
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2016

MSc THESIS

High Performance OpenCL Implementation of
Medical Image Processing Algorithms [CP]

Panagiotis Mitsis

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2016-13

Current X-ray machines use lower radiation doses which introduces
noise to the output images. Therefore such systems need to enhance
the image and reduce the noise via different algorithms to provide
the best possible output. In addition, it is crucial to accelerate these
image processing algorithms as the output is intended to be a real
time video (fluoroscopy). Such systems are used for example in surg-
eries for implants or other medical examinations and there is a need
to provide constant performance, otherwise they may lead to injuries
or fatalities due to latency issues.
Currently, such systems often rely on server PCs to implement the
image processing chains. Since PC hardware needs to be replaced
regularly during the lifetime of an X-ray machine, this increases the
maintenance cost as well as the overall cost of the machine signifi-
cantly. Therefore, we need to provide a framework that would allow
us to develop the algorithm only once and then enable us to port it
to a new platform, while the performance is ensured.
In order to do so, a high performance framework solution was inves-
tigated. A number of alternative solutions were investigated and the
most attractive framework was selected to be the Open Computing
Language (OpenCL). OpenCL provides the means to develop the

image processing algorithm once and port it to different platforms, changing only the target platform from
the OpenCL API.
During this thesis exploration we were able to redevelop a high quality algorithm provided by Philips
Healthcare from a Matlab model to OpenCL in an optimal time period, while we investigated portability
and performance. We first developed a tool chain that enables transformation from Matlab to OpenCL.
Furthermore, 11 image processing kernels which constitute the algorithm were developed in OpenCL per-
forming a speedup of up to 150x in some cases. We were able to run the algorithm on three different
hardware platforms using the same OpenCL kernels and achieve a speedup up to of 36x compared to the
baseline implementation in C.

High Performance OpenCL Implementation of
Medical Image Processing Algorithms [CP]

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Panagiotis Mitsis
born in Ioannina, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

High Performance OpenCL Implementation of
Medical Image Processing Algorithms [CP]

by Panagiotis Mitsis

Abstract

Current X-ray machines use lower radiation doses which introduces noise to the output
images. Therefore such systems need to enhance the image and reduce the noise via different
algorithms to provide the best possible output. In addition, it is crucial to accelerate these image
processing algorithms as the output is intended to be a real time video (fluoroscopy). Such
systems are used for example in surgeries for implants or other medical examinations and there
is a need to provide constant performance, otherwise they may lead to injuries or fatalities due
to latency issues.

Currently, such systems often rely on server PCs to implement the image processing chains.
Since PC hardware needs to be replaced regularly during the lifetime of an X-ray machine, this
increases the maintenance cost as well as the overall cost of the machine significantly. Therefore,
we need to provide a framework that would allow us to develop the algorithm only once and then
enable us to port it to a new platform, while the performance is ensured.

In order to do so, a high performance framework solution was investigated. A number of
alternative solutions were investigated and the most attractive framework was selected to be
the Open Computing Language (OpenCL). OpenCL provides the means to develop the image
processing algorithm once and port it to different platforms, changing only the target platform
from the OpenCL API.

During this thesis exploration we were able to redevelop a high quality algorithm provided
by Philips Healthcare from a Matlab model to OpenCL in an optimal time period, while we
investigated portability and performance. We first developed a tool chain that enables transfor-
mation from Matlab to OpenCL. Furthermore, 11 image processing kernels which constitute the
algorithm were developed in OpenCL performing a speedup of up to 150x in some cases. We
were able to run the algorithm on three different hardware platforms using the same OpenCL
kernels and achieve a speedup up to of 36x compared to the baseline implementation in C.

Laboratory : Computer Engineering
Codenumber : CE-MS-2016-13

Committee Members :

Advisor: dr. ir. Zaid Al-Ars, CE, TU Delft

Chairperson: prof. dr. ir. Koen Bertels, CE, TU Delft

Member: dr. ir. Martin van Gijzen , DIAM, TU Delft

Member: ing. Rob J. de Jong, Supervisor, Philips Healtchare

i

ii

Dedicated to my parents: Christodoulos and Maria, who were always
supporting my dreams and my brother Dimitris for believing in me.

iii

iv

Contents

List of Figures vii

List of Tables ix

List of Acronyms xii

Acknowledgements xiii

1 Introduction 1

1.1 Context . 1

1.1.1 Philips Healthcare . 1

1.1.2 Almarvi . 3

1.2 Background . 4

1.2.1 Xray system description . 4

1.2.2 Image Processing . 7

1.3 Problem definition . 7

1.4 Thesis Outline . 8

2 Background 11

2.1 OpenCL . 11

2.2 Architectures . 17

2.2.1 Platform Setup . 17

2.2.2 Intel CPU . 18

2.2.3 Intel GPU . 19

2.2.4 rVex . 22

3 Alternative solutions 27

3.1 Software solutions . 27

3.1.1 CUDA . 27

3.1.2 SSE/AVX . 28

3.2 Hardware solutions . 28

3.2.1 rVex on Zynq . 29

3.2.2 SDAccel . 29

3.2.3 Vivado HLS . 31

3.3 Comparison . 32

4 Implementation (Summary) 33

4.1 Quality measurements to translate Matlab model to C 33

4.2 Profiling of the algorithm . 37

4.3 OpenCL error handling . 37

v

5 Results (Summary) 39
5.1 Performance measurements . 39
5.2 Design choices result and evaluation . 42
5.3 Accuracy tradeoffs . 43
5.4 Real-time capabilities . 43

6 Discussion 45
6.1 Quantitative evaluation . 45
6.2 Research Question . 45

7 Conclusion & Future work 47

Bibliography 50

A Appendix 51
A.1 OpenCL error codes . 51

vi

List of Figures

1.1 First medical X-ray by Wilhelm Röntgen [1] 4
1.2 Philips AlluraClarity Intervational System 5
1.3 Brief Introduction of an Xray Machine 5
1.4 Coolidge side-window tube (scheme) . 6
1.5 Typical fixed-anode X-ray tube . 6
1.6 X-ray system penetrates hand tissue to provide information about the

bones [2] . 6

2.1 Vendors that support OpenCL . 11
2.2 Example of 2D index space [3] . 13
2.3 OpenCL memory space [4] . 14
2.4 OpenCL system overview [4] . 14
2.5 Context overview [4] . 15
2.6 Command queue execution [4] . 16
2.7 Offline/Online compilation [5] . 16
2.8 AOS to SOA transformation [6] . 19
2.9 Intel GPU architecture [7] . 20
2.10 Group of sub-slices and memory scheme [8] 21
2.11 CPU-GPU relation . 22
2.12 rVex schematic [9] . 23
2.13 rVex OpenCL overview [10] . 24
2.14 rVex PoCL [10] . 24

3.1 SDAccel architecture [11] . 30
3.2 Vivado HLS [12] . 31

4.1 Implementation Process from Matlab to OpenCL 33
4.2 FAST Architecture . 35
4.3 Implementation Process from Matlab to OpenCL [13] 35
4.4 FAST GUI demo [13] . 36

5.1 Achieved fps for sequential code and different accelerators 40
5.2 Sequential code execution per filter block. 41
5.3 Speedup of all OpenCL accelerators against the sequential version. . . . 42

vii

viii

List of Tables

2.1 Compilation method comparison . 17

5.1 Summary of hardware platforms used for experiments 39
5.2 Speedup Comparison between different accelerators and the sequential

version . 41
5.3 Speedup Comparison between different accelerators and the sequential

floating point version . 42
5.4 Accelerator comparison between different image sizes and fps 44

A.1 OpenCL Error Codes [14] . 56

ix

x

List of Acronyms

ALMARVI Algorithms, Design Methods, and Many-core Execution Platform for Low-
Power Massive Data-Rate Video and Image Processing

API Application Program Interface

ASCII American Standard Code for Information Interchange

AVX Advanced Vector Extensions

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FAST Fixed-point Analysis & Scaler Tool

FPGA Field-Programmable Gate Array

FPS Frames Per Second

FPU Floating Point Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

HLS High-Level Synthesis

IP Intellectual property

iXR Interventional X-Ray

LLVM Low Level Virtual Machine

OpenCL Open Computing Language

OS Operating System

PC Personal Computer

PCI-E Peripheral Component Interconnect Express

RTL Register-Transfer Level

SIMD Single Instruction Multiple Data

SKMD Single Kernel on Multiple Devices

SM Streaming Multiprocessor

SPIR Standard Portable Intermediate Representation

xi

SSE Streaming SIMD Extensions

Vex VLIW Example

xii

Acknowledgements

This thesis denotes the end of two unbelievable years in TU Delft. On this page I
would like to thank everyone who contributed to accomplish this work. First, I would
like to thank my supervisor Zaid Al-Ars for his enthusiasm, his insight and our great
collaboration. One could not have imagined having a better mentor. Furthermore,
I would like to thank my colleague, fellow student but most importantly friend Bas
Metman for his companionship during our trip to Best, our insightful conversations,
his help and his support. Moreover, I would like to express my gratitude to Rob de
Jong from Philips Healthcare for his supervision, his brilliant ideas and guidance and
of course our great communication. In addition, I would like to thank Steven van der
Vlugt from Topic for his wholehearted support, his assistance during the project and
our great conversations during office/lunch hours. Last but not least, I would like to
thank Rachana Arunkumar for sharing her ideas and expertise and Bart van Rijnsoever
for supporting me actively.

I would like to thank also my friends A. Bougioukos, G. Katsaounis and L. Roussos
for their solid and direct support during my thesis and being there everyday for me
during our studies. Of course one can not forget: A. Kalatha, A. Kartsiou, G. Sarantis,
M. Theodoridis, G. Vranas, G. Petridis for their companionship in the library of TU
Delft and late night working. I would like to thank also my friends who brought comfort
to me despite the distance between us: P. Kostara, T. Kitsakis, A. Kapodistria and N.
Sketopoulos. In addition to my friends, I would also like to thank my amazing girlfriend
Angeliki for being enthusiastic and supportive during my thesis and for not complaining
for my late night working on some source code or this report.

Moreover, I would like to thank my family. My father Christodoulos for his dearest
and honest advice about life, my mother Maria for always seeing the bright side on all
issues and the two of them for helping me accomplish my dreams and goals with personal
sacrifices. Finally, I would like to thank my brother Dimitrios for believing in me and
who convinced me to travel to Delft for this amazing journey.

