insight in the usefulness
of each heuristic. For example, random removal and insertion (nrs.
1) perform well, despite their simple nature. Greedy insertion (nr. 2)
also performs well, especially for schedules with larger fleet size. This
likely happens because it pushes to insert the tasks with the larger
towing distance. On the other hand, time-based removal (nr. 6) and
time-based insertion (nr. 4) perform worst. On many occasions, the
selection probability of time-based removal converges towards zero.
The average towing distance of towing tasks added by time-based
insertion is the smallest of all insertion heuristics. Similarly, the average
towing distance of towing tasks removed by time-based removal is
the largest of all removal heuristics. Rather than achieving their goal
of minimizing detours in the ETV route, the heuristics seem to avoid
longer towing tasks. This is because a longer towing task is more likely
to constitute a large detour for an ETV than a shorter towing task.

We now examine the performance of the MILP and ALNS models
for all instances introduced in Table 2. Note that the number of flights
𝑁𝐹 indicated in Table 2 is not the total number of flights passing
through the airport during the time period 𝑃 . The number of flights
eligible for towing has been reduced to accommodate the MILP model:
with a smaller 𝑁𝐹 value, the solution time is greatly reduced, since
fewer decision variables and constraints are generated (see Section 4).
In addition, if the amount of scheduled aircraft in an optimal solution
is close to the number of total available flights, the scheduling problem
becomes easier than with a larger total of available flights, due to
combinatorics. These problem instances allow us to compare both
models equally. Nevertheless, the MILP model does not find the optimal
solution for instance 3–5. For comparison with the ALNS model, the
best incumbent solution and best bound are used.
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Fig. 2. ETV-to-aircraft schedules generated using the MILP model and ALNS algorithm, for instance 2 in Table 2. The ALNS algorithm attains a 4.5% gap compared to the MILP
solution for this run.

Fig. 3. The evolution of selection probabilities for all heuristics, for 20 runs with 2500 steps of the scheduling problem for 18:00–04:00 on 27-12-2021. The average is indicated
by the blue line.
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Table 3
Total towed distance values for solutions obtained by the MILP and ALNS models, when applied to the problem instances introduced in Table 2.

MILP ALNS

Instance Opt. sol. Best sol. Best bound Runtime Best sol. Mean best sol. Gap w.r.t MILP Runtime
Unit [km] [km] [km] [min] [km] [km] [%] [min]

1 141.3 – – 1.2 129.8 123.0 8.1 1.5
2 200.2 – – 0.1 198.8 188.3 0.7 2.6
3 – 265.0 275.2 190 247.8 243.7 6.5 7.5
4 – 508.2 527.0 188 496.8 479.2 2.2 17
5 – 712.7 719.1 241 688.0 674.8 3.5 25
Table 3 shows the objective values (total towing distance of the
chedule) obtained with the MILP and ALNS models. For the MILP
odel, the optimal solution, best incumbent solution and best bound

re indicated where applicable. The runtime for the instances without
n optimal solution indicates the time the optimization process was
ontinued for, not the time at which the best incumbent solution was
ound. For the ALNS model, 20 runs were performed for each problem
nstance. The best solution, the mean best solution (average of the best
olutions of all runs) and the gap of the best ALNS solution with respect
o the MILP solution (optimal or best incumbent) are given.

In addition, Fig. 4 shows graphs of convergence for the 20 runs with
he ALNS model for all five instances. The average and the best run are
ighlighted, as well as the best result for every run. The convergence
s illustrated as a gap value relative to the MILP solution (either the
ptimal or best incumbent). For several of the instances in the figure it
eems using more iterations than shown would improve the solution
urther. However, this is not the case, since in fact many rejected
olutions are produced between and after the shown accepted solutions,
hich are not included in the figure.

Table 3 and Fig. 4 show that when the period of interest 𝑃 and
umber of flights 𝑁𝐹 are made small enough, the MILP model finds
he optimal solution fast, and is superior to the ALNS model. However,
hen the period of interest 𝑃 comprises a full day, and the ETV fleet

ize 𝑁𝑉 starts to (slightly) increase, the MILP model is unable to find
he optimal solution within several hours. The best solution found
hrough the ALNS model is close to the best incumbent solution of the
ILP model. These results show that for a time frame of more than
few hours, the ALNS provides results of quality close to that of the
ILP model, in a much shorter time. Note that creating a schedule with

he ALNS model for any of the instances 1–5 with all aircraft that pass
hrough the airport during their respective time period 𝑃 (rather than
nly the selection now used) will not increase the runtime.

.2. The impact of the electricity capacity at the airport on the ETV towing
chedules

The variation of electricity capacity throughout a day of operation
irectly influences the ETVs’ ability to recharge. In a successful ETV
chedule the ETVs charge in such a way that they can perform towing
asks in as much of the time period 𝑃 as possible, without running out
f charge during a time when little or no charging is allowed. In other
ords, the ETV utilization is high. We aim to investigate the influence
f the electricity capacity profile for ETVs on the schedules generated
y the model.

