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Abstract

This MSc thesis is centered around better capturing the physics of Navier-
Stokes flow problems with the following two CFDmethods that preserve in-
tegral invariants. The 2D mass, kinetic energy, enstrophy and total vortic-
ity conserving (MEEVC) method presented in [25] is the cornerstone of this
work. It was constructed with mimetic concepts in mind and its favorable
properties were a reason to use it as inspiration for developing a novel 3D
mass, kinetic energy and helicity conserving (MEHC) method in this work.
This method has a separate equation for the evolution of helical density in
its formulation, a feature which is possibly unique in CFD.

Analysis and construction of both the MEEVC andMEHCmethods is an
important topic in thiswork. In that light thecontinuousequations indepen-
dent of any discretization are also studied. Many derivations are included.
One thing these derivations demonstrate is a close relation between angular
momentum and vorticity. Both the 2D MEEVC and the 3D MEHC method
use a system solved for vorticity in addition to a system solved for velocity
and pressure. Another key feature they share is that variables are ordered
in a DeRham complex with conforming function spaces chosen for them.
This enables velocity field solutions that are point-wise divergence-free. The
temporaldiscretizationofbothmethods is characterizedby its ability to con-
servefirst- and second-order invariants, aswell as that the variables are stag-
gered in time such that the system of equations is decoupled and linearized.

Taylor-Green testproblemswereexecutedonacomputerwith theMEEVC
and theMEHCmethod in respectively 2D and 3D. The results obtained with
the MEEVC method confirmed efficacy but also indicated potential limita-
tions to certain conservation properties. A successful implementation of the
MEHCmethod could not be achieved: simulation results were obtained but
eventually diverged. The method’s conservation properties are only proven
analytically. Possible causes are identified to aid any future work.
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Chapter 1

Introduction

For capturing the physics of incompressible fluid flows more accurately in
CFD, two specificmethods are considered in this work. Themost important
is the existing mass, energy, enstrophy and vorticity conserving (MEEVC)
method [25] for 2D flow which will be documented and verified. Further-
more the novel mass, energy and helicity conserving (MEHC) method for
3D flow is proposed here as a possible idea for further work, although it has
problems. The higher goal is to have discrete methods that are compati-
ble with the physical laws that are encoded in the continuous Navier-Stokes
equations,wherebymostattention isdevoted toconservationofcorrespond-
ing integral invariants in numerical simulations. Such integral invariants are
quantities that donot changeover timewhenconditions are appropriate. An
example can be the flow’s kinetic energy. Invariants have important physi-
cal meaning, but discrete methods commonly violate some of them. This
essentially indicates that a simulation employing such a method does not
correspond to the true flow problem.

This aim of physical compatibility contrasts with that of certain classic
schemes which are designed with the prime strive of relatively high accu-
racy compared to computational cost. Mimetic methods ‘mimic’ (geomet-
ric) properties of the governing differential equations where possible, which
can lead to more comparable behavior upon solving. Most mimetic meth-
odsuse themathematical languageofdifferential geometryand thecoupling
with algebraic topology for discrete equivalents. The MEEVC method was
developed by thinking inmimetic concepts.

Verstappen and Veldman [32] illustrate how the aforementioned classi-
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cal discretization approach can fail to conserve energy while one that better
captures the properties of the continuous problem is successful. They first
show that a certain finite-difference approximation of the convective oper-
ator which is constructed for minimal local truncation error (at up to sec-
ond order accuracy) leads to violation of kinetic energy conservation. This is
solved when they instead use a discrete operator that retains symmetries of
the continuous differential operators. An important improvement, as failing
to conserve energy canmean that solutions have toomuchdamping or grow
exponentially in time. One may be able to suppress such problems to some
extend by adding correction terms to the discrete formulation. Yet this will
not restore compliance to the conservation laws that are encoded in the gov-
erningequationsof theoriginal physical problem. Anyof such incompatibil-
ity generally leads tounrealistic results, or evennumericalblowupof the sim-
ulation. According to Perot [26], a complete failure like the latter is however
unusual for a numeric scheme that sufficiently meets classic mathematical
measures of accuracy and stability. This however makes it a tricky problem:
the flaws in physicalmodeling are generally hard to spot from simulation re-
sults, especially for complex flows. Results may converge and look realistic
while they are not. This effectively undermines the reliable application of
such amethod in academic as well as corporate contexts. Both scholars and
engineers must be able to trust a method before they can draw conclusions
from its results. It is therefore worthwhile to develop methods that preserve
properties of theoriginal (continuous) problem, insteadof focussingonly on
the aforementionedmathematical criteria.

1.1 Definition and context of conservation

In this thesis a lot is about ‘conservation’, so it is important to provide a bit
more detail here onwhat ismeant by it. All thiswill show is that conservation
can have quite different contexts and that one should always checkwhat au-
thors exactly mean when they claim that a CFDmethod has particular con-
servation properties.

In themost straightforward definition, conservationmeans that an inte-
gral quantity remains strictly invariant over time. Conservation of such ‘in-
variants’ occurs in physics when conditions are appropriate, thismay for ex-
ample require (the limit of) inviscid fluid and certain boundary conditions.
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A more broad definition (that is used less often in this work) actually refers
to the correct balance of an integral quantity: it can change in time, but it
does so correctly in equilibriumwith convective fluxes and dissipation. This
means that a quantity, for example kinetic energy, does not decay or grow at
a different rate than that which can be expected from physics.

It is possible to differentiate between local and global as well as primary
and secondary conservation, as explained in the following using Perot [26]
as an important source. Global conservation of an integral quantity means
that it is conserved over the entire domain. Local conservation instead refers
to the domain subdivided in parts. For example individual integration over
eachcomputational cell. Local conservationalso requires that thefluxcross-
ing the shared boundary of any two adjacent cells is the same on both sides
(as this can differ in finite elementmethodswhere each cell has its ownbasis
functions). Note that local conservation throughout thedomain also implies
global conservation. Besides differentiating on the spatial behavior of con-
servation, one can also differentiate basedon the types of variables involved.
Conservation of primary unknowns applies to variables that are direct un-
knowns in the discrete problem formulation, in CFD velocity is typically one
of the variables in that role. Secondary unknowns are derived from the pri-
mary ones. When velocity is a primary variable and vorticity is computed by
taking the curl of velocity, then vorticity is a secondary variable. In that case
conservation of total vorticity is a secondary conservation property. Many
methods have local conservation of primary variables, while secondary con-
servation is much less common. Conservation of primary variables is of-
tendirectly imposed through the formulation,while secondaryconservation
more indirectly results fromhow the system is constructed. The (large) effort
to achieve the lattermay be worth it as “secondary conservation is important
for physically realistic solutions” [26], also see [17].

1.2 Importance of particular conservation prop-
erties

With the previous section explaining the definitions of conservation, here
is the place to discuss why it is so important that the MEEVC and MEHC
CFD methods have their conservation properties. The corresponding inte-
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gral quantities can be found in Section 2.2 with Table 2.1 in particular.
For incompressible flow there should be strong mass conservation: the

mass contained within a fixed domain (or any part of it) should be invariant
over time. When this is violated it is obviously unphysical in itself, but it can
also affect the correctness of results indirectly as demonstrated in [4]. There
the authors show that the velocity results of long-time simulations can be-
come less accurate whenmass is conserved weakly. Furthermore, [8] shows
that conservation properties such as conservation of kinetic energy can also
be lost when a CFDmethod does not (strongly) conservemass.

Kinetic energy, enstrophy (in 2D) and helicity (in 3D) are important in
describing the organization of a flow, as stated by for example Rebholz [27].
Hence they should be conserved as appropriate. That is there should be no
(excess) creation or destruction. Otherwise the quality of the solution may
suffer and especially when kinetic energy conservation fails one can expect
numerical dissipation (or diffusion) to occur. When this leads to incorrectly
increasing energy then solutions may keep growing until numeric overflow
causes the simulation to blow up after some finite time. Numerical dissi-
pation also has particularly negative effects in direct numerical simulation
(DNS) of turbulent flow, where the correct balance between convection and
dissipation is paramount. When that balance is correct it leads to the right
energy cascade, which is related to that of helicity [24]. Helicity also has an
important role in turbulence because it suppresses the nonlinear term and
thereby the energy transfer to smaller scales, see [7] and supporting refer-
ences in that paper. Accurate computation of turbulent flows is relatively
challenging, but nevertheless important in for example (engineering of) air-
craft high-lift systems [28].

In building a new or selecting an existing conserving method, one may
have to choose between different conservation properties when not all can
be satisfied. One can then consider the types of flow problems the method
intends to solve. According to Perot, “kinetic energy conservation is often
more important than momentum conservation” [26] in practice. Similarly
one can also consider vorticity, enstrophy (in 2D) and helicity (in 3D) con-
servation important in strongly vortical flows including turbulence (in 3D).
For such or otherwise strongly rotating flows it is believed that CFD formu-
lations employing both velocity and vorticity equations with corresponding
variables yield higher accuracy in general [1]. This is plausible from the fact
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that the angularmomentumof an infinitesimal spherical element is directly
proportional to the local vorticity in incompressible flows (Section 2.1.4).

1.3 Research question and content of the thesis

It is clarifying to present themain research question of the work:

How does theMEEVC discretization [25] work, does it indeed perform
as promised and what could be a conserving 3Dmethod based on the
same (mimetic) design principles?

Emphasis will be put on the 2D part, as also developing a successful new 3D
discretization is ambitious.

Chapter 2 contains an overview and investigation of the governing equa-
tions in order to increase understanding. This includes their derivation and
proofs that they dictate invariants under appropriate conditions, which was
valuable content to create because little of it was found in literature. An al-
ternative derivation of the vorticity transport equation starting from a con-
servation of momentum statement is a special example of this and can be
found in Section 2.1.4. The chapter ends with mathematical descriptions of
Taylor-Green vortex flows in Section 2.3, as the numerical tests in this work
aim to solve such flows.

Chapter 3 then focusses on the discrete MEEVC method and Chapter 4
on the numeric results computed with it. Section 3.1 not only presents the
MEEVCscheme, but also explains its construction inquite somedetail. Then
Section 3.2 contains analytic proofs of theMEEVCmethod’s discrete conser-
vation properties, whilst Section 4.2 demonstrates the quality of these prop-
erties in actual numeric simulations. Both Sections 4.1 and 4.2 demonstrate
convergence on the 2D Taylor-Green problem.

Thenew3Dmethod follows inChapter 5 andoverall conclusionswith re-
spect to the entire thesis in Chapter 6. The 3Dmethod is derived using inspi-
ration from the 2DMEEVCmethod in the first sections of Chapter 5 and the
resulting formulation is summarized in Section 5.2.3. Its MEHC properties
are only proven on paper with algebraic analysis in Section 5.3. Section 5.4
then critically reviews what has been achieved considering the properties,
theoretical (in)correctness and problematic test results of the novelmethod.



Chapter 2

The continuousworld in 2D and 3D

This chapterprovides somepreliminaries: the (Navier–Stokes) equationsde-
scribing fluid flow physics, their conservation properties and an exact solu-
tion for Taylor-Greenflowsuitable as benchmark. Discrete formulations and
more related to numerical computations will be treated in other chapters.
The fluid is assumed to be incompressible and, in certain cases, inviscid.

Equations describing the conservation ofmomentum andmass laws are
presented in Section 2.1, including derivations into desired formulations.
Proofs of the integral invariants (conservationproperties) of these equations
can be found in Section 2.2. These proofs can also provide insights and un-
derstanding for the discrete work. Details on the Taylor-Green flow are sub-
ject of Section 2.3; including solutions, initial and boundary conditions.

2.1 Governing partial differential equations

The equations discussed in this section originate fromphysical laws (or pos-
tulates) stating conservation of mass andmomentum. In short, these imply
a fixed (and small) group of particles has:

• Constant mass: mass cannot be created or destroyed.

• Balance ofmomentum: the rate of change ofmomentummust be bal-
anced by net forces applied (like pressure, viscous or body forces).

In this work, mass density is commonly set to ρ = 1 and viscosity µ is con-
sidered to be a (non-specified) constant in space and time. Therefore the
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kinematic viscosity (ν := µ/ρ) is a constant as well.
An overviewof the set of continuous partial differential equations (PDEs)

used for the 2DMEEVC formulation [25, (6)] and for 3D are:

∂ ®u

∂t
+ ω × ®u + ∇p̄ = −ν∇ × ω

∂ω

∂t
+
1
2
( ®u · ∇)ω +

1
2
∇ · ( ®uω) = ν∇2ω

∇ · ®u = 0


2D (MEEVC), (2.1)

and
∂ ®u

∂t
+ ®ω × ®u + ∇p̄ = −ν∇ × ®ω

∂ ®ω

∂t
+ ( ®u · ∇) ®ω = ( ®ω · ∇) ®u + ν∇2 ®ω

∇ · ®u = 0


3D. (2.2)

Here, the total pressure p̄ relates to the static pressure p by:

p̄ :=
1
2
®u · ®u + p . (2.3)

If desired, a scalar function φf representing a conservative body force field
®g = ∇φf can easily be added, so that p̄ := 1

2 ®u · ®u + p − φf . This is however
uninteresting for the current work. Lastly, one may see that the ®ω × ®u-term
also appears in opposite order and sign later in this text because for any two
vectors ®b × ®a = −®a × ®b .

Onemay note that there are some clear differences between the 2D (2.1)
and 3D (2.2) continuous formulations. Most of these are in their respective
vorticity transport equations as will be detailed in Section 2.1.3. Three dif-
ferences are highlighted here:

• In 3D both the velocity ®u and vorticity ®ω vectors have three compo-
nents, while in 2D velocity has two and vorticity is effectively a scalar.
The latter means that vorticity is treated as a scalar or where mathe-
matically appropriate the corresponding vector that has only one of its
components nonzero.

• The ‘vortex stretching’ term ( ®ω · ∇) ®u appears only in the 3D vorticity
transport equation that is included in (2.2) on the second line. An in-
terpretation of this term is explained in Section 2.1.3 below.
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• Another difference is that the 2D vorticity transport equation, that is
the second in (2.1), uses a skew-symmetric decomposition of its con-
vective part. This allows the discrete MEEVC formulation to achieve
conservationofenstrophyasdemonstrated inSection 3.2. In3Donthe
other hand, enstrophy is generally not conserved anyway so (2.2) does
not employ a skew-symmetric formulation. Furthermore noother rea-
son was found to prefer one there as well.

Finally, it should be remarked that (2.2) is not definitive for the 3D MEHC
method and that modifications can be found in Chapter 5.

2.1.1 Balance of linearmomentum equation

Conservation of momentum (ρ®u), see [33, (2-19)], in differential form and
for incompressible flow is:

ρ
D ®u
Dt
= ρ®g + ∇ · σi j, (2.4)

where σi j is the stress tensor. Also, the material derivative is used, which is
the temporal derivative of any property f of a material (or fluid) element in
the flow field. It is given by [33, p. 17, (1-8)]:

Df

Dt
=
∂f

∂t
+ ( ®u · ∇)f . (2.5)

This property f can be a quantity like temperature, but also the velocity field
itself like in (2.4).

The viscous part of the stress tensor is a function of flow kinematics. For
common air flows, it is usual to assume the fluid is continuous, isotropic
(properties independent of direction) andNewtonian. The latter means vis-
cous stress linearly depends on the strain rate. Stokes proposed a general
deformation law for this situation [33, (2-27)]:

σi j = −pδi j + µ

(
∂ui

∂x j
+
∂u j

∂xi

)
+ λδi j

(
∇ · ®u

)︸        ︷︷        ︸
=0

, (2.6)

where δi j is the Kronecker delta function (δi j = 1 if i = j , otherwise δi j = 0)
and λ the coefficient of bulk viscosity. The latter is however not important,
as its term drops out here because of ∇ · ®u = 0, see (2.1) and (2.2).
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A form of the Navier-Stokes equations [33, (2-30)] is obtained by substi-
tuting (2.6) forσi j in (2.4), under assumptionof constant viscosity µ. Further
neglecting body forces ( ®g = 0) results in:

ρ
D ®u
Dt
= −∇p + µ∇2 ®u, (2.7)

m

∂ ®u

∂t
+ ( ®u · ∇) ®u = −

∇p

ρ
+ ν∇2 ®u, (2.8)

where ν = µ/ρ is the kinematic viscosity and ∇2 = ∇ · ∇ = ∆ the Laplace
operator. Equation (2.8) is equivalent to (2.7) divided by ρ and with D ®u/Dt

expanded according to (2.5). The term ( ®u · ∇) ®u represents the convective
derivative.

Equation (2.8) is rewritten in a format equivalent to its 2D variant in the
MEEVCpaper, that is the first in (2.1), as follows. Known vector identities are
used here, several of them thanks to suggestions in [35]. A general rule (for
vector fields ®a and ®c ) is [23, A1. Vector Identities, p. 363, (8)]:

∇( ®a · ®c ) = ®a · ∇®c + ®c · ∇ ®a + ®a × (∇ × ®c ) + ®c × (∇ × ®a). (2.9)

Now let ®a = ®c = ®u , then ∇(®u · ®u) = 2 ®u · ∇ ®u + 2 ®u × (∇ × ®u). Recognizing
®ω = ∇ × ®u , rearranging and dividing by 2 gives:

®u · ∇ ®u =
1
2
∇(®u · ®u) − ®u × ®ω. (2.10)

Substituting this into (2.8) gives:

∂ ®u

∂t
+
1
2
∇(®u · ®u) − ®u × ®ω = −

∇p

ρ
+ ν∇2 ®u . (2.11)

Then setting the constant density to ρ = 1, rearranging and introducing the
total pressure defined by (2.3), gives:

∂ ®u

∂t
+ ®ω × ®u + ∇p̄ = ν∇2 ®u, (2.12)

where ®ω × ®u = −®u × ®ωwas used (by definition of the cross product). The last
step is to rewrite the viscous termbyusing the following identity [23, A1. Vec-
tor Identities, p. 363, (10)]:

∇ × (∇ × ®a) = ∇(∇ · ®a) − ∇2 ®a .
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Substitution of ®a = ®u , while noting that ∇ · ®u = 0 from (2.2) and ®ω = ∇ × ®u ,
yields ∇2 ®u = ∇ × ®ω. From that,

∂ ®u

∂t
+ ®ω × ®u + ∇p̄ = −ν∇ × ®ω. (2.13)

This result equals the first equation in (2.2) and is called the ‘rotational for-
mulation’ of conservation ofmomentumbecause of ®ω× ®u . Its 2D equivalent
is the first equation in (2.1), which has scalar-valued vorticity ω; in that case
a vector with only one nonzero component.

Using the rotational formulation as the starting point for discretization
in this work has its reasons as follows. Considering the resulting discrete for-
mulations inChapters 3 and5, thederivatives applied to the variables are ad-
missible in the sense that the result is square-integrable in most cases. This
is an important aspect of the design philosophy of the MEEVC method [25]
and thereby also of theMEHCmethod proposed here. Furthermore, accord-
ing to [20] discretization from the rotational form can lead to methods that
have better (energy) conservation properties (see also [8]), are relatively sta-
ble and have relatively low computational burden. They can however suffer
from lower accuracy.

2.1.2 Mass conservation: the divergence-free constraint

For an incompressible flow, conservation of mass implies the divergence-
free constraint on the velocity fieldmust hold (as derived below):

div( ®u) = ∇ · ®u = 0. (2.14)

This equationmustbevalid locally, at anypoint, so that conservationofmass
does not only apply at global level. Many CFDmethods do not achieve this.

The following derivation of (2.14) is based on [33, Section 2.3] and more
detail can be found in that textbook. It starts with the simple notion of an
infinitesimally small group of particles with volume Vand mass m = ρV.
Conservation of mass in a Lagrangian framework thereby implies

m = ρV= constant,

so its time derivative must be zero:
Dm

Dt
= ρ

DV

Dt
+ V

Dρ
Dt
= 0. (2.15)
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The rate of change in volume can be related to the extensional strain rates:

DV

Dt
= (εxx + εy y + εz z )V=

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
V= (∇ · ®u)V,

using kinematic relations εxx = ∂u/∂x , εy y = ∂v/∂y and εz z = ∂w/∂z . Sub-
stituting this expression for the time derivative of Vinto (2.15) and dividing
the result by Vitself yields the continuity equation:

Dρ
Dt
+ ρ∇ · ®u = 0. (2.16)

Then it is obvious that for an incompressible flow, where ρ is considered a
nonzeromaterial constant, the flow fieldmust satisfy

∇ · ®u = 0,

that is (2.14), at any location. Hence this equation is incorporated inboth the
2D (2.1) and 3D (2.2) formulations.

2.1.3 Vorticity transport equation

First in this section, the vorticity transport equation is derived by taking the
curl of the linearmomentumequation; to state it simply. This is done for the
3D case and the result is then reduced to 2D. It must be remarked that an al-
ternative derivation of the vorticity transport equation starting fromangular
momentum conservation can be found in Section 2.1.4 for the general 3D
case.