Panagiotis Mitsis
Delft, The Netherlands
October 13, 2016

xiii

xiv

Introduction 1
Medical imaging is a very crucial technique used by doctors worldwide in order to

create virtual representations of the interior of a body. One well-known medical imaging
technique is X-rays imaging. It is a form of electromagnetic radiation which allows the
interior representation of a body. To create the image, a heterogeneous beam of X-
rays is produced by a generator and is projected toward the object. A certain amount
of X-ray is absorbed by the object, which is dependent on the particular density and
composition of that object. The X-rays that pass through the object are captured behind
the object by a detector which can then provide a superimposed 2D representation of
all the object’s internal structures. However, through to limitations of the system an
amount of noise interferes with the image. To solve this, Philips Healthcare uses a noise
reduction algorithm which was invented in the R&D department of the company that
specializes on medical imaging. In order to provide high quality though, the algorithm
uses several filters, which results in increasing the required computational resources of
the processing platform.

This thesis describes the implementation of a medical image processing algorithm in
order to allow portability and performance. In other words we investigate the effect of
running the algorithm on a couple of processing platforms and investigate the result-
ing performance we can get. We do that using the OpenCL framework. Our goal is
to investigate if there are any accelerators that can fulfill implicitly defined real-time
constraints. Those constraints are based on the way that the human eye can process
a video and the maximum latency that will allow a physician to operate safely on a
patient. This chapter provides an introduction to the problem definition. It starts with
the context in which this work originated. Subsequently, the motivation for a real-time
solution will be discussed. Then the problem statement that is researched in the thesis is
presented. After that, the methodology to analyze the problem statement and the goals
of the thesis are discussed. Finally, the outline of the rest of the work is given.

1.1 Context

1.1.1 Philips Healthcare

Koninklijke Philips N.V. (Royal Philips, commonly known as Philips) is a Dutch
technology company with primary divisions focused in the areas of electronics, health-
care and lighting. It was founded in 1891 by Gerald Philips and his father Frederik in
Eindhoven. One of the most famous subdivision of Philips is Philips Medical Systems
or commonly known as Philips Healthcare. Philips Healthcare vision is to improve the
life of people with a series of medical products including:

1

CP: Public Public Version

Clinical informatics:

• Cardiology informatics (IntelliSpace Cardiovascular, Xcelera.

• Enterprise Imaging Informatics (IntelliSpace PACS, XIRIS).

• IntelliSpace family of solutions.

Imaging systems:

• Cardio/Vascular X-ray.

• Computed tomography (CT).

• Fluoroscopy.

• Magnetic resonance imaging (MRI).

• Mammography.

• Mobile C-Arms.

• Nuclear medicine.

• PET (Positron emission tomography).

• PET/CT.

• Radiography.

• Radiation oncology Systemsroots.

• Ultrasound.

Diagnostic monitoring:

• Diagnostic ECG.

During my internship I had the honor to work in the iXR team in Philips Healthcare
at Best. This department aim is to improve patient lives by focusing in two areas:

• Maintain the best quality of machines, just like the logo Philips means.

• Improve and pioneer the X-ray machines of the future.

2

CP: Public Public Version

1.1.2 Almarvi

Advanced image and video systems are becoming a crucial and resource consum-
ing part of embedded applications in many sectors. That’s why the ALMARVI [15]
project was created (Algorithms, Design Methods, and Many-core Execution Platform
for Low-Power Massive Data-Rate Video and Image Processing). The partners of the
project aim on reducing overall system design cost and time-to-market and enabling low
cost solutions for high volume markets in different industrial domains and creating new
market opportunities, and supporting SMEs. Such systems can be used for healthcare,
security/surveillance/monitoring, and mobile use cases. This particular thesis was pur-
sued by two partners of this project Philips Healthcare and Delft University of
Technology.

The motivation of our project is to develop a high performance real-time solution to
process an X-ray image which is distorted by noise during the image sensing process.
During the runtime of the implementation, a highly sophisticated image algorithm devel-
oped by Philips Healthcare processes the whole image to reduce the noise and sharp the
edges. The techniques used have as a result the output to be very clear for a physician.
It is very important for the system to be responsive and to provide constant performance
that meets the real-time requirements because otherwise it will provide wrong output
for the physician which might cause severe or fatal injuries to the patient.

In order to facilitate a solution that meets the requirements of portability and per-
formance, the OpenCL standard was chosen for this project. This standard provides
an abstract layer of describing the computational part of an algorithm and then can be
transfer to different heterogeneous platforms as it is supported by many different ven-
dors, as well as a soft-core processor made in TU Delft. Making various experiments
allowed us to have an overview on many aspects that affect a project like:

• Developing time.

• Portability.

• Scalability.

• Development costs.

These results were very useful for ALMARVI as we showed the means on how to create
a medical image processing system which support scalability and portable performance.
In our evaluation we conclude as well in which devices are most suitable to develop
a high performance system and we proved that performance is constant for the same
machine but it varies depending on the accelerator characteristics (better accelerator,
better performance and vice versa).

3

CP: Public Public Version

1.2 Background

X-radiation is a form of electromagnetic radiation discovered by Wilhelm Conrad
Röntgen in November 1895. After a couple of days of testing he observed that using
X-rays, one can look not only into metallic articles but also inside of a human body. His
first medical X-ray was of the hand of his wife Anna Bertha Ludwig shown in figure 1.1.

Figure 1.1: First medical X-ray by Wilhelm Röntgen [1]

The industrial use of X-rays began in Germany only two decades after their discovery
with the help of radiographic films. Radioscopy with fluorescent screens was developed
at the beginning of the 1940s, followed by the introduction of closed cabinets for testing
X-rays.

1.2.1 Xray system description

Nowadays X-ray systems are used to help physicians operate on a patient, allowing
him to look inside the human body in real-time. For example the Philips AlluraClarity
system which is shown in figure 1.2.

4

CP: Public Public Version

Figure 1.2: Philips AlluraClarity Intervational System

But how such a system operates? In brief the process is shown in figure 1.3.

Figure 1.3: Brief Introduction of an Xray Machine

To begin with, as stated X-rays is a type of electromagnetic radiation. Their wave-
length is ranging between 0.01 and 10 nanometers and depends on the photon energy
from the source. There are two types of X-rays based on their wavelength:

1. Soft X-rays: With wavelength above 0.02nm.

2. Hard X-ray: With wavelength in the range of [0.01, 0.02] nm.

Hard X-rays are the most commonly used with varying applications from crystallog-
raphy to medical imaging and airport security because they can penetrate the skin. The
photon energy of the X-rays can be changed which means that by tweaking this X-ray
will change penetration depth. This provides a means to view different layers in the
same object like bones, veins, etc.

In order to create such radiation, one needs an X-ray tube. There are different types of
X-ray tubes (sources) but the most widely used is the Coolidge tube [16]. The Coolidge
tube uses vacuum and high voltage to create X-rays: A tungsten filament is heated.
That frees electrons from the metal (but at almost zero energy and thus zero speed) and
then the electrons are accelerated using high voltage. As a result, the hotter the filament
gets, the greater the emission of electrons. The maximum energy (in electronVolt) of
the X-rays is virtually equal to the voltage applied between cathode and anode. Such a
water cooled tube scheme is shown in figure 1.4 and a typical tube in figure 1.5.

5

CP: Public Public Version

Figure 1.4: Coolidge side-window tube (scheme)

Figure 1.5: Typical fixed-anode X-ray tube

Except of the tube that generates the X-rays, we need also a detector in order to
provide medical imaging. That detector facilitate the imaging and the dose measurement.
Today, digital detectors such as image plates or flat panel detectors are mostly used.
They are placed below the patient as shown in figure 1.6.

Figure 1.6: X-ray system penetrates hand tissue to provide information about the bones
[2]

So far, we have discussed the tube that generate the X-ray, the detector that is placed
underneath the object to be scanned (e.g., the patient), which is placed between the tube

6

CP: Public Public Version

and the detector. But the question still remains: how is the virtual representation of
the inside of the human body produced? When the X-ray photons come out of the X-
ray generator, they will travel freely until they come in touch with matter. When this
happens, there are 3 possibilities:

• It penetrates and simply goes through without any path change.

• It can be completely absorbed and give all its energy to the matter (photoelectric
interaction).

• It can deposit part of its energy and be scattered (change in trajectory).

In the human body there are several types of tissue, some more dense than others. Dense
tissues (for example bones) absorb more X-rays than less dense tissues. That is why it
is possible to create an image.

1.2.2 Image Processing

After the image is received to the image detector, it is far from ideal. There are many
steps that need to be done before the output can be presented to the final intended user.
To begin with, it is a common effect that the captured image contains defect pixels or
lines. For that reason, Philips has developed an algorithm that is fitted on a device
to clean the image from such defections. After the cleaning algorithm there is a noise
reduction algorithm. This algorithm has to remove the noise from the cleaned image
and in addition to sharpen the edges to make them as clear as possible for the physician.
Finally, when the image is noise reduced, it is represented on a display in real-time and
captured as well for future playback by the physician. It is worth noticing that all the
processing of one image needs to be completed in a couple of milliseconds, otherwise the
physician will not have the necessary information to operate safely on the patient.

1.3 Problem definition

Philips Healthcare has produced a denoising algorithm which supports image reso-
lution of 960x960 pixels. The minimum amount of frames per second that should be
processed and shown to the physician is 30fps and ideally 60 fps. As a result of those
requirements each frame should be processed in a maximum delay of 33.33 ms or 16.67
ms respectively. Moreover there is a quality constraint that the relative error from the
matlab model and our implementation should not be above 0.5%.

That means that there is a need to provide a high performance (as fast as possible and
quality reliable) cross-platform solution for the support of a real-time system with the
constraints above. The most well-known framework for this is, is the Open Computing
Language (OpenCL). Multiple vendors with different hardware architectures support
OpenCL such as: Intel, AMD, Nvidia, Xilinx and Altera. Furthermore, there is support
for the rVex processor (developed by the TUDelft) to run OpenCL based on an FPGA
platform.

7

CP: Public Public Version

The aim of the project is to define if there is a high performance solution which
is portable and allows scalability without increasing by far the development time of
implementing the algorithms in software and porting them to alternative platforms. In
other words the research question of this thesis is:

Are there any means to develop a real-time constrained implementation
of a medical image processing algorithm, which is portable among different
hardware accelerators by means of performance and scalability, allows low
development costs and is easily maintainable?
For the specific algorithms being discussed within the context of this thesis, our goals
are to:

1. Implement the X-ray filtering algorithms used by Philips in a portable software
language that runs transparently on alternative hardware platforms

2. Use accelerated hardware solutions to achieve an image processing latency as low
as 33.33 ms per frame for 960x960 images

3. Use accelerated hardware solutions to achieve a video processing throughput at
30-60 fps for 960x960 resolution videos

In order to answer this several steps need to be done:

1. Detect parallelism both in inner functions but also in the filter model itself (if tasks
can be processed in parallel except data parallelism).

