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SUMMARY 

A transshipment network involving small urban logistics facilities for deconsolidation and transfer of 

shipments from high capacity freight vehicles to smaller vehicles is called an urban transshipment network. 

These networks, when used for last-mile logistics, enable the usage of light electric freight vehicles in urban 

areas. In this way, these networks can be employed by logistics service providers (LSPs) to cope with the new 

low emission zone policies in dense municipalities. However, to ascertain the capabilities of these networks, 

LSPs will be tending to virtually evaluate their performance towards the fulfillment of their strategic business 

goals and juxtapose them with other plausible network alternatives. This evaluation process is complicated as 

it is necessary to simulate how urban transshipment networks will be configured to fulfill customers within 

low emission zones and, additionally, obtain data about the resulting distribution activities. Considering that 

an LSP will only consider adopting that configuration of a logistics network which minimizes the total logistics 

costs (TLC), combinatorial optimization models such as location routing problem (LRP) models can be 

employed to deal with the issue mentioned above. However, the existing models of location routing problem 

cannot be used for the real-life problem due to their computational complexity. Thus, the goal of this research 

is to assist LSPs in strategic evaluation of urban transshipment networks while circumventing the difficulties 

associated with traditional LRP models. Therefore, the following research question was formulated to achieve 

this goal: 

How to evaluate the performance of urban transshipment network with electric vehicles for last-mile 

delivery services within a low emission zone? 

To answer the above research question, a model-driven decision support tool is developed to strategically 

evaluate urban transshipment networks and compare their performance against other possible networks. 

Subsequently, the proposed tool is applied to a synthetic case study to demonstrate its ability to handle real 

scale problems. The general framework for the tool is presented in Figure 1, followed by the explanation of 

distinguishable steps in the decision support tool. 

 

Figure 1: General framework of the decision support tool



1. Generate demand scenario: This is the preliminary step that utilizes LSP's customer data set to 

reproduce the service needs of customers inside a low emission zone on a typical working day. The 

service needs can represent either present demand or future projections. 

2. Define network alternatives: In this step, the structure of networks that can alternatively be adopted 

by the LSP for last-mile operations are clearly defined. These networks include the urban 

transshipment type networks as well as the current conventional network. Additionally, the operating 

costs and constraints of the functional elements used within these network alternatives are derived 

from their respective prices and specifications.  

3. Network optimization models: The configuration that fulfils the demands scenario with minimum TLC 

is determined for all the defined network alternatives using a set of optimization models. A new 

model, based on continuous approximation (CA) methods, is used explicitly for urban transshipment 

networks, and the existing optimization model is used for conventional network types.  

4. Performance comparison: Using the cost-optimal configurations of network alternatives and 

corresponding distances traveled by the vehicles, key performance indicators from economic, 

environmental, operational, and social perspectives are measured and compared between network 

alternatives. 

The proposed decision support system is applied to a case study that is synthetically created using multiple 

information sources and assumptions. For generating demand scenarios, instances for vehicle routing 

problems from Uchoa et al. (2017) is used to replicate the locations and demands of customers within a low 

emission zone. Three demand scenarios are created such that customer densities increase linearly across 

them. The prices and specifications of vehicles and micro hubs in network alternatives were obtained from 

Panteia's total cost of ownership model and Balm et al. (2018), respectively. Prospective micro hub locations 

were randomly selected from the demand scenarios, and input parameter values for measuring KPIs are 

derived from previous relevant studies and reports.  

The results of the case study have demonstrated the capability of the proposed CA-based optimization model 

for producing near-global cost-optimal configurations of urban transshipment networks and replicating 

distribution activities on an aggregate level. The results from the performance comparison process indicate 

that the customer density within a low emission zone is an essential factor that affects the overall performance 

of urban transshipment networks. The performance of the urban transshipment seems to increases 

significantly with an increase in customer density compared to that of conventional networks. Furthermore, 

the results also show that locating the micro hubs inside the low emission zone helped in further enhancing 

the performance of urban transshipment networks
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1 INTRODUCTION  

In this chapter, the motivation and the content of the thesis are discussed. The problem that is being addressed 

within this research is first explained, and then research objectives are discussed. 

1.1 PROBLEM DEFINITION: 
Transshipment network is an existing practice in the logistics sector, in which goods are shipped to an 

intermediate logistics facility or a hub before transporting them to their final destination (Huber et al., 2015). 

The purpose of doing so is to either change transport modes, consolidate, or de-consolidate shipments at 

these intermediate facilities. The urban transshipment network is a new adaption of the above logistic practice 

for last-mile distribution in dense metropolitan regions. In this network, a set of micro hubs located in the 

urban areas are used for deconsolidating shipments and transferring them from high capacity vehicles to light 

freight vehicles that deliver to customer locations (Merchan et al., 2016). It is essential to note that these 

micro hubs are storage facilities with a smaller physical footprint dedicated purely for mode shift rather than 

storage purposes. Furthermore, the concomitant short distances between micro hubs and customer locations 

facilitate the utilization of light electric freight vehicles (LEFV) with zero tailpipe emissions and limited driving 

ranges to perform deliveries from micro hubs (Quak, Nesterova, & Van Rooijen, 2016).  

Over the past decade, expansion in last-mile delivery services and the increased emissions in cities is forcing 

municipalities to introduce low emission zone (LEZ) in high-density urban areas to limit access to diesel-

powered cargo vehicles (Dablanc & Montenon, 2015a). Consequently, the existing conventional networks of 

logistics service providers (LSP) must be changed to provide last-mile delivery services within LEZs.  These 

adaptations to the logistics networks must ensure that the operations will comply with such LEZ regulations. 

Urban transshipment networks, in conjunction with LEFVs, offer a potential solution for LSPs to perform 

uninterrupted operations in LEZ. The reason is that LEFVs, being fully electric, generally meet the entry 

requirements of LEZ. However, these new network demands significant resources of an LSP in the form of 

micro hubs establishment and LEFV fleet acquisitions. Therefore, private LSPs must assess the performance of 

these new networks towards achieving their economic, environmental, and operational objectives before 

deciding to adopt them over existing conventional ones (Gunasekaran et al., 2004). 

Deriving insights about a new logistics network's performance before its application is somewhat complicated. 