Derivation of the 3D vorticity transport equation

The3Dvorticity transport equation isderivedhereby taking thecurlof (2.11).
Thanks to linearity of the curl, each term is considered separately:

• It is assumed that any of the higher-order partial derivatives present is
continuous, also if its orderofdifferentiation is changed, so that thisor-
der does not matter by Clairaut’s Theorem [29, Sec. 14.3, pp. 916–917].
It is justified toassume this continuitybecauseonly smoothflowswith-
out shocks are considered in this work. Application of the theorem to
the following two cases yields:

∇ ×
∂ ®u

∂t
=
∂

∂t
(∇ × ®u) =

∂ ®ω

∂t
(2.17)



12 2.1 Governing partial differential equations

and, remembering that ν = constant,

∇ × (ν∇2 ®u) = ν∇2(∇ × ®u) = ν∇2 ®ω. (2.18)

• The curl of the gradient of any scalar field φ is zero (assuming all its
second-order derivatives exist), that is ∇ ×∇φ = 0 [23, A1. Vector Iden-
tities, p. 363, (11)]. Therefore:

1
2
∇ × ∇(®u · ®u) = 0 (2.19)

and
∇ ×

(
−
∇p

ρ

)
= −
∇ × ∇p

ρ
= 0. (2.20)

These results are obtained by noting that both ®u · ®u and the pressure
p are scalar fields. Furthermore, ρ = constant (incompressible flow) is
employed in the latter.

• A final identity to use is, for any two vector fields ®a and ®c : ∇ × ( ®a × ®c ) =
®c · ∇ ®a − ®a · ∇®c + ®a∇ · ®c − ®c∇ · ®a [23, A1. Vector Identities, p. 363, (7)]. Now
substitute ®a = ®u and ®c = ®ω andmultiply with −1 to obtain:

− ∇ × (®u × ®ω) = −( ®ω · ∇) ®u + ( ®u · ∇) ®ω. (2.21)

Note that some of the terms on the right hand side have dropped out.
The third because ∇ · ®ω = ∇ · (∇ × ®u) = 0 by the identity [23, A1. Vector
Identities, p. 363, (12)]. The fourth because ∇ · ®u = 0 by (2.14).

With above results, the curl of (2.11) is assembled:

∂ ®ω

∂t
+ ( ®u · ∇) ®ω︸            ︷︷            ︸

D ®ω
Dt

= ( ®ω · ∇) ®u + ν∇2 ®ω. (2.22)

This is the vorticity transport equation for 3D in (2.2).
On the right hand side of (2.22), the viscous diffusion term ν∇2 ®ω is ac-

companied by the less-familiar ‘vortex stretching term’ ( ®ω · ∇) ®u [13]. This
inner product measures the change in the velocity vector over its field in
the direction the vorticity vector points. In context of the vorticity transport
equation, this means a contribution to the temporal derivative of vorticity
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that can correspond to rotating and stretching the vorticity vector. A rota-
tion leads to bending of the vorticity field lines while stretching means the
local vorticity increases. The latter occurs if the instantaneous velocity field
is such that velocity increases in the pointing direction of the vorticity vec-
tor. Itwill followbelow that the vortex stretching term isnotpresent in the2D
case. Then vorticity is always perpendicular to the planar velocity, so there is
no change in velocity in the direction of the vorticity vector.

Derivation of the 2D vorticity transport equation

The 2Dvorticity transport equation is nowderived from (2.11) like (2.22)was
earlier in this text, but then under assumption of planar flow. The primary
result of thatwill be rewritten into the formused for theMEEVCmethod [25].

2D planar flow can be described in a 3Dbasis as follows. An orthonormal
basis (®i, ®j, ®k ) exists in which the velocity field can be represented in terms
of the first two basis vectors only. Because vorticity is defined as the curl of
the velocity field, it is alwaysperpendicular to it andhence represented com-
pletely in terms of the remaining basis vector. So, let

®u =


u

v

0

 and ®ω =


0
0
ω

 . (2.23)

Note that this is a 3D representation of the 2D case, where ®u is usually repre-
sented in two-entry vector format and ω = ∇ × ®u in scalar format.

Substituting from (2.23) into (2.11) and taking the curl of this equation
differs in two particular aspects compared to the 3D situation treated ear-
lier in this Section 2.1.3. One is that the resulting ‘vector’ of equations is only
nonzero in the ®k -component, making it effectively a single equation. The
other is that the first term on the right-hand side of (2.21) will be zero as
demonstrated in the following. First compute ®u× ®ωwith ®u and ®ω from (2.23):

®u × ®ω =

�������
®i ®j ®k

u v 0
0 0 ω

������� = ω


v

−u

0

 . (2.24)

Because the result is a product of a scalar and a vector, its curl can be com-
puted with aid of the identity ∇ × (φ ®a) = φ∇ × ®a + ∇φ × ®a [23, A1. Vector
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Identities, p. 363, (5)]:

∇ × (®u × ®ω) = ∇ ×
©­­«ω


v

−u

0


ª®®¬

= ω

�������
®i ®j ®k
∂
∂x

∂
∂y

∂
∂z

v −u 0

������� +
�������
®i ®j ®k
∂ω
∂x

∂ω
∂y

∂ω
∂z

v −u 0

�������
= ω


∂u
∂z = 0
∂v
∂z = 0

− ∂u
∂x −

∂v
∂y = −∇ · ®u = 0

 +


u ∂ω∂z = 0
v ∂ω∂z = 0

−u ∂ω∂x − v ∂ω∂y = −®u · ∇ω


=


0
0

−(®u · ∇)ω

 ,
where ∇ · ®u = 0 by (2.14) and derivatives with respect to z are zero because
of the 2D situation. The curls of other terms in (2.11) are similar to the 3D
situation. Hence the result is similar to (2.22), but note that it is now a single
(scalar) equation and that there is no vortex stretching term ( ®ω · ∇) ®u :

∂ω

∂t
+ ( ®u · ∇)ω︸            ︷︷            ︸

Dω
Dt

= ν∇2ω. (2.25)

The convective term in (2.25) can be rewritten by substituting φ = ω and
®a = ®u in the identity∇ · (φ ®a) = φ∇ · ®a + ®a · ∇φ [23, A1. Vector Identities, p. 363,
(4)] and rearranging:

®u · ∇ω = ∇ · ( ®uω) − ω∇ · ®u . (2.26)

This reduces to ®u · ∇ω = ∇ · ( ®uω) because∇ · ®u = 0 by (2.14). So then one can
write, by trivial summation:

( ®u · ∇)ω =
1
2
( ®u · ∇)ω +

1
2
∇ · ( ®uω). (2.27)

Finally substituting this in (2.25) yields
∂ω

∂t
+
1
2
( ®u · ∇)ω +

1
2
∇ · ( ®uω) = ν∇2ω, (2.28)

which is the 2D vorticity transport equation [25, (6)] of the MEEVCmethod.
In its discrete formulation, the two terms 1

2( ®u · ∇)ω and 1
2∇ · ( ®uω) cancel each

other in the proof of discrete enstrophy conservation (Section 3.2.4).
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2.1.4 Vorticity and angularmomentum

While (2.13) is derived from (2.4) and therefore clearly relates to linear mo-
mentum, taking its curl to derive the vorticity transport equation (2.22) in
Section 2.1.3 did not show (2.22) relates to angular momentum. An alterna-
tive ‘direct’ derivation, based on Chatwin [9], is presented in the following
and provides that insight. It applies Newton’s second law to a small fluid el-
ement by balancing its angular momentum rate of change withmoments of
forces acting on it. It will also follow that there is a close relation between
vorticity and angular momentum. Theoretical arguments for including the
vorticity transport equation next to linearmomentum in theMEEVC formu-
lation [25] can be drawn from this section later.

Properties and angularmomentum of a small element

A small, fixed group of fluid particles enclosed in a volume τ has constant
massm,

m =

∫
m

dm =

∫
τ

ρdτ. (2.29)

At this point incompressible flow is allowed, that is ρ = ρ(®r ), where ®r is the
position vector with respect to some origin. The center of gravity g of the
fluid element (not to be confused with the body force vector ®g ) is located at
®r = ®rg , that is

®rg

∫
τ

ρdτ =
∫
τ

®r ρdτ. (2.30)

In this derivation it is generallymore convenient touse aposition vectorwith
respect to the center of gravity rather than the origin. Therefore let

®s = ®r − ®rg . (2.31)

Note from the definition of the center of gravity (2.30) that:∫
τ

®s ρdτ = ®0, (2.32)

which is a relation that will be useful later. Finally the angularmomentum of
the fluid element can be formulated as:

®H =

∫
τ

®s × ®u ρdτ. (2.33)
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In order to derive a differential equation, the velocity field in the small
element is approximated by a spatial linear expansion around its center of
gravity:

®u
(
®s
)
= ®u

��
g
+

(
®s · ∇

)
®u
��
g
+ O

(
| ®s |2

)
, (2.34)

where the last term indicates the order of the truncation error that is ne-
glected when cutting off the series after its linear term. This way velocity (at
a given point in time) is described in terms of its value and spatial gradient
at g . Substituting this into (2.33) yields the following expression for angular
momentum:

®H ≈

∫
τ

®s × ®u
��
g
ρdτ︸            ︷︷            ︸

=0

+

∫
τ

®s ×
( (
®s · ∇

)
®u
��
g

)
ρdτ, (2.35)

where the first integral is zero because it amounts to (2.32) multiplied by a
vector that is constant over the domain of integration. Note that upon as-
suming constant density, the remaining integral’s integrand scales with arm
length squared and the velocity gradient. Approximate linear momentum
on the other hand, with integrand ®u

��
g
ρ, scales with velocity when density

is constant. Therefore strong velocity gradients or a large elements increase
the relative importance of considering angular momentum. In component
notation, the nonzero part of (2.35) is

®H ≈ εi jk
∂uk

∂xl

����
g

∫
τ

sj sl ρdτ = εi jk
∂uk

∂xl

����
g

Tj l . (2.36)

In the last step the volume integral of the product of arm lengths and density
is expressed by the symmetricmatrixTj l , whichwill frequently appear in the
remaining derivation.

A few useful relations for working with component notation as in (2.36)
are as follows. The cross products of any vectors ®a and ®b can be expressed
with the Levi-Civita tensor εi jk as

( ®a × ®b)i = εi jk aj bk or ®a × ®b = εi jk ®ei aj bk, (2.37)

where the vectors ®ei form a standard basis. The Levi-Civita tensor is defined
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depending on permutations of (1, 2, 3), see for example [18, (A.11)]:

εi jk =


+1 if (i, j, k ) is (1, 2, 3), (2, 3, 1) or (3, 1, 2) ‘even’
−1 if (i, j, k ) is (3, 2, 1), (1, 3, 2) or (2, 1, 3) ‘odd’
0 if i = j , j = k or i = k ‘not a permutation’.

(2.38)

Two other useful operations expressed in component notation are the dot
poduct as

®a · ®b = ai bi (2.39)

and the gradient of a vector field as

∇®a =
∂ai

∂x j
. (2.40)

A description of vorticity employing aforementioned expressions is

ωi =
(
∇ × ®u

)
i = εi jk

∂uk

∂x j
, (2.41)

which will turn out useful later.

Relation between angularmomentum and vorticity in a special case

Incaseofa spherical (orotherappropriately symmetric) element τ,with spher-
ically symmetric density, angular momentum becomes proportional to vor-
ticity aswill bedemonstratedhere. Another consequenceof aforementioned
assumption is that Tj l can be expressed in terms of the element’s mass mo-
ment of inertia. This will be derived first in the following, which aims to en-
hance understanding.

Spherical symmetry in any property, for example density, means that it
only depends on distance with respect to a particular origin. In other words,
the property is constant over the surface of any sphere centered at this ori-
gin. This especially simplifiesdescriptions in termsofpolar coordinates, as it
implies independence of the two angular coordinates. Still, Cartesian coor-
dinateswill beused in the followingas spherical symmetry implies anyplane
through the origin is a mirror-symmetry plane.

Recall from (2.36) that in general

Tj l :=
∫
τ

sj sl ρdτ. (2.42)
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Now consider a point with location ®s = ®a = [a1 a2 a3]T and density ρ =
ρa . In a spherical element there must always be another point with ®s = ®b =
[a1 −a2 a3]T. Asmentioned above, spherical symmetry impies that any plane
through the center of the element is a mirror-symmetry plane, so also the
s1s3-plane. Therefore ρa = ρb , so it becomes clear that a1a2ρa is cancelled
byb1b2ρb = a1(−a2)ρa uponperforming the integration inT12. Because such
cancelling contributions exist for any point in τ, it can be concluded from
this example thatTj l = 0 for j , l . It is therefore equivalent to write

Tj l = δj l

∫
τ

sj sl ρdτ, (2.43)

where δj l is the well-known Kronecker delta function: δj l = 1 if j = l and
δj l = 0 otherwise. There are also non-spheric, for example cuboidal (box),
elements that have symmetries such thatTj l reduces to the above in case of
a spherically symmetric density distribution. Note that (2.43) effectively re-
duces Tj l to a vector, for a sphere or cube even a scalar as then it does not
matter which coordinate is in the integrand.

Now consider a general mass inertia tensor for comparison against Tj l .
For any rigid bodywith continuousmass distribution it is given by [3, p. 545,
(20.37)]:


Ixx −Ixy −Ixz

−Iy x Iy y −Iy z

−Izx −Iz y Iz z

 =


∫
m

(y 2 + z2)dm −
∫
m

xy dm −
∫
m

xz dm

−
∫
m

y x dm
∫
m

(x2 + z2)dm −
∫
m

y z dm

−
∫
m

zx dm −
∫
m

z y dm
∫
m

(x2 + y 2)dm


,

where the notation (x, y, z ) is used in place of (s1, s2, s3) for the sake of better
readability. Considering that it is equivalent to integrateover τ byusingdm =
ρdτ, the similarities withTj l (2.42) are obvious. Further it must be remarked
that Ixx , Iy y and Iz z are the principalmoments of inertia. The product of each
with angular acceleration about the corresponding axis produces the related
torque around that same axis. The other terms (Ixy , Ixz , etcetera) are called
products of inertia and relate angular acceleration about one axis to torque
around another.

To avoid confusion, it must be remarked that vorticity equals twice the
average angular velocity a fluid element (as in general it can distort). This
definition is explained in the textbook of White [33, pp. 19–20]. However, in



2.1 Governing partial differential equations 19

case the element does not deform, it equals twice the angular velocity of a
solid body rotation. Such as in the context of what is discussed here.

The mass inertia tensor at the center of gravity of a sphere with spheri-
cally symmetric density distribution simplifies in similar way asTj l did from
(2.42) to (2.43): all products of inertia are zero, while all moments of inertia
are equal (I = Ixx = Iy y = Iz z ). Hence the inertia tensor effectively reduces
from second to zeroth order (scalar). Remember x , y and z in the inertia ten-
sor correspond to the axes s1, s2 and s3, so Ixx andT11 are

Ixx =

∫
τ

(s22 + s23 )ρdτ and T11 =

∫
τ

s21 ρdτ. (2.44)

Here it does not matter which coordinate si is in the integrand, so in general

Tj l =
1
2

I δj l . (2.45)

Substituting this result into the (approximate) expression for angular mo-
mentum (2.36) and then recognizing vorticity (2.41) yields

®H ≈
1
2
εi jk
∂uk

∂xl

����
g

I δj l =
1
2
εi jk
∂uk

∂x j

����
g

I =
1
2

I ®ω
��
g
. (2.46)

In the limit of a very small element the approximation improves and the sub-
script g can be omitted.

For example take a sphere with constant density, then I = 2
5mR2 (as given

on the last page of [3]) withm themass of the sphere and R its radius so that

®H ≈
1
5

mR2 ®ω
��
g
. (2.47)

Interestingly (2.46) shows angularmomentum is directly proportional to
vorticity for incompressible flows. For compressible flows where the fluid
can be partitioned in spherical elements with spherically symmetric density
distribution, (2.46) is also valid but it must be noted that I will vary in time
and space. This clearly makes the relation more complex. For incompress-
ible flows, density is constant and therefore it is appropriate to assume I is
constant. This is true even thoughmaterial elements candeformwhenmov-
ingwith the flow, as at any instant it is possible to divide the flow in spherical
elements of the same size and density. Because the numerical methods dis-
cussed later in this work aim to solve incompressible flows, their accuracy at
solving vorticity corresponds to their accuracy in angular momentum.
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Temporal derivative of angularmomentum

Considering the angular momentum of an element with arbitrary shape to
be given by (2.36), its temporal derivative is as follows (by the product rule):

dHi

dt
= εi jk

D
Dt

(
∂uk

∂xl

)����
g

Tj l + εi jk
∂uk

∂xl

����
g

dTj l

dt
. (2.48)

Beforeworking out the timederivative ofTj l , some explanation on the differ-
ent ‘types’ of temporal derivatives used above is at its place in the following.

For terms that depend on time only, the usual derivative d/dt applies.
This is the case forTj l (t ): from its definition (2.42) one can see that the inte-
gration involved eliminates explicit spatial dependence. Thedomainof inte-
gration follows the fluid element as it moves with the flow. The same applies
to Hi (t ). Such dependence on only time comes from a Lagrangian frame of
reference, which assumes a function depends on time and (typically fixed)
position in a reference configuration. That position is also fixed here, be-
cause a specific fluid element is followed. For the reference configuration it
is usual to consider an initial time set to t = 0.

For the time derivative of the particle velocity gradient tensor ∂uk/∂xl ,
the material derivative D/Dt is appropriate instead. This because velocity
has an Eulerian frame of reference, whichmeans it is a function of time and
actual position (rather than position in a reference state). This is custom-
ary for describing a velocity field in fluid mechanics. In (2.5) the material
derivative is expressed in terms of partial derivatives. It is the sumof the par-
tial time derivative and convective derivative. The latter gives the effect of a
particle’s movement with the flow field, for example in direction of a region
where density is lower due to expansion. This following of a particle shows
thematerial derivative has a ‘Lagrangian soul’, even though it applies to ‘Eu-
lerian’ functions. Its Lagrangiannature is strengthenedby setting the current
position equal to that of the element’s center of gravity: ®r = ®rg (t ). This way
the Eulerian terms are linked to a Lagrangian reference location (at t = 0).

FromthedefinitionofTj l (2.42), its time-derivative canbeworkedout fur-
ther. Because the element candeform, thedomainof integration canchange
over time. Therefore the first step is to apply the Reynolds transport for-
mula [22, (7)] to write

dTj l

dt
=

d
dt

∫
τ(t )

sj sl ρdτ =
∫
τ(t )

D
Dt
(sj sl ρ) + sj sl ρ∇ · ®u dτ. (2.49)
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Next apply the product rule twice to expand the material derivative of the
triple product to obtain

dTj l

dt
=

∫
τ

Dsj

Dt
sl ρ + sj

Dsl

Dt
ρ + sj sl

(
Dρ
Dt
+ ρ∇ · ®u

)
︸             ︷︷             ︸

=0

dτ, (2.50)

where explicit reference to the temporal dependence of the domain τ = τ(t )
is omitted again. The last part is zero because it represents conservation of
mass (2.16). For the other terms, remember that the vector ®s (®r, t ) = ®r − ®rg (t )

is just the difference between two position vectors. Each points to a location
(inside the element τ) that is moving with the flow: ®r to a particle and ®rg (t )

the center of gravity. Therefore its temporal derivative can physically be in-
terpreted as the velocity difference between these two:

D®s
Dt
= ®u − ®u

��
g
≈

(
®s · ∇

)
®u
��
g
, (2.51)

where the linear approximationof (2.34)hasbeenused in the last step. Above
result canbewritten in component notationby recognizing ®s ·∇ = sj

∂
∂x j

from
(2.39) and (2.40), so that

Dsi

Dt
=

( (
®s · ∇

)
®u
��
g

)
i
= sj

∂ui

∂x j

����
g

. (2.52)

Therefore,

εi jk
∂uk

∂xl

����
g

dTj l

dt
= εi jk

∂uk

∂xl

����
g

∫
τ

(
sp
∂u j

∂xp

����
g

sl + sj sp
∂ul

∂xp

����
g

)
ρdτ

= εi jk

{
∂uk

∂xl

∂ul

∂xp

}
g

Tp j,

(2.53)

where the first term in the integral dropped out because

εi jk sp
∂u j

∂xp

����
g

sl
∂uk

∂xl

����
g

=
( (
®s · ∇

)
®u
��
g

)
×

( (
®s · ∇

)
®u
��
g

)
= 0 (2.54)

by definition of the cross product. With a small change in index notation
(letting l = m and p = l ) and recognizing the symmetryTj l = Tl j , (2.53) can
be rewritten as

εi jk
∂uk

∂xl

����
g

dTj l

dt
= εi jk

{
∂uk

∂xm

∂um

∂xl

}����
g

Tj l . (2.55)
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This way the second term of (2.48) has been expressed similar to the first: a
product ofTj l and velocity derivative(s) evaluated at the centroid, so that

dHi

dt
= εi jk

{
D
Dt

(
∂uk

∂xl

)
+
∂uk

∂xm

∂um

∂xl

}����
g

Tj l . (2.56)

After deriving an expression for the torques on the element, the angularmo-
mentum equation can be assembled with this result. But it will first be ex-
amined under certain assumptions.