2. Convert the Matlab model into C code and get performance measurements in order
to detect the time consuming phases of the filter.

3. Convert C code into OpenCL code and detect stalls for each platform.

4. Redesign the code to match all the hardware platforms without affecting their
performance (for example the use of fixed point arithmetic instead of floats or
doubles).

5. Quality measurements in steps 2-4 are required to ensure that the quality constraint
is ensures.

After those steps and after deploying the code on different hardware accelerators a
comparison must be done in order to compare the development cost efforts, the scalability
and the final performance that someone can get and if it is suitable enough for our test
case.

1.4 Thesis Outline

The rest of the thesis is outlined as follows. In chapter 2, the background knowledge
regarding the OpenCL framework and the different hardware platforms used is provided.
In chapter 3, an evaluation of the alternative solutions that could facilitate the project

8

CP: Public Public Version

exist comparing both hardware and software solutions. Then in chapter 4, a summary of
implementing the noise reduction algorithm using OpenCL will be provided. In chapter 5,
a summary of the results of various hardware architectures running our OpenCL version
is outlined. Moreover, in chapter 6 a discussion on these results based on the research
question is provided. Finally, in chapter 7 the conclusions of this research work is given
and some interesting points to investigate in the future.

9

CP: Public Public Version

10

Background 2
This chapter will introduce the concepts and pitfalls of OpenCL. In addition a small

introduction for all the hardware architectures that were investigated is presented, along-
side their advantages that were taken into consideration for the final implementation.
At the end of this chapter a small discussion is taking place for the development setup
that was used in order to complete this thesis.

2.1 OpenCL

Open Computing Language (OpenCL) is an independent framework for describing
programs for different heterogeneous platforms. Such platforms are central process-
ing units (CPUs), Graphics processing units (GPUs), field-programmable gate arrays
(FPGAs) and other processors or hardware accelerators. OpenCL is an open standard
maintained by a non-profit consortium called Khronos Group [4]. This standard specifies
application programming interfaces (APIs) to control the platform and execute programs
(kernels) based on the C99 version of the C programming language standard. OpenCL
provides a standard interface for parallel computing using task-based and data-based
parallelism. A list of all the major vendors that support OpenCL is shown in figure 2.1.
It is worth noticing that OpenCL is supported by the softcore produced in TU Delft
r-Vex.

Figure 2.1: Vendors that support OpenCL

The OpenCL standard divides the execution between the host (driver) program and
the OpenCL kernels that will run on the accelerator. The host program runs on the
host CPU and is responsible via the OpenCL API to handle the hardware platform. It
is responsible for initializing the accelerator, compile/load a binary with the kernels for
the device, and setup the memory buffers. In addition, it is the one that control the
memory transfers from/to the device and control the execution of the OpenCL kernels.

11

CP: Public Public Version

An OpenCL kernel code is a C99 code that describes the computational part that the
programmer wants to implement via the hardware accelerator. It is the code that actually
runs on the different hardware platforms, in order to solve a recurring data-parallel
problem. As of April 2016, the new OpenCL standard 2.2 introduce the use of C++
for OpenCL kernel development, but none of the current vendors support it currently.
That means that the whole algorithm was described in C99 with some drawbacks (some
libraries which were in C++ had to be translated in C).

How does exactly an OpenCL kernel work? Imagine the researchers of a university.
Each of the faculties has different research groups. Each individual researcher within a
research group has a specific segment to research but the output of his research is com-
bined with the output of his fellow researchers to have a result for the research group.
The product of all the research groups represents the research of each faculty. Differ-
ent research is conducted from different faculties but all of them conduct the academic
research of the university. OpenCL follows the same model. Different OpenCL kernels
(faculties) are combined to produce a final product (academic research of the university).
Inside each kernel different work-groups (research groups) are working individually to
provide the output (academic research of a faculty). Finally, each work group has indi-
vidual work-items (researches) that cooperate together in order to produce a part of the
output.

Internally this is more complex than the example above. Most of the hardware
accelerators have many small processing units which can run in parallel. For this reason
the standard splits up the work in multiple index spaces as introduce in the example and
can be shown in figure 2.2. Each work-group is assigned to different processing units
and run in parallel. The programmer from the host program specifies the global size
in both axes (Gy,Gx) and then defines the work-group size in both groups. It is worth
mentioning that the work-group size (in total wx*wy) should also be supported from the
accelerator (e.g. Nvidia GPUs supports up to 1024 work-items/work-group and on Intel
standard GPUs 512 work-items/work-group). The amount of work-size per dimension
will define the number of work-items in each dimension.

12

CP: Public Public Version

Figure 2.2: Example of 2D index space [3]

A work item is the smallest processing unit which executes the kernel code. Work
items are identified with an index (x,y) using the get global id(index) function with
arguments 0/1 depending on the axis that we want to gain information. The amount of
work groups per dimension is calculated by:

Work groups per dim = dGy
wy
e (2.1)

The memory spaces in OpenCL are distinguished in four different types (figure 2.3)
ordered by speed:

1. Private memory is space that is work-item oriented, which means that only the
work-item is allowed to access that memory and it is non-accessible from other
work-items. It usually is implemented using registers.

2. Local memory is a small memory that the work-items of a work-group can ac-
cess but it is non-accessible from work-items of other work-groups. It usually is
implemented as a small cache programmable by the programmer.

3. Constant memory is accessible from all the work-items of work-groups, it is ini-
tialized from the host and it is a read-only memory that can’t change over the
run-time from the work-items. Usually it is implemented as a small area with low
latency.

4. Global memory is the one that is used as a storage memory. It provides data
from/to host and has the slowest access rate. Data inside global memory can
change during the run-time and is accessible from all the work-items of each work-
group.

13

CP: Public Public Version

Figure 2.3: OpenCL memory space [4]

After the declaration of how a kernel works lets now focus on how the framework
works. A system overview of OpenCL is presented in figure 2.4.

Figure 2.4: OpenCL system overview [4]

Each system can have multiple platforms that support OpenCL. In the initialization
state the programmer must clarify from the host code on which platform the code will
be executed. Then for each platform the context has to be initialized. The Context
includes the available platform devices, the available devices, the command queues and
the memory for that platform as shown in figure 2.5. For all the devices that are used in
the execution there has to be one command queue describing the tasks that the device
has to execute. Yet, in between two devices of the same context, memory objects can be
shared and allow an SKMD hybrid implementation.

14

CP: Public Public Version

Figure 2.5: Context overview [4]

The command queue is the basic element of the device that determines which task
has to run on the accelerator. It is managed from the host code and it can transfer data
between the host and the device using the clEnqueueWriteBuffer/clEnqueueRead-
Buffer. Moreover, it executes kernels using the clEnqueueNDRangeKernel with the
appropriate arguments. The priority of each queued task is determined by the defined
task order when the command queue is initialized. The default order is the in-order
queue which means that the execution is first task come first served as shown in fig-
ure 2.6. Out-of-order command queues may exist where the synchronization between
different kernels is being handled from the OpenCL events objects (clEvent).

In addition the command queue provides timing information when initialized with
the flag CL QUEUE PROFILING ENABLE. If the flag is enabled, the execution
time of each kernel can be retrieved if that kernel has an event object. In general, the
event objects provide the following:

• Synchronization among different kernels (when out-of-order queue).

• A time-stamp when the command was queued on the command queue by the host.

• A time-stamp when the command was queued on the command queue by the
device.

• A time-stamp when the command started execution.

• A time-stamp when the execution finished.

15

CP: Public Public Version

Figure 2.6: Command queue execution [4]

In the end of this small introduction about OpenCL we introduce also the different
compilations method of the OpenCL kernels. In OpenCL, a kernel can be compiled
either online or offline (figure 2.7).

Figure 2.7: Offline/Online compilation [5]

The basic difference between the 2 methods is than during the online compilation the
host code has to read the OpenCL kernel source code as a string and during the offline
compilation as a binary. In a commercial product it is not allowed to have the source
code available, as it is IP of the company. That’s why an exploration in the binary
compilation was conducted.

There are two types of binaries available the device specific and SPIR(Standard
Portable Intermediate Representation). The device specific binary is limited to only
the vendor code provided by the offline compiler and the specific device, while the SPIR

16

CP: Public Public Version

binary can be used with all the vendors/devices (that support it). In terms of portability,
it is the best option but the portability does not come without a cost. The developer
has to sacrifice performance in order to use it. This happens because SPIR contains an
Intermediate representation and it is not device optimized. During our tests we noticed
that with the same OpenCL kernels and workload when we compared the native binary
with SPIR there was an increase from 50ms per frame to 70ms. This means that the
design using SPIR became 40% slower on the same device. In table 2.1 we have a
comparison table with the advantages and disadvantages of all the compilation methods.

Compilation Type Pros Cons

Online On the fly will all ven-
dors

How to embed the source code.

Offline- Native Can be distributed
across devices of the
same family e.g. CPUs
(i7 - Xeon)

• Different binary for each ven-
dor.

• It needs the same driver ver-
sion.

Offline- SPIR Can be distributed for
all vendors/devices. • Still in early stage.

• Not all vendors support it yet.

• Performance issues.

Table 2.1: Compilation method comparison

2.2 Architectures

In this section a description about the hardware platforms chosen will be presented.
The initial goal of the project was to run the code on the rVex processor and develop it
on a device with an Intel CPU, to ease the development effort. However, due to some
implications with the PoCL framework provided by the University of Turku the final
platform list changed. A discussion though for that processor is taking place because
the code is designed to support it in the future as soon as the PoCL framework is
available. In the end of the project the implementation was tested on an Intel i7, Intel
Xeon and an Intel integrated GPU.

2.2.1 Platform Setup

The development setup for this thesis was an HP Zbook 15 workstation running
windows 7. It has three different hardware devices that can run OpenCL:

17

CP: Public Public Version

• Intel i7-4810 MQ

• Intel HD Graphics 4600

• Nvidia Quadro K1100M

The initial tools that someone needs in order to develop the implementation are
Microsoft Visual Studio and the Intel OpenCL SDK. For the purpose of our project we
used the API specified for OpenCL v1.2. The reason for that is that in the beginning of
the project it was decided to support:

• PoCL on rVex (OpenCL v1.2).