The reason is that the configurations of these networks, which affects the overall distribution process, is not 

known in advance. A configuration of an urban transshipment work is characterized by the size, location, 

numbers of micro hubs, and fleet sizes of the cargo vehicle fleets (Merchan et al., 2016). From all possible 

network configurations, it is apparent that a private LSP would consider choosing only that configuration, 

which minimizes the costs (Rybakov, 2017). For this reason, network design optimization models play an 

essential role, as they can reproduce analytically the cost-optimal network configuration that is likely to be 

adopted by LSP and information about the resulting distribution activity (Amodeo et al., 2015).  

Particularly for urban transshipment networks with LEFVs, finding cost-optimal network configurations 

involves two strategic network design decisions, micro hub locations, and LEFV fleet sizes at micro hubs. 

Facility location problems are a specific type of combinatorial optimization problem that can be used to 

determine the optimal locations for the micro hubs such that customers are as close as possible to any micro 

hub (Škrinjar et al. 2012). Nevertheless, locations of logistics facilities such as hubs will directly affect the 

routes of freight vehicles. This interrelationship is ignored in typical facility location problems. For this reason, 

the optimal micro hub locations and required fleet sizes of LEFVs for urban transshipment networks must be 
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found in an integrated approach that integrates vehicle routing aspects into the facility location problem. The 

location routing problem (LRP) model is another type of combinatorial optimization problem that is capable 

of coping with the above interrelationship while determining cost-optimal configurations of urban 

transshipment networks (Prodhon & Prins, 2014). However, these  LRP models combine two NP-hard 

problems, namely facility location problem and vehicle routing problem (Nagy & Salhi, 2006). Consequently, 

the existing LRP models are computationally complex, causing their limited application to real-life contexts 

(Cuda et al., 2015a). However, parsimonious techniques like continuous approximation (CA) have shown to 

alleviate the complexity of these models, especially at the routing level, to provide near-optimal solutions for 

large scale real-world problems (Ansari et al., 2018). 

Thus, the overall challenge for an LSP is to evaluate the performance of urban transshipment networks to 

serve a particular LEZ by employing CA-based network optimization models. Moreover, the evaluation must 

encompass all the different objectives relevant to freight transportation businesses such that the network's 

performance is analyzed from a strategic decision-maker's perspective. The clear objective of this research 

and the adopted approach is elucidated in the following sections.  

1.2 RESEARCH OBJECTIVE 
The overall aim of this study is to address the problem of how to strategically evaluate the performance of 

urban transshipment networks with LEFVs for last-mile operations in a LEZ.  Insights from research in four 

broad topics justify the objective of this research. Firstly, the application of electric freight vehicles (EFV) in 

last-mile logistics is brought to attention, with its limitations leading to the idea of integrating them with the 

transshipment facilities. Secondly, the feasibility of urban transshipment networks is analyzed based on 

previous pilots and tests, where the importance of virtually assessing the performance of these new logistics 

networks before conducting full-scale tests or pilot is highlighted. Next, the different types of LRP models are 

investigated to understand their working and limitations, indicating the need for simpler models. Finally, the 

literature pertinent to performance evaluation of logistics networks is discussed, leading to methods and 

metrics for measuring the network's performance. Hence the research aims to assist LSPs in the strategic 

assessment of urban transshipment networks with LEFVs for last-mile operations. 

1.3 RESEARCH QUESTIONS 
The following research question has been formulated to fulfill the research objective: 

How to evaluate the performance of urban transshipment network with electric vehicles for last-mile 

delivery services within a low emission zone? 

As this question involves a set of different processes, it is required to develop a set of sub-questions which 

guides the research towards answering the central question: 

 

1. What are the main criteria to evaluate the performance of the urban transshipment network from 

the perspective of a private logistics firm? 

 

2. What information is required to evaluate the performance of urban transshipment networks? 

 

3. What is the baseline for evaluating the performance of the urban transshipment network?  
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4. Which analytical model is required to derive the information required for evaluating the 

performance of the urban transshipment network? 

1.4 APPROACH  
To answer the above research questions, a model-driven decision support tool (DST) is proposed to measure 

the performance of urban transshipment networks and compare them against conventional networks. These 

conventional networks utilize only a fleet of freight vehicles to perform direct deliveries from depot to 

customer locations. Additionally, the DST considers different plausible ways in which logistics networks can be 

organized. The DST analyses the performance of the logistics networks based on their cost-optimal network 

configuration that is found using network optimization models. Classic optimization models are adopted for 

determining cost-optimal configurations of conventional type networks, while a novel CA-based model is 

developed specifically for urban transshipment networks. The DST is presented as a sequential framework, 

which guides LSPs to analyze the performance of urban transshipment networks for their last-mile operations. 

Finally, the proposed DST is applied to a synthetic case study to demonstrate its capabilities. 

1.5 THESIS STRUCTURE: 
The structure of the thesis is as follows: Chapter 2 presents the reviewed literature relevant to the research 

question. Chapter 3 presents the methodology adopted in this research. Chapter 4 explains the application of 

the DST to a synthetic case study. Following the application, Chapter 5 discusses the results of the case study. 

Finally, Chapter 6 discusses the findings, conclusions, and future research recommendations. 
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2 LITERATURE SURVEY 

In this chapter, all background information essential for understanding the motivation behind this research 

and the field of application is discussed. The related literature is classified into four main sections: Last mile 

distribution with EFVs (Section 2.1), Transshipment networks with LEFVs and micro hubs (Section 2.2), 

Network design of transshipment networks with LEFVs (Section 2.3). Performance evaluation of last-mile 

logistics (Section 2.4). Finally, all the identified literature is synthesized in Section 2.5. 

2.1 LAST-MILE DISTRIBUTION NETWORKS WITH EFVS 
Seeing that electric freight vehicles (EFV) have been gaining the attention of both public and private 

organizations for mitigating negative externalities of urban logistics, several science researchers have focused 

on various aspects relevant to EFVs and their applications. Recently, Wang et al. (2018) conducted a systematic 

literature review of 60 related scholarly works in the period between 2007 and 2018, focusing on the 

employment of EFVs in urban logistics. The synthesis revealed that smaller, light-duty EFV (LEFV) has the 

potential to compete with internal combustion engine vehicles (ICEVs) better than the medium or large EFVs. 