The ETV capacity profiles are given by:
apacity profile A: night capacity. 0% capacity during 04:00–23:00
nd 100% capacity during 23:00–04:00.
apacity profile B: overall low capacity. 40% capacity during 04:00–
4:00.
apacity profile C: no capacity during rush hour. 0% capacity during
7:00–10:00 and 16:00–19:00, 40% capacity during 10:00–16:00 and
9:00–23:00 and 100% capacity during 04:00–07:00 and 23:00–04:00.
apacity profile D: low capacity during day. 0% capacity during
6:00–23:00 and 100% capacity during 04:00–06:00 and 23:00–04:00.
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apacity profile E: full capacity. 100% capacity during 04:00–04:00.
The profiles represent possible charging capacity situations at the
airport. Note that larger charging capacity for ETV charging implies
smaller charging capacity for the other processes at the airport. For
example, in profile C, no capacity during rush hour implies that all
capacity has been taken by other processes.

Using the ALNS model, ETV schedules have been created for each of
these capacity profiles, and for several fleet sizes. In all cases, the time
period 𝑃 is given by a full day (between 04:00 and 04:00), in which 955
aircraft movements are planned. Fig. 5 provides a visualization of the
five capacity profiles considered, for a fleet size of 10 ETVs. In addition,
the electricity demand from this fleet for a scheduling solution obtained
with ALNS is shown. Note that 𝑃 𝑐 = 100 kW, so that every 100 kW on
the 𝑦-axis translates to one charging ETV at the time given on the 𝑥-axis.

In addition, Fig. 6(a) shows an overview of objective values ob-
tained when creating ETV schedules for fleet sizes that are represen-
tative of an airport aiming to fully implement electric taxiing. For
each combination of the capacity profiles A-E and fleet size value
in {5, 10, 20, 30}, a boxplot is shown, which summarizes the objective
values of five runs. Average runtimes for 1000 iterations of the ALNS
algorithm are given by 45.1, 64.3, 125 and 199 min for fleet sizes 5,
10, 20 and 30 ETVs, respectively.

By examining Figs. 5 and 6(a), as well as the schedules generated by
all runs that have been summarized in Fig. 6(a), we draw conclusions
regarding the ETV electricity capacity profiles.

• We see that for every fleet size considered, only allowing night
charging leads to an average decrease in total towed distance
of 46% compared to the best performing profile, profile E. This
shows that an ETV would need almost twice the current battery
capacity to keep towing aircraft for the full day.

• For the second charging profile, we see that the limited capacity
of 40% is used to the fullest from roughly 10:00 until the end at
04:00. For several ETVs the utilization time is reduced, because
the ETV runs out of charge and cannot charge earlier due to the
decreased capacity. The average decrease in objective value is
13%.

• The third charging profile simulates a situation where little or
no electricity capacity can be reserved for charging ETVs during
busy periods. For example, between 16:00–19:00 the aircraft in
the schedule are atypical: for small fleet size (5 or 10), aircraft
with very short towing distance are scheduled during this time.
For the larger fleet sizes, the ETV utilization is low during this
period, i.e. the schedule is more empty. This is because there are
not enough tasks with small towing distance for all ETVs.

• Charging profile D is similar to profile B. The main difference
is that night charging (23:00–04:00) allows the ETVs to fully
recharge for the next day. In the schedule for profile B most
ETVs have one very long charging period during the day, rather
than at night. Comparing profiles B and D in Fig. 6(a) confirms
that allowing night charging leads to a substantial difference in
objective value (on average 10% of the maximum objective value
per fleet size).

• Last, charging profile E allows charging for every vehicle at
any time. The energy demand that typically appears under these
circumstances is as in Fig. 5(e): demand from 06:00–23:00 is

roughly triangular shaped, with a peak between 15:00–17:00.
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Fig. 4. Convergence of ALNS algorithm applied to various problem instances. The run attaining the largest objective value is indicated in blue, the average is indicated in red.
The best result of every run is indicated by a dot in the respective colour.
Fig. 5. The electrical power available during the day, for the five energy profiles considered. For every profile, the energy demand per time step associated with an ETV schedule
generated using the ALNS model. The fleet size is ten ETVs, and the time period is 04:00–04:00 on 27-12-2021.
Upon examination of the optimized schedules, we find two types
of ETVs in the schedule: one with a long charging period near
15:00–17:00, that needs no other charging before the night. The
other type is charged for 3 or 4 shorter periods, spread out during
the day. Together this forms a triangular shaped demand.

In addition, it is interesting to investigate the marginal capacity
benefit : the benefit for an airport of providing one more charging
position (i.e. increase capacity by 𝑃 𝑐 kW) for the total towing time in
the optimized ETV schedule. This benefit can be weighed against the
costs of a new charging position.

Fig. 6(b) shows the results of applying the ALNS model with various
equidistant values of electricity capacity. The electricity capacity is as-
sumed to be constant over the entire day. Every newly added charging
12
position contributes less to the objective value than the previous one.
The figure suggests that after 12 charging positions (in this case 60%
of the fleet size), the improvement stagnates. The limit for the ETV
fleet with the current characteristics is roughly 2500 towed km (273
ton CO2). The same analysis can be performed for different capacity
profiles and fleet sizes.

6.3. Impact of fast charging and battery size on ETV fleet utilization

Throughout the previous sections, the charging rate 𝑃 𝑐 and battery
capacity 𝑄 have remained constant. The values chosen are consid-
ered realistic for application at the time of writing. However, given
their large influence on the ETV schedules resulting from the models,
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Fig. 6. Total towing distance in km (Eq. (28)) of schedules generated with the ALNS algorithm, for various model settings, during 04:00–04:00 on 27-12-2021.
Table 4
Impact of fast charging and ETV battery capacity; charging rate 𝑃 𝑐 ∈ {50, 100, 150, 200}
kW and battery capacity 𝑄 ∈ {200, 400, 600} kWh. The total towing distance in km (Eq.
(28)) obtained in schedules created with the ALNS algorithm.