• Intel devices (OpenCL v1.2).

Due to the fact that we use some API calls introduced in OpenCL v 1.2 we were unable
to run the same code on an Nvidia GPU which only supported OpenCL v1.1 (at the
development environment introduced).

2.2.2 Intel CPU

Intel Architecture Processors provide performance acceleration using Single Instruction
Multiple Data (SIMD) instruction sets, which include [17]:

• Intel Streaming SIMD Extensions (Intel SSE).

• Intel Advanced Vector Extensions (Intel AVX) instructions.

• Intel Advanced Vector Extensions 2 (Intel AVX2) instructions (Most integer com-
mands to 256 bits and introduces FMA compared to AVX).

Using SIMD instructions the processor can achieve data parallelism. The task of
creating the parallel code is upon the compiler with the implicit vectorization module.
It uses internally an LLVM intermediate representation in order to create the vectorized
code. This module transforms scalar data type operations by adjacent work-items into
an equivalent vector operation [17]. When vector operations already exist in the kernel
source code, the module scalarizes (breaks them down into component operations) and
revectorizes them. This improves performance by transforming the memory access pat-
tern of the kernel into a structure of arrays (SOA), which is often more cache-friendly
than an array of structures (AOS) shown in figure 2.8.

18

CP: Public Public Version

Figure 2.8: AOS to SOA transformation [6]

In order to get best performance from using the vectorization module, the work-group
size must be larger or a multiple of 8. To reduce the overhead of maintaining a workgroup,
work-groups should be as large as possible, which means 64 and more work-items. One
upper bound is the size of the accessed data set, as it is better not to exceed the size of the
L1 cache in a single work group. Since work-groups are independent, they can execute
concurrently on different hardware threads. So the number of work-groups should be not
less than the number of logical cores. A larger number of work-groups results in more
flexibility in scheduling, at the cost of task-switching overhead. To recapitulate with,
Intel CPU devices allow data parallel processing by executing multiple kernel work-items
on different SIMD lanes together, while running multiple work-groups up to the number
of the logical cores of the processor concurrently.

2.2.3 Intel GPU

The Intel integrated GPU is equipped with several Execution Units (EUs), each one
of them is a multi-threaded SIMD processor. The SIMD width is a heuristic provided
to the compiler and if all the threads execute the same instruction the SIMD lanes can
be maximally utilized. In case of a branch it could be a stall to the device in order to
calculate the different paths, but it also provides a branch prediction unit. An overview
of the GPU architecture alongside with the Thread dispatcher is shown in figure 2.9.

19

CP: Public Public Version

Figure 2.9: Intel GPU architecture [7]

The building block of the architecture is the EUs. Each one is an SMT (Simultaneous
Multi-Threading) compute engine that executes SIMD instructions. The highly threaded
nature of these blocks ensures continues streams of ready-to-execute instructions which
can hide latency of memory operations [18]. A group of such blocks constitute a sub-slice
(figure 2.10) which share:

• Texture L1 and L2 caches, which are the path for accessing OpenCL images.

• Data port (L3 cache), which is the path for OpenCL buffers.

• Other hardware blocks like instruction cache.

20

CP: Public Public Version

Figure 2.10: Group of sub-slices and memory scheme [8]

It is worth mentioning that during our implementation we used OpenCL buffers
instead of OpenCL Images as they are not supported by PoCL on rVex. Moreover, this
GPU architecture has a benefit compared to the PCI-E GPUs. Intel GPUs shares the
same uniform memory with the CPUs (figure 2.11), which mean that we can have zero
Copy buffers and minimize the transfer time between the host and the device.

21

CP: Public Public Version

(a) Die overview[8]

(b) Schematic of memory between CPU/GPU [8]

Figure 2.11: CPU-GPU relation

Finally, as they are using the same memory for buffers they don’t only allow zero
copying but also they can work concurrently (SKMD [19]). As there is no need for data
transfers someone can use the same OpenCL kernel code and enqueue different workloads
both on a CPU and GPU concurrently as they can run under the same Context. In that
way concurrent processing can be achieved resulting faster results especially for real-time
applications.

2.2.4 rVex

rVex is a VLIW softcore developed by TU Delft with roots to the VEX ISA from
HP. In VLIW architecture, a processor executes multiple instructions in parallel. Which
instructions are executed in parallel is decided during compilation by the compiler. The
group of instructions that get executed in a cycle is called an instruction bundle. In that
way a faster execution can be achieved. However not all instructions can be executed in
the same cycle due to architectural restrictions or data dependencies.

By default, a VEX cluster has 4 ALU units, 2 multiplier units, 1 branch control unit
and 1 memory access unit per cluster as shown in figure 2.12. An example architectural
restriction than may prevent instruction on executing in the same cycle, is when there

22

CP: Public Public Version

Figure 2.12: rVex schematic [9]

are a lot of instructions that need access to a multiplier unit. This happens because
we have only 2 multiplier units and they are not enough to execute more instructions
concurrently.

Data dependencies occur due to the source code of the program and they are not
relating to the architecture. Three cases of data dependencies might occur:

• Flow (data) dependence: read-after-write (RAW).

• Anti-dependence: write-after-read (WAR).

• Output dependence: write-after-write (WAW).

An example of such dependency (RAW) that is not resolved is shown in the pseudo code
below:

A = 3
B = A
C = B

Code segment 2.1: Data dependency example

In past years, rVex was evolved in order to support OpenCL. In order to achieve this
goal a system was designed as shown in figure 2.13. The selected approach is based on
a Linux PC and a connected FPGA on it via the PCI-E bus for data communication.

23

CP: Public Public Version

Figure 2.13: rVex OpenCL overview [10]

Then the PoCL framework is taking care of the OpenCL code both for host and device.
The PoCL OpenCL implementation is divided into a host layer and a device layer (figure
2.14). The host layer encompasses all the device independent functions required for an
OpenCL implementation. This includes an OpenCL C language compiler and generic
optimization passes. The device layer contains all device specific functionality, and can be
seen as a hardware abstraction layer. Pocl uses the Clang compiler front end to compile
the OpenCL C language. This compiler generates LLVM Intermediate Representation
(IR) instead of machine code. This IR is architecture-independent, allowing reuse of
compiler front ends and optimization passes. Then a back-end translates this IR to
VEX specific assembly code.

Figure 2.14: rVex PoCL [10]

24

CP: Public Public Version

The device layer contains several components that need to be implemented to add a
new device target. To determine how many available devices the OpenCL implementa-
tion can access, the layer contains a device query component. The device layer is also
responsible for the generation of the machine code to execute on the device. This ma-
chine code should be generated from the IR that the host layer delivers, combined with
the built-in OpenCL C language functions. Finally, the device layer has to be able to
manage the device, implementing data transfer, setup and execution control.

The main reason that rVex was selected for this project is that it can run on an FPGA.
Such systems have shown that they can guarantee a lifetime of approximately 15 years
[20]. This is very important for X-ray machines that may be in the market for 20 years
(time since first release till maintenance is not more guaranteed by the manufacter).

25

CP: Public Public Version

26

Alternative solutions 3
Before implementing the noise reduction algorithm using the OpenCL framework

there was a research on what alternative solutions could be used instead. There were a
couple of alternatives available when the project began and also one solution was added
which is still in progress. Two types of alternative solutions were investigated: software
and hardware solutions. As software solutions we define those that the developer needs
to express the algorithm in a high level language, create an executable and run it on
an accelerator. On the other hand the algorithm can also be expressed in high level
language and create a Register-Transfer Level (RTL) design, which is what a hardware
solution means. At the end of this chapter there is a comparison table of the advantages
and disadvantages of each solution.

3.1 Software solutions

There are a couple of alternative software solutions available which could have been
used. Those are provided by major vendors and cover a CPU solution and a GPU one.

3.1.1 CUDA

CUDA is a parallel programming model invented by NVIDIA. It exploits the power of
the GPUs provided by NVIDIA and are connected to a PC via the PCI-E bus. In order
to achieve high performance computing CUDA utilizes the Streaming Multiprocessors
which are embedded in the GPU. Each SM contains its own L1 cache for faster accesses
and all of them have an interconnection with the L2 cache. This level of cache stores
all the data from the internal (global) memory of the device. There are a couple of
limitations during the programming of such devices that the developer should take care
of:

• Occupancy of the device: Limited by shared memory and the amount of registers
of each CUDA kernel.

• Memory bandwidth: The bandwidth of reads/writes to and from the global mem-
ory is relative to the data-types and the data access patterns that the developer
uses.

• PCI-E latency: The developer should try to overlap data-transfers with computa-
tions in order to keep the device busy and achieve better performance.

Although that CUDA supports C/C++ and Fortan which makes it relatively easy to
develop CUDA code, it is difficult to maintain CUDA code. The reason to that is that the

27

CP: Public Public Version

code is architecture specific. That means that each new architecture model presented
onto NVIDIA GPUs creates the need to redevelop the code as it is not performance
portable. For example a developer might not utilize the shared memory due to low
occupancy from large data allocation into the shared memory, and the next generation
may allow increase data-sets into the shared memory. Then he would have to redevelop
the code to achieve the desired efficiency.

3.1.2 SSE/AVX

SSE and AVX are extensions to the X86 Instruction set architectures for micropro-
cessors from Intel and AMD. Those extensions allow data parallelism provided by SIMD
instructions. There are three methods to implement SIMD programming:

1. Inline Assembly

2. Intrinsic Function

3. Vector Class

The methods are described from the fastest to the slowest. Both three methods are
difficult to maintain as they are also architecture specific. The sample code below,
perform a multiplication between two groups of 8 floats is provided using AVX. The
same principle applies for SSE source code.