LEFV are defined as " EFVs that weigh (gross vehicle weight) less than 3.5 tons such as electric cargo bikes, 

electric cargo bicycles/tricycles, and small distribution electric vehicles" (Hogt et al., 2017). Taefi et al. (2015) 

argue that the primary reasons for LEFV's competitiveness include lower acquisition costs, imposing less 

pressure on existing road infrastructure, and producing zero emissions.  

Oliveira et al. (2017), through a state-of-the-art review on freight transport modes in urban logistics, concurred 

that in the future, LEFVs are likely to replace conventional ICE vehicles in the last-mile distribution. The authors 

claim that their characteristics, such as limited driving ranges and limited driving ranges, suit the requirements 

in last-mile delivery services. Similarly, Reiter & Wrighton (2017) reported the results of the EU funded project 

'Cyclelogisitcs.' The calculations reveal that around 31% of the urban goods transport in European cities can 

be shifted to electric cargo cycles. Few researchers have relied on practical methods by analyzing, ex-post, 

pilots, and practical demonstrations to draw insights about LEFVs feasibility. For instance, Balm et al. (2018) 

examined 30 LEFV projects that were carried out in the Netherlands under the LEVV LOGIC project. The study 

concludes that LEFV has high potential in delivering food, parcel, or courier but does not show much promise 

in providing truckload volumes required for B2B Transaction. From a vehicle design standpoint, Hogt et al. 

(2017) analyzed the projects under LEVV logic to present with an optimal design of LEFVs for automotive 

makers. Their results indicate that feasible LEFVs designs are usually suited for delivering small packages or 

couriers in congested spaces. Thus, LSP engaged in delivering parcels to customer locations in urban areas can 

explore logistics concepts with LEFVs. Nevertheless, despite having great potential, the viability of LEFVs in 

last-mile delivery is still disputable and varies case by case basis. 

For providing evidence for the adoption of LEFVs, few scientific studies focus on the ex-ante evaluation of LEFV 

based logistic schemes through simulation, and optimization methods (Duarte et al., 2016; Gruber & 

Narayanan 2019; Lebeaue et al., 2019; Lebeau et al., 2015; Melo & Baptista 2017). From these studies, it was 

evident that LEFV fleets work efficiently in time-critical deliveries and that their costs can be lower than diesel-

powered fleets provided their utilization is at the maximum level. However, results from Melo & Baptista 

(2017) show that small ranges and lower payload capacities restrict LEFVs application. The authors stress on 

additional network adaptations for adopting LEFVs into operations. Therefore, the above literature indicates 

that adaptations to existing logistics concepts are necessary to utilize LEFVs into last-mile operations. 

https://link.springer.com/chapter/10.1007/978-3-319-13194-8_20#CR29
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2.2 TRANSSHIPMENT NETWORK WITH LEFVS FOR THE LAST MILE DISTRIBUTION 
Moolenburgh et al. (2019) analyzed all the logistics concepts utilized with 8 LEVV-logic projects. They showed 

that LEFV is a solution alongside other solutions such as mixed vehicle fleets (both LEFV and ICE vehicles) and 

two-echelon distribution networks with transshipment points. In the latter case, conventional diesel-powered 

high capacity vehicles usually delivered truckload freight volumes to transshipment points, where they are 

deconsolidated and then transported to individual customer points through LEFVs. However, transshipment 

points must be located close to or within the city because LEFVs have a limited driving range. This two-echelon 

distribution network is in line with a past study by Lenz & Riehle (2013), where authors advocate for the use 

of transshipment facilities to enable urban goods delivery with LEFV.  

Leonardi et al. (2012) and Van Duin et al. (2013) analyzed two successful LEFV demonstrations in London and 

Amsterdam, respectively. In these cases, LEFV fleets, including tricycles, vans, and quads trailers (the 

cargohopper), are used in conjunction with micro-urban deconsolidation centers. These analyses give valuable 

insights and lessons for logistics decision-makers to test such logistic concepts into their business. However, 

conducting such practical demonstrations and experiments requires a substantial allocation of the company's 

resources. Moreover, the success of such varies on a case by case basis. Hence, before carrying out pragmatic 

assessments, the ex-ante analysis of networks with LEFVs and transshipment facilities must be carried out. 

These analyses allow logistics decision-makers to check beforehand if such networks are potentially viable for 

their businesses. Reporting in the scientific literature for an ex-ante assessment of such logistics schemes is 

limited. 

Despite leading to additional investments for establishing transshipment facilities and acquiring additional 

cargo vehicles,  Guerrero & Díaz-Ramírez (2017) suggest that if the transshipment network is designed in the 

right manner, they could reduce the overall total logistics costs (TLC) for an LSP compared with conventional 

networks. The authors consider the general structuring of TLC proposed by (Abdallah 2004) in their study, as 

shown in Table 2-1. To our best knowledge, ex-ante evaluation studies of transshipment networks based on 

their minimum TLC configurations are limited in the literature. 

Table 2-1:Break down of total logistics costs  (Abdallah, 2004) 

                 Costs associated with   

Number of 

vehicles- day  

• Vehicle depreciation costs 

• Insurance, road tax 

• Salary costs for drivers 

➢ Fixed 

➢ Fixed  

➢ Fixed 

Total kilometres  • Fuel cost  

• Maintenance cost  

➢ Variable 

➢ Variable 

Warehouse 

operating  

• Building and equipment costs 

• labour costs  

➢ Fixed  

➢ Variable 

 

2.3 DESIGN OF TRANSSHIPMENT NETWORKS WITH LEFVS 
As discussed in the previous sections, cost-optimal configurations of urban transshipment networks should be 

determined as they act as the basis for performance evaluation. Simoni et al. (2018) proposed a simple 

sequential approach to obtain the configuration of micro depots for a mail delivery company that results in 

minimum overall costs. In this approach, firstly, the optimal locations for micro depots (used for cross-docking) 

are determined and, afterward, optimal vehicle fleet numbers and routes for customer deliveries at each of 
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these micro depot locations are determined. Although this method can be used in other contexts for similar 

micro depot measures, the approach neglects the effect of micro depot locations on vehicle fleet sizing and 

routing.  