Interpretation of angularmomentum derivative in a special case

In case of a (currently) spherical element τ, with spherically symmetric den-
sity, a clear interpretation of (2.56) follows. Remember that in that situation,
Tj l can be expressed as (2.45). Substituting this in (2.56) gives

dHi

dt
=
1
2
εi jk

{
D
Dt

(
∂uk

∂xl

)
+
∂uk

∂xm

∂um

∂xl

}����
g

I δj l

=
1
2

{
Dωi

Dt
+ εi jk

∂uk

∂xm

∂um

∂x j

}����
g

I ,

(2.57)

recognizing vorticity (2.41). Tracking down derivations shows that the first
and second terms of the above still correspond to the respective terms in
(2.48), which formed the point of departure.

This means that under all aforementioned assumptions, the first term of
(2.48) becomes

εi jk
D
Dt

(
∂uk

∂xl

)����
g

Tj l =
1
2

Dωi

Dt

����
g

I . (2.58)

Therefore it represents a contribution to the change in angular momentum
due to angular acceleration of the sphere around its center of gravity. This
can be considered to correspond to an instantaneous rigid-body rotation
due to the constant inertia tensor.

Correspondingly, the second term of (2.48) becomes

εi jk
∂uk

∂xl

����
g

dTj l

dt
=
1
2
εi jk
∂uk

∂xm

∂um

∂xl

����
g

I δj l, (2.59)

which means it represents a contribution due to the sphere’s deformation
into an ellipsoid. This can be seen by noting two things. First, the left-hand
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side contains the derivative ofTj l (2.42), so if it is nonzero the element must
be deforming. Second, the right-hand side contains δj l , implying the deriva-
tive of Tj l is zero for j , l . Hence the sphere can deform but Tj l remains
symmetric. Looking at its definition (2.42), this can only be the casewhen all
integrals with sj sl and j , l in their integrand stay zero. Therefore s1s2, s1s3
and s2s3must remain planes of symmetry. Hence the spherical element can
only deform into an ellipsoid with s1, s2 and s3 as principal axes.

Torques on the element

The rate of change in angular momentum (2.56) must be balanced by body
and surface forces producing torques as derived in the following. Consider
the body force field to be the gradient of a scalar field φf :

®g = −∇φf = −ρ∇V or gk = −
∂φf

∂xk
= −ρ

∂V

∂xk
, (2.60)

where the subscript f is not an index. Such a body force field is called con-
servative. The couple it generates about the center of gravity g is given by∫

τ

®s × ®g dτ ≈
∫
τ

®s ×
(
−∇V

��
g

)
ρdτ︸                     ︷︷                     ︸

=0

+

∫
τ

®s ×

(
(®s · ∇)

(
−∇V

��
g

) )
ρdτ, (2.61)

where (2.60) is substituted for ®g after expanding−∇V around g for up to lin-
ear terms like (2.34). The first integral represents (2.32) multiplied by a con-
stant vector and therefore integrates to zero. The remaining integral on the
right-hand side can be written in component notation with the aid of (2.37),
(2.39) and (2.40) as

− εi jk
∂2V

∂xl∂xk

����
g

∫
τ

sj sl ρdτ = −εi jk
∂2V

∂xl∂xk

����
g

Tj l . (2.62)

Now consider the torque caused by stresses of pressure and viscous type.
These stresses generally vary in space and thereby produce a net force on a
fluid element. With σi j the stress tensor and vector ®n the outward-pointing
unit normal, the stress in that direction is givenbyσi j ni (orσi j nj due to sym-
metry of the stress tensor). This can be integrated over the element’s surface
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to yield the net force. By the divergence theorem this is equivalent to inte-
grating ∂σi j/∂x j over its volume. Hence this integrand is a vector that can be
conceptualized as ‘net force per unit volume’. An alternative derivation that
leads to the same result canbe found in the textbookbyWhite [33, pp. 62–64].
Substitution of the stress tensor σi j from (2.6) in the general case ∇ · ®u , 0
gives

∇ · σi j =
∂σi j

∂x j
= −
∂p

∂xi
+ µ

(
∂2ui

∂x j∂x j
+
∂2u j

∂xi∂x j

)
+ λ

∂2um

∂xi∂xm
, (2.63)

which describes a field throughout the fluid. Here it was used that

∂p

∂x j
δi j =

∂p

∂xi
and λδi j

∂

∂x j
(∇ · ®u) = λ

∂2um

∂xi∂xm
. (2.64)

Above force density∇ ·σi j creates amoment ®s ×(∇ ·σi j ) around the center of
gravity of the small element. The total torque follows from integrating over
the element’s volume. To transform the integral in the form used elsewhere
in this section, ∇ · σi j will be divided by ρ. This is important for summing
contributions later. Then (∇ · σi j )/ρwill be expanded up to linear terms like
(2.34). This results in∫

τ

®s ×
(
∇ · σi j

)
dτ =

∫
τ

®s ×

(
∇ · σi j

ρ

)
ρdτ

≈

∫
τ

®s ×
∇ · σi j

ρ

����
g

ρdτ︸                     ︷︷                     ︸
=0

+

∫
τ

®s ×

(
(®s · ∇)

∇ · σi j

ρ

����
g

)
ρdτ, (2.65)

where again the first term integrates to zero because it amounts to (2.32)
multiplied by a constant vector. The remaining integral is expressed inmore
detail by substituting (2.63) for ∇ · σi j . Before substitution, the index i is
changed into k and the repeated index j into m. This has no fundamental
consequences, but allows to write the cross product with ®s like (2.37). Per-
forming these steps yields∫

τ

εi jk sj sl

{
−
∂

∂xl

(
1
ρ

∂p

∂xk

)
+ ν

∂3uk

∂xl∂xm∂xm
+

(
ν +

λ

ρ

)
∂3um

∂xk∂xl∂xm

}����
g

ρdτ,
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recognizing the possibility to express this as a product withTj l (2.42) gives

εi jk

{
−
∂

∂xl

(
1
ρ

∂p

∂xk

)
+ ν

∂3uk

∂xl∂xm∂xm
+

(
ν +

λ

ρ

)
∂3um

∂xk∂xl∂xm

}����
g

Tj l, (2.66)

which is the final expression for torque produced by pressure and viscous
stresses. As usual in this work, ν is considered a constant. It could there-
fore be taken outside the derivatives. The same applies to λ/ρ. For most
flow problems it is common to use Stokes’ hypothesis [33, p. 67], that is λ =
−2µ/3. Then λ/ρ = −2ν/3.

Assembly of the angularmomentum equation

Now all expressions are present to assemble an equation according to New-
ton’s second law:

εi jk

{
D
Dt

(
∂uk

∂xl

)
+
∂uk

∂xm

∂um

∂xl

}����
g

Tj l = . . .

εi jk

{
−
∂2V

∂xl∂xk
−
∂

∂xl

(
1
ρ

∂p

∂xk

)
+ ν

∂3uk

∂xl∂xm∂xm
+

(
ν +

λ

ρ

)
∂3um

∂xk∂xl∂xm

}����
g

Tj l,

(2.67)

which is formed by equating the element’s time-rate of change in angular
momentum (2.56) to the sum of torque around its center of gravity due to
the body force field (2.62) and the stresses (2.66).

The vorticity transport equation

Recognizing a few things finally allows to derive the vorticity transport equa-
tion from (2.67) as follows. To start with, note that (2.67) can easily be writ-
ten in the form Ai j lTj l = 0 by moving all terms to one side. Next remem-
ber that Tj l (2.42) is symmetric (Tj l = Tl j ) but otherwise arbitrary, as it de-
pends on whatever small element (group of particles) is considered. There-
fore Ai j lTj l = 0 is in general only satisfied when Ai j l has the anti-symmetric
property Ai j l = −Ail j and the zero diagonals Ai j l = 0 for l = j . The latter
alsomeans that Ai j j = ®0, with j a repeated index that represents summation
(over elements of the product between the Levi-Civita tensor and the differ-
ential terms). Below, it will follow that Ai j j = ®0 leads to the vorticity transport
equation in terms of ®u and ®ω.
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Some information in Ai j lTj l = 0 (2.67) is lost by only considering Ai j j = ®0,
but this is acceptable for three reasons. First of all, the angular momentum
equation following from Ai j j = ®0 can be combined with the linear momen-
tum and conservation of mass equations to form the complete system (2.2).
It is ‘complete’ in the sense that it consists of seven equations and an equal
amount of unknowns (counting components). Hence no extra equations are
needed. Further, in case an element is considered that has particular sym-
metries (for example a sphere), with spherically symmetric density distribu-
tion,Tj l = 0 for l , j by (2.43). Then Ai j l = −Ail j with l , j is uninteresting in
the light of Ai j lTj l = 0 (2.67). In the limit of very small elements it is generally
reasonable to assume a fluid flow can be split-up into such elements if de-
sired. Finally, considering Ai j l = −Ail j for l , j and the separate components
of Ai j l = 0 for l = j individually is unattractive. It would lead to a relatively
complex and large set of equations with no clear (physical) interpretation.

Theequationcorresponding toAi j j = ®0 isobtainedby recognizing several
simplifications as follows. The body force term from (2.67) is zero then due
to [23, A1. Vector Identities, p. 363, (11)]:

εi jk
∂2V

∂x j∂xk
=

(
∇ × (∇V )

)
i = 0. (2.68)

Assuming barotropic flow (meaning that density is a function of pressure
only), the following can be written:

∂

∂xk

(∫ p 1
ρ(p)

dp

)
=
∂

∂p

(∫ p 1
ρ(p)

dp

)
∂p

∂xk
=

1
ρ(p)

∂p

∂xk
, (2.69)

so that, again by [23, A1. Vector Identities, p. 363, (11)],

εi jk
∂

∂x j

(
1
ρ

∂p

∂xk

)
= εi jk

∂

∂x j

∂

∂xk

(∫ p 1
ρ(p)

dp

)
= 0. (2.70)

The same vector calculus identity can be used once more to recognize the
last term from (2.67) is zero:

εi jk
∂3um

∂xk∂x j∂xm
= ν

(
∇ × ∇(∇ · ®u)

)
i = 0. (2.71)

Now that it has been identified which terms from (2.67) are zero when
considering Ai j j = ®0, the following remains for that equation:

εi jk

{
D
Dt

(
∂uk

∂x j

)
+
∂uk

∂xm

∂um

∂x j

}����
g

= νεi jk
∂3uk

∂x j∂xm∂xm

����
g

. (2.72)
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By first recognizing vorticity (2.41) and then expanding the material deriva-
tive (2.5), note that

εi jk
D
Dt

(
∂uk

∂x j

)
≡

(
D ®ω
Dt

)
i

=

(
∂ ®ω

∂t
+ ( ®u · ∇) ®ω

)
i

. (2.73)

Also recognizing vorticity (2.41) in the viscous term yields

νεi jk
∂3uk

∂x j∂xm∂xm
= ν

∂2ωi

∂xm∂xm
= ν

(
∇2 ®ω

)
i
. (2.74)

Further,

εi jk
∂uk

∂xm

∂um

∂x j
≡ ωi

∂u j

∂x j
− ωj

∂ui

∂x j
=

(
®ω(∇ · ®u) − ( ®ω · ∇) ®u

)
i . (2.75)

This equivalence is given in the paper by Chatwin [9, p. 367] and does not
seem to be a commonly used identity. Therefore the author of the current
work has verified it by independently writing out all terms of the left-hand
side and middle for each component i . This is not very difficult but just too
elaborate to include here. Finally, note the right-hand side is themiddle part
expressed in vector notation.

With above relations, it is possible to write (2.72) as

∂ ®ω

∂t
+ ( ®u · ∇) ®ω = ( ®ω · ∇) ®u − ®ω(∇ · ®u) + ν∇2 ®ω. (2.76)

Here the subscript g could be left out by remembering (2.72) is evaluated
at the center of gravity g of a fluid element that could be located anywhere.
Therefore it is valid at any point.

The vorticity transport equations (2.22) and (2.25) presented earlier in
this text follow from above result (2.76) by making respective assumptions.
Upon assuming incompressibility, ∇ · ®u = 0 and (2.22) follows. Additionally
considering the flow to be planar (2D) gives (2.25). This particularly because
®ω is perpendicular to ∇®u then, making ( ®ω · ∇) ®u zero. Further, ®ω can also be
written as a scalar ω in the remaining equation, because there always exists
a frame of reference in which this vector consists of a single component.

2.2 Proof of conservation

This section demonstrates that the conservation properties in Table 2.1 hold
for the continuousNavier-Stokes formulations that describe incompressible
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(and inviscid) flows. The proofs assume periodic boundary conditions (BC),
because this is also assumed in the construction of theMEEVCmethod [25].
A detaileddescriptionof periodic BCcanbe found in Section 2.3.4. There are
however also other suitable BC that do not violate conservation, like imper-
meable walls for example.

The left half of Table 2.1 applies to 2D flow, as describedwith (2.1). These
integral invariants are also conserved by the discreteMEEVC algorithm [25].
Because conservation of linear momentum is not, it is left out of the table.
Still, its continuous proof (for both 2D and 3D) can be found in Section 2.2.6.
The right half of Table 2.1 applies to 3D flow, as described with (2.2). Note
that enstrophy is only listed for 2D flow, while helicity is only listed for 3D
flow. This a consequence of vorticity being a ‘scalar’ (ω) in 2D and a vector
( ®ω) in 3D. Therefore the 3D version of enstrophy is not conserved. Also, he-
licity is zero for any planar (2D) flow: then velocity and vorticity are always
perpendicular and hence their inner product is zero. Further note thatmass

2D 3D

Mass◦ m =
∬
Ω

ρdΩ Mass◦ m =
∭
Ω

ρdΩ

Kinetic en.∗∗ K=
∬
Ω

1
2 ρ‖ ®u ‖

2 dΩ Kin. en.∗∗ K=
∭
Ω

1
2 ρ‖ ®u ‖

2 dΩ

Vorticity∗ W=
∬
Ω

ω dΩ Vorticity∗∗ ®W=
∭
Ω

®ω dΩ

Enstrophy∗∗ E=
∬
Ω

ω2 dΩ Helicity∗∗ H=
∭
Ω

®u · (∇ × ®u)dΩ

=
∭
Ω

®u · ®ω dΩ

Table 2.1: Flow invariants, with:
∗ = global conservation;
∗∗ = global conservation for inviscid case only;
◦ = local and global conservation independent of viscosity.

density is included in the integrals ofmass andkinetic energy, butnot in total
vorticity, enstrophy and helicity. This is according to usual definitions. Any-
way, it is always a material constant in this work (incompressible flow) and
is often set to ρ = 1 for convenience (especially in following Chapters).

Each of the coming subsections will be dedicated to proving one of the
invariants in Table 2.1. In addition, there will also be one proving conserva-
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tion of linear momentum. This is however not listed in the table as it is not
one of theMEEVC properties.

2.2.1 Conservation of mass (2D and 3D)

One can easily conclude that the time derivative of massm (see Table 2.1) is
zero for constant density ρ and fixed domain of integrationΩ, but it should
be noted that the combination of mass conservation and incompressibility
only exists if the equation of continuity (∇ · ®u = 0) is satisfied. This is clearly
derived in Section 2.1.2, which starts from requiring localmass conservation
in a Lagrangian framework. Note that local conservation ofmass trivially im-
plies global conservation (that is conservation over the entire domain).

Conservation ofmass should hold in both a 2D discrete system based on
(2.1) and a 3D one based on (2.2). This works as follows. Both (continuous)
systems include the aforementioned equation of continuity (∇ · ®u = 0). This
corresponds to a simple ‘conservation of velocity’ statement. Also, velocity
is typically a primary unknownof a corresponding discrete system,meaning
that it is directly solved for. Then conservation of mass is a primary conser-
vation property.

2.2.2 Conservation of energy (2D and 3D)

Let Ω be the 2D or 3D volume equalling the entire fixed domain. This non-
moving domain does not necessarily contain a certain group of particles,
that is particles can in general cross the boundary. The kinetic energy of the
fluid instantaneously contained within that volumeΩ is

K=

∫
Ω

1
2
ρ‖ ®u ‖2 dΩ =

∫
Ω

1
2
ρ( ®u · ®u)dΩ. (2.77)

Usually, ®u is a variable in the discretized system, but (the integrand of)K is
not. Conservation ofK is then called a secondary conservation property.

The derivative of Kwith time is (noting that the differential with t can
be taken inside the integral because the domain Ω is fixed in time and the
integrand is continuously differentiable):

d
dt

K=

∫
Ω

ρ®u ·
∂ ®u

∂t
dΩ. (2.78)
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Here thedifferentials are different becauseKis a functionof timeonly, while
®u is a flow field property dependent on time and position. Substituting for
∂ ®u/∂t from (2.8) into (2.78) yields:

d
dt

K=

∫
Ω

[
ρ®u ·

(
−(®u · ∇) ®u −

∇p

ρ
+ ν∇2 ®u

)]
dΩ. (2.79)

Assuming inviscid flow (ν = 0) and rewriting gives:

d
dt

K= −

∫
Ω

[
ρ®u ·

(
( ®u · ∇) ®u

)
+ ®u · ∇p

]
dΩ. (2.80)

The next step is to further rewrite both terms in this integrand.
Let ®a = ®c = ®u in ∇

(
®a · ®c

)
=

(
®a · ∇

)
®c +

(
®c · ∇

)
®a + ®a ×

(
∇ × ®c

)
+ ®c ×

(
∇ × ®a

)
(see [23, A1. Vector Identities, p. 363, (8)]). Thereby note that the first two
terms become equal and the last two terms as well, so that the following is
obtained:

( ®u · ∇) ®u =
1
2
∇(®u · ®u)︸     ︷︷     ︸
1
2∇(‖ ®u ‖

2)

−®u × (∇ × ®u). (2.81)

The first term in the integrand of (2.80) can be rewritten by substitution of
the above, that is

ρ®u ·
(
( ®u · ∇) ®u

)
=
1
2
ρ®u · ∇

(
‖ ®u ‖2

)
− ρ®u ·

(
®u × (∇ × ®u)

)
. (2.82)

The last term is zero, because thepart inbrackets is perpendicular to ®u by the
cross product’s definition. The first term on the right hand side can be inter-
preted as convection of kinetic energy density by comparison against the in-
tegrand of (2.77). It can be rewritten further by using the identity ∇ ·

(
φ ®a

)
=

φ∇ · ®a + ®a · ∇φ [23, A1. Vector Identities, p. 363, (4)] with φ = ‖ ®u ‖2, ®a = ®u
and noting ∇ · ®u = 0 (2.14) for incompressible flow. Hence, the following is
obtained:

ρ®u ·
(
( ®u · ∇) ®u

)
=
1
2
ρ∇ ·

(
‖ ®u ‖2 ®u

)
. (2.83)

Similar use of ∇ ·
(
φ ®a

)
= φ∇ · ®a + ®a · ∇φ, with φ = p and ®a = ®u also gives:

®u · ∇p = ∇ ·
(
p ®u

)
, (2.84)

where ∇ · ®u = 0 (2.14) has been used again.
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Now (2.83) and (2.84) are substituted back into (2.80). The result is then
substituted for ®a in Gauss’ (3D) or Green’s (2D) theorem [29, pp. 1096/1127]:∫

Ω

∇ · ®a dΩ =
∫
∂Ω

®a · ®n dΓ,

so that
d
dt

K= −

∫
∂Ω

[
1
2
ρ‖ ®u ‖2 ®u + p ®u

]
· ®n dΓ = 0. (2.85)

This integral over the boundary of the domain is zero due to periodic BC;
contributions over opposite boundaries cancel. To be clear: Γ refers to a sur-
face in the 3D case, but a ‘line’ boundary in the 2D case. In both cases, ®n is
the localoutward-pointingunit vector that isnormal to theboundary. Global
conservation of kinetic energy for inviscid flow has now been proven in 2D
as well as 3D.

2.2.3 Conservation of total vorticity (2D and 3D)

First it is interesting to note that, in case of incompressible flow, vorticity
conservation is equivalent to angular momentum conservation. This is so
because then the angular momentum of an element is directly proportional
to its vorticity (2.46). The governing Navier-Stokes equations (2.1) and (2.2)
used in this work are for incompressible flow, so this is an interesting fact.

The proof of vorticity conservation for the general (3D) system (2.2), in
case of inviscid flow andperiodic (or otherwise suitable) BC, can be summa-
rized by

d
dt
®W=

∫
Ω

∂ ®ω

∂t
dΩ =

∫
Ω

( ®ω · ∇) ®u − (®u · ∇) ®ω dΩ = . . .∫
Ω

∇ × (®u × ®ω)dΩ =
∫
∂Ω

®n × (®u × ®ω)dΓ = ®0. (2.86)

This proof follows an approach similar to that of kinetic energy conservation
(Section 2.2.2), but with the following particular steps. The time-derivative
of vorticity is substituted from the vorticity transport equation (2.22) with
ν = 0. This is then rewritten with (2.21) in order to apply the integral theo-
rem [23, A1. Vector Identities, p. 363, (16)]. This results in an integral over the
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boundary of the domain, which integrates to zero due to periodic BC (on ®u
andhence also on ®ω = ∇× ®u). Note that total vorticity is conserved over each
component separately.

Although the proof above is also valid when the flow field can be charac-
terized as ‘planar’ (i.e. there exists a plane for which the velocity component
normal to it is zero everywhere), a particular proof for the 2D system (2.1)
that also works for viscous flow is given below. Its approach can be summa-
rized by

d
dt

W=

∫
Ω

∂ω

∂t
dΩ = −

∫
Ω

( ®u · ∇)ω + ν∇2ω dΩ = . . .