// de f i n e the r e g i s t e r s used
m256 vector0 , vector1 ;

f loat a [8] ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} ;
f loat b [8]={2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
f loat c [8] ;
// load the 8 f l o a t s in a in t o vec tor0
vector0 = b u i l t i n i a 3 2 l o a d u p s 2 5 6 (a) ;
// load the 8 f l o a t s in b in to vec tor1
vector1 = b u i l t i n i a 3 2 l o a d u p s 2 5 6 (b) ;

// mu l t i p l y vec tor0 and vector1 , s t o r e the r e s u l t in vec tor0
vector0 = b u i l t i n i a 3 2 m u l p s 2 5 6 (vector0 , vec tor1) ;

// copy the 8 f l o a t s in vec tor0 to c
b u i l t i n i a 3 2 s t o r e u p s 2 5 6 (c , vec tor0) ;

Code segment 3.1: AVX Sample code

3.2 Hardware solutions

In this section we analyze different hardware solutions. One of them is still in developing
phase (rVex on Zynq) and cover an embedded solution of this problem using OpenCL. In
addition, we analyze two different hardware solutions provided from Xilinx. The reason

28

CP: Public Public Version

for that is that the other major vendor Altera follows the same concepts for products and
were not chosen by Philips and TU Delft. However, it is worth noticing that Inggs et.
al[21] states that the HLS tools from Altera and especially for OpenCL are well-suited
to accelerating parallel-friendly algorithms, as parallelism can be made explicit fairly
easily. In contrast based on his observations Xilinx’s tools are suited more for small
functional unit prototyping and will not provide optimal results if used by developers
with insufficient hardware design experience.

3.2.1 rVex on Zynq

rVex was analyzed in detail in chapter 2. The new version of PoCL will allow rVex to
use OpenCL directly on an FPGA board without the need of the host PC. This can
be achieved using the Zynq device provided by Xilinx. Zynq is a feature-rich embedded
software and digital development platform. It integrates a dual-core ARM A9 processor
with Xilinx FPGA logic. In this case using the ARM processor someone can install an
embedded OS and via PoCL to be able to utilize rVex as an accelerator. This is an
advantage compared to the current implementation of rVex with PCI-E, as the latency
to transfer data from/to the device will be decreased. It will be a performance portable
design as the RTL design of rVex is independent of the FPGA (if it fits the rVex softcore).
However, this is not ready to be tested yet. Another drawback is that the current version
of rVex runs on 100 MHz which means that the processing speed will not be enough for
a real-time application of that scale.

3.2.2 SDAccel

SDAccel is a tool provided by Xilinx and allows CPU/GPU like programming for FPGAs.
The architecturally Optimizing Compiler for OpenCL, C, and C++ shipped by Xilinx
allows:

• Up to 25X better performance/watt compared to CPU/GPU.

• 3X the performance and resource efficiency of other FPGA solutions.

• Optimize applications on FPGA platforms with little to no FPGA experience.

• Easily migrate applications to FPGAs while maintaining and reusing OpenCL, C
and C++ code.

The schematic of such a system is shown in figure 3.1.

29

CP: Public Public Version

Figure 3.1: SDAccel architecture [11]

Although SDAccel seems very attractive in terms of development time and maintain-
ability it was not chosen as it was not available yet for Zynq FPGAs at the start of this
project. Guidi et. al [22] researched the topic and found that the development time
to port to FPGA an algorithm was decreased but the performance was not adequate
enough. This happens because the compiler provided by SDAccel is still in early phase
which means that the optimizations provided are still not optimal comparing to other
OpenCL compilers. That implies that it is not suitable for a real-time contrained solu-
tion yet. In addition, in the current version they use an X86 host just like the solution
provided by TU Delft but this reduces the performance as we have an increase in the
latency to transfer data from/to the device.

30

CP: Public Public Version

3.2.3 Vivado HLS

Vivado HLS is a tool provided by Xilinx and focus on automating the workflow of
translating a source code described in high level languages to an RTL design. An overview
of Vivado is shown in figure 3.2.

Figure 3.2: Vivado HLS [12]

The Vivado High-Level Synthesis compiler enables C, C++ and SystemC programs
to be directly targeted into Xilinx devices without the need to manually create RTL. The
focus on that tool is that the FPGAs lifetime is in average 15 years which is over the half
lifetime of an X-ray machine (20 years). Concurrently when this thesis was pursued, an
investigation regarding the implementation of the same noise reduction algorithm was
conducted by a fellow student [20]. Based on his observations Vivado HLS decreased
the development time (comparing to a manually created RTL design) however some
time and effort had to be invested in order to develop an efficient solution. After an
extensive use of large number of diverse directives, the results were that the latency was
decreased by 61% and the resource utilization was also decreased by 83%, compared to
the initial Vivado HLS design. To summarize this solution, it is still in progress, needs
more development time than OpenCL (by far less than describing manually the RTL
design) and the final performance of a part of the algorithm was around 15 fps which is
the adequate enough based on research conducted by Philips [20].

31

CP: Public Public Version

3.3 Comparison

Platform Vendor Advantages Disadvantages

CUDA NVIDIA It is easy to develop source
code for this architecture.
Moreover it uses the same
concept as OpenCL.

Performance is not portable
thus it is hard to maintain
such solution.

SDAccel Xilinx It uses the same concept as
OpenCL. Moreover the life-
time is better due to the us-
age of FPGAs.

Currently needs a PC which
means that is will be slow
due to data transfers over
the PCI-E bus. In addition
the compiler is still in early
stage so the output is not
optimal yet.

SSE/AVX Intel Good match to the archi-
tecture.

There is a need for specific
intrinsic instructions that
may alter throughout the
lifetime of the algorithm.
Thus is hard to develop and
maintain such solution.

rVex on
Zynq

TU Delft It utilizes the OpenCL
framework and there is
no need for a pc which
makes the memory trans-
fers faster. Moreover it runs
on an FPGA which have
better lifetime.

The current version of rVex
runs on 100 MHz which
means that the perfor-
mance is not enough for
that application.

Vivado
HLS

Xilinx It has better lifetime due to
the usage of FPGAs. The
final design is also main-
tainable because the RTL
can be transferred to differ-
ent FPGAs.

The output result is not op-
timal yet. Thus there is
a need for manually opti-
mizing C++ code in order
to assist Vivado HLS to a
more efficient RTL design
for a complex algorithm.

32

Implementation (Summary) 4
This chapter describes the tools and the decisions that were encountered during

the transition from the Matlab model towards the OpenCL implementation. Due to
confidentiality there would be only a discussion regarding the tools that were used and
developed in order to ensure the correct transition from the Matlab model towards the C
and OpenCL implementation. A summary of the implementation process can be shown
in figure 4.1.

Figure 4.1: Implementation Process from Matlab to OpenCL

4.1 Quality measurements to translate Matlab model to C

When the project started, Philips Healthcare provided a description of the noise
reduction algorithm in Matlab. The OpenCL framework as stated previously in chapter
2 uses only the C99 standard; so a transfer from Matlab to C had to take place. Moreover,
the original Matlab model uses floating point arithmetic, which is an issue. The issue
relies on the fact that the rVex softcore does not have a floating point unit (FPU) and
emulates the floating point operations, meaning that each operation using floating point
arithmetic has a lot of latency. Those two things generated the following needs:

• Quality measurements: Is our quality constraints fulfilled against the Matlab
version?

• Fixed point tool analyzer: Analyze the amount of bits that each variable needs
in order to implement the algorithm using fixed point arithmetic instead of double

33

CP: Public Public Version

precision.

Such a tool was not available, and it was created in the context of the Almarvi project.
In order to design such tool some requirements were defined. The following list of
requirements emerged:

• The range of the floating point variables need to be determined.

• Simple, portable UI.

• Fast processing to reduce developing time.

Those requirements introduced the Fixed-point Analyzer and Scaler Tool (FAST).
The FAST was developed in two different parts. The first part the back-end is based on
a very simple principal. In order to find the range of a variable someone has to follow the
changes during the “life” (scope) of this variable. In order to implement this, we used
an overloading macro mechanism. That macro is easy to be embed on the code after
each assignment and also can be removed easily after the translation and verification by
commending out the overloading phase.

The macro handler is a class that finds (based on the source code name) in which
part of the filter we currently are and detects which assignment of that variable takes
place. It keeps record of the different variable assigments in order to be able at the UI
application to determine the full range of the specific variable.

In order to provide a portable solution, it was decided to create binary output of each
variable. This would allow also better performance as reading a binary file of a matrix
960x960 is faster than reading the ASCII representation of that matrix.

After defining the structure of the FAST tool a UI application had also to be created to
provide the information that was needed. In order to support all the available Operating
systems it was decided to create the FAST tool UI using Java and more specifically
the swing framework. That application was the front-end of the FAST tool. It takes
as arguments the folder of the outputs provided by the macros and has two functions
available:

• Error Comparison

• Fixed-Point Analyzer

The error comparison at the beginning was between the Matlab reference values
and the C implementation of the noise reduction algorithm. In this way a verification
of the translation into C can be guaranteed. When we reached the final stage of the
implementation into C and we verified that the relative error between Matlab and C is
relative small (10−12) we established our so called “Golden standard”. The reason to
that is that Matlab internally use up to 80 bits precision while we were using doubles.
After the establishment of the “Golden standard” we could compare it to our fixed point

34

CP: Public Public Version

implementation based on the suggestion of FAST. It is worth mentioning that in order
to have a clear view of the amount of bits for each variable, there were used multiple
different streams of medical images provided by Philips Healthcare. The way that fast
was designed to help the creation of the fixed point implementation from the Golden
standard can be shown in figure 4.2.

Figure 4.2: FAST Architecture

The summary of the way FAST was used in order to translate the Matlab model to the
fixed point OpenCL version can be shown in figure 4.3 on the left side and a sample
output of the FAST tool can be shown in figure 4.4.

Figure 4.3: Implementation Process from Matlab to OpenCL [13]

35

CP: Public Public Version

Figure 4.4: FAST GUI demo [13]

After finding the correct fixed point values there was a problem using them in OpenCL.
The original library was in C++ and as stated in chapter 2 OpenCL works only with
C99. A translation took place using inline functions but based on our measurements the
compiler performed better when the fixed point library was implemented using macros
instead of function in lining. It was out of the context of this thesis to understand the
compiler’s behavior on this issue.

36

CP: Public Public Version

4.2 Profiling of the algorithm

One of the most important things for the implementation was to have a comparison
mechanism. That mechanism would allow:

• To understand the compute intense parts of the algorithm.

• To have measurements regarding how OpenCL competes with the original sequen-
tial code.

• To verify if the optimizations being made improve or decrease the performance.

Such a mechanism is called profiling. In order to achieve that, explicitly defined CPU
timers were developed and operated on the sequential code to profile it. The same timers
were used in the OpenCL implementation as well, in order to profile the total execution
time which consists in three phases:

• Communicate to transfer the input to the device.

• Execute the algorithm on the accelerator.

• Communicate to transfer output.