𝑃 𝑐

50 kW 100 kW 150 kW 200 kW

200 kWh 1846.8 ± 12.5 2183.0 ± 36.9 2283.6 ± 39.1 2407.4 ± 26.5
𝑄 400 kWh 1942.1 ± 20.5 2508.6 ± 18.8 2608.8 ± 21.3 2713.3 ± 8.7

600 kWh 1940.9 ± 29.6 2634.7 ± 30.8 2731.0 ± 77.6 2797.8 ± 16.6

it is instructive to consider (combinations of) other values of these
parameters.

Table 4 shows the total towed distance obtained when varying the
charging rate and battery capacity. The average and standard deviation
of 5 runs are shown for every combination. The fleet size is 20 and
the electricity capacity is given by profile D. The average runtime is
134 min. Note that we assume constant towing and driving power 𝑃𝑋

and 𝑃 𝑆 . In actuality, increasing the battery capacity will increase these
values, due to the ETV becoming heavier.

From the table we deduce that if the charging rate is as small as
50 kW, increasing the battery size from 200 kWh will provide little
benefits. At this charging rate, the utilization time of the ETVs is up
to 25% smaller than for charging rates of 100 kW and over. There,
the increase of objective value with increasing battery size is also
considerably larger. The generated schedules show that for 𝑃 𝑐 = 50
kW the ETVs spend up to half the day charging, and the ETVs rarely
use more than 300 kWh of their battery.

We observe that at any battery capacity, increasing the charging rate
leads to significant increases in objective value. This is mainly because
the necessary charging periods during daytime can become shorter,
leaving more time to tow more aircraft. The time taken up by charging
during the day is inversely proportional to 𝑃 𝑐 . Therefore, the increases
in objective value become smaller with each increase of 𝑃 𝑐 . Note that
the electricity capacity does not grow with the charging rate; if the
capacity is 800 kW, then 8 ETVs can charge when 𝑃 𝑐 = 100 kW, and 4
ETVs can charge when 𝑃 𝑐 = 200 kW.

For values in the top right of Table 4, an ETV is recharged the
fastest; as fast as 1 h. This makes the window for allowed charging
periods rather small, since there is also a minimum charging time
of 30 min. Given an intermediate solution, the ALNS algorithm may
not find a legal move for charging periods when adding or removing
aircraft. This results in solutions where many ETVs tow far fewer
aircraft than optimal. For 𝑡𝐶 = 30 min the results for 𝑄 = 200 kWh
13

min
and 𝑃 𝑐 = 200 kW are 1771.6±136.5 km. A solution is to allow a smaller
minimum charging time for this combination, which is fitting for a
situation with fast charging. The results in Table 4 for this combination
are obtained using 𝑡𝐶min = 20 min.

From the optimized schedules summarized in the table, and the
observations above, we can deduct a relation between the objective
value and 𝑃 𝑐 and 𝑄. We observe:

• In almost all cases, the time available for night charging (00:00–
04:00) is fully used, unless a full charge takes less than 4 h.
Between 04:00 and 06:00 there are very few flights and no
charging.

• Any charging during the rest of the day (06:00–00:00) prevents
ETVs from towing aircraft. The sum of the time spent charging
during the day and the time spent towing aircraft should equal
18 h.

• It is assumed that at any point in time, the supply of aircraft that
can be towed outstrips the towing potential of the ETV fleet size.

An approximation for the total towed distance, in the case where day
charging is necessary, is then derived as follows:

𝑡𝑑 = 𝑡𝑑𝐶 + 𝑡𝑑𝑋

=
𝑞km𝑑𝑋tot − 𝑞night

𝑃 𝑐 + 𝑡ETV
km 𝑑𝑋tot,

(60)

so that

𝑑𝑋tot =
𝑞night

𝑃 𝑐 + 𝑡𝑑

𝑡ETV
km + 𝑞km

𝑃 𝑐

. (61)

Here 𝑡𝑑 is the total daytime available to the fleet in hours, i.e. 𝑡𝑑 =
18𝑁𝑉 , 𝑡𝑑𝐶 and 𝑡𝑑𝑋 are the total daytime spent charging and towing,
respectively, 𝑞km is the average energy needed per km towing, 𝑑𝑋tot is
the total towed distance in the schedule, 𝑞night is the total energy that
can be charged during the night and 𝑡ETV

km is the average time spent by
an ETV towing an aircraft for one km.

These expressions are found as:

𝑞night = 𝑁𝑉 𝑃 𝑐 min{ 𝑄
𝑃 𝑐 , 4}, (62)

𝑞km =
∑

𝑎∈𝐴 𝑞𝑋 (𝑎)
∑

𝑎∈𝐴 𝑑𝑋𝑎
(63)

Last, 𝑡ETV
km is found by considering the runs forming Table 4, dividing

the total time not used for charging by the total towed distance.