−

∫
Ω

∇ · (ω ®u + ν∇ω)dΩ = −
∫
∂Ω

(ω ®u + ν∇ω) · ®n dΓ = 0, (2.87)

where the timederivativeof vorticity is substituted fromthe2Dvorticity trans-
port equation (2.25). Further identity [23,A1.Vector Identities, p. 363, (4)]has
been used with ∇ · ®u = 0, followed by Green’s theorem in 2D [29, Sec. 16.5,
p. 1096, (13)]. Note that, in contrary to the 3D situation above, there was no
need to assume inviscidflow. Only constant viscosity andperiodic boundary
conditions, of which the latter causes the final integral to evaluate to zero.

2.2.4 Conservation of enstrophy (2D only)

This proof also shares the approach of that in Section 2.2.2. In summary:

dE
dt
=

∫
Ω

∂ω2

∂t
dΩ =

∫
Ω

2ω
∂ω

∂t
dΩ = −

∫
Ω

( ®u · ∇)(ω2)dΩ = . . .

−

∫
Ω

∇ · (ω2 ®u)dΩ = −
∫
∂Ω

ω2( ®u · ®n)dΓ = 0, (2.88)

where the time derivative of vorticity was substituted from the 2D vorticity
transport equation (2.25) with ν = 0 and it was recognized that 2ω( ®u · ∇)ω =
( ®u · ∇)(ω2). Above integral evaluates to zero due to again the periodic BC.

2.2.5 Conservation of helicity (3D only)

Conservation of helicity H inside the domain Ω under inviscid conditions
is demonstrated here, from integration of helical density h = ®u · ®ω over its



2.2 Proof of conservation 33

volume. Helical density is alsoknownas longitudinal vorticity, because it can
be viewed as a measure of vorticity parallel to the streamlines. Integrating
over the entire, fixed domain and applying the time derivative yields

dH
dt
=

∫
Ω

∂h

∂t
dΩ =

∫
Ω

(
∂ ®u

∂t
· ®ω + ®u ·

∂ ®ω

∂t

)
dΩ, (2.89)

by application of the product rule.
Substituting from (2.8) and (2.22) for the time derivatives, in the inviscid

case (because in viscous flows helicity is not conserved):

∂ ®u

∂t
· ®ω = −

(
( ®u · ∇) ®u

)
· ®ω −

∇p

ρ
· ®ω, (2.90a)

®u ·
∂ ®ω

∂t
= −®u ·

(
( ®u · ∇) ®ω

)
+ ®u ·

(
( ®ω · ∇) ®u

)
. (2.90b)

These expressions can be substituted in the integrand of (2.89), but this will
not make it obvious that the integral evaluates to zero. Furthermodification
and integration by parts will demonstrate this as follows.

To get started, the right-hand side of (2.90a) is rewritten. For its first term,
identity [23, A1. Vector Identities, p. 363, (8)] will be useful. It implies

∇(®u · ®u) = 2( ®u · ∇) ®u + 2 ®u × ®ω, (2.91)

where ®ω := ∇ × ®u has been used. With this result,(
( ®u · ∇) ®u

)
· ®ω =

1
2
∇(®u · ®u)︸     ︷︷     ︸
= 12∇(‖ ®u ‖

2)

· ®ω − (®u × ®ω) · ®ω︸       ︷︷       ︸
=0

, (2.92)

where ( ®u × ®ω) · ®ω = 0 by definition of the cross and the dot product. Substi-
tuting this result in (2.90a), its right-hand side can simply be written as the
dot product between vorticity and the gradient of total pressure p̄ :

− ®ω · ∇p̄, (2.93)

where p̄ := 1
2 ®u · ®u +

p
ρ similar to the definition (2.3) for ρ = 1. Subsequently

applying [23, A1. Vector Identities, p. 363, (4)] and noting∇ · ®ω = ∇ ·∇× ®u = 0
by [23, A1. Vector Identities, p. 363, (12)], the following is obtained:

∂ ®u

∂t
· ®ω = −∇ ·

(
®ωp̄

)
, (2.94)



34 2.2 Proof of conservation

a simple expression that will turn out to be useful upon integration with the
divergence theorem later in this section.

Next, the right-hand side of (2.90b) is rewritten in a few steps. Note iden-
tity [23, A1. Vector Identities, p. 363, (7)] implies

∇ × (®u × ®ω) = ( ®ω · ∇) ®u − (®u · ∇) ®ω + ®u(∇ · ®ω)︸   ︷︷   ︸
=0

− ®ω(∇ · ®u)︸   ︷︷   ︸
=0

, (2.95)

where the last two terms are respectively zero because∇ · ®u = 0 by (2.14) and
∇ · ®ω = ∇ · ∇ × ®u = 0 by [23, A1. Vector Identities, p. 363, (12)]. Note that the
right-hand side of (2.90b) can now be written as ®u ·

(
∇ × (®u × ®ω)

)
. This can

be rewritten further by [23, A1. Vector Identities, p. 363, (6)] as

®u ·
(
∇ × (®u × ®ω)

)
= ∇ ·

(
( ®u × ®ω) × ®u

)
+ ( ®u × ®ω) · (∇ × ®u)︸               ︷︷               ︸

=( ®u× ®ω)· ®ω=0

, (2.96)

where the last term is zero by the definitions of vorticity, the cross product
and the dot product. Therefore, (2.90b) becomes

®u ·
∂ ®ω

∂t
= ∇ ·

(
( ®u × ®ω) × ®u

)
. (2.97)

At this point (2.97) and (2.94) provide suitable expressions for substitu-
tion in (2.89). Doing so and applying Gauss’ theorem to rewrite the integral
into one over the boundary surface yields

dH
dt
=

∫
Ω

∂h

∂t
dΩ =

∫
Ω

∇ ·
(
( ®u × ®ω) × ®u − ®ωp̄

)
dΩ = . . .∫

∂Ω

(
( ®u × ®ω) × ®u − ®ωp̄

)
· ®n dΓ = 0, (2.98)

due to periodic BC (detailed in Section 2.3.4) on ®u , ®ω and p̄ . This completes
the proof of global helicity conservation in inviscid 3D flows.

2.2.6 Conservation of linearmomentum (2D and 3D)

For inviscidflowandperiodicboundary conditions, thegoverningequations
(2.2) or (2.1) conserve linear momentum as demonstrated here. This can in
fact be expected from the constructionof the linearmomentumequation, as
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it represents the balance between change in linear momentum and forces;
see Section 2.1.1 and references to [33] therein. Further, remember that con-
servation of angularmomentumwas already demonstrated in Section 2.2.3.

Instead of the convective (2.8) or rotational (2.13) formulation of the lin-
ear momentum equation, the equivalent conservative formulation [25, (2)]
(with ν = 0, rearranged andmultiplied with ρ) will be convenient:

ρ
∂ ®u

∂t
= −ρ∇ · ( ®u ⊗ ®u) − ρ∇p . (2.99)

This can be written in component notation as

ρ
∂ui

∂t
= −ρ

∂uiu j

∂x j
− ρ
∂p

∂xi
. (2.100)

Then integrate the above over the domain Ω, followed by rewriting the
resulting right-hand side into an integral over the domain boundary. The
first term is rewritten according to the divergence theorem (generalized for
a tensor field) as given by [16, p. 325, (9.3.10)]. The second term is similarly
rewritten with the integral theorem [23, A1. Vector Identities, p. 363, (15)].
Together this results in (remembering ρ is a constant):

ρ

∫
Ω

∂ui

∂t
dΩ = −ρ

∫
∂Ω

uiu j nj + pni dΓ = 0, (2.101)

which is zero due to periodic BC. As the left-hand side represents the linear
momentumwithin the domain, its conservation is now demonstrated. This
for the 3D formulation (2.2) in the inviscid limit. It however also holds for
the 2D formulation (2.1) in the inviscid limit, because the linearmomentum
equation is nearly the same there. The only difference is that certain compo-
nents of ®u and ®ω are zero.

2.3 Taylor-Green flow: basic problem description
and solutions

This section gives a description of the Taylor-Green (TG) problem, because
it seems most suitable for verification: it has periodic boundary conditions,
an exact solution in 2Dand relates to realistic turbulent flow in 3D. For future
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work it could also be interesting that suitable benchmark material may be
found in literature for 3D simulations.

TheTGflowis characterizedby its special initial conditions (IC). For these
combinedwith theNavier-Stokes equations, a general Fourier-series expan-
sion and even an exact solution for 2D are known. This flow is “perhaps
the simplest system in which to study the generation of small scales and the
resulting turbulence” [5]. This process controls the energy dynamics and
hence the global structure and evolution [5] of (seemingly) many realistic
flows, making TG flow a relevant test-case for the new numeric method.

2.3.1 Initial conditions

TG flow was first presented by Taylor and Green in [30]. With the sine and
cosine terms swapped like in [25] (implying just a spatial shift), the IC are

u = A sin ax cosby cos c z

v = B cos ax sinby cos c z

w = C cos ax cosby sin c z

 General IC at t = 0. (2.102)

The constants A, B , C , a , b and c are constrained by the incompressibility
constraint ∇ · ®u = 0 (2.14):

Aa + Bb +C c = 0. (2.103)

Specific values for these six constants are required for investigation of the
MEEVC algorithm’s numeric performance in Chapter 3. The following sim-
plification of the general ICwas introducedbyTaylor andGreen as a “Special
Case” [30]: a = b = c , A = −B and C = 0. Although the initial streamlines
are of 2D nature, the flow directly becomes 3D after t = 0. This simplifica-
tion is alsomade in [12, Section 8.3] and is prominent in [5]. In the latter, the
authors also considered a particular case with non-zero velocities for each
component. They could however not conclude it to be an improvement over
the simplified case for “the study of small-scale turbulence at late times”, so
the dynamics are equally relevant.

Specific IC for fully 2D flow, that are equivalently simple as the special
case just discussed, are obtained here as follows. Set the constants in the
general 3D case (2.102) to B = −A = 1, a = b = π andC = c = 0. This yields
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the same IC as used in theMEEVC paper [25]:

u = − sin πx cos πy

v = cos πx sin πy

}
Chosen IC at t = 0. (2.104)

2.3.2 General Fourier series solution

In [30], the IC (2.102) are combined with conservation of momentum (2.7)
andmass (2.14), to compute the pressure field and velocity time derivatives
at t = 0. The latter and the IC are then substituted in the following approxi-
mate integration: ®u(t ) = ®ut=0+t ( ∂ ®u∂t )t=0. Because the terms in the resultingex-
pressionareof the same (spatially) sinusoidal typeas the IC, thisprocessmay
be repeated. This is done by substituting the resulting expression (instead of
the IC) into the conservation laws to find ( ∂ ®u∂t )t=0, which is then again used
for approximate integration. Each iteration adds another term to the power
series expansionof typeA0+A1t +A2t 2+ . . . ,making itmore accurate. Itmust
be remarked though, that the analytic expressions for subsequent Ai quickly
become very long.

A Fourier series solution for the Taylor-Green flow velocity components
when a = b = c = π in the IC (2.102) is similar to [5, (1.2)], with slightly
different notation written as:

u(x, y, z, t ) =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ûm,n,p(t ) sin πmx cos πny cos πpz

v (x, y, z, t ) =
∞∑

m=0

∞∑
n=0

∞∑
p=0

v̂m,n,p(t ) cos πmx sin πny cos πpz

w (x, y, z, t ) =
∞∑

m=0

∞∑
n=0

∞∑
p=0

ŵm,n,p(t ) cos πmx cos πny sin πpz


, (2.105)

where the coefficients û , v̂ and ŵ are zero unlessm, n, p are either all even or
all odd integers. They contain the aforementioned power series expansions
in t . This solution format nicely shows how the sinusoidal terms and their
periodicity characterize the solution at all times t ≥ 0.

The vorticity vector field follows by taking the curl of velocity and shows
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to have similar solution format:

®ω = ∇ × ®u =


∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 = . . .
π

∞∑
m=0

∞∑
n=0

∞∑
p=0


(−nŵm,n,p(t ) + pv̂m,n,p(t )) cos πmx sin πny sin πpz

(−pûm,n,p(t ) +mŵm,n,p(t )) sin πmx cos πny sin πpz

(−mv̂m,n,p(t ) + nûm,n,p(t )) sin πmx sin πny cos πpz

 .
(2.106)

The solution formats presented above are useful for identifying certain
(symmetry) properties of the Taylor-Green flows they describe. These prop-
erties generally not only apply to 3-D, but also to the particular 2D situation.
Upcoming sections will describe them, as they are useful for understanding
the numerical test case.

2.3.3 Exact solution for a 2D case

An exact solution exists for the fully 2D case. The reason for this is that the
power series expansions made up by the summations in (2.105) and (2.106)
can thenbewritten as exponentials. For the IC (2.104) this is (from [25, (68)]):

u(x, y, t ) = − sin (πx) cos (πy )e−2π
2νt

v (x, y, t ) = cos (πx) sin (πy )e−2π
2νt

ω(x, y, t ) = −2π sin (πx) sin (πy )e−2π
2νt

p(x, y, t ) =
1
4
(cos (2πx) + cos (2πy ))e−4π

2νt


. (2.107)

In [25, (68)] the exponent in p has a positive sign, but based on intuition and
references like [12, Section 8.1] it should be negative as written here.

2.3.4 Periodic boundary conditions

The domainΩ = [0, 2]3 with periodic BC is used in this work when numeri-
cally solving a 3D TG flowwith general solution given by (2.105) and (2.106).
A full period is containedwithinΩ in each of the x-, y - and z-directions. The
current section summarizes what this periodicity of the solutionmeans and
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provides some details on component values on the boundary. All applies to
the 2D case as well, by leaving the z-component out.

In general, a function f is periodic on the domain 0 ≤ x, y, z ≤ 2 if

∂m f

∂xm
(0, y, z ) =

∂m f

∂xm
(2, y, z )

∂m f

∂y m
(x, 0, z ) =

∂m f

∂y m
(x, 2, z )

∂m f

∂z m
(x, y, 0) =

∂m f

∂z m
(x, y, 2)


for allm = 0, 1, 2, ..., ∞. (2.108)

From (2.105) and (2.106) it can be verified that ®u and ®ωmeet this condition.
Because all terms involving ®u and ®ω in the PDE (2.8) have the Fourier series
character of these variables, p must share this and thereby have periodic BC
with characteristics of (2.108) as well. However, p will have a different ex-
pression and period because (2.8) is nonlinear. An example is the 2D case of
(2.107), where p has a double period compared to ®u and ®ω.

The following examples illustrate that ®u given by (2.105) and ®ω by (2.106)
are periodic and that normal velocity and tangential vorticity components
are zero on the boundary. Thewalls of the domain are ‘impermeable’ ( ®u · ®n =
0), while in general ®u × ®n , 0. For example:

u(0, y, z, t ) = u(2, y, z, t ) = 0,
u(x, 0, z, t ) = u(x, 2, z, t ) ∈ R,

u(x, y, 0, t ) = u(x, y, 2, t ) ∈ R,
(2.109)

withR the set of real numbers (including zero). The tangential componentof
vorticity is zero at all boundary faces ( ®ω× ®n = 0), but the normal component
generally is not ( ®ω · ®n , 0). For example consider the z-component:

ωz (0, y, z, t ) = ωz (2, y, z, t ) = 0,
ωz (x, 0, z, t ) = ωz (x, 2, z, t ) = 0,
ωz (x, y, 0, t ) = ωz (x, y, 2, t ) ∈ R.

(2.110)

Another typical property is that the flow stagnates at the corners of the do-
mainΩ = [0, 2]3: all velocity and vorticity components are zero there.

In [25] and this work, the periodic BC are advantageously applied to dis-
cretization with the finite element method as follows. To reduce the order
of certain derivatives, partial integration is used. The boundary integrals in-
volved in this are zero due to the periodic BC. Besides that, the formulation
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does not need modifications or extra equations to enforce specific BC. This
allows to focus on discretizing the PDEwithminimal clutter. It should be re-
marked though, that periodicity (2.108) is only applied there for derivatives
up tofirst order atmost (and that for onlynormalor tangential components).

2.3.5 Symmetry properties

Somespecialdomainscanbe identified fromtheperiodicTaylor-Greensolu-
tion format of (2.105), which can be useful for building, understanding and
checking numerical simulations. These domains are described here based
on [5, Section 2] and [5, Appendix A. Symmetries of the TG flow]. They also
apply to 2D upon leaving the z-component out. The solution within the pe-
riodicity box 0 ≤ x, y, z ≤ 2 reflects a full period which, upon endless rep-
etition (tiling) in space, describes the complete solution. For any integer k

the planes x = k , y = k and z = k are stress-free and mirror-symmetric for
all time [5, Appendix A. Symmetries of the TG flow]. Because there is no flow
passing these planes of symmetry, it is appropriate to call the limited region
0 ≤ x, y, z ≤ 1 the impermeable box. Within this box, axes of symmetry are
x = y = 1

2 , x = z = 1
2 and y = z = 1

2 (that is the flow is invariant under angu-
lar rotations of π around these). Therefore an even smaller special domain
can be identified: the fundamental box 0 ≤ x, y, z ≤ 1

2 . Suppose a solution
is known over this domain. Then it is the smallest subdomain from which
the solution in unlimited space can be described using symmetries. Only for
some special cases a smaller fundamental box exists.

Clearly it couldbeworthwhile tomakeuseof these symmetries innumer-
ical simulation but that is not in the research interest of this work. Solving
only within the fundamental box is however sufficient to obtain the full so-
lution. This can be quite a bit faster, because in 3D its volume is 23/(12)

3 = 64
times smaller than that of the periodic box. It would require non-periodic
BC.

Additional symmetries exist for special choices of IC. An example iswhen
θ = 0 in the ICwritten in the format of [5, (1.1)], see [5, Appendix A, (A 3) and
(A 4)]. It seems this is exploited in [12, Section 8.3] to solve the problem on
a 2D domain and then map the results to 3D. This is however not the aim
when an ‘intrinsic’ 3D method is developed. Still, this source might serve
as a quantitative benchmark and it can be checked whether a method can
capture these (additional) symmetries.



Chapter 3

The 2DMEEVC discretization

This chapter will deal with the discrete MEEVC formulation originally pre-
sented in [25] and analytically prove its conservation properties. Earlier in
Chapter 2, the governing continuous equations were considered. This in-
cluded proofs for the conservation of various integral invariants under ap-
propriate conditions. A discrete formulation and the corresponding set of
equations does not naturally share the same properties. In general this is in-
fluenced by the format of the continuous equations it is based on as well as
various other factors. Even kinematic relations such as ®ω = ∇ × ®u are not
automatically valid for discrete solutions ®ωh and ®uh .

Hence the MEEVC formulation is considered in Section 3.1 with proofs
of its discrete conservation properties in Section 3.2. In [25], the formula-
tion itself is characterizedby three aspects inparticular, whichmaybeelabo-
rated on as follows. First of all is the use of a decoupled vorticity and velocity-
pressure systems setup, where the velocity-pressure system is characterized
by the use of the rotational form. This will be presented at the start of Sec-
tion 3.1, including Section 3.1.1. Using both the vorticity transport and the
linear momentum equations in the discretization helps to conserve integral
properties of both. The second aspect characterizing the MEEVC formula-
tion is the finite element function spaces that are chosen, for which back-
groundcanbe found in Section 3.1.3 andespecially Section 3.1.4. Finally, the
third aspect is the time integrator: a first orderGaussmethod as described in
Section 3.1.5. It is a vital element because it conserves linear and quadratic
invariants, while also allowing the uncoupling and linearization of the dis-
crete equations.
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3.1 Discrete problem description

Thediscreteproblemformulation isderived fromthe setof continuousPDEs
(2.1), using integration as described in [25]. The following text and equations
are stronglybasedon this reference. Please refer to it formoredetails and fur-
ther references supporting some of the statements in the subsections below.
These subsections describe key ingredients to the discrete formulation.

Thevariables in theMEEVC formulation, presentedbelow, are infinite el-
ement spaces as follows. Velocity is discretized in terms of Raviart-Thomas
elements of degree N , that is ®uh ∈ RTN . Total pressure in terms of discon-
tinuous Lagrange elements of degree (N −1), that is p̄h ∈ DGN−1. Vorticity in
terms of Lagrange elements of degreeN , that isωh ∈ CGN . Further the space
of scalar real numbers (R0) is used for r0.