Furthermore, a list with OpenCL device timers to gather the execution time of each
kernel was created. That would allow more insights on how each algorithm step adapts
on each device, it would provide the most compute intense parts in parallel and finally,
a comparison between different versions of each kernel to choose the one with the best
performance.

In order to be able to trust the output of the OpenCL timers a verification that
the output that was provided from them was correct was needed. For that reason the
OpenCL Builder software bundled with the Intel OpenCL SDK was used. This software
relies on extreme accurate timers that Intel has embedded on-chip. Using the OpenCL
builder, which provides a graph with the different kernels showed that the timers were
correct. These timers helped to interpret the results and identify the compute intensive
OpenCL kernels. In order to use the profiler provided by Intel someone needs to install
Microsoft Visual Studio and the OpenCL SDK.

4.3 OpenCL error handling

The last mechanism that needed to be created is how someone will handle OpenCL
API errors. If someone is programming in C and an error occur then the execution of the
program will stop with an error code and a message (e.g. a segmentation fault reading
from an erroneous pointer position). However when someone programs an accelerator
and handle it from the host system, is mandatory to check after each API call if an
error occurred and was reported back. OpenCL by default will report back a status

37

CP: Public Public Version

code which the programmer should check and see if it indicates an error. In order to
overcome this and detect the fault origin immediately I created a macro which I use in
all my OpenCL API calls. If an error occurs it will stop the execution and report back
a string with a meaningful error message. In order to track error codes with the error
messages I used the error codes of the OpenCL standard 1.2 as they are described from
Khronos group. This means that if in the future someone wants to change the standard
that is supported to the version 2.0 for example, that library should be updated with
the error codes of that version. A list of the errors with their description is in Appendix
A.1.

38

Results (Summary) 5
Based on the utilization of the timers described in the Implementation chapter, some
important results regarding the performance of OpenCL occured. The OpenCL device
tested was an Intel i7-4810MQ, an Intel Xeon CPU and the integrated HD Graphics
4600 which is on chip with the i7 processor. A summary of the hardware platforms used
can be shown in table 5.1.

Platform Name Intel i7-4810MQ Intel Xeon Intel HD Graphics 4600

#cores 4 8 20 (EU)

#threads 8 16 7(per EU)=140

#frequency 3.8 GHz 3.4GHz 1200 MHz

Cache size 6MB 20MB (shared with i7)

Table 5.1: Summary of hardware platforms used for experiments

5.1 Performance measurements

After the completion of the Matlab translation and the result verification, the usage of
the optimizations in Microsoft Visual studio was activated. The /Ox flag was chosen
which allows the compiler to produce code that favors execution speed over smaller size.
With that option the following is allowed:

• Function inlining: Expansion of functions marked as inline, inline, or forceinline,
and any other function that the compiler chooses.

• Global Optimizations: Provides local and global optimizations, automatic-register
allocation, and loop optimization.

• Generate intrinsic functions.

The performance of the sequential code was measured both using single and double
precision floating point arithmetic. Intuitively, we were expecting floats to be faster
than doubles and the result was that it was faster by 30 ms which is 4.3%. But the
performance of the sequential code was not even close to be effective as it could produce
only 1.4 fps. The Intel GPU did not support double precision arithmetic. For that reason,
we started the measurements for the OpenCL version of the algorithm only when the
code was translated from double precision to single precision floating point arithmetic.
Immediately we spotted a decrease on the amount of time that the algorithm needed to
operate and of course an increase on the fps that was processed. The total amount of
fps achieved can be shown in figure 5.1.

39

CP: Public Public Version

0

10

20

30

40

50

60

CPU Floats CPU Doubles OpenCL i7 CPU OpenCL Xeon CPU OpenCL i7 GPU

Frames

Figure 5.1: Achieved fps for sequential code and different accelerators

From this figure one can understand the potential that the OpenCL implementation
has. First of all after applying the OpenCL code the same CPU (i7) achieved higher
performance than in the sequential one although in the later we enabled SIMD intrinsics
(vectorized code). In addition, OpenCL code exploits also the fact that i7 is a many-core
processor which can run different processor engines in parallel. Moreover it can be shown
that the Xeon CPU which has more processor engines than the i7 can achieve better
performance which implies more fps. This shows that the code is performance portable
because we transferred it from one machine to another without changing anything and
it could perform better. It was able to exploit the full power of the Xeon CPU without
changing neither the kernel code or the work-group slicing. The OpenCL runtime did
all the configuration to the device automatically (find the PEs, manage buffers etc.).
Finally, the integrated GPU from Intel performed the best result as expected. This
happened due to three reasons:

• The GPU has more processor engines than the CPUs.

• It fits more to image processing.

• It does not need a lot of time to transfer data from/to host like an external GPU
because the communication over PCI-express is more expensive even with pinned
memory.

In terms of runtime, the contribution of this thesis can be shown in figure 5.2. The
figure shows the computational time needed by the different blocks (or kernels) that the
algorithm has to execute in comparison with the computational time of the OpenCL op-
timized versions of these kernels. The sequential implementation shows higher execution
time for all optimized kernels in the algorithm. The most computationally expensive
kernel is Block 9, which was reduced from a sequential 600ms down to 4ms for the GPU,
achieving a speedup of 112x. The kernel Block 5 was reduced from a sequential 89ms
down to 0.59, achieving a speedup of 151x.

40

CP: Public Public Version

Table 5.2 lists the speedup comparison on all platforms, and for each of the kernel
blocks. The table shows that all kernels are able to achieve increased performance on all
platforms, except for Block 11 on the i7, which decreases performance to 0.86x.

0.1

1

10

100

1000

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Block
8

Block
9

Block
10

Block
11

Ti
m

e
 in

 m
s

Performance results of filter kernels comparison

OpenCL i7 CPU

OpenCL Xeon CPU

OpenCL i7 GPU

Sequential

Figure 5.2: Sequential code execution per filter block.

Block i7 CPU speedup Xeon speedup HD Graphics speedup

Block 1 1.70 2.88 3.63

Block 2 2.09 4.10 3.54

Block 3 1.30 2.59 2.70

Block 4 6.58 8.84 11.86

Block 5 60.48 130.26 150.89

Block 6 1.79 2.49 1.46

Block 7 3.18 4.62 5.71

Block 8 1.55 2.99 2.05

Block 9 18.00 23.15 112.98

Block 10 10.42 13.57 28.48

Block 11 0.86 4.44 1.64

Table 5.2: Speedup Comparison between different accelerators and the sequential version

A comparison between the total speedup that was gained against the sequential
version is presented in figure 5.3. This represents the weighted average speedup achieved
at the algorithm level by running the combined kernels of the algorithm.

41

CP: Public Public Version

0

5

10

15

20

25

30

35

40

OpenCL i7 CPU OpenCL Xeon CPU OpenCL i7 GPU

Speedup of OpenCL execution compared to the sequential version

Figure 5.3: Speedup of all OpenCL accelerators against the sequential version.

The figure shows that the achieved speedup is in the range between 13-33 times faster
than the sequential version. The platform specific detailed speedup numbers are listed
in table 5.3.

Accelarator Total Speedup

OpenCL i7 CPU 14.81

OpenCL Xeon CPU 21.93

OpenCL i7 HD 4600 GPU 36.60

Table 5.3: Speedup Comparison between different accelerators and the sequential floating
point version

5.2 Design choices result and evaluation

One of the most important choices that was made was to allow autovectorization. This
allowed to the code to generate and fit the CPU as better as possible. It is shown that
if a better CPU is used the code adapts to its possibilities. Moreover, the change from
double precision to floating not only allowed us to have a smaller error and double the
CPU execution time but in addition, they allowed the execution on the integrated GPU.
The later one showed almost doubled speedup than the CPU.

Fixed point arithmetic was developed in order to support FPGAs as well and more
specifically to run the code on rVex (or directly using SDAccel). Although it is the only
way to ensure that every accelerator used will produce the same output (if any vendor
does not comply with the IEEE-754 standard), it is very costly in terms of developing

42

CP: Public Public Version

time. It took a lot of time to investigate the variable ranges in order to support the
arithmetic on OpenCL.

The algorithmic based optimizations that were made had as a result a faster execution
time but they have a drawback. During runtime there is no way to change the filter
attributes, the variables responsible for the visual outcome. Such change can only be
made when restarting the application in the initialization state.

5.3 Accuracy tradeoffs

In every step of the transition of the algorithm from C/C++ to OpenCL I had to make
some tradeoffs. In order to be able to measure the impact of my tradeoffs I used FAST
to measure the relative error produced. My observations of that were very interesting.

In the beginning we developed the filter code using double precision floating point
arithmetic, but the developing GPU wasn’t supporting double precision arithmetic so I
had to use floats instead of doubles. As a result of that, the round-off error increased
but there was no visual artifact as the difference was too low. Moreover, I noticed that
although the Intel platform utilize the arithmetic functions it was faster to not use the
power function (pow) but instead use normal multiplication for this calculation. That
added a bit of round-off error but again the resulted error was tolerable.

Finally, we noticed that the relative error produced from the CPU and the GPU with
floating point arithmetic was slightly different, while when using fixed point arithmetic
the error is the same. My intuition about that is that the GPU handles differently
floating point arithmetic than the CPU, for example the amount of guard and round
bits that it use. That’s why the error is bigger in the GPU. Nevertheless, when using
fixed point arithmetic it remains the same as they have the same architecture to handle
integers. In the following results can be observer:

• Relative error for different accelerators.

• Relative error with relaxed math.

As the use of relaxed math doesn’t provide a significant increase in speed, it is not going
to be used.

5.4 Real-time capabilities

Based on our performance results there are a number of accelerators that are already
able to perform sufficiently for the minimum real-time constraints that we wanted to
achieve. We consider a result successful if it can process at least 30fps this is our thresh-
old. As none of our setups reached 60fps (or above) which was the desired value, we
will only use 30fps for the comparison. In Table 5.4 there is a list with accelerators and
setups and if they were fast enough to be considered as real-time capable.

43

CP: Public Public Version

Accelerator Name 960x960 @ 30fps 1024x1024 @30fps

Intel i7-4810MQ CPU NO NO

Intel Xeon YES YES

Intel i7 HD 4600 GPU YES YES

Table 5.4: Accelerator comparison between different image sizes and fps

44

Discussion 6
The focus of this chapter is to discuss the results of the previous chapter, evaluate them

and then verify if the original research question has been answered. In the first section
a quantitative evaluation of the results is going to take place and then the verification
of the research question is going to get addressed.