Energy 294 (2024) 130924M. Zoutendijk and M. Mitici

b
6
s
o
l
l
l

t
I
e
b
t
v
u
b
5
d
𝑄
v
o
f

7

t
a
a
m
T
h
f

b
s
f
T
A
c
4
i
h
o
m
i
t
c
i
v

l
t
d
p
(
o
p
C
u

p
w
a
n
i
d
o

c
h
t
c
t
i
a
t
f
o
t
e

a
p
i
c
t
a
c

w
c
t
w
c
i
d
E

C

M
v

In case no day charging is necessary, the expression (61) reduces to:

𝑑𝑋tot =
𝑡𝑑

𝑡ETV
km

. (64)

By using these formulae all values obtained experimentally in Ta-
le 4 and the values for profile D in Fig. 6(a) are approximated to within
%. The approximation slightly overestimates the objective values for
maller values of 𝑄, and slightly underestimates them for larger values
f 𝑄. A possible explanation is that there is a benefit that comes with a
arger 𝑄, that is not factored in with this approximation: an ETV with
arger battery capacity will less often reach a SOC of 0, which would
eave a time gap without towing until its next charging opportunity.

The approximation given in Eqs. (60)–(64) can be further extended
o allow for variation in ETV capacity profile and towing power 𝑃𝑋 .
t can also be altered to adhere to a different charging strategy, for
xample, if one would relax the restriction of ending the day with full
attery capacity. The model can be used by airport planners to gauge
he emission reductions associated with acquiring an ETV fleet with any
alues of 𝑄, 𝑃 𝑐 or 𝑁𝑉 . For example, one can weigh the added costs of
sing very fast charging technology against the expected environmental
enefits. With the current settings, a fast charging system that provides
00 kW per charging point can provide another 7% increase in towed
istance for 𝑄 = 200 kWh. For larger 𝑄 this advantage shrinks. For
= 750 kWh night charging suffices from 𝑃 𝑐 = 150 kW onwards, and

ery fast charging becomes unnecessary. Eq (64) suggests a maximum
bjective value of 2849 km towed distance (311 ton CO2 saved) for a
leet size of 𝑁𝑉 = 20.

. Conclusions

In this paper, two models are proposed to create schedules for elec-
ric towing and charging of a fleet of ETVs on an airport. Both models
im to maximize the total towed distance, given a flight schedule, an
irport layout, an ETV fleet size, an ETV energy spending and charging
odel, and an airport electricity capacity profile for charging ETVs.
he resulting schedules define which ETV is charging where and for
ow long, and which ETV is towing an aircraft, or travelling to and
rom a task.

The first model is an MILP model. An optimal solution or near
est bound is found within several hours for instances with small fleet
ize and a scheduling time period of under ten hours. The goal is to
ind solutions for a 24 h period and fleet sizes of up to 30 vehicles.
herefore, the second model uses ALNS, combined with Simulated
nnealing and Tabu Search. We have seen that this heuristic model
an consistently find solutions with an optimality gap of an average of
% percent for the smaller instances, and can solve the NP-hard large
nstances, which cannot be solved using the MILP solver, in several
ours. Therefore, we conclude that it is possible to pursue optimization
f ETV-to-aircraft assignment for a large fleet within a few hours,
aking the problem tractable. The removal and insertion heuristics

ntroduced to move between different solutions vary in performance:
he best heuristics are random removal/insertion, vehicle removal,
luster removal, and greedy insertion. These heuristics work best to
mprove the towed distance, and thus the utilization of the towing
ehicles.

In order to investigate the effects of operating in a period with
imited electricity capacity at the airport, the ALNS model was applied
o a full day of operations at Amsterdam Airport Schiphol, with five
ifferent ETV electricity capacity profiles. For the battery and ETV
roperties assumed in this work, it was found that charging at night
when there are no aircraft to tow) is necessary to fulfil the potential
f the ETV fleet, but not sufficient to tow all aircraft, leading to a
erformance of 54% of the performance without capacity restrictions.
harging capacity during the day is therefore crucial to improve ETV
tilization time. The results show that even with only small intermittent
14
eriods of no charging, the best solution will contain time periods
ith fewer or shorter tasks than can potentially be scheduled. The
verage performance difference between day charging (profile D) and
o capacity during rush hour (profile C) is 6.4%. Last, when charging
s allowed for any ETV at any time of day, the ETV daily electricity
emand generally forms a triangle shape, placing the largest demand
n the electricity network at 15:00–17:00.

The effects of airport investments in ETV battery capacity and fast
harging technology on the environmental benefits of the ETV fleet
ave been explored. A relation between the total towed distance and
hese parameters was derived from observations. It was found that
harging slower than 100 kW will reduce the total towed distance
o well below the potential of the ETV fleet. Faster charging will
mprove the towed distance by freeing time during the day to tow more
ircraft, but with diminishing returns. For battery capacities higher
han 750 kWh, all necessary charging can be done at night, and very
ast charging becomes unnecessary. Under such circumstances, a fleet
f 20 ETVs could prevent the emissions of 311 ton CO2 per day at
he airport. With realistic battery characteristics and limited daytime
lectricity capacity, the saved emissions still amount to 274 ton CO2 .

The models introduced in this paper can be applied to other airports
nd flight schedules, with their own potential ETV electricity capacity
rofiles. The results can be used to decide when and whether to
mplement electric taxiing at the airport, and if so, with how many
harging points and ETVs. Or, when such a system is already in place,
o consider the costs and benefits of increasing the fleet size, or the
mount of charging locations, given the current and future charging
apacity.