In operation research (OR), intermediate logistics facilities such as micro depots, are termed as 'hubs.' OR 

models that account for interdependencies between hub location and vehicle routing to find the optimal 

configuration of network with hubs are popularly known as location routing problems (LRP) (Aykin, 1995). In 

contexts where goods flow occurs in two distinct echelons, as in the case of an urban transshipment network, 

the LRP is termed a Two-Echelon LRP (2E-LRP) (Drexl & Schneider, 2015). The first echelon flow of goods is 

between faraway storage depots to intermediate micro hubs, whereas the second echelon deals with goods 

delivery from micro hubs to customer locations. 2E-LRP aims at finding the locations for hubs among candidate 

locations and simultaneously determine the routes of the vehicle fleet at both echelons, such that the value 

of the objective function is either minimized or maximised (Crainic et al., 2010).  

2.3.1 Modelling and solving 2E-LRP  

Cuda et al. (2015) reviews various past modelling and solving approaches for 2E-LRP. According to the authors, 

the objective function of a 2E-LRP usually involves logistics cost components, and capacitated 2E-LRP models  

(accounting for capacity constraints for facilities and vehicles) are the most prominent in the literature. 

Intially, Boccia et al. (2010) formalized the 2E-LRP, and later, Crainic et al. (2011) proposed three multi integer 

formulations for the 2E-LRP and solved them using a commercial solver. The exact approach was capable of 

solving small instances consisting of not more than 25 customers, and when used on more extensive problems, 

the solution gaps were as high as 25%. Contardo et al. (2012) proposed a two index multi integer linear 2E-

LRP formulation that was strengthened by a family of inequalities. The authors developed a branch and cut 

algorithm to solve the model on CPLEX. This method could solve the problem with 50 customers and is 

recognized as the best in a class of exact methods for solving a 2E-LRP (Contardo et al., 2013). The inability to 

solve realistic large 2E-LRPs with exact methods is because these problems are NP-hard as it constitutes of 

two other NP-hard problems; facility location and vehicle routing problems (Cuda et al.,2015). 

Since exact methods alone are incapable of solving large 2E-LRPs, the majority of researchers have drawn 

focus to (meta-) heuristic methods. Boccia et al. (2010) proposed a tabu search method that decomposes the 

2E-LRP problem into two subproblems: facility location problems (FLP) and vehicle routing problem (VRP) (at 

both the echelon). A similar approach was adopted by Gao et al. (2016), where they used K means clustering 

and Ant colony optimization for solving an FLP and VRP, respectively. Nugen et al. (2012a, 2012b) propose two 

heuristic procedure greedy randomized adaptive search procedure (GRASP) and a multi-start iterated local 

search (MS-ILS). Contardo et al. (2012) proposed an adaptive large-neighborhood search (ALNS) meta-

heuristic to find, in reasonable times, good quality solutions for instances with 200 customers.  However, in 

real-life applications, the size of LSP operating within an entire city corresponds to larger problem instances 

than above. Notably, the routing aspect, which involves many small vehicles and hundred of customers per 

square kilometer, will render the corresponding 2E-LRP intractable (Cuda et al. 2015). 

Winkenbach et al. (2016), in cooperation with French PO- 'La Poste,' demonstrated a different approach to 

resolve a 2E-LRP model by using a continuous approximation (CA) techniques. The cost of LEFV routes in the 

second echelon was approximated using route length estimation formulas instead of finding the explicit routes 

of vehicles in the second echelon through VRP  formulations. The authors argue for this method as routing 

decisions in operational levels play a secondary role when LRP is used for strategic network design. However, 

the approach ignores the spatial distribution of the customer points by dividing the entire problem instance 
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equally to rectangular spaces with uniform distribution of customers. This assumption could result in more 

travel distances and consequently increase fleet sizes of electric vehicles, which have limited driving ranges. 

To our best knowledge, aside from Winkenbach et al., (2016), studies adopting CA approaches to solve 2E-LRP 

have not been conducted in the past. 

2.3.2 CA approaches in place of VRPs 

The first CA method to solve approximately a traveling salesman problem (TSP) and find the optimal travel 

distance or costs was proposed by Beardwood et al. (1959). Daganzo (2005) extended the approach for solving 

complex VRP problems where a set of vehicles are used in deliveries. Winkenbach et al. (2016) adopted this 

method for resolving the 2e-LRP. Figliozzi (2008) proposed a refinement of the approximation to Daganzo 

(2005). The model assumed that the number of customers or quantities delivered by capacitated vehicles is 

balanced. Regression studies have shown that the model by Figliozzi (2008) provides reasonable predictions 

for the average tour length for a variety of VRP problem instances in urban freight distribution contexts (Davis 

& Figliozzi, 2013). According to this model, the average total distance traveled by all delivery vehicles within a 

service region (denoted as  𝑇𝑑) is approximated by the following formulae: 

𝑇𝑑 =  𝑘1

𝑛 − 𝑁

𝑁
√𝑛. 𝐴 + 𝑘2. 𝑁 

Where '𝑛' is the number of delivery points (customer point), '𝐴 'is the area for service region '𝑁 'represents 

the number of vehicles used for servicing. Constant ′ 𝑘1′ is the local tour parameter, which is obtained through 

linear regression, while' 𝑘2′ is the distance between the depot to the center of the service region. In case the 

depot is at the center of the service region, Then the value of  𝑘2 can be equated to zero, and the second term 

can be ignored. 

2.4 PERFORMANCE EVALUATION 
Olsson et al. (2019) recently performed a systematic literature review of all research relevant to last-mile 

logistics. The authors found that many articles had focussed on evaluating the performance of different 

aspects of last-mile logistics. Four performance themes were presented, which included economic, 

environmental, customer satisfaction, and policy effectiveness in last-mile logistics. From an economic 

standpoint, Cleophas & Ehmke (2014) focussed on the value of the last mile deliveries and the requirement to 

actively measure the overall and average individual cost of deliveries. Van Loon et al. (2015) developed a life 

cycle analysis model to compare the CO2 emissions of different fulfillment methods in the retail industry. Their 

study showed that last mile deliveries for online retail purchases performed poorly from an environmental 

perspective as they resulted in significant local CO2 emissions.  