The core of the discreteMEEVC algorithm is to findωk+1
h ∈ CGN , ®u

k+ 32
h ∈

RTN , p̄k+1
h ∈ DGN−1 and (although not of primary interest) rh ∈ R0 such that:〈

ωk+1
h − ωk

h

∆t
, Eh

〉
Ω

−
1
2

〈
ωk+1

h + ωk
h

2
, ∇ ·

(
®u

k+ 12
h Eh

)〉
Ω

+
1
2

〈
∇ ·

(
®u

k+ 12
h

ωk+1
h + ωk

h

2

)
, Eh

〉
Ω

= −ν

〈
∇ ×

ωk+1
h + ωk

h

2
, ∇ × Eh

〉
Ω

∀Eh ∈ CGN ,

(3.1a)

〈
®u

k+ 32
h − ®u

k+ 12
h

∆t
, ®vh

〉
Ω

+

〈
ωk+1

h ×
®u

k+ 32
h + ®u

k+ 12
h

2
, ®vh

〉
Ω

−
〈

p̄k+1
h , ∇ · ®vh

〉
Ω

= −ν
〈
∇ × ωk+1

h , ®vh

〉
Ω

∀®vh ∈ RTN ,

(3.1b)

〈
∇ · ®u

k+ 32
h + r k+1

h , qh

〉
Ω
= 0 ∀qh ∈ DGN−1, (3.1c)〈

p̄k+1
h , r̃h

〉
Ω
= 0 ∀r̃h ∈ R0. (3.1d)

Vorticity is treated as a scalar where possible. This is allowed by the 2D situ-
ation, where velocity has two components but vorticity only one. An excep-
tion is (the second termof) Eq. (3.1b), where vorticity is in a cross-product; a
vector operationnot defined for a true scalar. Here vorticity is represented as
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a vector with only its third component non-zero. Representing ®uh as three-
element vectorwith zero third componentmakes the crossproduct correctly
defined. By this ®ωk+1

h is always perpendicular to ®uh , as should be for planar
flow.

The four equations (3.1) are solved in two steps rather than at once. First,
vorticity is computed at time t k+1 by solving the vorticity transport equa-
tion (3.1a). Second, this ‘new’ vorticity is substituted in the discrete balance
of linearmomentumequation in rotational form (3.1b), which is solvedwith
enforcement ofmass conservation (3.1c) and leveling of pressure (3.1d). The
solution of this linear system are velocity, total pressure at a new time-level
as well as an auxiliary variable rh . This variable is not of physical interest and
ends up in the equation for conservation of mass (3.1c) due to the enforce-
ment of zero integral pressure, see Section 3.1.2. It does not influence con-
servation of mass as rh appears to be zero in all calculations. As it is related
to the pressure constraint, it is discretized at the same time (t k+1).

The two-stepapproach in solving ispossibleby ‘staggered time-stepping’
of the variables. Figure 3.1 shows at which time instances the variables are
discretized; the equations are solved as described above. Section 3.1.5 ex-
plains the temporal discretization in more detail. Other subsections below
highlight important aspects related to the spatial discretization.

t k

ωk
h , p̄k

h , rh

t k+ 12

®u
k+ 12
h

t k+1

ωk+1
h , p̄k+1

h , rh

t k+ 32

®u
k+ 32
h

t k+2

ωk+2
h , p̄k+2

h , rh

Figure 3.1: Temporal discretization of variables in staggered time stepping
(modified reproduction of [25, Fig. 1]).

3.1.1 Integration by parts

The first step in deriving the discrete equations (3.1) from the continuous
(2.1) is to multiply by test functions and then use integration by parts to re-
duce to at most first order derivatives. These test functions are similar to
the trial functions (3.11) in construction, but have arbitrary weights (coef-
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ficients). This is known as the Galerkin method. A solution to (3.1), being
particular weights for the trial functions, must be valid for any (non-trivial)
combination of weights in the test functions.

Eachequation in (3.1) isobtained throughmultiplicationwitha test func-
tion existing in a particular space: ‘velocity space’ with ®vh ∈ RTN for balance
of linearmomentum, ‘vorticity space’ with Eh ∈ CGN for vorticity transport,
the ‘(total) pressure space’ with qh ∈ DGN−1 for conservation of mass, and a
space for a scalar that is constant over the domain with rh ∈ R0.

After multiplication by test functions, integration by parts is used to re-
duce the order of certain derivatives:

〈
∇p̄, ®v

〉
Ω
= −

〈
p̄, ∇ · ®v

〉
Ω
+

=0︷             ︸︸             ︷∫
∂Ω

p̄(®v · ®n)ds,

〈
( ®u · ∇)ω, E

〉
Ω
= −

〈
ω, ∇ · ( ®u E)

〉
Ω
+

=0︷                ︸︸                ︷∫
∂Ω

Eω( ®u · ®n)ds,

ν
〈
∇2ω, E

〉
Ω
= −ν 〈∇ × ω, ∇ × E〉Ω + ν

=0︷                     ︸︸                     ︷∫
∂Ω

E(∇ × ω) × ®n ds .

(3.2)

Note that the boundary integrals conveniently evaluate to zero due to the
periodic BC. Above equations have been used in the derivation of (3.1).

3.1.2 Computing the pressure field

Special attention is paid here to how the average level of the pressure field is
fixed in the variational problem (3.1) by (3.1c) and (3.1d). Thismeans setting∫

Ω

p̄k+1
h dΩ = 0, (3.3)

which avoids that the pressure level ‘jumps around’ over time-steps. Fur-
thermore this sectiondescribes thepost-processing step that is used to com-
pute the static pressure p from the total pressure p̄ .

Fixation of total pressure level

WhentheMEEVCformulationaspublished in [25]was implemented incom-
puter code by the author of this thesis, it was found that the pressure level
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jumps around in simulations with the following reasons and consequences.
The continuous balance of linear momentum equation, that is the first in
(2.1), contains the pressure gradient. So that equation on its own does not
say anything about the pressure level. Due to the necessary partial integra-
tion step (see Section 3.1.1) pressure appears directly in the variational for-
mulation (3.1b) instead of its gradient in the continuous problem. But this
still does not add information about its level. Neither do the boundary con-
ditions applied in this work, as they are periodic and do not specify any pre-
selected values. Furthermore the velocity and vorticity solutions at the new
time-level link back to the known previous, and this way ultimately to their
initial conditions, butwith pressure that does not happen. Sowhen the pub-
lished MEEVC formulation [25] was used directly, a constant of integration
couldpoorlybedeterminedeach time-stepmaking that thepressurefieldof-
ten changed largely. Pressure thereby reached values several orders of mag-
nitude bigger than its leveled exact solution, velocity and vorticity. This did
not only made visualization inconvenient, but possibly introduced numer-
ical error to the solutions. A deviation of the divergence of velocity from its
constraintonzeromaybeexpected. Therefore the total pressure level isfixed
to zero by modifying the original formulation as explained in the following.
By the way, this zero level is chosen just for convenience; physics does not
require it specifically.

Setting the fixedpressure level in the variational formulationwas done as
follows. The constraint (3.3) itself corresponds to∫

Ω

r̃h p̄k+1
h dΩ = 0 ∀r̃h ∈ R0, (3.4)

which is (3.1d). Thereby remember thatR0 is the spaceof scalar real numbers
that are constant over the entire domain, alternatively described as the real-
valued polynomial space of order zero. As (3.4)must hold for any value of r̃h ,
it is obvious that this equation effectively enforces the pressure constraint
(3.3). But with the introduction of a test function r̃h comes a corresponding
trial function rh ending up in (3.1c) as derived further below.

The extra variable rh is of no direct physical interest but its solutions and
effects to the linear systemhavebeen investigatedas follows. Several numer-
ical results were checked and all had rh = 0. It is believed that rh must always
be zero, therefore the author of this thesis spent much effort on identifying
additional properties of the linear system that prove this. Becauseof unsatis-
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fying results these analyses are not included in this thesis though. Complex
approaches could not be finalized and approaches based on simplified ex-
amples looked plausible but could not be proven representative for the full
system. One thing is sure though: in the linear system A ®x = ®b corresponding
to theMEEVC formulation (3.1), the extra variable rh (included as an entry in
®x) kept thematrix A square after the systemwas expandedwith the pressure
constraint. This means there are as much equations as variables, which is
necessary (but not sufficient) for always having a unique solution.

Themodification of the original MEEVC formulation that fixed the pres-
sure levelwas suggestedand recommendedbyArturPalha, first authorof the
MEEVC paper [25], but this camewithout derivation so therefore the follow-
ing is an attempt to construct one. It works but has its imperfections as will
soon become clear. It follows a Lagrange-multiplier approach where the La-
grangian to implement the pressure constraint (3.4) is formulated from trial
functions as

L
(
rh, p̄k+1

h

)
=

∫
Ω

rh p̄k+1
h dΩ, (3.5)

where rh ∈ R0 is considered theLagrangemultiplier. As it is constant, it could
be drawn into the integral corresponding to the constraint. Strictly speaking
L(rh, p̄k+1

h ) is however no Lagrangian as it misses an objective function that
mustbeminimizedsubject to theconstraint. It isquestionable if anobjective
function corresponding to the MEEVC formulation could be found though,
so therefore it is just assumed zero here. The addition to the formulation
that fixes the pressure level can still be derived this way though by setting
the derivative of L(rh, p̄k+1

h ) equal to zero according to the Lagrangemethod:

lim
ε1, ε2→0

[
L(rh + ε1r̃h, p̄k+1

h + ε2qh) − L(rh, p̄k+1
h )

]
= 0

∀qh ∈ DGN−1 and ∀r̃h ∈ R0,
(3.6)

where r̃h and qh in the ‘incremental’ terms are test functions. This equation
implies that the gradient of L must be equal to the zero vector, considering
that either of the test functions can be zero. Substituting (3.5) for the La-
grangian and evaluating the limit yields:∫

Ω

r̃h p̄k+1
h dΩ +

∫
Ω

rhqh dΩ = 0 ∀qh ∈ DGN−1 and ∀r̃h ∈ R0. (3.7)

Finally these integrals are expressed in bracket notation for the MEEVC for-
mulation, where the first integral becomes (3.1d) and the second ends up in
(3.1c) according to the finite element spaces for the test functions.
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Computation of static from total pressure

Here the equation used to compute the instantaneous static pressure field
from the total pressure field in post-processing is derived. This equation,
(3.10) below, also corrects the average of the static pressure field to zero for
convenient visualization and comparison against exact results. Remember
that this zero pressure level is associated to setting a constant of integration.
The Navier-Stokes equations themselves only describe the pressure differ-
ences. One could wonder why the variational problem, (3.1) that is, cannot
be adapted to compute static pressuredirectly. The reasonbehind this is that
a non-linear term of unknowns ( ®uh · ®uh) would be introduced.

The following demonstrates that the total pressure computed by solving
the variational problem (3.1) does not lead to a static pressure level that is
the same as that of the exact solution used for reference. Substituting static
pressure from its definition in terms of total pressure and velocity, that is p =

p̄ − 1
2 ®u · ®u , shows that its level will be at:∫

Ω

pk+1
h dA = −Kk+1

h . (3.8)

Here it was used that the total pressure level is constrained to zero (3.3) and
thatK=

∫
Ω

1
2 ®u · ®u dA is the kinetic energy contained in the domain. The level

of the exact solution (2.107) is different though:∫
Ω

pe dA = 0. (3.9)

Comparing equation (3.8) to (3.9) shows that the level of the numeric so-
lution can be corrected by adding average kinetic energy densityKk+1

h /AΩ as
a correction term to ph . Here AΩ = 4 is the area over theΩ = [0, 2]× [0, 2] do-
main so that the correction term integrates to

∫
Ω
Kk+1

h /AΩ = +K
k+1
h . There-

fore the corrected static pressure field is computed from the total pressure
and velocity fields as follows:

pk+1
h = p̄k+1

h −
1
2
®̃uk+1

h · ®̃uk+1
h +

K̃k+1
h

AΩ
. (3.10)

This makes
∫
Ω

pk+1
h dA = 0. The tilde indicates approximated values, as the

staggered time-stepping scheme (Figure 3.1) implies ®uh is not computed at
tk+1. Just like some terms in the variational problem, this can be done by lin-
ear interpolation: ®̃uk+1

h ≈ 1
2

(
®u

k+ 12
h + ®u

k+ 32
h

)
. The resulting field is then also
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used to compute K̃k+1
h . The implementation was however simplified by us-

ing velocity and kinetic energy at the latest time-step (t k+ 32 ) instead. This is
fine as the static pressure results are not of direct interest for this work and
visually tend to agree with those from the exact solution.

3.1.3 A DeRham complex for function spaces

The discrete variables ( ®uh, ωh, p̄h) in the MEEVC formulation (3.1) are trial
functions formed by linear combinations of the basis functions ®εU

i (x, y ),
εQ

i (x, y ) and εW
i (x, y ):

®uh :=
dU∑
i=1

ui ®ε
U
i , p̄h :=

dQ∑
i=1

pi ε
Q
i , ωh :=

dW∑
i=1

ωi ε
W
i , (3.11)

where ui , pi and ωi are scalar weights which generally change each time-
step. The basis functions do not change over time-steps. They depend on
space only and if they are continuous then this is reflected by the solutions.
The number of degrees of freedom (dimensions of the problem) are dU , dQ

and dW . They are determined by the amount of mesh elements and the de-
gree of the polynomial basis functions used for eachmesh element.

The above trial functions span finite dimensional function spacesUh ,Qh

andWh , which are limited by the following:

®uh ∈ Uh ⊂ H (div, Ω), ph ∈ Qh ⊂ L2(Ω), ωh ∈Wh ⊂ H 1(Ω). (3.12)

Thismeans that integrating the square of any of the indicated functions over
(part of) the domain is well-defined and will always produce a finite result.
Furthermore, this will also be guaranteed to hold for the square of any first
order derivative of a function in H 1(Ω) and for the square of the divergence
of a function in H (div, Ω). With (3.12) the MEEVC formulation (3.1) is con-
structed such that the derivatives included in it generally produce a func-
tion that is guaranteed to be square-integrable. For some terms in (3.1) this
may not to be the case though, as discussed within Section 5.4. The square-
integrability is a prerequisite for ensuring a solvable set of linear equations.

Besides their integrability, thefiniteelement functionspacesareconform-
ing bymapping into another:

0 −→Wh
∇×
−−→ Uh

∇·
−→ Qh −→ 0. (3.13)
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They form a DeRham subcomplex, which is a finite dimensional equivalent
to the continuous DeRham complex in differential geometry. This charac-
teristic forms an important requirement for obtaining a stable and accurate
finite element discretization [25].

Considering the variational problem (3.1)makes it intuitive: a product of
terms that are both in one of the square-integrable spaces of (3.12) must be
integrable. Note from the DeRham subcomplex (3.13) that some terms con-
tain a derivative which even puts the term it applies to in the same space as
the other in the product. An example is

〈
p̄k+1

h , ∇ · ®vh

〉
Ω
: the multiplier is al-

ready in the (total) pressure spaceQh , themultiplicand is cast into this space
by applying the divergence operator to the term ®vh in velocity spaceUh . Such
is not the case for all terms though, sometimes derivatives just lead to the
same type: scalar or vector.

Finally, for the MEEVC formulation it should be noted that ∇ × ®uh falls
outside of the DeRham subcomplex (3.13) and does not solve the vorticity
transport equation. Unlike ∇ · ®uh , ∇ × ®uh is not in L2(Ω). So it is in gen-
eral not square-integrable and thereby unsuitable for the discrete equations
(3.1). The ωh in the MEEVC method is directly computed from the discrete
vorticity transport equation and does not have this problem as it is square-
integrable. A further advantage is that there is proof thatωh satisfies vorticity
conservation (Section 3.2.3) and enstrophy conservation in the inviscid case
(Section 3.2.4). Thiswhile∇× ®uh is not necessarily a solution to the (discrete)
vorticity transport equationand therefore generally lacks these conservation
properties. This is different from the continuous setting, where a solution ®u
of the linearmomentum equation is always such that its curl is a solution of
the vorticity transport equation. One may refer back to Chapter 2 for more
information on the continuous setting. In the discrete setting there are dif-
ferences due to the finite resolution and other approximations.

3.1.4 Finite element function spaces

This section will provide more details on the finite element function spaces
that are used in theMEEVC formulation (3.1).

A finite element is commonly specified by (T, V, L), where:

T is the domain of the element and is a bounded, closed subset of Rd with
nonempty interior and piecewise smooth boundary;
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V is a function space of finite dimension n on T, in this work constructed
from polynomialsPq of degree q ;

L is a basis {l1, l2, . . . , ln} for the space V′ dual to V, and it are these nodes
that represent the degrees of freedom.

This description is based on [19, Definition 3.1].
Before visualizing the finite elements used in the MEEVC discretization,

it is first recalled that the following finite element function spaces are em-
ployed in the discretization (3.1):

Wh = CGN , Uh = RTN andQh = DGN−1. (3.14)

Figure 3.2 visualizes the N = 1 situation as the simplest (lowest order) ex-
ample. The curved arrows show where the curl and gradient operators can
be used to map from one space into another. The blue elements illustrate
the degrees of freedom. For vorticity, these are each indicated by a dot with
a circular arrow around it: the dot represents evaluation of a scalar function
and the circular arrow adds the physical interpretation of rotation. For ve-
locity, the degrees of freedom are indicated by straight arrows over the sides
of the element. Each of these arrows represents an evaluation of the normal
component of a vector function. Pressure is suggested by arrows emanating
fromadot (its node). In addition, thewhole interior of the triangle is colored
as the pressure is constant over the entire element.

ωh ∈ CG1 ®uh ∈ RT1 p̄h ∈ DG0

∇× ∇·

Figure 3.2: Lowest-order (N = 1) MEEVC finite element discretization.

WhileFigure3.2 is illustrative, it is interesting toconsidermoreproperties
of the spaces (3.14) and their application:
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CGN refers to theLagrange element spaceof orderN , used for vorticity. This
space is particularly suitable for discrete representation of scalar func-
tions (though vectors or tensors can be represented by taking one el-
ement per component). It is H 1-conforming and hence represents a
subspace of H 1(Ω): there is not only continuity within the elements,
but also across all of the inter-element boundaries. Thismeans thedis-
cretized domain isC 0 continuous and (hence) all first order derivatives
are square-integrable. All degrees of freedom are determined by point
evaluation of function values. [19]

RTN refers to the Raviart-Thomas element space of orderN , used for veloc-
ity. This family of FE is especially suitable for discretizing vector fields
and isH (div)-conforming,meaning that thenormal componentsmust
be continuous over all (inter-element) boundaries. Velocity fluxes are
therefore equal onboth sides of a boundary: mass leaving one element
enters into the other by the same amount. This conformity allows en-
forcing local and global conservation of mass, that is div( ®u) = 0. RTN

is the smallest order N polynomial space that is mapped into a N − 1
polynomial space (DGN−1) by the divergence operator. The degrees of
freedom are (moments of) normal components on facets and also, for
second order and higher, interior moments. [19]

DGN−1 is the discontinuous Lagrange element space of order N − 1, used
for pressure. DG elements are suitable for weak formulations. The ab-
breviation ‘DG’ refers to the Discontinuous Galerkin method, which
uses these elements. As this name suggests, discretizationswithDGel-
ements are not in the continuous function spaceC 0. They are rather in
L2(Ω)only: anypossible function (reconstruction) is square-integrable,
but in general its derivatives are not. Within each individual element
the function space is orderN − 1 polynomial, which is continuous, but
at inter-element boundaries there is no general continuity enforced.
Just as for the ‘continuous’ Lagrange element, all degrees of freedom
correspond to point-wise function evaluation, but are viewed as inter-
nal to the element (in line with the discontinuous character). For ex-
ample, takeN = 1 in theMEEVCdiscretization. Then the triangular el-
ements forming the discrete pressure field each have a constant scalar
value (0th order polynomial). This can physically be interpreted as a
constant pressurewithin each 2Dcontrol volume. Pressure differences
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between one element and its neighbors can be used to compute forces
acting on this ‘control volume’ (as a type of numerical fluxes). [19]

3.1.5 Gauss time integration

TheMEEVCdiscrete time integration is based on themidpoint rule, because
it allows the linearized, staggered-in-time formulation and is known to con-
serve integral invariants. Combinedwith the spatial discretizationdescribed
earlier, the MEEVC properties are achieved. This section will focus on the
temporal discretization. Its formulation and claimed properties are mostly
described along the lines of the original presentation [25] butwith some crit-
ical footnotes.

Application of themidpoint rule

Inorder tounderstand theprocess of temporal discretization it is useful to go
back to the starting point. This is aweak formulation obtained throughmul-
tiplication of the equations in (2.1) with test functions, followed by (partial)
integration as treated in Section 3.1.1. Furthermore the system was modi-
fied in order to fix the pressure level as described in Section 3.1.2. Two of the
equations in the system contain time derivatives: the linearmomentumand
the vorticity transport equation. Without temporal discretization the com-
bined system looks as follows:〈
∂ωh

∂t
, Eh

〉
Ω

−
1
2

〈
ωh, ∇ ·

(
®uh Eh

)〉
Ω
+
1
2

〈
∇ ·

(
®uhωh

)
, Eh

〉
Ω

= −ν 〈∇ × ωh, ∇ × Eh〉Ω ∀Eh ∈ CGN ,〈
∂ ®uh

∂t
, ®vh

〉
Ω

+
〈
ωh × ®uh, ®vh

〉
Ω
−

〈
p̄h, ∇ · ®vh

〉
Ω

= −ν
〈
∇ × ωh, ®vh

〉
Ω

∀®vh ∈ RTN ,〈
∇ · ®uh + rh, qh

〉
Ω
= 0 ∀qh ∈ DGN−1,

〈p̄h, r̃h〉Ω = 0 ∀r̃h ∈ R0.