Future work includes optimizing real-time operations of an airport
ith a fleet of ETVs, including disruptions such as flight delays and can-

ellations and ETV unavailability. Such a continuous solution process,
hat could be based on creating schedules in a rolling horizon approach,
ould aim to maximize emission reduction and robustness. It would

onstitute the next step in integrating ETV fleet scheduling optimization
nto actual airport operations. Another upcoming research area is the
evelopment of autonomous airport surface movement, including for
TVs.
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Appendix. Glossary

All abbreviations and notation used throughout the paper are gath-
ered in Table A.1 for reference.
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Table A.1
Glossary of notation and abbreviations.

Abbreviation or symbol Explanation

Airport representation

𝐺𝑋 = (𝑁𝑋 , 𝐸𝑋 ) Taxiway network
𝐺𝑆 = (𝑁𝑆 , 𝐸𝑆 ) Service road network
𝑣𝑠 , 𝑣𝑥 Speed on service roads/taxiways
𝑛cs,𝑖 , 𝑁cs Charging station 𝑖, number of charging stations
𝑛dp ETV depot node

Aircraft routing

𝑇 = [𝑡𝑠 , 𝑡𝑒] Scheduling time interval
𝑁𝑇 , 𝛥 Number of time steps, step size
𝑁𝐹 ,𝑆 , 𝑁𝐹 Number of flight movements during 𝑃 without/with artificial aircraft
𝐴 = 𝐴𝑆 ∪ 𝐴𝑒 Set of aircraft (nonartificial + artificial)
𝑑𝑋 (𝑚, 𝑛), 𝑑𝑆 (𝑚, 𝑛) Distance over taxiway network/service road network from 𝑚 to 𝑛
𝑡𝑝𝑎 , 𝑡𝑑𝑎 Pick-up and drop-off time of aircraft 𝑎
𝑛𝑝𝑎 , 𝑛𝑑𝑎 Pick-up and drop-off node of aircraft 𝑎
𝑡sep Separation time

ETVs Electric Towing Vehicles

𝑁𝑉 ETV fleet size
𝑃 𝑐 , 𝑃𝑋 , 𝑃 𝑆 Charging rate, towing power, driving power
𝑄 Battery capacity
𝑡𝐶min Minimum charging time
𝑡𝑐 Connecting/Disconnecting time
𝑡𝐶 (𝑎, 𝑏) Time available between towing consecutive aircraft 𝑎 and 𝑏
𝑞𝑋 (𝑎) Energy needed to tow aircraft 𝑎
𝑞𝑆 (𝑛, 𝑚) Energy needed to travel from node 𝑛 to 𝑚
𝑞𝑆 (𝑎, 𝑏), 𝑞𝐶 (𝑎, 𝑏) Energy needed to travel from 𝑛𝑑𝑎 to 𝑛𝑝𝑏/from 𝑛𝑑𝑎 to 𝑛𝑝𝑏 via a 𝑛cs,𝑖
𝑞𝑆𝑓 (𝑎) Energy needed to travel from 𝑛dp to 𝑛𝑝𝑎
𝑞𝐶1 (𝑎), 𝑞

𝐶
2 (𝑎) Energy needed to travel from the closest 𝑛cs,𝑖 to 𝑛𝑝𝑎/from 𝑛𝑑𝑎 to the closest 𝑛cs,𝑖

MILP model Mixed Integer Linear Programming model

𝐴out
𝑎 , 𝐴in

𝑎 Set of aircraft that can be towed by an ETV after/before it tows aircraft 𝑎
𝐴PC

𝑎 Set of aircraft in 𝐴out
𝑎 for which there is at least 𝑡𝐶min time for effective charging

𝑣𝑎 Vehicle that tows aircraft 𝑎
𝑥𝑎𝑏 Variable indicating if 𝑎 and 𝑏 are towed consecutively
𝑥𝑓𝑎 , 𝑥𝑙𝑎 Indicates if 𝑎 is the first/last aircraft an ETV tows
𝑞𝑎 Indicates state of charge of ETV at the start of towing 𝑎
𝑐𝑎 Indicates if ETV is charged after towing aircraft 𝑎
𝑐𝑡𝑎 , 𝑐

𝑠
𝑎 Indicates charging time/start time of charging of ETV

𝛼𝑎𝑡 , 𝛽𝑎𝑡 Indicates if charging of ETV 𝑣𝑎 starts earlier/finishes later than time step 𝑡
𝛾𝑎𝑡 Indicates if ETV 𝑣𝑎 is charged during time step 𝑡
𝑦𝑎 Indicates if 𝑎 is towed by an ETV or taxies by itself

ALNS Adaptive Large Neighbourhood Search

𝑠, 𝑓 (𝑠), 𝑠all Solution and its objective value, set of all solutions
𝑠𝑖 , 𝑠𝑐 , 𝑠𝑙 , 𝑠𝑏 Initial, candidate, last and best solution
𝜋−
𝑖,𝑗 , 𝜋

+
𝑖,𝑗 Removal and insertion selection scores for heuristic 𝑖 and segment 𝑗

𝜋̄−
𝑖,𝑗 , 𝜋̄

+
𝑖,𝑗 Removal and insertion segment selection scores for heuristic 𝑖 and segment 𝑗

𝑎−𝑖,𝑗 , 𝑎
+
𝑖,𝑗 Selection rate during segment 𝑗 of removal/insertion heuristic 𝑖

𝑁 it Number of ALNS iterations
𝑁 seg Number of iterations in ALNS segment
𝑁 rem Number of aircraft removed in heuristic
𝐴rem , 𝐴ins

𝑣 Set of aircraft removable from the schedule/insertable in the schedule of ETV 𝑣

Simulated Annealing

𝜎1 , 𝜎2 , 𝜎3 Global, previous and accepted solution reward
𝜌 Reaction factor
𝑤 Start temperature control parameter
𝑐 Cooling rate
References

[1] Federal Aviation Administration. Aviation climate action plan. 2021, URL: https:
//www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf.