Few researchers have focused on the performance of last-mile networks from a customer perspective by 

analyzing service time and service qualities (Buldeo et al. 2019; Huang et al. 2009). On the other hand, 

Seebauer et al. (2016) have evaluated the effectiveness of polices in last-mile logistics, such as entry 

restrictions, financial incentives. 

2.5 SYNTHESIS OF LITERATURE AND KNOWLEDGE GAPS 
The conclusion that can be drawn from the above literature review is that evaluating the performance of the 

transshipment network with LEFVs is crucial for their future adoption into urban logistics. As discussed in 

Section 2.1, EFVs, especially the lighter variants (LEFVs), can potentially replace diesel vehicles in last-mile 

delivery services but restrict their flexibility of operations. The reason is that a single echelon distribution 
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system, typically used in conventional logistics systems, impede the usage of limited driving range vehicles 

due to the considerable travel distances between depot location and customer service regions. Circumventing 

these limitations will require additional changes to existing logistics concepts.  For this reason, the current 

research focuses on a new adapted logistics solution to alleviate the limitations of LEFVs and allow them to be 

used flexibly in last-mile delivery operations. This new concept involves the usage of micro transshipment 

facilities in proximity to customer points. 

Few practical demonstrations and pilots are conducted in the past with urban transshipment networks, as 

seen in Section 2.2. These studies show that the feasibility of such networks varies case to case basis, and it is 

uncertain for LSPs if these new networks are for their business before conducting expensive pilots. Thus, this 

research focuses on assisting LSP to evaluate, analytically, if urban transshipment networks with LEFVs are 

viable for their business. Moreover, few studies show that optimum designs of urban transshipment networks 

can result in a lesser TLC for LSPs compared to that of conventional networks. Thus, this research focuses on 

evaluating the performance of urban transshipment networks based on their minimum TLC configuration. 

Section 2.3 shows that existing models for finding these above cost-optimal configurations of urban 

transshipment networks are computationally hard as they merge two explicit NP-hard problems, forcing 

researchers to develop simpler models that can be used for real-world problems. Winkenbach et al. (2016) 

demonstrated how a CA-based model could be used to obtain near-optimal solutions for large size problems 

with lower computational times, illustrating the need for more CA-based models.  Thus, this research proposes 

a novel CA-based model that alleviates the complexity of traditional 2E-LRP models while accounting for the 

relationship between facility location and vehicle routing decisions. 

Section 2.4 shows all the different perspectives in which the last mile distribution networks can be evaluated 

at strategic business levels. Inspired from these studies, the current research contributes to the existing 

literature by proposing a model-driven decision support tool (DST) that comprehensively evaluates urban 

transshipment networks with LEFVs in LEZ. Economic, environmental, and operational indicators are 

incorporated in DST to evaluate a network's performance towards achieving typical business objectives of last-

mile delivery service firms. Furthermore, a comparative analysis is incorporated in the proposed DST to 

compare the performance of these new networks against conventional networks that are currently being used 

by the LSP. 

Based on all the information in the literature reviewed, the following section focuses on the development of 

the decision support tool for quantitative performance assessment of urban transshipment networks.   
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3 METHODOLOGY  

This section explains the distinguishable steps in the proposed DST (as schematized in Figure 3-1). A model-

driven DST, based on the works of Leonardi et al. (2015) and Frota Neto (2008), is developed to help LSPs 

virtually evaluate urban transshipment network for their last-mile operations in LEZ region. The required input 

data for each step in the DST is extracted from information sources either internally or externally available to 

the LSP. Upon clearly defining the current network and alternative networks, a set of optimization models 

determine their respective cost-optimal network configurations that fulfills previously generated demand 

scenario with minimum TLC. These cost-optimal configurations, later, serve as the basis for performance 

comparison between network alternatives. 

 

Figure 3-1: Framework of a decision support tool for performance evaluation 

3.1 GENERATE DEMAND SCENARIO. 
The first DST process involves reproducing customer delivery needs of an LSP for a hypothetical weekday. By 

sampling the real-world dataset of customers (demands and locations) located inside a LEZ, distinct demand 

scenarios are generated. These demand scenarios are characterized by demand density (number of customers 

per sq km) and average parcel specifications (size or weight of packages). Since the demand scenarios are 

intended for strategic level decisions, they can either reproduce existing demands or future projections. 

Furthermore, the location of the depot is fixed in the demand scenario because last-mile delivery concerns 

mainly on the parcel movement after the depot point. An example demand scenario of a hypothetical LSP is 

created below in Figure 3-2 to illustrate the output of the above process. 
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Figure 3-2:Example demand scenario 

3.2 DEFINE NETWORK ALTERNATIVE 
The following step in the DST involves defining different logistics networks that alternatively can be adopted 

by the LSP to fulfill the generated demand scenario. These network alternatives include currently employed 

conventional last-mile delivery network with diesel vans and three new possible substitute networks that 

either use electric vehicles and transshipment facilities. The structures of these network alternatives are 

assumed to be generalized for the proposed DSTs. In other words, the type and of freight vehicles and logistics 

facilities and the way each of them is organized within each network alternative are predefined. Nevertheless, 

the operating costs and constraints linked with these functional elements must be exogenously defined at this 

stage of the DST by an LSP based on their business. In the following sections, the generalized structures of 

these network alternatives are firstly explained, and followed by the list of parameters for network elements 

that should be defined for each network alternative (denoted as network alt). 

3.2.1 Generalized structures of the network alternatives 

As discussed in Section 2.1 and 2.2, several studies in the past have indicated the potential of last-mile logistics 

networks with electric vehicles (battery-electric vans, LEFVs), micro transshipment facilities, and multi-echelon 

distribution systems to compete with conventional networks while complying with environmental regulations. 

Drawing inspiration from these studies, the predefined structures for the network alternatives are shown 

below. 