6.1 Quantitative evaluation

The results shown in the previous chapter indicates that we created a sufficient
solution for the baseline 30fps requirement. Although the i7 CPU doesn’t meet this re-
quirement, there is a study pursued by Philips Healthcare that provides information that
15fps is adequate enough for the human eye. That means that all the hardware platforms
tested can be used to solve the image processing problem for the X-ray machines.

Moreover, the solution of the GPU has not only better performance but also keeps
the CPU free from calculations, which means that the CPU can be used concurrently for
other purposes. In addition, it is important that we can dedicate the GPU to computa-
tions only, because in the native implementation some specific changes had to be done
on the OS in order to not interfere during the calculations. That was because the OS
is responsible for the resources of the CPU and could allocate them for different tasks
which would imply that the maximum performance could not be achieved. One of the
most important aspects in this project is to guarantee constant performance and this
was achieved with our implementation.

6.2 Research Question

The research question of this thesis was if there are any means to develop a real-time
constrained implementation of a medical image processing algorithm which would:

1. Be portable among different hardware accelerators by means of performance and
scalability.

2. Allow low development costs.

3. Be easily maintainable.

In order to address this question we used the OpenCL framework. This portable language
allowed us to develop the full algorithm in the duration of 3 months after the translation
of the original Matlab model, which means that the development costs were decreased
due to smaller development time. The same results are shown by Ferreira et. al [23].

45

CP: Public Public Version

Moreover, the OpenCL implementation is easily maintainable. This is because the
OpenCL kernels were described once in OpenCL and there is no need to redevelop them
in the future. Throughout the life of the algorithm though some API calls in the host
(driver) program might become deprecated. This can be easily solved as the standard
evolves, because they will mention which API call replaces the deprecated ones.

And last but not least, we have proven that the code is performance portable and
scalable. The implementation was tested against three different platforms. It is shown
in the previous chapter that when we tested it on the Xeon CPU which was better than
the i7 not only we didn’t have to redevelop the source code but it could be used plug
and play. As the performance of the Xeon is better than the i7 CPU we also notice
the performance improvement using our code. In addition, we noticed that using the
same OpenCL kernels we were able to run the algorithm on an i7 integrated GPU,
which outperform the CPUs due the compute overhead of a filter, which means that our
solution is scalable.

Based on our findings and the reasons mentioned above we can conclude that this
thesis research question was answered successfully.

46

Conclusion & Future work 7
Creating a performance portable and maintainable source code is one of the most com-

plex tasks a computer engineer will encounter. The problem to that is that each vendor
provides different solutions to achieve better performance (e.g. Nvidia with the CUDA
framework). That’s why the OpenCL standard developed and maintain by Khronos
group has so many vendors to support it. Although many vendors support it, there are
still different architectural concepts to keep in mind while developing such a solution.

This thesis provided a roadmap and the toolflow to achieve such a solution. Us-
ing that toolflow and based on specific engineering decisions we were able to provide
such a solution. That comes with a drawback though; we can’t really achieve the best
performance possible on all platforms due to the different architectural concept of each
platform. While developing the code we had in mind such problems: the fixed point
implementation or the usage of auto-vectorized code instead of implicit declaration of
vectorized code. Those decisions were covered alongside with the tools needed in this
thesis. However, the results were more than fascinating.

One reason for not achieving the best performance in each platform is that the
compilers for OpenCL are still in an initial phase. However, with the rapid advances on
the compiler side in the following years, they will provide better performance and the
code will still remain the same in the OpenCL kernel side. That proves the power of the
OpenCL framework.

For the specific project though there are some areas that should be addressed in
the future. There should be careful measurements and architectural improvements on
the rVex softcore in order to be able to provide an embedded solution of our OpenCL
source code. In addition, a research that could focus on using the SDAccel tool should
be explored. Last but not least, measurements with the integrated GPUs of the high-end
CPUs provided by Intel and other Vendors should be explored in order to investigate if
there are other platforms that can fit better, which is a simple task to do as someone
needs only the platforms and some changes on the API already provided by this thesis
to run it.

47

CP: Public Public Version

48

Bibliography

[1] Wilhelm rontgen museum. [Online]. Available: http://www.roentgenmuseum.de/

[2] D. Mery, Computer Vision for X-Ray Testing, S. I. Publishing, Ed. Springer
International Publishing, 2015.

[3] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and
H. Berg, “pocl: A performance-portable opencl implementation,” International
Journal of Parallel Programming, vol. 43, no. 5, pp. 752–785, 2015. [Online].
Available: http://dx.doi.org/10.1007/s10766-014-0320-y

[4] Khronos group. [Online]. Available: https://www.khronos.org/opencl/

[5] R. Tsuchiyama, The OpenCL Programming Book, 1st ed. Fixstars Corporation;,
April 13, 2010. [Online]. Available: https://www.fixstars.com/en/opencl/book/

[6] Writing Optimal OpenCL Code with Intel R© OpenCL SDK, Intel Corporation,
2011.

[7] OpenCL Device - Intel Processor Graphics, Intel Corporation, 2014.

[8] OpenCL Optimization Guide Intel R©, Intel Corporation, 2014.

[9] T. Van As, “r-vex: A reconfigurable and extensible vliw processor,”
Master’s thesis, Delft University of Technology, 2008. [Online]. Available:
http://repository.tudelft.nl/

[10] H. Van Der Wijst, “An accelerator based on the ρ-vex processor: an exploration
using opencl,” Master’s thesis, Delft University of Technology, 2015. [Online].
Available: http://repository.tudelft.nl/

[11] Sdaccel information. [Online]. Available: https://www.xilinx.com/products/
design-tools/software-zone/sdaccel.html

[12] Vivado information. [Online]. Available: http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html

[13] Philips, “D4.3 design space exploration [public],” Almarvi, techreport, 2016.
[Online]. Available: http://www.almarvi.eu/assets/almarvi d4.3 final v10.pdf

[14] S. Computing. Opencl error codes. [Online]. Available: https://streamcomputing.
eu/blog/2013-04-28/opencl-error-codes/

[15] Almarvi consortium homepage. [Online]. Available: http://www.almarvi.eu/

[16] W. Coolidge, “X-ray tube.” Patent, Jan. 2, 1917, uS Patent 1,211,092. [Online].
Available: https://www.google.com/patents/US1211092

49

http://www.roentgenmuseum.de/
http://dx.doi.org/10.1007/s10766-014-0320-y
https://www.khronos.org/opencl/
https://www.fixstars.com/en/opencl/book/
http://repository.tudelft.nl/
http://repository.tudelft.nl/
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.almarvi.eu/assets/almarvi_d4.3_final_v10.pdf
https://streamcomputing.eu/blog/2013-04-28/opencl-error-codes/
https://streamcomputing.eu/blog/2013-04-28/opencl-error-codes/
http://www.almarvi.eu/
https://www.google.com/patents/US1211092

CP: Public Public Version

[17] A Guide to Vectorization with Intel C++ Compilers, Intel Corpora-
tion. [Online]. Available: https://software.intel.com/sites/default/files/8c/a9/
CompilerAutovectorizationGuide.pdf

[18] The Compute Architecture of Intel R© Processor Graphics Gen8, Intel Corporation,
2014.

[19] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent cpu-gpu collaboration
for data-parallel kernels on heterogeneous systems,” in Proceedings of the 22nd In-
ternational Conference on Parallel Architectures and Compilation Techniques, Sept
2013, pp. 245–255.

[20] S. Metman, “Software to hardware: Alternatives for reducing design time of
optimized fpga implementations in medical devices [cp],” Master’s thesis, Delft
Univesity of Technology, 2016. [Online]. Available: http://repository.tudelft.nl/

[21] G. Inggs, S. Fleming, D. Thomas, and W. Luk, “Is high level synthesis ready for
business? a computational finance case study,” in Field-Programmable Technology
(FPT), 2014 International Conference on, Dec 2014, pp. 12–19.

[22] G. Guidi, E. Reggiani, L. D. Tucci, G. Durelli, M. Blott, and M. D.
Santambrogio, “On how to improve fpga-based systems design productivity
via sdaccel,” 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 247–252, 2016. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7529874

[23] J. R. Ferreira, M. C. Oliveira, and A. L. Freitas, “Performance evaluation of
medical image similarity analysis in a heterogeneous architecture,” 2014 IEEE
27th International Symposium on Computer-Based Medical Systems, pp. 159–164,
2014. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.
0-84907395053{&}partnerID=tZOtx3y1

50

https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf
http://repository.tudelft.nl/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7529874
http://www.scopus.com/inward/record.url?eid=2-s2.0-84907395053{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84907395053{&}partnerID=tZOtx3y1

Appendix A
A.1 OpenCL error codes

Code OpenCL Error Flag Function(s) Description
0 CL SUCCESS The sweet spot.
-1 CL DEVICE NOT FOUND clGetDeviceIDs if no OpenCL devices that matched de-

vice type were found.
-2 CL DEVICE NOT AVAILABLE clCreateContext if a device in devices is currently not avail-

able even though the device was returned
by clGetDeviceIDs.

-3 CL COMPILER NOT
AVAILABLE

clBuildProgram if program is created with clCre-
ateProgramWithSource and a
compiler is not available i.e.
CL DEVICE COMPILER AVAILABLE
specified in the table of OpenCL Device
Queries for clGetDeviceInfo is set to
CL FALSE.

-4 CL MEM OBJECT
ALLOCATION FAILURE

if there is a failure to allocate memory for
buffer object.

-5 CL OUT OF RESOURCES if there is a failure to allocate resources
required by the OpenCL implementation
on the device.

-6 CL OUT OF HOST MEMORY if there is a failure to allocate resources
required by the OpenCL implementation
on the host.

-7 CL PROFILING INFO NOT
AVAILABLE

clGetEventProfiling
Info

if the CL QUEUE PROFILING ENABLE
flag is not set for the command-
queue, if the execution status of the
command identified by event is not
CL COMPLETE or if event is a user
event object.

-8 CL MEM COPY OVERLAP clEnqueueCopy-
Buffer, clEn-
queueCopyBuffer-
Rect, clEnqueue-
CopyImage

if src buffer and dst buffer are the same
buffer or subbuffer object and the source
and destination regions overlap or if
src buffer and dst buffer are different sub-
buffers of the same associated buffer ob-
ject and they overlap. The regions overlap
if src offset to dst offset to src offset +
size 1, or if dst offset to src offset to
dst offset + size 1.