(3.15)

Theunknowns in (3.15)dependon timeonly, so theequations reduce toa
system of first-order ordinary differential equations in time. This is because
all terms are integrals over the spatial domain and the result only depends
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on the weights of the FE basis functions. These then generally vary over the
time-steps. Hence there is an initial value problem corresponding to (3.15)
that is formatted similar to1

df

dt
= g (f (t )), f (0) = f 0. (3.16)

Discretization of (3.16) with the implicit midpoint rule2 yields, with M the
number of time steps and ∆t the step size:

f k+1 − f k

∆t
= g

(
f k+1 + f k

2

)
, k = 0, 1, . . . , M . (3.17)

The implicit midpoint rule is identical to the first-order Gauss method and
conserves up to secondorder invariants. Gaussmethods are classifiedunder
collocation methods, which in turn are a subclass of Runge-Kutta methods.
The midpoint rule is second-order accurate. These and other details can be
found in [14], especially (but not only) pp. 27–31, 34, 99 and 101.

A somewhat free application of the implicit numeric scheme (3.17) to
(3.15) is done like in [25] as follows:〈
ωk+1

h − ωk
h

∆t
, Eh

〉
Ω

−
1
2

〈
ω̃

k+ 12
h , ∇ ·

(
®̃u

k+ 12
h Eh

)〉
Ω
+
1
2

〈
∇ ·

(
∇ ®̃u

k+ 12
h ω̃

k+ 12
h

)
, Eh

〉
Ω

= −ν
〈
∇ × ω̃

k+ 12
h , ∇ × Eh

〉
Ω

∀Eh ∈ CGN ,〈
®uk+1

h − ®uk
h

∆t
, ®vh

〉
Ω

+
〈
ω̃

k+ 12
h × ®̃u

k+ 12
h , ®vh

〉
Ω
−

〈
˜̄pk+ 12

h , ∇ · ®vh

〉
Ω

= −ν
〈
∇ × ω̃

k+ 12
h , ®vh

〉
Ω

∀®vh ∈ RTN ,〈
∇ · ®uk+1

h + r
k+ 12
h , qh

〉
Ω
= 0 ∀qh ∈ DGN−1,〈

˜̄pk+ 12
h , r̃h

〉
Ω
= 0 ∀r̃h ∈ R0,


(3.18)

1Note however that the problem (3.15) is actually a more complex system of equations,
whichmakes this comparison somewhat questionable. An example of this complexity is the
case of the pressure p̄h , which has coefficients that vary in time but does not have a time-
derivative termwithin (3.15) like df /dt in (3.16).

2In theMEEVCpaper [25], there is also anexplicit time-dependence in themidpoint rule.
Its point of departure is (3.16) with g (f (t ), t ) as right-hand side. There is however no explicit
timedependence in theequations (3.15) themselves, sohere the formats aspresented in [14]
are used.
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where the divergence constraint (third equation) is applied to ®uh at the new
time-level because the current timelevel must already be divergence-free.
Also, the following shorthand notations are used above:

®̃u
k+ 12
h =

®uk+1
h + ®uk

h

2
, ˜̄pk+ 12

h =
p̄k+1

h + p̄k
h

2
, ω̃

k+ 12
h =

ωk+1
h + ωk

h

2
. (3.19)

This corresponds to a time-stepping scheme where all variables are com-
puted at the new time level from the current ‘known’ time level.

The (3.18) discrete formulation is ‘heavy’: it yields a coupled, non-linear
and implicit system. An individual equation in the system can contain both
velocity and vorticity as unknowns, also as products. Applicable iterative
solvers will bring a high computational burdenwith them. This alonewould
often make common schemes favorable in practical applications, despite
their possible shortcomings.

Staggered time-stepping

Staggered time-stepping comes in as a solution to above problems: a quasi-
linear formulation can be obtained by applying themidpoint rule to themo-
mentum equation at ∆t /2 later than the vorticity transport equation. This
way (3.1a) and (3.1b) are obtained from(3.15). The time instants atwhich the
momentum equation is discretized are also used for conservation of mass
and fixation of the pressure level, yielding (3.1c) and (3.1d). Again for ve-
locity in (3.1c) only the newest time-level remains: when applying the diver-
gence operator to the average of the current andnew time-levels, the current
is known andmust already be divergence-free.

The lower diagram in Figure 3.3 gives an overview of the staggered time-
stepping in theMEEVC scheme. Each arrow indicates a time-step for a vari-
able. The order of solving the equations is as follows. First vorticity is up-
dated with (3.1a), which contains velocity only at known time-level. Then
the updated vorticity ωk+1

h is used to compute velocity ®uk+ 32
h , pressure p̄k+1

h

and r k+1
h through solving the system formedby (3.1b), (3.1c) and (3.1d). Note

that both the vorticity and velocity-pressure systems are linearized by solv-
ing them in this way.

In (3.1) the averaged values ®̃u , p̃ and ω̃, see (3.19), are no longer used.
They are either replaced by explicit averages, or considered at a single time.
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Such as for pressure, which has no time-derivative in the equations so refer-
ence to a known time-level is not needed. And for vorticity in the linear mo-
mentum equation (3.1b), which is now a known at intermediate time there.
In the vorticity transport equation (3.1a), a similar situation is created for ve-
locity. That is also a known at intermediate time there.

t k

®uk
h , ω

k
h , p̄k

h

t k+1

®uk+1
h , ωk+1

h , p̄k+1
h

t k+2

®uk+2
h , ωk+2

h , p̄k+2
h

t k

ωk
h , p̄k

h

t k+ 12

®u
k+ 12
h

t k+1

ωk+1
h , p̄k+1

h

t k+ 32

®u
k+ 32
h

t k+2

ωk+2
h , p̄k+2

h

Figure 3.3: Straightforward time-steppingwith all variables at the same time
instant (above) versus staggered time-stepping (below), rh ex-
cluded for clarity; reproduced from [25, Fig. 1].

To start the staggered time-stepping with (3.1), there are initial ®u
1
2

h and
ω0

h needed. There is no need for pressure at a known time-level. Hence one
time-stepof∆t /2with thenon-linear system(3.18) is usuallyneeded to com-
pute ®u

1
2

h from the initial ®u0
h . For the researchwork considered here, ®u

1
2

h is esti-
mated as the average of ®u0

h and ®u
1
h following from the exact solution. It must

be remarked though, that these discrete velocity fields are not directly inter-
polated from the exact solution for the following reason. Although the ex-
act solution is divergence-free, the interpolated result would in general not
be due to the approximating nature of the interpolation process. While the
MEEVCmethod is built on assuming incompressible flow for the initial con-
ditions, as described above, that is undesirable. A solution is to make use of
the fact that for any incompressible, irrotational 2Dflow there exists a stream
function satisfying Laplace’s equation. This involves using the initial condi-
tions on interpolated vorticity to compute a corresponding discrete stream
function, from which in turn a discrete velocity field can be computed that
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automatically satisfies the incompressibility requirement.

Benefits of theMEEVC temporal discretization

Finally, this is a good place to argue why the midpoint rule and not some
other method is used. Therefore its most relevant properties will be consid-
ered below, of which four are appraised desirable and one potentially unde-
sirable. For reference, it is relevant to look back to the MEEVC formulation
(3.1) andalso compare it against thenonlinear formulation (3.18) or even the
formulation without time discretization (3.15).

Two useful, even essential, properties are intrinsic to the midpoint rule.
One is that, as a one-stage Gauss method, it conserves linear and quadratic
invariants [14, p. 99 and 101]. This is just what is needed for the MEEVC
properties; that is for retainment of the 2D invariants in Table 2.1. Mass and
vorticity are first order (linear) invariants, kinetic energy and enstrophy sec-
ond order (quadratic). Given the adequate spatial discretization and invis-
cid conditions, all these invariants are then conserved over time-steps be-
cause these are made with the midpoint rule. Another property of the mid-
point rule is that it is symmetric [14, p. 3 and 42]. In case of inviscid flow,
this symmetry allows time-reversibility of the MEEVC method as demon-
strated in [25, Section4.4]. Anumericalone-stepmethodΦ is time-reversible
ifΦ∆t ◦Φ−∆t = id [14,Definition1.4, p. 144]. Reverse time-steps should (even-
tually) make the flow return to its initial conditions.

Two other advantages are that the midpoint rule allows to decouple and
linearize the system of equations. This is done by formulating the staggered
time-stepping scheme (3.1), also see Figure 3.3. Rather than having a sin-
gle system as in (3.18), the system is split into a vorticity part (3.1a) and a
pressure-velocity (momentum) part with (3.1b), (3.1c) and (3.1d). The de-
grees of freedom thereby spread over two smaller systems, which are solved
consecutively. It is generally faster to solve two smaller systems rather than
onebig combinedsystem. Furthermore, theequations in (3.1) are linearized,
because in all products of vorticity and velocity (derivatives) only one vari-
able is unknown. Efficient numeric solvers exist for such problems. By the
way: these do not rely on computing the inverse (for ‘explicit’ solving), as
this is slow for a large linear system. Usually some formof Gaussian elimina-
tion is used. Or iterative methods, which are less demanding for problems
with a large amount of unknowns.
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A possible downside of the midpoint rule is however that it is limited to
second order accuracy, while the spatial discretization is not. One can im-
plement a higher-order method, but this will be a complicated endeavor as
the midpoint rule is an essential element of the formulation. Some meth-
ods even involve multiple steps to make a single time-step. For now it is not
worthwhile to add complexity and computational burden, while it does not
add value in demonstrating the key conservation properties of the method.
A practical approach is to justmake the time step small enough, for example
such that its associated error is comparable to that of the spatial discretiza-
tion.

3.2 Algebraic proof of discrete conservation

The discrete conservation properties of the MEEVC formulation are proven
algebraically in the following subsections. The approaches taken in these
proofs directly follow from the MEEVC paper [25] and can also be found in
[11]. Proofs arising from numerical testing are not considered here.

Aside from conservation of mass (Section 3.2.1), the proofs of conser-
vation of kinetic energy (3.2.2), of vorticity (Section 3.2.3) and of enstrophy
(Section 3.2.4) share a common approach. This is to take an equation of
the discrete MEEVC formulation (3.1) and show that it is equivalent to the
conservation of one of the invariants by choosing a particular test function.
Thereby it may also be needed to assume inviscid flow conditions. Onemay
however argue that it isnot fair to chooseaparticular test function todemon-
strate conservation, but the formulation is valid for any of the possible test
functions including the particular one.

3.2.1 Conservation of mass

Mass is exactly conserved because the discrete velocity field is ensured to be
point-wise divergence-free (∇ · ®uh = 0) by discretizing velocity in a H (div)-
conforming finite element space. For more background on the requirement
ofdivergence-free solutionsandconservationofmass, seeSection2.2.1. Dis-
cretizing thevelocityfieldas aforementionedmakes it fit in theDeRhamsub-
complex (3.13). This means that taking the divergence of velocity maps it
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into the pressure space. In other words with [25, (11)]:{
∇ · ®uh | ®uh ∈ Uh

}
⊆ Qh, (3.20)

where Uh is the discrete velocity space and Qh the discrete pressure space.
Remember these spaces were specified in (3.14). All that insures that the
discrete conservation ofmass statement (3.1c) of theMEEVC-formulation is
integrable. Furthermore the setup discussed here effectively turns this weak
conservationofmass statement intoa strongone: the solution isdivergence-
free in any point of the domain. This is independent of the solution’s ac-
curacy. In the original MEEVC paper [25], the approach discussed here is
backedby literature references: [6] and [10] particularly suggest sucha setup.
Detailed proofs seem to bemissing in these papers though.

3.2.2 Conservation of energy

Discrete kinetic energy integrated over the domain at time t k+ 12 is defined to
be half the L2(Ω)-norm of velocity, which upon expansion becomes

K
k+ 12
h :=

1
2

〈
®u

k+ 12
h , ®u

k+ 12
h

〉
Ω
. (3.21)

Also, see Section 2.2.2 on energy conservation in the continuous setting.
Now take theMEEVC formulation’s discretebalanceof linearmomentum

(3.1b) in the inviscid limit (ν = 0)andchoose to substitute ®vh =
1
2 ®u

k+ 32
h +12 ®u

k+ 12
h

for the test function. This yields

1
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= 0,
(3.22)

where it is immediately clear that the third term is zero because the discrete
solutions aredivergence-free as just discussed inSection3.2.1. Furthermore,
the second term is also zero because the cross and dot products have the
property that ( ®a × ®b) · ®b = 0 for any two vectors ®a and ®b . Then it remains to
recognize that the first term can be written as

1
∆t

(
K

k+ 32
h −K

k+ 12
h

)
(3.23)
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by expanding the product and comparing against (3.21). This means that
(3.22) effectively reduces to K

k+ 32
h = K

k+ 12
h meaning that kinetic energy is

conserved over time-steps.

3.2.3 Conservation of vorticity

Discrete integrated vorticity, or total vorticity, at time t k is simply given by

Wk
h =

〈
ωk

h, 1
〉
Ω
. (3.24)

To describe the evolution of total vorticity in the discrete system, consider
the vorticity transport equation (3.1a) and choose Eh = 1 as test function:〈
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(3.25)
Here it is simple to see that the second term is zero because the discrete ve-
locity is exactly divergence-free. Furthermore the last term drops out be-
cause thederivative of a constant is zero. Finally the third term is also zero, as
canbe demonstrated by rewriting it as a common integral and then applying
the divergence theorem3 for 2D:
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4
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k+ 12
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(3.26)

Here the boundary integral is zero due to periodic boundary conditions on
both ®uh andωh . Nowall terms of (3.25), except the first, are shown to be zero.
Then the remaining equation (aftermultiplicationwith∆t ) can bewritten in
terms of (3.24) as Wk+1

h = Wk
h , meaning that total vorticity is conserved.

3Or also an alternative form of Green’s theorem [29, pp. 1096].
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3.2.4 Conservation of enstrophy

Just as beforewith kinetic energy and vorticity, thefirst step is to consider the
definition of discrete enstrophy at time t k :

Ek
h =

1
2

〈
ωk

h, ω
k
h

〉
Ω
. (3.27)

Then consider the discrete vorticity transport equation (3.1a) in the inviscid
limit (ν = 0) and substitute Eh =

1
2ω

k+1
h + 1

2ω
k
h for the test function

4 to obtain
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(3.28)
Note that the last two terms on the left-hand side are in fact the same but
with opposite signs, so they cancel. Then multiply the remaining equation
with ∆t and note that, by product expansion and comparison against (3.27),
it can be written in terms of discrete enstrophy: Ek+1

h = Ek
h . Hence (3.28)

reduces to a statement of discrete enstrophy conservation.

4Please do not be confused that the test function has the same symbol as enstrophy.



Chapter 4

Numeric tests withMEEVCmethod

In order to assess the MEEVC scheme’s properties, the author of this thesis
used it to perform simulations of the 2D Taylor-Green problem presented in
Section 2.3. The implementation of the scheme was done by himself. Con-
vergence as well as conservation properties under temporal and spatial re-
finement were verified. The following sections will present results demon-
strating these qualities. Like in the test program the results are split into two
groups: Section 4.1 deals with the group of tests to investigate convergence
at a final time, Section 4.2 considers the group illustrating how the solution
develops throughout a longer time span. But first the experimental set-up is
discussed here, also using text from the authors’ own project plan [34].

The simulations were performed on a reasonable laptop (with 16 GB of
random-access memory) running the FEniCS finite element package. The
most demanding simulations needed a few hours of runtime. FEniCS does
not have a graphic interface, instead algorithms are programed into python
scripts calling FEniCS routines. Thereby itmust bementioned that therewas
no code available to the author, nor experience with Python and FEniCS, so
writing started from zero. This was a laborious process as there are many,
somewhat poorly documented, versions of the FEniCS software. This made
it difficult to find the correct vocabulary onmultiple occasions. A helpful ref-
erence for information was the FEniCS book [21] though, containing a lot of
information on (an older version of) the software with examples of possible
applications. The project’s website1 contains further useful documentation
and references. This includes its internet forumwith questions & answers.

1https://fenicsproject.org/, checked 12 October 2021.

https://fenicsproject.org/
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Despite thedifficulties justmentioned, theFEniCSsoftwareenvironment
was used due to recommendations by the authors of [11,25]. They used it to
perform the numerical simulations for those works. Relevant advantages of
the software are that discretizations can be formulated in a way that is rela-
tively close to themathematical formulation and that the function spaces of
interest are pre-programmed. Using software without these spaces in their
libraries instead would havemeant a lot of extra work and difficulties.

4.1 Tests for convergence at final time

The group of tests for convergence at final time show convergence rateswith
respect to temporal and spatial refinement as will be discussed below. They
confirm the results published in the MEEVC paper [25]. Each simulation
started at time t = 0 and stopped at a time-step near2 ‘final time’ t = 1,
with constant kinematic viscosity set to ν = 0.01. The exact solution of the
2D Taylor-Green problem (2.107) was used for computing the velocity field
L2-error of the solution near final time. And indeed, the results in Figure 4.2
are comparable3 to those published [25, Figure 3]. One may note that at the
vertical axes uh and u miss the vector arrow ®u , but this is purely due to the
software (a Python package) with which the plot was generated.

TheNavier-Stokes equations with Taylor-Green initial conditions (2.104)
are discretized on a [0, 2] × [0, 2] domain with a FEniCS ‘crossed’ mesh. Re-
member that more details on the Taylor-Green flow can be found in Sec-
tion 2.3. The crossed mesh is square and is divided-up into Nc × Nc smaller
squares of equal size, see Figure 4.1. Each of these squares has a cross in-
side, splitting it up into four triangles. Thismakes the total of triangular cells
in the mesh 4N 2

c . The crossed mesh is chosen because it was also used to
obtain some of the results in the MEEVC paper [25] according to one of the

2Because of the staggered time-stepping, the time instants at which the velocity field is
computed are shifted compared to the pressure field. Therefore it was not possible to have
both ending at precisely the final time. The difference is at most half a time-step, so it be-
comes small when the time-step size does.

3Because h and p are used in the simulation results of the MEEVC paper [25], the same
is done here for sake of easy comparability. Please do not confuse h with helical density
or the ‘h’ in ®uh . Also note that for polynomial degree, both N and p are used as done in the
MEEVCpaper. Thedouble-usageofp forbothpressure andpolynomial degree ispotentially
confusing though.
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Figure 4.1: The crossedmesh forNc = 2.

authors. This allows for a fair comparison against corresponding results in
this section.

As a characteristic size for each cell in themesh

h = 2π/Nc (4.1)

is used with Nc as just described. It should be the same definition for h as in
the MEEVC paper’s results, which allows for easier comparison. Using 2/Nc

seems to make more sense for a [0, 2] × [0, 2] domain though, but h is just a
measure which can be chosen differently for easy comparability.

Figure 4.2a shows the velocity field L2-error at final time of five simu-
lations computed with time-steps ∆t = 1/10, 1/20, 1/40, 1/80 or 1/160. In
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Figure 4.2: L2-error of the velocity field near simulation end t = 1.0.

each of these simulations the spatial discretization is set to a polynomial de-
gree p = 4 for the finite element basis functions and the number of elements
corresponding toh ≈ 0.39. This is a relatively high level of spatial refinement
for the time-step sizes just mentioned, such that the error in each result is
dominated by the error due to a lack of temporal refinement. Each blue dot
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in the log-log plot corresponds to a simulation result. The interpolation lines
connecting them are indicative of first order convergence, that is their slope
is such thatmaking∆t ten times smallermeans that theL2-error ‖ ®uh− ®u ‖L2(Ω)
(with ®u the exact solution) also becomes ten times smaller.

Where Figure 4.2awas created to show the effect of varying the time-step
size, Figure 4.2b was created to show the effect of changing the spatial dis-
cretization. Thereby the time-step ∆t was set such that it was not the bottle-
neck for accuracy in the set of simulations performedwith a certain polyno-
mial degree p in the spatial discretization. Of course it was also possible to
use a single time-step size, set to the smallest value usedhere, but thatwould
have increased simulation times and data storage unnecessarily. Looking at
the plotted results, note that the approximate log-log line slopes are indi-
cated. They correspond to optimal p th-order convergence. Only for larger
values of h the slopes deviate a bit from this, but some irregular behavior
may be expected there as the corresponding numbers of elements are very
small. In that case the initial conditions may already be poorly sampled to
start with.

Besides the velocity field L2-error of multiple simulations (Figure 4.2), it
is interesting to compare two of these solutions with different levels of re-
finement inmore detail. Therefore Figure 4.3 shows discrete velocity vectors
and the pressure field in a single frame for each of these solutions. Thereby

(a) p = 1, ∆t = 0.025 and h ≈ 0.79. (b) p = 4, ∆t = 0.0001 and h ≈ 0.79.

Figure 4.3: Velocity vectors and pressure field near simulation end t = 1.0.

the solution displayed in Figure 4.3a has a lower level of refinement, with a
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first order polynomial degree for the basis functions of the 256 triangular el-
ements (h ≈ 0.79) making up the spatial discretization. On the other hand,
the solutiondisplayed inFigure 4.3b is built on the samenumberof elements
but thenwith fourth order polynomial basis functions. It therebyhas amuch
higher level of refinement, it is the most accurate solution included in Fig-
ure4.2b. Still both solutions inFigure4.3giveagoodpictureofwhat theexact
solution (2.107) looks like. Even the coarser solution clearly displaysmost of
its features. A yet more coarse solution with just 64 elements (h ≈ 1.57) and
p = 1 still shows some features, like the rotations, as can be seen from Fig-
ure 4.4. All this adds evidence that theMEEVCmethod is an effective tool for
discretizing and solving Navier-Stokes flow problems.