[2] European Commission. Reducing emissions from aviation. 2021, URL: https://ec.
europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en.

[3] Smart Airport Systems. Taxibot international. 2022, URL: https://www.taxibot-
international.com/.

[4] Schiphol. The benefits of sustainable taxiing. 2021, URL: https://www.schiphol.
nl/en/innovation/page/the-benefits-of-sustainable-taxiing/.

[5] Guo R, Zhang Y, Wang Q. Comparison of emerging ground propulsion systems
for electrified aircraft taxi operations. Transp Res C 2014;44:98–109.

[6] Hein K, Baumann S. Acoustical comparison of conventional taxiing and dispatch
towing - Taxibot’s contribution to ground noise abatement. In: 30th congress of
the international council of the aeronautical sciences. ICAS, 2016, p. 1–7.
15
[7] Bunte S, Kliewer N. An overview on vehicle scheduling models. Public Transp
2009;1(4):299–317.

[8] Hoff A, Andersson H, Christiansen M, Hasle G, Løkketangen A. Industrial
aspects and literature survey: Fleet composition and routing. Comput Oper Res
2010;37(12):2041–61, URL: http://dx.doi.org/10.1016/j.cor.2010.03.015.

[9] Rahman HF, Nielsen I. Scheduling automated transport vehicles for material
distribution systems. Appl Soft Comput 2019;82:105552, URL: https://doi.org/
10.1016/j.asoc.2019.105552.

[10] Alizadeh Foroutan R, Rezaeian J, Mahdavi I. Green vehicle routing and schedul-
ing problem with heterogeneous fleet including reverse logistics in the form
of collecting returned goods. Appl Soft Comput 2020;94:106462, URL: https:
//doi.org/10.1016/j.asoc.2020.106462.

[11] Ganji M, Kazemipoor H, Hadji Molana SM, Sajadi SM. A green multi-objective
integrated scheduling of production and distribution with heterogeneous fleet
vehicle routing and time windows. J Clean Prod 2020;259:120824, URL: https:
//doi.org/10.1016/j.jclepro.2020.120824.

https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en
https://www.taxibot-international.com/
https://www.taxibot-international.com/
https://www.taxibot-international.com/
https://www.schiphol.nl/en/innovation/page/the-benefits-of-sustainable-taxiing/
https://www.schiphol.nl/en/innovation/page/the-benefits-of-sustainable-taxiing/
https://www.schiphol.nl/en/innovation/page/the-benefits-of-sustainable-taxiing/
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb5
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb5
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb5
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb6
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb6
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb6
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb6
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb6
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb7
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb7
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb7
http://dx.doi.org/10.1016/j.cor.2010.03.015
https://doi.org/10.1016/j.asoc.2019.105552
https://doi.org/10.1016/j.asoc.2019.105552
https://doi.org/10.1016/j.asoc.2019.105552
https://doi.org/10.1016/j.asoc.2020.106462
https://doi.org/10.1016/j.asoc.2020.106462
https://doi.org/10.1016/j.asoc.2020.106462
https://doi.org/10.1016/j.jclepro.2020.120824
https://doi.org/10.1016/j.jclepro.2020.120824
https://doi.org/10.1016/j.jclepro.2020.120824


Energy 294 (2024) 130924M. Zoutendijk and M. Mitici
[12] Andrade-Michel A, Ríos-Solís YA, Boyer V. Vehicle and reliable driver scheduling
for public bus transportation systems. Transp Res B 2021;145:290–301, URL:
https://doi.org/10.1016/j.trb.2021.01.011.

[13] Hiermann G, Puchinger J, Ropke S, Hartl RF. The electric fleet size and mix
vehicle routing problem with time windows and recharging stations. European
J Oper Res 2016;252(3):995–1018.

[14] Schiffer M, Walther G. The electric location routing problem with time windows
and partial recharging. European J Oper Res 2017;260(3):995–1013.

[15] Keskin M, Çatay B. Partial recharge strategies for the electric vehicle routing
problem with time windows. Transp Res C 2016;65:111–27.

[16] Emde S, Abedinnia H, Glock CH. Scheduling electric vehicles making milk-runs
for just-in-time delivery. IISE Trans 2018;50(11):1013–25.

[17] Frey CM, Jungwirth A, Frey M, Kolisch R. The vehicle routing problem
with time windows and flexible delivery locations. European J Oper Res
2023;308(3):1142–59.

[18] Foda A, Abdelaty H, Mohamed M, El-Saadany E. A generic cost-utility-emission
optimization for electric bus transit infrastructure planning and charging
scheduling. Energy 2023;277(April):127592.

[19] van Baaren E, Roling PC. Design of a zero emission aircraft towing system. In:
AIAA AVIATION forum. 2019, p. 1–11.

[20] Soltani M, Ahmadi S, Akgunduz A, Bhuiyan N. An eco-friendly aircraft taxiing
approach with collision and conflict avoidance. Transp Res C 2020;121(December
2019):102872.

[21] Salihu AL, Lloyd SM, Akgunduz A. Electrification of airport taxiway operations:
A simulation framework for analyzing congestion and cost. Transp Res D
2021;97(July).