3.2.1.1 Network alternative 1 (Current network): 

Network alt 1 represents the conventional network that is currently being utilized by the LSP. In this network 

alternative, a single echelon distribution system with a homogeneous fleet of diesel vans with fixed capacity 

is used for making last-mile deliveries from the depot. Each diesel van starts its routes from the depot, delivers 

packages to a unique set of customers in the LEZ region before returning to the depot. These diesel vehicles 

do not conform to entry requirements LEZ region and, as a result, receive penalties from local authorities for 

entering into the LEZ region. The structure of network alt 1 on the above example demand scenario (as shown 

in Figure 3-2) is illustrated in Figure 3-3. 
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Distribution strategy: Single echelon distribution system 

Vehicle fleet: Homogeneous diesel vans 

 

Figure 3-3: Structure of Network Alt 1 

3.2.1.2 Network alternative 2 

By substituting all diesel vans with battery-electric cargo vans and retaining everything else in the structure of 

network alt 1, a different type of structure is defined for network alt 2 (as shown in Figure 3-4). Unlike diesel 

vans, battery-electric cargo vans in the network alternative 2 conform to entry requirements of the LEZ region 

as they do not produce any tailpipe emissions. However, the ability to run these vehicles is proportional to the 

state of charge on the onboard battery, as they are only charged overnight at the depot (cannot be recharged  

in between a route) 

Distribution strategy: Single echelon distribution system 

Vehicle fleet: Homogeneous battery-electric cargo vans 

Vehicle charging strategy: overnight charging 

 

Figure 3-4: Structure of Network Alt 2 
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3.2.1.3 Network alternative 3 

The structure of network alt 3 is based on the concept of the urban transshipment networks. In this network, 

diesel box trucks first transfer bundled package shipments from depot to a set of small micro hubs located at 

the periphery of the LEZ regions (first echelon). Subsequently, the packages arrived at each of these micro 

hubs are deconsolidated and shifted to LEFVs. The LEFVs then carry out routes within LEZ to deliver packages 

to customer locations (second echelon). These LEFVs conform to vehicle entry requirements of LEZ, and the 

diesel trucks in the first echelon are abstained from entering into the LEZ region. With an example route for a 

LEFV and a box truck, the structure of the above network alternative is illustrated in Figure 3-5. 

Distribution strategy: Two echelon distribution system  

Vehicle fleets: Homogeneous LEFVs and diesel box trucks 

Logistics facilities: Micro hubs  

Electric vehicle charging strategy: overnight charging 

 

Figure 3-5:Structure of Network alt 3 

3.2.1.4 Network alternative 4 

By substituting all diesel box trucks with electric counterparts in the structure of network alt 3, a different type 

of urban transshipment network structure is proposed for network alt 4. The electric box trucks in the first 

echelon conform to the entry requirements of the LEZ region; thus, micro hubs can be located within the LEZ 

region such that they are closer to the customer locations. This structure for network alt 4 is illustrated in 

Figure 3-6. 

Distribution strategy: Two echelon distribution system  

Vehicle fleets: Homogeneous LEFVs and Electric box trucks 

Logistics facilities: Micro hubs  

Electric vehicle charging strategy: overnight charging 
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Figure 3-6: Structure of Network Alt 4 

3.2.2 Operating costs and constraints of functional elements in network alternatives.  

It Is evident from the previous section that various types of functional elements are being employed in the 

network alternatives. These elements include a range of cargo vehicles (diesel or electric vans, LEFVs, diesel 

or electric trucks), and micro transshipment facilities. However, there are several different options available 

for each of these functional elements in the market to adopt into the network alternative. For instance, several 

variants of LEFVs with varying prices of purchasing, payload capacities, and driving ranges are available for 

adoption. Based on their respective price and specifications, each of them will cost and constrain the LSP 

differently when adopted within network alternatives. Therefore, it is necessary to state clearly the operating 

costs and the constraints for each of these functional elements based on the prices and specifications of 

network elements that LSP decides to adopt.  

Since prices and specifications of the diesel delivery vans in the current network are known before DST 

application, stating the operating cost and constraints of elements in the network alt 1 is derivative. However, 

for the other three network alternatives, the prices and specifications of the functional elements that will be 

employed are not given. Thus, a prior market survey for these elements must be conducted by the LSP to find 

suitable variants of functional elements for their demands. Upon confirming the prices and specifications of 

all functional elements, the list of operating costs and constraints for each of these functional elements must 

be defined, as shown in Table 3-1. It should be noted that the costs and capacities of every micro hub are 

assumed to be the same. For diesel or electric box trucks, only the costs proportionate to their usage is 

considered in the form of utilization cost. The reason is that box trucks, unlike LEFVs or delivery vans, are not 

dedicated to serving only one LEZ region but instead serving multiple LEZ regions in a day. Furthermore, the 

cost of charging infrastructure is calculated as a running cost by accounting it as a surcharge on the electricity 

cost per unit kWh.  
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Table 3-1: Operating costs and specifications of functional elements in network alternatives 

Functional 

elements 

Operating 

constraints 

Operating 

Costs 

Diesel vans - Cargo capacity - Daily depreciation cost (incl. insurance, 

road tax) 

- Daily labour costs/vehicle  

- Running cost of the vehicle (incl. fuel 

costs, maintenance) 

Battery 

electric vans 

- Cargo capacity 

- Driving range 

 

- Daily depreciation cost (incl. insurance, 

road tax) 

- Daily labour costs/vehicle  

- Running cost of the vehicle (incl. fuel 

costs, maintenance, surcharge for 

charging) 

LEFV 

Micro hub Storage capacity (L) - Daily operating cost (€) (incl. rent and 

Staff) 

Diesel box 

trucks  

- Payload capacity (L) 

 

- Utilization cost (€/km) (incl.  

depreciation, labour, fuel) 

Electric box 

trucks 

- Payload capacity (L) 

- Driving range  

 

3.3 DEFINE THE PROSPECTIVE LOCATIONS OF MICRO HUBS  
Although the specifications and costs related to a micro hub are known, the locations where they could be 

established is not defined. Different barriers apply against logistic facility establishments in urban regions 

(public places, municipality rules, road connectivity, etc.). Thus, in the case of alternative networks 2 and 3, it 

is imperative to define the distinct locations within the demand scenario where micro hub establishment is 

possible. A sample set of prospective micro hub locations for the example demand scenario is shown below in 

Figure 3-7 for illustration purposes only. 

 

Figure 3-7: Prospective locations of micro hubs 
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3.4 NETWORK OPTIMIZATION MODULE 
After defining all the network alternatives available for adoption, the subsequent step would be to determine 

the cost-optimal configurations (the numbers, locations, and sizes of functional elements) of the network 

alternatives to serve the generated demand scenario. The cost-optimal configuration of networks ensures that 

the TLC from the resulting distribution activities is minimal. As discussed in  Section 2.2, TLC includes the entire 

range of fixed and variable costs from distribution activities, which in turn entails all operating costs associated 

with vehicles and micro hubs employed within a network. 