Figure 4.4: Velocity vectors and pressure field near simulation end t = 1.0,
with a very coarse resolution: p = 1, ∆t = 0.025 and h ≈ 1.57.

4.2 Tests for development in time

Whereas Section 4.1 investigated (convergence of) results near the final time
t = 1 of multiple simulations, this section will look at how a few simulations
develop over a longer simulated time up to t = 10. The aim of this is to find
out more about how simulations of the Taylor-Green flow problem with the
MEEVCmethod develop over time, particularly with respect to its conserva-
tionproperties andalsocompared to theTaylor-Greenexact solution (2.107).

For this purpose, the four flow simulations with parameters as given in
the legend of Figure 4.5 were performed for both the inviscid case with ν = 0
and a viscous case with ν = 0.01 (shown in the figure). These simulations
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Figure 4.5: Development of kinetic energy over time for ν = 0.01.

have Nc between Nc = 4 and Nc = 12, which by (4.1) respectively corre-
sponds toh = 1.57 andh = 0.52. Onemaynote that the first two simulations
are very coarse in terms of both the spatial as well as the temporal refine-
ment. Still these are stable to capture the kinetic energy development and
make it evolve in a similar curved way through time. It is just that its values
are about half of the exact solution. As will also become clear later, this is
largely because the initial conditions are poorly captured by the spatial dis-
cretization. Note that, for the viscous case considered here, the kinetic en-
ergy largely decays over the time-range. Hence simulation after t = 10 could
be less interesting.

ForFigure 4.5 a linear scaling is chosenbecause this gives an intuitivepic-
ture of how the exact solution develops and is captured by the simulations,
but the same results are plotted again in Figure 4.6with a logarithmic scaling
on the vertical axis in order to check for exponential behavior. Such can be
seen for theexact solution,whichhasa straight linedue to its exponentialna-
ture. Thesimulations should ideallyhave the sameslope inorder tomatch its
decay rate. This ishowevernot completely thecaseas especially the two least
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Figure 4.6: Logarithmic kinetic energy through time for ν = 0.01.

refined have a somewhat steeper average slope and a slight downward bend.
Therefore their decay rate increases with time and is a bit higher throughout
than theexact solution. It shouldhoweverbe remembered that these simula-
tions have a very coarse discretization, so some imperfection is not strange.

Before continuing with inviscid kinetic energy results, it is good to con-
sider how the above numeric simulations perform over time from yet an-
other perspective: Figure 4.7 shows the absolute kinetic energy error that is
scaled with the instantaneous exact solutionKe (t ). The reason for this scal-
ing is that the solution decays strongly over time, which for the simulations
consideredhere leads to adecreasing trend in theunscaled error thatmaybe
misleading. The scaled graph instead clearly shows that the relative error of
each simulation increases over time. Note that the two lowest resolutions es-
sentially become useless as their error nears the exact solution’s magnitude.
The finer resolutions perform a lot better, especially the p = 4 simulation. It
should however be noted that its slope is a bit steeper than that of the other
simulations.

Figure 4.8 shows that kinetic energy conservation is achieved when sim-
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Figure 4.7: Development of the scaled kinetic energy error for ν = 0.01.

ulating inviscid (Taylor-Green) flow. It displays the difference of instanta-
neous kinetic energy with that after the first time-step. It looks like this re-
mains exactly zero for the p = 1 simulations, but Figure 4.9 shows that these
also drift (although much slower). One may argue from Figure 4.8 that the
results with p = 4 show a clearly decreasing trend, but considering that the
vertical axis is scaledby10−11 itwould takeup tonearly order 1011 in timeun-
til the initial kinetic energy (of order one) is destroyed. That is obviously way
past the timescale of 101 simulated here. So kinetic energy is conserved well
by the simulations but with amuch higher refinement thismay no longer be
the case. A longer simulated time can put a further strain on conservation.
Figures 4.8 and 4.9 do not show the big differences in accuracy though: the
most coarse simulation has kinetic energy constant at about 0.57 from the
start on, while the most refined is constant near 1.0 (the value of the exact
solution). This error can completely be attributed to poor capturing of the
initial conditions by the spatial discretization. It was alreadymentioned that
this also plays a large role in Figure 4.5, where viscous flow is simulated and
the error of each simulation is largely determined from the start on.
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Figure 4.8: Kinetic energy drift through time for ν = 0.
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Figure 4.10 shows that local (and thereby global) conservation of mass is
achieved, as the infinity norm of the divergence of the velocity field4 is very
small. For the most coarse solution, that is p = 1, Nc = 4, ∆t = 0.5, it is
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Figure 4.10: Infinity norm of velocity field divergence over time for ν = 0.01.

near zero up to machine precision. Values become larger when the spatial
refinement is increased, but here it must be recognized that the time-step
also changes between certain simulations and that this may have some ef-
fects as well. Furthermore note that the values of ‖∇ · ®u ‖∞ become smaller
with increasing time. This is expected to be related to the diminishing of the
velocity field. When simulating without viscosity, that is ν = 0, the starting
values near t = 0 are about the same as in Figure 4.10. Then they fluctuate
in a constant bandwidth when time is increased: there is no decreasing (nor
increasing) trend. As there are otherwise no differences of interest, this plot
is omitted here.

4This infinity norm is the local maximum of the absolute divergence. It is approximated
here by taking the following steps. First compute the divergence of the finite element veloc-
ity field and project that to the appropriate function space. Then interpolate the result to a
first order polynomial function space on a refinedmesh (with 100 times asmany elements).
Finally compute themaximum of the absolute vertex values.
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The simulation results also include the enstrophy development and the
graphs showing this look similar to thekinetic energy graphs inmost aspects.
Three of these graphs will be discussed in the following though, the first two
are for ν = 0.01 and the third is for ν = 0. Thefirst plot is shown in Figure 4.11
and it looks very similar to Figure 4.6. A visible difference however is that the
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Figure 4.11: Logarithmic enstrophy through time for ν = 0.01.

two least-refined simulations do not have a clear downward bend like those
in the kinetic energy plot but look as straight lines instead. This is actually
more desired as it corresponds to exponential decay of enstrophy, which is
a characteristic of the exact solution. Still their slope is slightly steeper than
that of the exact solution, so their decay rate is again a bit too high. Another
interesting plot is that of enstrophy error scaled against the exact solution Ee

in Figure 4.12, which is very similar to its kinetic energy sibling in Figure 4.7.
The most eye-catching difference is that the simulation results with p = 4
show slower, nearly constant values. The latter means that their enstrophy
error decays as quickly as the enstrophy exact solution. Finally Figure 4.13
contains a plot looking quite similar to Figure 4.8. It shows enstrophy is con-
served for the simulationsunder inviscid conditions, as there is somegrowth
but the values at the vertical axis are really small (order 1011).
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Figure 4.12: Development of the scaled enstrophy error for ν = 0.01.
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Conservation of total vorticity is the last property to confirm from the
simulation results. Section 2.2.3 shows with (2.87) that for any 2D flow with
periodic boundary conditions, as considered here, the integral of vorticity
over the complete domain must be constant. Figures 4.14 and 4.15 confirm
that this is achieved in each simulation independent of whether the condi-
tions are viscous or inviscid, as values drift in time but stay really close to the
initial zero.
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Figure 4.14: Vorticity integrated over entire domain for ν = 0.
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Figure 4.15: Vorticity integrated over entire domain for ν = 0.01.



Chapter 5

The 3DMEHC discretization

The favorablepropertiesof the2DMEEVCmethod inspire toexplorewhether
apromising 3Dmethod canbe constructed fromsimilar ingredients. Several
(conservation) properties of the MEEVC method have been demonstrated
analytically in Chapter 3 and confirmedby test results in Chapter 4. Yetmost
real-life CFD problems are found in 3D, so finding a 3D CFD method that
is more physics-compatible than commonmethods can be valuable. A new
mass, energy and helicity conserving (MEHC)method is found in this chap-
ter but is not without problems as will be reported.

Any 3Dmethodwill differ from theMEEVCmethod in both construction
and properties. Creating a 3D ‘equivalent’ of the MEEVC method is impos-
sible. The extra spatial components break the 2D assumptions from which
theMEEVC formulation is derived. Evenmore, 3Dflow is fundamentally dif-
ferent. There are for example other invariants as found from continuous for-
mulations in Chapter 2. These can be reviewed from Table 2.1, with on the
left side the quantities conserved in the 2D case and on the right those in
3D. It must be remarked that this list is not complete but that it contains the
invariants which are identified as relevant in Section 1.2.

This chapter is structured as follows. The continuous formulation that
is at the basis of the discrete MEHC formulation is presented in Section 5.1.
The derivations of it are included in Section 5.2 on theMEHCmethod’s con-
struction, as they weremade in this process. In Subsection 5.2.3 themethod
is summarized and Section 5.3 provides analytic proof of its discrete con-
servation properties. Several important aspects of the method’s design and
(in)effectiveness are reviewed in Section 5.4.
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5.1 Continuous formulation

The discrete 2DMEEVC formulation (3.1) was derived from the continuous
formulation (2.1). For the 3DMEHC formulation derived in this chapter it is
not (2.2) but the following that is used:
∂ ®u

∂t
+ ®ω × ®u + ∇p̄ = −ν∇ × ®ω

∂ ®ω

∂t
+ ∇h − 2( ®ω · ∇) ®u − ®u × (∇ × ®ω) = −ν∇ × (∇ × ®ω)

∂h

∂t
− ∇ ·

(
( ®u × ®ω) × ®u

)
+ ∇ ·

(
®ωp̄

)
= −2ν(∇ × ®ω) · ®ω − ν∇ · ((∇ × ®ω) × ®u)

∇ · ®u = 0


.

(5.1)
This specific set of PDE’s was formed in the discretization process that is de-
scribed in Section 5.2 below. Herein the linearmomentum equation and the
divergence-free condition are unchanged from (2.2). The other two equa-
tions are derived from (2.2) as described in Section 5.2.2. One is the vorticity
transport equation, which has been rewritten andnow includes the gradient
of helical density. For the helical density variable that thereby appears, an
evolution equation is introduced. This equation can be found on the third
line of (5.1).

5.2 Discrete MEHC formulation

5.2.1 Function spaces

Aimingat aphysics-compatibleMEHCmethod, functionspaces conforming
with the DeRham complex are chosen in the FE discretization of variables.
This is in the spirit of theMEEVCmethod, where theDeRhamsubcomplex is
shortly representedby (3.13) and the corresponding FE spaces in theMEEVC
formulation (3.1) are as in the lower part of [2, p. 60, Table 5.1]. Each variable
is thereby associated with a differential k -form such that it suits its physical
interpretation. But as this is often non-unique, some room is left to choose
themost appropriate place in the DeRham complex. This is then done such
that particular derivatives in the formulation are supported, although there
could be some interplay if the formulation itself can be adjusted appropri-
ately.
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Similarly, but then for the 3D situation, [2, p. 60, Table 5.2] shows for (a
selection of) classical FE spaces how they correspond to FE differential k -
forms. Focussing at the lower group in this table, which contains Nédélec
elements of the first kind, the function spaces are represented as follows:

hh ∈ Xh = CGq ⊂ H 1(Ω)

®ωh ∈Wh = NED1,curl
N ⊂ H (curl, Ω)

®uh ∈ Uh = RTN ⊂ H (div, Ω)
p̄h ∈ Qh = DGN−1 ⊂ L2(Ω)

(5.2)

Because NED1,div elements can be viewed as 3D extensions of RT elements,
which were originally introduced by Raviart and Thomas for triangles [19,
Sections 3.4.1 and 3.5], they are denoted as such here (to be consistent with
FEniCS notation). The choice of including helical density as an independent
variable in computations is consideredwithin the discussions in Section 5.4.

The FE function spaces in (5.2) fit in a DeRham subcomplex as can be
summarized by

0 −→ Xh
∇
−→Wh

∇×
−−→ Uh

∇·
−→ Qh −→ 0. (5.3)

This situation is similar to the2DMEEVCsituationof (3.13), except that there
is aH 1(Ω) subspace Xh to the left ofWh .

This work will not dive further in the differential geometry background,
but for the individual variables and their function spaces (5.2) the interpre-
tation is as follows:

• the helical density variable is geometrically related to a point (0-form
as discussed below) with orientation associated to rotation or spin;

• the vorticity vector-variable is interpreted as rotation around a line el-
ement (1-form);

• the velocity vector-variable is interpreted as a flux through a surface (2-
form);

• the pressure variable is related to a volume (3-form) that is oriented by
outward-pointing normals that can be related to the stresses.

All variables (and their spaces) are considered to be equippedwith outer ori-
entation, in case of further interest in a visualization see [31, p. 41, Table 3.1].
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It must bementioned that above interpretation of variables and their order-
ing in theDeRhamsubcomplex (5.3) is not necessarily the ‘only’ or ‘best’way
todo this, but it is a foundedwayby relating it tophysical interpretation. One
specific thing to add is that the choice to have velocity inH (div, Ω) allows to
have exactly divergence-free velocity fields like in theMEEVCmethod.

Because the helical density variable is a peculiarity of the formulation
presented in this work, the following explains why it is interpreted as a 0-
form. From a differential geometry perspective, it is in fact most obvious to
consider helical density as the wedge product of velocity (a 2-form in this
work) and vorticity (a 1-form). This would make it a 3-form. Here it then
falls in the discrete Qh space just like pressure. This is a problem as Qh is
an L2-conforming space, which can be discontinuous in every derivative.
Therefore this allocation is avoided for the formulation that is derived below
and summarized in Section 5.2.3, for the following two reasons. One is that
the gradient of helical density is introduced in the discrete vorticity trans-
port equation when replacing the gradient of vorticity, which is not square-
integrable as vorticity is assigned withinH (curl, Ω). The other reason is that
∇mh enters the discrete helicity equation through integration by parts, with
mh the test function associated to the helical density variable. This is done
in oder to avoid taking the generally not square-integrable divergence of cer-
tain other terms. Luckily there is a possibility to obtain helical density trial
and test functions which’ gradients are guaranteed to be square-integrable
as follows. With the Hodge-? operator existing in differential geometry, the
3-form is recast into a 0-form. Then the helical density function space is in
H 1(Ω), see (5.2) with preceding text, which is just what is needed here.

5.2.2 Derivation of variational formulations

Substituting trial solutions in the PDEs (2.2),multiplyingwith test functions,
integrating and finally making the temporal discretization yields a discrete
problem formulation. Many details on this process can be found in Sec-
tion 3.1 on the MEEVC formulation and are not repeated here. The current
subsection instead provides the specific derivations for theMEHC formula-
tion. These rewrite the governing continuous equations followedby (partial)
integration in order to guarantee that certain terms are square-integrable.
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Velocity-pressure system

The discrete 3D velocity-pressure systembelow is nearly the same as that for
2D in (3.1b), (3.1c) and (3.1d). An importantdifference is that vorticity is a full
vector now. Furthermore the timediscretization is shiftedbyhalf a time-step
here because the velocity field is updated before the vorticity field, which is
an arbitrary choice though.〈

®uk+1
h − ®uk

h

∆t
, ®vh

〉
Ω

+

〈
®ω

k+ 12
h ×

®uk+1
h + ®uk

h

2
, ®vh

〉
Ω

−

〈
p̄

k+ 12
h , ∇ · ®vh

〉
Ω

= −ν
〈
∇ × ®ω

k+ 12
h , ®vh

〉
Ω

∀®vh ∈ RTN ,

(5.4a)

〈
∇ · ®uk+1

h + r
k+ 12
h , qh

〉
Ω
= 0 ∀qh ∈ DGN−1, (5.4b)

〈
p̄

k+ 12
h , r̃h

〉
Ω
= 0 ∀r̃h ∈ R0. (5.4c)

Helicity equation

To start the derivation of a discrete evolution equation for helical density, it
is good to proceed in similar fashion as in Section 2.2.5. Start from the defi-
nition of helical density h = ®u · ®ω to express its derivative as

∂h

∂t
=
∂ ®u

∂t
· ®ω + ®u ·

∂ ®ω

∂t
. (5.5)

Then express the terms on the right-hand side as follows by substituting for
the time derivatives from the balance of linear momentum equation (2.8)
and the vorticity transport equation (2.22) with ρ = 1 as in the 2D MEEVC
method:

∂ ®u

∂t
· ®ω = −

(
( ®u · ∇) ®u

)
· ®ω − ∇p · ®ω + ν(∇2 ®u) · ®ω, (5.6a)

®u ·
∂ ®ω

∂t
= −®u ·

(
( ®u · ∇) ®ω

)
+ ®u ·

(
( ®ω · ∇) ®u

)
+ ν ®u · (∇2 ®ω). (5.6b)

The next step is to rewrite the terms on the right-hand sides into a format
that leads to a suitable discrete formulation later.
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Startwith (5.6a) bynoting that its viscous termcanbe rewrittenusing [23,
A1. Vector Identities, p. 363, (10)]:

∇2 ®u = ∇(∇ · ®u︸︷︷︸
=0

) − ∇ × (∇ × ®u) = −∇ × ®ω. (5.7)

Using this result and that the first two terms on the right hand side of (5.6a)
can be written as the right-hand side of (2.94), then (5.6a) can be written as

∂ ®u

∂t
· ®ω = −∇ ·

(
®ωp̄

)
− ν(∇ × ®ω) · ®ω. (5.8)

With (5.8) a suitable form of (5.6a) for later use, the following rewrites
(5.6b). For its viscous term first recognize that [23, A1. Vector Identities, p.
363, (10)] this time implies

∇2 ®ω = ∇(∇ · ®ω︸︷︷︸
=0

) − ∇ × (∇ × ®ω), (5.9)

where ∇ · ®ω = ∇ · (∇ × ®u) = 0 by another common vector identity [23, A1.
Vector Identities, p. 363, (12)]. Using this in the complete viscous term and
then rewriting further with [23, A1. Vector Identities, p. 363, (6)] gives

ν ®u · (∇2 ®ω) = −ν(∇×(∇× ®ω)) · ®u = −ν∇·((∇× ®ω)× ®u)−ν(∇× ®ω) · (∇ × ®u︸︷︷︸
= ®ω

). (5.10)

Using this result and that the first two terms on the right-hand side of (5.6b)
canbe rewritten as the right-hand sideof (2.97), it is possible to rewrite (5.6b)
completely as

®u ·
∂ ®ω

∂t
= ∇ ·

(
( ®u × ®ω) × ®u

)
− ν∇ · ((∇ × ®ω) × ®u) − ν(∇ × ®ω) · ®ω. (5.11)

Now (5.8) and (5.11) can be substituted into (5.5) yielding an evolution
equation for helical density that should be suitable for discretization in the
following:

∂h

∂t
−∇ ·

(
( ®u × ®ω) × ®u

)
+∇ ·

(
®ωp̄

)
= −2ν(∇× ®ω) · ®ω− ν∇ · ((∇× ®ω) × ®u). (5.12)

A step towards the spatial discretization of (5.12) is made by substituting
trial functions, multiplicating with test functionsmh ∈ CGN and integrating



5.2 Discrete MEHC formulation 81

over the domain. For the time derivative and the first viscous term this is
sufficient: 〈

∂hh

∂t
, mh

〉
Ω

∀mh ∈ CGN (5.13)

and
− 2ν

〈
(∇ × ®ωh) · ®ωh, mh

〉
Ω

∀mh ∈ CGN . (5.14)

Discretization of the other terms also requires a partial integration step with
[23, A1. Vector Identities, p. 364, Eq. (22)]. This in order to avoid the diver-
gence derivative present in each of them,which in all cases produces a result
that is not guaranteed to be square-integrable due to the function spaces al-
located to thediscrete variables (5.2). For example for the termwithpressure,
the partial integration looks as follows without bracket notation:∭
Ω

mh∇ · ( ®ωh p̄h)dV =

∯
∂Ω

®n · (mh ®ωh p̄h)dS︸                     ︷︷                     ︸
=0 by periodic BC

−

∭
Ω

( ®ωh p̄h) · ∇mh dV. (5.15)

After performing spatial discretization in the way just described, a dis-
crete evolution equation for helical density is obtained by applying tempo-
ral discretization. This is done with themidpoint rule (3.17) also used in the
MEEVC formulation (see Section 3.1.5). The result is〈

hk+1
h − hk

h

∆t
, mh

〉
Ω

+

〈(
®uk+1

h + ®uk
h

2
× ®ω

k+ 12
h

)
×
®uk+1

h + ®uk
h

2
, ∇mh

〉
Ω

−

〈
®ω

k+ 12
h p̄

k+ 12
h , ∇mh

〉
Ω

= −2ν
〈(
∇ × ®ω

k+ 12
h

)
· ®ω

k+ 12
h , mh

〉
Ω

+ν

〈(
∇ × ®ω

k+ 12
h

)
×
®uk+1

h + ®uk
h

2
, ∇mh

〉
Ω

∀mh ∈ CGN .