[22] Zaninotto S, Gauci J, Zammit B. Tow truck taxi algorithm: An engineless
taxi operations system using battery-operated autonomous tow trucks. In: 33rd
congress of the international council of the aeronautical sciences. 2022, p. 1–18.

[23] van Oosterom S, Mitici M, Hoekstra J. Dispatching a fleet of electric towing
vehicles for aircraft taxiing with conflict avoidance and efficient battery charging.
Transp Res C 2023;147(January).

[24] Ahmadi S, Akgunduz A. Airport operations with electric-powered towing
alternatives under stochastic conditions. J Air Transp Manag 2023;109(Jan-
uary):102392.

[25] European Commission. Zero emission vehicles: first ‘Fit for 55’ deal will end
the sale of new CO2 emitting cars in Europe by 2035. 2022, URL: https:
//ec.europa.eu/commission/presscorner/detail/en/ip_22_6462.

[26] Mahmud K, Hossain MJ, Ravishankar J. Peak-load management in commercial
systems with electric vehicles. IEEE Syst J 2019;13(2):1872–82.

[27] Li X, Tan Y, Liu X, Liao Q, Sun B, Cao G, Li C, Yang X, Wang Z. A cost-benefit
analysis of V2G electric vehicles supporting peak shaving in Shanghai. Electr
Power Syst Res 2020;179(September 2019):106058.

[28] Uddin M, Romlie MF, Abdullah MF, Abd Halim S, Abu Bakar AH, Chia
Kwang T. A review on peak load shaving strategies. Renew Sustain Energy Rev
2018;82:3323–32.

[29] Adegbohun F, von Jouanne A, Lee KY. Autonomous battery swapping system
and methodologies of electric vehicles. Energies 2019;12(4):1–14.

[30] Wu J, Su H, Meng J, Lin M. Electric vehicle charging scheduling considering
infrastructure constraints. Energy 2023;278(February).

[31] Forrest KE, Tarroja B, Zhang L, Shaffer B, Samuelsen S. Charging a renew-
able future: The impact of electric vehicle charging intelligence on energy
storage requirements to meet renewable portfolio standards. J Power Sources
2016;336:63–74.

[32] Moon HB, Park SY, Jeong C, Lee J. Forecasting electricity demand of
electric vehicles by analyzing consumers’ charging patterns. Transp Res D
2018;62(February):64–79.

[33] Ortega Alba S, Manana M. Energy research in airports: A review. Energies
2016;9(5):1–19.
16
[34] Uysal MP, Sogut MZ. An integrated research for architecture-based energy
management in sustainable airports. Energy 2017;140:1387–97.

[35] Ortega Alba S, Manana M. Characterization and analysis of energy demand
patterns in airports. Energies 2017;10(1):1–35.

[36] Gulan K, Cotilla-Sanchez E, Cao Y. Charging analysis of ground support vehicles
in an electrified airport. In: IEEE transportation electrification conference. ITEC,
2019, p. 1–6.

[37] Doctor F, Budd T, Williams PD, Prescott M, Iqbal R. Modelling the effect of
electric aircraft on airport operations and infrastructure. Technol Forecast Soc
Change 2022;177:121553.

[38] Zoutendijk M, Mitici M, Hoekstra J. An investigation of operational management
solutions and challenges for electric taxiing of aircraft. Res Transp Bus Manag
2023;49(January):101019.

[39] Deonandan I, Balakrishnan H. Evaluation of strategies for reducing taxi-out emis-
sions at airports. In: 10th AIAA aviation technology, integration and operations
(ATIO) conference. Vol. 3, 2010, p. 1–14.

[40] Dzikus N, Fuchte J, Lau A, Gollnick V. Potential for fuel reduction through
electric taxiing. In: 11th AIAA aviation technology, integration,and operations
(ATIO) conference. 2011, p. 1–9.

[41] Zhang M, Huang Q, Liu S, Li H. Assessment method of fuel consumption and
emissions of aircraft during taxiing on airport surface under given meteorological
conditions. Sustainability (Switzerland) 2019;11(21).

[42] Nojoumi H, Dincer I, Naterer GF. Greenhouse gas emissions assessment of
hydrogen and kerosene-fueled aircraft propulsion. Int J Hydrogen Energy
2009;34(3):1363–9.

[43] Schiphol Group. Schiphol developer center. 2022, URL: https://developer.
schiphol.nl/login.

[44] Scarlat N, Prussi M, Padella M. Quantification of the carbon intensity of
electricity produced and used in Europe. Appl Energy 2022;305:117901.

[45] Kollmuss A. Carbon offsetting & air travel: Part 1: CO2-emissions
calculations. Technical report, Stockholm Environment Institute; 2008, URL:
https://mediamanager.sei.org/documents/Publications/Climate/sei_air_travel_
emissions_paper1_27_03_09.pdf.

[46] Zoutendijk M, van Oosterom S, Mitici M. Electric taxiing with disruption
management: Assignment of electric towing vehicles to aircraft. In: AIAA aviation
forum 2023. 2023, p. 1–20.

[47] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp Sci 2006;40(4):455–72.

[48] Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Comput
Oper Res 2007;34(8):2403–35.

[49] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated annealing.
Science 1983;220(4598):671–80.

[50] Glover F. Future paths for integer programming and links to artificial
intelligence. Comput Oper Res 1986;13(5):533–49.