A set of two different combinatorial optimization models is adopted for determining the cost-optimal 

configurations of network alternatives. The standard CVRP model is used for network alt 1 and 2 because both 

these networks employ only a single fleet of vehicles (diesel /electric delivery vans). Whereas, a new CA-based 

model is proposed for network alternatives 3 and 4 as they are transshipment based networks. The adopted 

models and their solution procedures are elucidated in the following sections. 

3.4.1 Model 1- CVRP  

Finding cost-optimal configurations of network alternatives 1 and 2 implies determining fleet sizes of delivery 

vans that minimizes the TLC. In the past, capacitated VRP (CVRP) models have been extensively employed in 

logistics network planning to find cost-optimal configurations of such networks. Thus, a three-index flow 

formulation proposed by Baldacci et al. (2004) is employed to model alternatives 1 and 2 into distinct CVRPs 

with TLC as the objective function. Particularly for network alt 2, a constraint to account for the limited driving 

ranges of battery-electric vans is added to the CVRP model. The formulation for the adopted CVRP model is 

explained below: 

3.4.1.1 CVRP model assumptions: 

The following assumptions are applicable for the adopted CVRP model; 

• The customer demands are deterministic (i.e., static problem). 

• The delivery route begins and ends at the depot.  

• The vehicle fleets are homogeneous and capacitated.  

• A single objective function that minimizes the daily total logistics cost (TLC).  

• Time windows are not considered. 

3.4.1.2 CVRP model notation: 

The problem is described using the notations summarized in Table 3-2 

Table 3-3 and Table 3-4.  

Table 3-2: CVRP Sets and indices  

𝒓 ∈ {1,2 … . , 𝑝}: Set of vehicles 

𝒊 , 𝒋 ∈ {0,1,2 … . , 𝑛}: Set of customers and customer indexed at 0 denotes depot  

 

Table 3-3: CVRP decision variables 

𝒙𝒓𝒊𝒋 Binary decision variable indicating if a vehicle 

𝑟  traverses between customers 𝑖  and 𝑗  
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Table 3-4 CVRP input parameters 

𝑪 The fixed cost of the van per day  

𝒄 The variable cost of a van  

𝑸 The payload capacity of the van  

𝑩𝒓𝒗𝒂𝒏 Battery range limit of the electric van  

𝑫𝒋 Demand of customer 𝑗 

𝒅𝒊𝒋 Distances between customer 𝑖  and 𝑗  

 

3.4.1.3 CVRP model formulation: 

Minimize 

∑ ∑ 𝐶 ∗

𝑛

𝑗=1

𝑥𝑟0𝑗

𝑝

𝑟=1

+ ∑ ∑ ∑ 𝑑𝑖𝑗 ∗ 𝑥𝑟𝑖𝑗

𝑛

𝑗=0,𝑖≠𝑗

𝑛

𝑖=0

𝑝

𝑟=1

∗ 𝑐                                                                           (1) 

Subject to  

∑ ∑ 𝑥𝑟𝑖𝑗
𝑛
𝑖=0,𝑖≠𝑗 = 1

𝑝
𝑟=1 ,                                 ∀𝑗 ∈ {1, … . , 𝑛},                                                             (1.1) 

∑ 𝑥𝑟0𝑗
𝑛
𝑗=0 = 1,                                                 ∀𝑟 ∈ {1, … . , 𝑝},                                                             (1.2) 

∑ 𝑥𝑟𝑖𝑗
𝑛
𝑖=0,𝑖≠𝑗 = ∑ 𝑥𝑟𝑗𝑖 ,𝑛

𝑖=0                              ∀𝑗 ∈ {0, … . , 𝑛}, 𝑟 ∈ {1, … . , 𝑝},                                    (1.3) 

∑ ∑ 𝐷𝑗.𝑛
𝑗=1,𝑖≠𝑗

𝑛
𝑖=0 𝑥𝑟𝑖𝑗 ≤ 𝑄,                            ∀𝑟 ∈ {1, … . , 𝑝},                                                              (1.4) 

∑ ∑ ∑ 𝑥𝑟𝑖𝑗𝑗∈𝑆,𝑖≠𝑗𝑖∈𝑆 ≤ |𝑆| − 1,
𝑝
𝑟=1               ∀𝑆 ⊆ {1, … . , 𝑛},                                                             (1.5) 

∑ ∑ 𝑑𝑖𝑗 .𝑛
𝑗=1,𝑖≠𝑗

𝑛
𝑖=0 𝑥𝑟𝑖𝑗 ≤ 𝐵𝑟𝑣𝑎𝑛,                    ∀𝑟 ∈ {1, … . , 𝑝},                                                             (1.6) 

𝑥𝑟𝑖𝑗 ∈ {0,1},                                                      ∀𝑟 ∈ {1, … . , 𝑝}, 𝑖, 𝑗 ∈ {0, … . , 𝑛}, 𝑖 ≠ 𝑗,                      (1.7) 

The objective function (1) represents the daily total logistics costs, which is a summation of two cost 

components. The first cost component represents the total daily fixed costs associated with diesel or electric 

van fleet, and the second cost component entails the total variable transportation costs. The model constraints 

(1.1) ensures that each customer point is visited only once. Constraints (1.2) and (1.3) are both flow constraints 

where (1.2) ensures that all vehicles begin their routes from the depot, while  (1.3) ensures that the number 

of vehicles leaving and arriving at the depot is the same. Capacity constraint (1.4) ensures that the delivery 

van's payload capacities are not exceeded in their routes. Constraint (1.5) is a sub tour elimination constraint. 

Constraint (1.6) is only applicable for network alt 2 as it constricts the distance traveled by an electric delivery 

van to its battery range limit. Finally, constraint (1.7) is a binary constraint for variables. 

3.4.1.4 CVRP model implementation procedure 

A python algorithm was previously developed for solving the above model on Local solver (LocalSolver: CVRP).  