(5.16)

Vorticity equation

Unfortunately, the 3D vorticity transport equation (2.22) contains the gra-
dients of both velocity and vorticity. These are not compatible with their
function spaces (5.2) and the discrete DeRham sub-complex (5.3). One of
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the terms with an incompatible gradient can be rewritten with vector iden-
tity [23, A1. Vector Identities, p. 363, Eq. (8)] though, as it implies that

∇(®u · ®ω)︸   ︷︷   ︸
=∇h

= ( ®u · ∇) ®ω + ( ®ω · ∇) ®u + ®u × (∇ × ®ω) + ®ω × (∇ × ®u)︸        ︷︷        ︸
= ®ω× ®ω=®0

. (5.17)

Substituting from this equation into (2.22) for ( ®u · ∇) ®ω yields

∂ ®ω

∂t
+ ∇h − 2( ®ω · ∇) ®u − ®u × (∇ × ®ω) = −ν∇ × (∇ × ®ω), (5.18)

so that the gradient of vorticity is no longer present. Also, the viscous term
has been rewritten according to [23, A1. Vector Identities, p. 363, Eq. (10)]:

∇ × (∇ × ®ω) = ∇(∇ · ®ω︸︷︷︸
=0

) − ∇2 ®ω. (5.19)

This will allow a partial integration step that reduces the maximum order of
derivatives in the viscous term to first order as described below.

Substituting trial functions in (5.18), multiplying with test functions ®Eh ,
integrating over the domain and applying the midpoint rule (3.17) for time
integration (see Section 3.1.5) yields this variational formulation:〈

®ω
k+ 32
h − ®ω

k+ 12
h

∆t
, ®Eh

〉
Ω

+
〈
∇hk+1

h , ®Eh

〉
Ω

−

〈
®uk+1

h ×
©­«∇ × ©­«

®ω
k+ 32
h + ®ω

k+ 12
h

2
ª®¬ª®¬ , ®Eh

〉
Ω

−

〈((
®ω

k+ 32
h + ®ω

k+ 12
h

)
· ∇

)
®uk+1

h , ®Eh

〉
Ω

= −ν

〈
∇ ×

©­«
®ω

k+ 32
h + ®ω

k+ 12
h

2
ª®¬ , ∇ × ®Eh

〉
Ω

∀®Eh ∈ NED1,curl
N .

(5.20)

For the viscous term, integration by parts has been applied as follows. First
the integrand is rewritten by [23, A1. Vector Identities, p. 363, Eq. (6)]:

∇ · ((∇ × ®ωh) × ®Eh) = (∇ × (∇ × ®ωh)) · ®Eh − (∇ × ®ωh) · (∇ × ®Eh) (5.21)

Then, upon integrating this equation over the volumeΩ, its left-hand side is
identified to be zero by rewriting it as an integral over the boundary surface
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(divergence theorem) and applying the periodic boundary conditions:∭
Ω

∇ · ((∇ × ®ωh) × ®Eh)dV =

∯
∂Ω

®n ·
(
(∇ × ®ωh) × ®Eh

)
dS = 0 (5.22)

Therefore, the following has been obtained (using bracket notation again):

ν
〈
∇ × (∇ × ®ωh), ®Eh

〉
Ω
= ν

〈
∇ × ®ωh, ∇ × ®Eh

〉
Ω

(5.23)

Finally, a comment must be given on why the convective term in (2.22)
was modified as in (5.18). One may note that in the 2D situation the partial
integration result (3.2), that is〈

( ®u · ∇)ω, E
〉
Ω
= −

〈
ω, ∇ · ( ®u E)

〉
Ω
, (5.24)

was used. This is however particular for the 2D case and cannot be used in
the 3D situation. The nearest relation is〈

( ®u · ∇) ®ω, ®E
〉
Ω
= −

〈
®ω, ( ®u · ∇) ®E

〉
Ω
, (5.25)

but this is not useful as it would instead leave an undesired gradient in the
test function. Hence the approach outlined earlier is preferred.

5.2.3 Summary of theMEHCmethod

Step 1: find ®uk+1
h ∈ RTN and p̄

k+ 12
h ∈ DGN−1 such that〈

®uk+1
h − ®uk

h

∆t
, ®vh

〉
Ω

+

〈
®ω

k+ 12
h ×

®uk+1
h + ®uk

h

2
, ®vh

〉
Ω

−

〈
p̄

k+ 12
h , ∇ · ®vh

〉
Ω

= −ν
〈
∇ × ®ω

k+ 12
h , ®vh

〉
Ω

∀®vh ∈ RTN ,

(5.26a)

〈
∇ · ®uk+1

h + r
k+ 12
h , qh

〉
Ω
= 0 ∀qh ∈ DGN−1, (5.26b)

〈
p̄

k+ 12
h , r̃h

〉
Ω
= 0 ∀r̃h ∈ R0. (5.26c)
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Step 2: find hk+1
h ∈ CGN such that〈

hk+1
h − hk

h

∆t
, mh

〉
Ω

+

〈(
®uk+1

h + ®uk
h

2
× ®ω

k+ 12
h

)
×
®uk+1

h + ®uk
h

2
, ∇mh

〉
Ω

−

〈
®ω

k+ 12
h p̄

k+ 12
h , ∇mh

〉
Ω

= −2ν
〈(
∇ × ®ω

k+ 12
h

)
· ®ω

k+ 12
h , mh

〉
Ω

+ν

〈(
∇ × ®ω

k+ 12
h

)
×
®uk+1

h + ®uk
h

2
, ∇mh

〉
Ω

∀mh ∈ CGN .

(5.27)

Step 3: find ®ωk+ 32
h ∈ NED1,curl

N such that〈
®ω

k+ 32
h − ®ω

k+ 12
h

∆t
, ®Eh

〉
Ω

+
〈
∇hk+1

h , ®Eh

〉
Ω

−

〈
®uk+1

h ×
©­«∇ × ©­«

®ω
k+ 32
h + ®ω

k+ 12
h

2
ª®¬ª®¬ , ®Eh

〉
Ω

−

〈((
®ω

k+ 32
h + ®ω

k+ 12
h

)
· ∇

)
®uk+1

h , ®Eh

〉
Ω

= −ν

〈
∇ ×

©­«
®ω

k+ 32
h + ®ω

k+ 12
h

2
ª®¬ , ∇ × ®Eh

〉
Ω

∀®Eh ∈ NED1,curl
N .

(5.28)

5.3 Algebraic proof of discrete conservation

In the following it is investigated whether the discrete formulation for 3D
flow that is summarized in Section 5.2.3 conserves mass, kinetic energy and
helicity (see Table 2.1). Note the latter two only apply to the inviscid case,
that is in the limit of ν = 0. The proofs here mostly amount to a demonstra-
tionusing algebra and reasoning similar towhat is done in Section 3.2 for the
2DMEEVCmethod.

Mass conservation

Local and global mass conservation are achieved due to the divergence-free
constraint (5.26b)on incompressibleflow, combinedwith thechoiceof func-
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tion space such that ®u ∈ H (div, Ω). Just as shown for the MEEVC scheme in
Section 3.2.1, the flowwill satisfy ∇ · ®u = 0 at any point.

Helicity conservation

Helicity is an invariant for inviscid flow (Section 2.2.5): investigations be-
low show that this also holds for the discrete helical density variable hh but
not necessarily for the product ®uh · ®ωh . The latter is often more interesting
though: it tells us whether the velocity and vorticity fields, which’ solutions
are usually of higher interest than the helical density field, are such that they
incorporate helicity conservation.

Discrete helicity defined as

Hh :=
∫
Ω

hh dΩ (5.29)

is shown to be constant as follows. Taking ν = 0 and a constant test function
mh = c in the discrete evolution equation for helical density (5.27), while
noting that then ∇mh = ∇c = 0, yields〈

hk+1
h − hk

h

∆t
, c

〉
Ω

= 0. (5.30)

Thismeans that helicity defined as the integral of the discrete helical density
variable is conserved.

Now it is also investigated if discrete helicity defined as

Hh :=
∫
Ω

®uh · ®ωh dΩ (5.31)

is also constant for ν = 0. An approach is to choose the discrete vorticity
solution ®ωk+ 12

h as a test function in the discrete linear momentum equation
(5.26a). The first integral term of the resulting equation then represents the
difference of helicity at two times divided by the time-step size. This is how-
ever not exactly so, because ®ωk+ 12

h is at half the time-step between ®uk+1
h and

®uk
h . Another problem is that the discrete vorticity is not in the same space
as the test function ®vh , so some information of its solution will be changed
before it can be substituted. This also means that the second integral term
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in (5.26a) will not become (exactly) zero when ®vh = ®ω
k+ 12
h . The third integral

termmay not be zero either because the divergence of the discrete vorticity
solution is generally nonzero. From all this it can be concluded that there is
no proof of helicity conservation in the context described.

As a variant to the approach above, again directly use the definition of
discrete helicity in (5.31) but now try to represent the difference in helicity
at two time-steps with the discrete vorticity transport equation (5.28). Sub-
stitute velocity as a test function. This is at least as problematic, however. It
rejects that there is conservation of helicity.

Another variant starts from the temporal derivative of (5.31), that is

dHh

dt
=

∫
Ω

(
∂ ®uh

∂t
· ®ωh + ®uh ·

∂ ®ωh

∂t

)
dΩ, (5.32)

where it was used that the domain is constant. Then use both the discrete
linear momentum balance (5.26a) and vorticity transport equation (5.28) to
find a specific expression for this and check if it is zero. This again does not
work: the integrals still appear tobenonzerowithout evidence that they can-
cel out. It can hence be concluded that helicity conservation in the product
of the velocity and vorticity fields is not demonstrated this way either.

Kinetic energy conservation

The discrete linear momentum equation (5.26a) is used to compute the ve-
locity field at the next time-step such that kinetic energy is conserved for in-
viscid flow, as follows. First of all the right hand side is zero because ν = 0.
The remaining equationmust be valid for any test function ®vh ∈ RTN , so also
for the choice ®vh = ®u

k+1
h + ®uk

h . Furthermore any initial condition or solution
must satisfy∇· ®uh = 0, so the pressure integral is obviously zero aswell. Then
what remains is:〈

®uk+1
h − ®uk

h

∆t
, ®uk+1

h + ®uk
h

〉
Ω

+

〈
®ω

k+ 12
h ×

®uk+1
h + ®uk

h

2
, ®uk+1

h + ®uk
h

〉
Ω

= 0, (5.33)

which can be rearranged to〈
®uk+1

h , ®uk+1
h

〉
Ω
+ ∆t

〈
®ω

k+ 12
h ×

®uk+1
h + ®uk

h

2
, ®uk

h + ®u
k+1
h

〉
Ω︸                                           ︷︷                                           ︸

=0

=
〈
®uk

h , ®u
k
h

〉
Ω
. (5.34)
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Here the integral multiplied with ∆t has a cross product inside that is per-
pendicular to ®uk+1

h + ®uk
h (by definition of the cross product), hence the inner

product with this particular test function is zero. This shows kinetic energy
is conserved:

Kk+1
h :=

1
2

〈
®uk+1

h , ®uk+1
h

〉
Ω
=
1
2

〈
®uk

h , ®u
k
h

〉
Ω
:=Kk

h . (5.35)

This derivation and result is similar to that for the MEEVC method in [25],
also worked out in Section 3.2.2.

5.4 Critical review of the proposed 3Dmethod

In this chapter a 3DMEHCmethod has been constructed and the following
is the place to critically look at its qualities. Overall, the method has been
constructed with the design of the 2DMEEVCmethod in mind. This for ex-
ample meant that conforming function spaces were chosen combined with
the objective to only use admissible derivatives in the equations. A remark-
able and possibly unique feature is the use of a separate helicity equation.
Thismade it possible to conserve helicity and to remove the gradient of vor-
ticity from the vorticity transport equation. This gradient would be outside
of the DeRham complex (5.3), so it is better to avoid it.

The foremost thing to discuss is the expected efficacy of the formulation
with respect to its conservation properties. In Section 5.3 it was found from
algebraic analysis thatMEHC is achieved, but that helicity conservation can
only be proven for the helical density variable that is directly computed from
its own evolution equation. When instead using the product of velocity and
vorticity to computehelical density, conservation canno longerbeproven. A
downside of the approach of using a separate helical density variablewith its
own equation in the formulation is thus that the velocity and vorticity fields
are not (directly) constrained, even though that are usually the parts of the
solution that areofhigher interest than thehelicaldensityfield itself. Finding
out if solutions are such that the product of velocity and vorticity does tend
towards the separate helical density variable with refinement of resolution
may however be a topic for later investigation. And possibly also whether
this tendency exists for particular parts of the solution (where for example
no stronggradients exist). Total vorticity conservation in theMEEVCmethod
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has a similar issue to that just outlined: it holds for the vorticity field ωh , but
is not proven for ∇ × ®uh (which is in general unequal to ωh).

Anapproach toMEHCthatdiffers fromthemethodproposedhere ispos-
sible as shown in [36]. The dual-field MEHCmethod presented there solves
for amongst others two velocity fields ®u1 and ®u2 as well as two vorticity fields
®ω1 and ®ω2. Both of these duals are staggered in time and each of a pair is dis-
cretized in its own function space. The dual-field formulation employs two
(similar) linear momentum equations but no vorticity transport equation,
noranequation forhelicaldensity evolution. Helicity computedas

〈
®u1, ®ω1

〉
Ω

as well as
〈
®u2, ®ω2

〉
Ω
is conserved. A flaw in its MEHC properties is however

that strong mass conservation is achieved in only one of the dual represen-
tations of the velocity field solution. The reported numerical tests however
show that problems can be solved well, with MEHC achieved closely when
ignoring the velocity field wheremass conservation is only weakly enforced.

Having considered theMEHC-efficacy of the 3Dmethod proposed here,
another question must be answered: is this method correctly constructed
in light of its theoretical framework? Well, not completely. An issue is that
the velocity gradient in the variational formulation of the vorticity equation
(5.28) is outside of the DeRham complex (5.3) and its square-integrability is
not guaranteed. For example instability can therefore arise, but thismay de-
pend on the specific problem and conditions though. A similar issue that
does not appear to have serious consequences exists for two terms in the
MEEVC formulation (3.1). Each of these terms consists of the divergence of a
product of two functions, one in velocity andone in vorticity space. Formally
it is not sure what the integrability is of the space formed by such a product
but this may be unproblematic due to the following. Velocity is in H (div, Ω)
andvorticity,which isa scalar there, is inH 1(Ω). Sobothare square-integrable,
also after applying relevant derivatives. Hence possibly also (the divergence
of) their product. A general remark to square-integrability (L2) of functions
resulting after possible application of derivatives is that this is formally only
enoughwhen integrating aproduct of two such functions. Aproduct of three
or even four functions, as in the second integral term in (5.27), requires re-
spectively L3 or L4 for each of these functions. In the finite dimensional case
this requirement can however be less stringent as suggested in [36, Remark
1]. Whether L2-integrability of the polynomial basis functions used is suffi-
cient then (up to a certain level of refinement), however, is perhaps some-
thing for a researcher with specialist mathematical skills to investigate.
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One could also question the role of helical density in the equations, pro-
vided that it is included as an independent variable. In the MEHC formula-
tion proposed here, helical density has its own evolution equation. A dif-
ferent approach it is to consider it as a Lagrange multiplier. This is done
for the velocity-vorticity-helicity (VVH) method that is presented in [24], a
method which is fundamentally different in several design aspects. Its for-
mulation consists of a vorticity-helical density and a velocity-pressure sys-
tem, where helical density is considered a Lagrange multiplier for a weakly
enforced ∇ · ®ωh = 0 constraint just as pressure is for a weak ∇ · ®uh = 0
constraint. In terms of conservation properties this VVH method does not
achieveMEHCasconsideredhere, but it is good tomention that its approach
towards helicity also exists. It should further be remarked that ∇ · ®ωh = 0
is not enforced at all in the discretization proposed here, although ∇ · ®ω =
∇· (∇× ®u) = 0 should hold as dictated by the vector calculus rule [23, A1. Vec-
tor Identities, p. 363, (12)].

Some thoughts on the computational efficiency of the proposed formu-
lation are as follows. The inclusion of the helicity equation (5.27) in princi-
ple has its computational costs. This load could be relatively small though:
all terms except the first are known, hence an explicit system may be con-
structed to solve forhelicaldensity at thenewtime-level. Furthermore,when
the helicity equation increases the quality of the formulation then this may
also make it more efficient. Another efficient aspect of the proposed MEHC
formulation is that it uses the staggered-in-time approachof theMEEVC for-
mulation. This allowed to decouple the velocity-pressure and vorticity sys-
tems while also providing linearization.

The 3D algorithm proposed in this chapter has been implemented, but
there are problems. To some extend the implementation is based on that
of the MEEVC algorithm and thereby again uses the FEniCS package. It was
used to simulate a3DTaylor-Greenproblem. Theoutputwasadirect error or
results that grow and at some point explode, first in the helical density field
values. This suggests that trouble may arise from the helicity system. One
could of course question if it is desired to use an evolution equation for heli-
caldensity at all inCFD.Anyway, theremayalsoor insteadbeproblems in the
vorticity system. Its formulation contains the most recently computed heli-
cal density as aknownandvorticity closely follows (ormight sometimeseven
lead) its growth and explosion. Furthermore, the vorticity equation contains
the gradient of velocity. Remember this gradient falls outside of theDeRham
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complex and can therefore give rise to the trouble. In [15] it is suggested that
the discrete vortex-stretching term in its entirety, which does not appear in
the 2D equations, could be a source of problems in moving from a stable
2D to a new 3D method. It seems least likely, though not impossible, that
the trouble arises from the velocity-pressure-r-system. There may however
be causes outside of the formulation itself. One is that there may be inad-
equacies in its implementation, which could require much effort, specialist
knowledge or both to find out. Another cause may be that the simulations
wereperformedwith course grids. This is not expected tobe amajor causeof
the trouble though but it doesmean viscous dissipation at unresolved scales
is missed. Capturing these in 3D could however mean computational de-
mands that are too high for the computer that was used.



Chapter 6

Conclusions and perspectives

In short, this thesis started off with a study of the continuous equations for
understanding of the matter, then considered the 2D MEEVC method with
extensive simulation results and finally used the knowledge of these parts
for the novel 3D MEHC method. Thereby the favorable properties of the
MEEVC method were verified with few critical notes. The MEHC method
was constructed using the MEEVC method’s mimetic design philosophies.
A successful implementation has not (yet) been achieved.

When it comes to the discrete formulation used for the MEEVCmethod,
this thesis describes some theoretical support and a modification that are
not to be found in the original publication [25]. It is demonstrated by exten-
sivederivations inSection2.1.4 that vorticity is closely related toangularmo-
mentum, which underlines its physical relevance in many flow situations.
Support for adding the vorticity transport equation to the velocity-pressure
system in order to enhance CFD accuracy can be found in [1]. Such is quite
unsurprising in light of the aforementioned. Themodification to theMEEVC
methodaspublished in [25] is theadditionof apressureconstraint in theway
that is described in Section 3.1.2. This was recommended by the first author
of that paper as a solution against reduced accuracy. It works well but devel-
oping a stronger theoretical backingmay be interesting for future work.

Part of the results from simulating Taylor-Green flows with the MEEVC
method confirm the corresponding ones published in [25] and another part
adds additional information as follows. As can be seen in Section 4.2, inte-
gral quantities develop correctly over a longer time span even when reso-
lutions are extremely low. In that case there is quite some error of course,
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but this is largely due to with poor sampling of the initial conditions. Such
a demonstration of the MEEVC method’s efficacy was not available to this
extend. While the most refined simulations delivered the best accuracy, a
side note must be made for these in particular when it comes to conserva-
tion. Very small diverging trends in kinetic energy, enstrophy and vorticity
under inviscid conditions are visible. These trends have a negligible impact
herebut this could especially changewhen refinement ismuchhigher. It can
therefore be concluded that theMEEVCmethod, like any othermethod, has
its limits. Thesemay only come into play in extreme situations though.

A new MEHC method employing an evolution equation for helical den-
sity, which is uncommonor evenunique inCFD, has beendeveloped for this
thesis. Further research will be needed though to see if this method or its
approach can be successful. A theoretical issue of the method regards the
integrability of certain terms in its formulation as discussed in Section 5.4,
although such an issue was also identified in the MEEVC method. Yet se-
rious consequences were not identified there. Successful simulations with
the MEHC method have not been achieved and are not in the scope of this
thesis. It may be something for later work to find out if certain modifica-
tions of the formulation or a better implementation in computer code can
change this. The simulation results that were obtained now have relatively
low resolutions and frankly showed divergence with increasing simulated
time. These were not processed further for inclusion in this thesis. On the
other hand, an analytic proof of the MEHC properties can be found in Sec-
tion 5.3. Conservation of helicity is however only proven for the helical den-
sity variable itself, that is there is in general no helicity conservation for heli-
cal density computed from the product of velocity and vorticity. Getting an
ideaofhowclose thisproduct canbe to the separately computedhelical den-
sity in practical simulationsmay be something for future work when there is
a well-functioning implementation.

AMEHCmethod that does not employ a separate helical density variable
and therefore lacks the related issue justdiscussedwaspresented in [36] con-
temporary to the development of themethod in this thesis. It is clearly supe-
rior now, considering that its publication shows it functions well in solving
several problems numerically. Its dual-field approach is however such that
strongmass conservation is only achieved in one of the dual representations
of the velocity field solution.
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