[51] Luchtverkeersleiding Nederland. Runway use. 2022, URL: https://en.lvnl.nl/
environment/runway-use.

[52] van Oosterom S, Mitici M, Hoekstra J. Analyzing the impact of battery capacity
and charging protocols on the dispatchment of electric towing vehicles at a large
airport. In: AIAA aviation forum 2022. 2022, p. 1–11.

[53] Schiphol. Schiphol regulations. Technical report, Amsterdam Airport
Schiphol; 2022, URL: https://www.schiphol.nl/en/download/1609745377/
43q9kGoE92CccmEeC6awa4.pdf.

[54] Munich International Airport. Traffic and Safety Rules: for the non-public area at
Munich Airport. Technical report, Munich International Airport; 2016, p. 8, URL:
https://www.munich-airport.de/_b/0000000000000008368639bb5e302e6f/
traffic-safety-rules-2016.pdf.

[55] Schiphol. Sustainable taxiing and the Taxibot. 2020, URL: https://www.schiphol.
nl/en/download/b2b/1594319068/40LYaERw5x8BuRuXpVQkiK.pdf.

https://doi.org/10.1016/j.trb.2021.01.011
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb13
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb13
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb13
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb13
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb13
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb14
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb14
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb14
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb15
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb15
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb15
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb16
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb16
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb16
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb17
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb17
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb17
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb17
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb17
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb18
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb18
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb18
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb18
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb18
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb19
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb19
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb19
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb20
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb20
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb20
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb20
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb20
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb21
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb21
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb21
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb21
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb21
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb22
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb22
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb22
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb22
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb22
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb23
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb23
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb23
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb23
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb23
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb24
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb24
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb24
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb24
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb24
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6462
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6462
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6462
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb26
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb26
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb26
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb27
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb27
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb27
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb27
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb27
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb28
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb28
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb28
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb28
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb28
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb29
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb29
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb29
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb30
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb30
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb30
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb31
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb32
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb32
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb32
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb32
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb32
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb33
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb33
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb33
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb34
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb34
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb34
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb35
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb35
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb35
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb36
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb36
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb36
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb36
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb36
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb37
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb37
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb37
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb37
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb37
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb38
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb38
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb38
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb38
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb38
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb39
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb39
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb39
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb39
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb39
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb40
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb40
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb40
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb40
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb40
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb41
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb41
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb41
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb41
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb41
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb42
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb42
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb42
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb42
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb42
https://developer.schiphol.nl/login
https://developer.schiphol.nl/login
https://developer.schiphol.nl/login
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb44
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb44
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb44
https://mediamanager.sei.org/documents/Publications/Climate/sei_air_travel_emissions_paper1_27_03_09.pdf
https://mediamanager.sei.org/documents/Publications/Climate/sei_air_travel_emissions_paper1_27_03_09.pdf
https://mediamanager.sei.org/documents/Publications/Climate/sei_air_travel_emissions_paper1_27_03_09.pdf
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb46
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb46
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb46
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb46
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb46
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb47
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb47
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb47
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb48
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb48
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb48
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb49
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb49
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb49
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb50
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb50
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb50
https://en.lvnl.nl/environment/runway-use
https://en.lvnl.nl/environment/runway-use
https://en.lvnl.nl/environment/runway-use
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb52
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb52
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb52
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb52
http://refhub.elsevier.com/S0360-5442(24)00696-0/sb52
https://www.schiphol.nl/en/download/1609745377/43q9kGoE92CccmEeC6awa4.pdf
https://www.schiphol.nl/en/download/1609745377/43q9kGoE92CccmEeC6awa4.pdf
https://www.schiphol.nl/en/download/1609745377/43q9kGoE92CccmEeC6awa4.pdf
https://www.munich-airport.de/_b/0000000000000008368639bb5e302e6f/traffic-safety-rules-2016.pdf
https://www.munich-airport.de/_b/0000000000000008368639bb5e302e6f/traffic-safety-rules-2016.pdf
https://www.munich-airport.de/_b/0000000000000008368639bb5e302e6f/traffic-safety-rules-2016.pdf
https://www.schiphol.nl/en/download/b2b/1594319068/40LYaERw5x8BuRuXpVQkiK.pdf
https://www.schiphol.nl/en/download/b2b/1594319068/40LYaERw5x8BuRuXpVQkiK.pdf
https://www.schiphol.nl/en/download/b2b/1594319068/40LYaERw5x8BuRuXpVQkiK.pdf

	Fleet scheduling for electric towing of aircraft under limited airport energy capacity
	Introduction
	Vehicle fleet scheduling 
	Fleet scheduling approaches for Electric Taxiing Vehicles 
	Transport electrification at airports


	Problem description and formulation
	Airport layout
	Aircraft and ETV routing
	Electricity model for electric towing vehicles (ETVs)


	Emissions saved by electric taxiing
	Gross taxi emissions saved
	Net taxi emissions saved
	Total flight emissions


	Mathematical formulation for vehicle-to-aircraft scheduling
	An ALNS approach to electricity capacitated ETV scheduling
	Adapting ALNS for ETV to aircraft scheduling
	Feasible steps
	Moving charging periods
	Initial solution

	Local search heuristics
	Heuristic weights
	Removal heuristics
	Insertion heuristics

	Local search framework

	Results
	Model comparison with small scale problem instances
	The impact of the electricity capacity at the airport on the ETV towing schedules
	Impact of fast charging and battery size on ETV fleet utilization

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Glossary
	References