-9 CL IMAGE FORMAT
MISMATCH

clEnqueueCopy-
Image

if src image and dst image do not use the
same image format.

51

CP: Public Public Version

-10 CL IMAGE FORMAT NOT
SUPPORTED

clCreateImage if the image format is not supported.

-11 CL BUILD PROGRAM
FAILURE

clBuildProgram if there is a failure to build the program
executable. This error will be returned if
clBuildProgram does not return until the
build has completed.

-12 CL MAP FAILURE clEnqueueMap-
Buffer, clEn-
queueMapImage

if there is a failure to map the requested
region into the host address space. This
error cannot occur for image objects cre-
ated with CL MEM USE HOST PTR or
CL MEM ALLOC HOST PTR.

-13 CL MISALIGNED SUB
BUFFER OFFSET

if a sub-buffer object is specified as the
value for an argument that is a buffer ob-
ject and the offset specified when the sub-
buffer object is created is not aligned to
CL DEVICE MEM BASE ADDR ALIGN
value for device associated with queue.

-14 CL EXEC STATUS ERROR
FOR EVENTS IN WAIT LIST

if the execution status of any of the events
in event list is a negative integer value.

-15 CL COMPILE PROGRAM
FAILURE

clCompileProgram if there is a failure to compile the pro-
gram source. This error will be returned
if clCompileProgram does not return until
the compile has completed.

-16 CL LINKER NOT AVAILABLE clLinkProgram if a linker is not available i.e.
CL DEVICE LINKER AVAILABLE
specified in the table of allowed values for
param name for clGetDeviceInfo is set to
CL FALSE.

-17 CL LINK PROGRAM FAILURE clLinkProgram if there is a failure to link the compiled
binaries and/or libraries.

-18 CL DEVICE PARTITION
FAILED

clCreateSubDevices if the partition name is supported by the
implementation but in device could not
be further partitioned.

-19 CL KERNEL ARG INFO
NOT AVAILABLE

clGetKernelArgInfo if the argument information is not avail-
able for kernel.

-30 CL INVALID VALUE clGetDeviceIDs,
clCreateContext

This depends on the function: two or
more coupled parameters had errors.

-31 CL INVALID DEVICE TYPE clGetDeviceIDs if an invalid device type is given
-32 CL INVALID PLATFORM clGetDeviceIDs if an invalid platform was given
-33 CL INVALID DEVICE clCreateContext,

clBuildProgram
if devices contains an invalid device or
are not associated with the specified plat-
form.

-34 CL INVALID CONTEXT if context is not a valid context.
-35 CL INVALID QUEUE PROP-

ERTIES
clCreateCommand-
Queue

if specified command-queue-properties
are valid but are not supported by the
device.

-36 CL INVALID COMMAND
QUEUE

if command queue is not a valid
command-queue.

52

CP: Public Public Version

-37 CL INVALID HOST PTR clCreateImage,
clCreateBuffer

This flag is valid only if host ptr is
not NULL. If specified, it indicates
that the application wants the OpenCL
implementation to allocate mem-
ory for the memory object and copy
the data from memory referenced by
host ptr.CL MEM COPY HOST PTR
and CL MEM USE HOST PTR
are mutually exclu-
sive.CL MEM COPY HOST PTR
can be used with
CL MEM ALLOC HOST PTR to
initialize the contents of the cl mem
object allocated using host-accessible
(e.g. PCIe) memory.

-38 CL INVALID MEM OBJECT if memobj is not a valid OpenCL memory
object.

-39 CL INVALID IMAGE FORMAT
DESCRIPTOR

if the OpenGL/DirectX texture internal
format does not map to a supported
OpenCL image format.

-40 CL INVALID IMAGE SIZE if an image object is specified as an argu-
ment value and the image dimensions (im-
age width, height, specified or compute
row and/or slice pitch) are not supported
by device associated with queue.

-41 CL INVALID SAMPLER clGetSamplerInfo,
clReleaseSampler,
clRetainSampler,
clSetKernelArg

if sampler is not a valid sampler object.

-42 CL INVALID BINARY clCreateProgram-
WithBinary,
clBuildProgram

The provided binary is unfit for the se-
lected device.

if program is created with clCreatePro-
gramWithBinary and devices listed in de-
vice list do not have a valid program bi-
nary loaded.

-43 CL INVALID BUILD OPTIONS clBuildProgram if the build options specified by options
are invalid.

-44 CL INVALID PROGRAM if program is a not a valid program object.
-45 CL INVALID PROGRAM

EXECUTABLE
if there is no successfully built program
executable available for device associated
with command queue.

-46 CL INVALID KERNEL NAME clCreateKernel if kernel name is not found in program.
-47 CL INVALID KERNEL

DEFINITION
clCreateKernel if the function definition for kernel func-

tion given by kernel name such as the
number of arguments, the argument types
are not the same for all devices for which
the program executable has been built.

-48 CL INVALID KERNEL if kernel is not a valid kernel object.

53

CP: Public Public Version

-49 CL INVALID ARG INDEX clSetKernelArg,
clGetKer-
nelArgInfo

if arg index is not a valid argument index.

-50 CL INVALID ARG VALUE clSetKernelArg,
clGetKer-
nelArgInfo

if arg value specified is not a valid value.

-51 CL INVALID ARG SIZE clSetKernelArg if arg size does not match the size of
the data type for an argument that is
not a memory object or if the argu-
ment is a memory object and arg size !=
sizeof(cl mem) or if arg size is zero and
the argument is declared with the local
qualifier or if the argument is a sampler
and arg size != sizeof(cl sampler).

-52 CL INVALID KERNEL ARGS if the kernel argument values have not
been specified.

-53 CL INVALID WORK
DIMENSION

if work dim is not a valid value (i.e. a
value between 1 and 3).

-54 CL INVALID WORK GROUP
SIZE

if local work size is specified and
number of work-items specified by
global work size is not evenly divisable
by size of work-group given by lo-
cal work size or does not match the work-
group size specified for kernel using the

attribute ((reqd work group size(X,
Y, Z))) qualifier in program source.if
local work size is specified and the total
number of work-items in the work-
group computed as local work size[0]
* local work size[work dim 1] is
greater than the value specified by
CL DEVICE MAX WORK GROUP SIZE
in the table of OpenCL Device Queries
for clGetDeviceInfo.if local work size
is NULL and the attribute
((reqd work group size(X, Y, Z))) quali-
fier is used to declare the work-group size
for kernel in the program source.

-55 CL INVALID WORK ITEM
SIZE

if the number of work-items speci-
fied in any of local work size[0], lo-
cal work size[work dim 1] is greater
than the corresponding values specified
by CL DEVICE MAX WORK ITEM
SIZES[0], CL DEVICE MAX WORK
ITEM SIZES[work dim 1].

54

CP: Public Public Version

-56 CL INVALID GLOBAL OFF-
SET

if the value specified in global work size
+ the corresponding values in
global work offset for any dimensions is
greater than the sizeof(size t) for the
device on which the kernel execution will
be enqueued.

-57 CL INVALID EVENT WAIT
LIST

if event wait list is NULL and
num events in wait list >0, or
event wait list is not NULL and
num events in wait list is 0, or if event
objects in event wait list are not valid
events.

-58 CL INVALID EVENT if event objects specified in event list are
not valid event objects.

-59 CL INVALID OPERATION if interoperability is specified by setting
CL CONTEXT ADAPTER D3D9 KHR,
CL CONTEXT ADAPTER D3D9EX
KHR or CL CONTEXT ADAPTER
DXVA KHR to a non-NULL value,

and interoperability with another graph-
ics API is also specified. (only if the
cl khr dx9 media sharing extension is
supported).

-60 CL INVALID GL OBJECT if texture is not a GL texture object whose
type matches texture target, if the speci-
fied miplevel of texture is not defined, or
if the width or height of the specified mi-
plevel is zero.

-61 CL INVALID BUFFER SIZE clCreateBuffer,
clCreateSubBuffer

if size is 0.Implementations may re-
turn CL INVALID BUFFER SIZE
if size is greater than the
CL DEVICE MAX MEM ALLOC SIZE
value specified in the table of allowed val-
ues for param name for clGetDeviceInfo
for all devices in context.

-62 CL INVALID MIP LEVEL OpenGL-
functions

if miplevel is greater than zero and the
OpenGL implementation does not sup-
port creating from non-zero mipmap lev-
els.

-63 CL INVALID GLOBAL WORK SIZE if global work size is NULL, or if any of
the values specified in global work size[0],
global work size [work dim 1] are 0 or ex-
ceed the range given by the sizeof(size t)
for the device on which the kernel execu-
tion will be enqueued.

-64 CL INVALID PROPERTY clCreateContext Vague error, depends on the function
-65 CL INVALID IMAGE

DESCRIPTOR
clCreateImage if values specified in image desc are not

valid or if image desc is NULL.

55

CP: Public Public Version

-66 CL INVALID COMPILER
OPTIONS

clCompileProgram if the compiler options specified by op-
tions are invalid.

-67 CL INVALID LINKER
OPTIONS

clLinkProgram if the linker options specified by options
are invalid.

-68 CL INVALID DEVICE
PARTITION COUNT

clCreateSubDevices if the partition name
specified in properties is
CL DEVICE PARTITION BY COUNTS
and the number of sub-
devices requested exceeds
CL DEVICE PARTITION MAX SUB
DEVICES or the total number of
compute units requested exceeds
CL DEVICE PARTITION MAX COM-
PUTE UNITS for in device, or the num-
ber of compute units requested for one
or more sub-devices is less than zero or
the number of sub-devices requested ex-
ceeds CL DEVICE PARTITION MAX
COMPUTE UNITS for in device.

Table A.1: OpenCL Error Codes [14]

56

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Context
	Philips Healthcare
	Almarvi

	Background
	Xray system description
	Image Processing

	Problem definition
	Thesis Outline

	Background
	OpenCL
	Architectures
	Platform Setup
	Intel CPU
	Intel GPU
	rVex

	Alternative solutions
	Software solutions
	CUDA
	SSE/AVX

	Hardware solutions
	rVex on Zynq
	SDAccel
	Vivado HLS

	Comparison

	Implementation (Summary)
	Quality measurements to translate Matlab model to C
	Profiling of the algorithm
	OpenCL error handling

	Results (Summary)
	Performance measurements
	Design choices result and evaluation
	Accuracy tradeoffs
	Real-time capabilities

	Discussion
	Quantitative evaluation
	Research Question

	Conclusion & Future work
	Bibliography
	Appendix
	OpenCL error codes