This algorithm is used in the proposed DST for network alt 1 and 2 because it allows for the simplification of 

sub tour elimination constraints in the above CVRP model. With Local solver, a sequence of customer visits 

can be defined as a list variable. Multiple list variables, equal to the number of delivery trucks, can be added 

with a partition constraint to ensure every customer point is included, and all list variables are unique. 



Methodology 

27 
 

Furthermore, Lamda function allows for computing the sum of the customer demands and distance between 

customers for the list variables. 

3.4.1.5 CVRP model solution procedure 

Based on the stated operating costs and constraints of delivery vans (refer Section 3.2.2), the model parameter 

values for CVRP are first derived and subsequently inputted to the above algorithm. Followed by model 

parameter input, the CVRP model is solved exactly on Local solver for the above-generated demand scenario 

as input. The optimal fleet size of delivery vans and the corresponding minimized TLC value for network 

alternatives 1 and 2 are obtained as outputs of solving the CVRP model. 

3.4.2 Model 2-approximated 2e-LRP: 

Finding the cost-optimal configurations of network alternatives 3 and 4 implies determining the locations, 

numbers, and sizes of micro hubs and vehicle fleet sizes that will minimize the daily TLC and satisfy the demand 

scenario in question. All these outputs must be obtained concurrently, as they are interdependent. As 

discussed in Section 2.3, traditional 2E-LRP models seek to determine the cost-optimal configuration for such 

networks. However, these models are computationally hard to solve as they are a combination of two NP-

hard problems (Facility location problem and Vehicle routing problem). Hence, inspired by the work of 

Winkenbach (2016), a new CA-based two-step optimization method with daily TLC as the objective function is 

proposed as a substitute for these traditional 2E-LRP models. The proposed model is henceforth referred to 

as the approximated 2E-LRP model. 

The proposed model reduces the computational complexity by decomposing a single complex optimization 

problem into two relatively simpler optimization subproblems. These two subproblems are interconnected, 

meaning the output of one problem serves as input for the second problem. Furthermore, the routing 

component in the second echelon (deliveries by LEFV) is simplified using a CA model by Figliozzi (2008). 

Adopting this CA model enables to aggregate, analytically, the distance traveled by LEFVs fleets by assuming 

customer locations are distributed evenly in an area instead of being distinct points.  

The clustering problem is the first subproblem, which aims to create a set of compact customer clusters, Such 

that every customer point from the demand scenario is encompassed by one cluster. Upon forming these 

clusters, the distance traveled by LEFVs, total customer demand, and LEFV trips required are determined for 

each of these disjoint clusters. Next, the location fleet size problem (LFP) involves allocating these 

parameterized disjoint clusters to a set of prospective micro hub locations and concurrently determine the 

fleet size of the vehicles in the network. Both allocation and fleet sizing is done in such a way that TLC is 

minimized and all the defined operating constraints for functional elements are satisfied. In this way, solutions 

to the LFP gives the cost-optimal configuration of network alternatives 3 and 4. The models used to formulate 

these two subproblems and their respective solution procedures are explained in the following sections. 

3.4.2.1 Clustering model 

Based on the models in Olafsson, Li, and Wu (2006), an optimization-based model is proposed for clustering 

the customer points. In this method, the clustering problem is formulated as an integer programming model, 

which can be solved by exact methods. Unlike K means clustering methods used by Gao et al. (2016), the 

proposed model does not require the location of cluster centroids as inputs. For this reason, they provide 

consistent outputs. However, the value of the cluster numbers must still be inputted exogenously to the 

model.  
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The proposed clustering model looks for an ideal set of customers from input to serve as cluster centroids and 

simultaneously assign every customer points to either one of them. This allocation means that any customer 

can be assigned to itself if they are chosen as a cluster centroid by the model. Therefore, the customer at the 

centroid, along with the customers assigned to it, forms one distinct cluster. The number of centroids or 

clusters is equivalent to the exogenous input to the model. The optimal point is reached when all clusters are 

compact as possible (distance between customers and centroid), and balanced (the total number of LEFV trips 

required to serve all clusters is minimum). The model formulation for the clustering model is shown below. 

3.4.2.1.1 Model assumptions: 

• Any customer point from the input can be selected as cluster centroid.  

• The number of customer points selected as centroids depends on the input value for the number of 

clusters.  

• Every customer is assigned to one cluster centroid. A customer can be assigned to itself if its location 

is selected as a cluster centroid. 

• LEFV trips required in a cluster is calculated based on the payload capacity of a LEFV. 

3.4.2.1.2 Model notation: 

The model is described using the notations summarized in Table 3-5, Table 3-6, and Table 3-7. 

Table 3-5: Clustering model sets and indices 

𝑽 = {1 … … . 𝑣}: Set of customer points 

𝒊, 𝒋 ∈ 𝑽 

 

Table 3-6: Clustering model decision and intermediate variables 

𝑷𝒋 Binary decision variable indicating if a customer 𝑗 is selected as a centroid point 

𝑨𝒊𝒋 Binary intermediate variable indicates if a customer 𝑖 is assigned to a centroid point 𝑗 

𝑵𝒋 Binary decision variable indicating the number of LEFVs trips required to service each 

cluster 𝑗 

 

Table 3-7 Clustering model parameters 

𝒏𝒄 Number of clusters  

𝑪𝒅 The variable cost of LEFV  

𝑪𝒗 The fixed cost of LEFV per trip 

𝑸𝑯𝒖𝒃 The storage capacity of micro hub 

𝑸𝑳𝑬𝑭𝑽 The payload capacity of LEFV 

𝒅𝒊𝒋 Distances between customer 𝑖 and 𝑗 
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3.4.2.1.3 Model formulation: 

Minimize: 

∑ ∑ 𝑑𝑖𝑗 . 𝐴𝑖𝑗 . 𝐶𝑑

𝑣

𝑖=1

𝑣

𝑗=1

+ ∑ 𝑁𝑗 . 𝐶𝑣

𝑣

𝑗=1

                                                               (2) 

Subject to  

𝐴𝑖𝑗 ≤ 𝑃𝑗 ,                                              ∀𝑖. 𝑗 ∈ 𝑉,                                                             (2.1) 

∑ 𝑃𝑗
𝑣
𝑗=1 = 𝑛𝑐 ,                                                                                                                   (2.2) 

∑ 𝐴𝑖𝑗
𝑣
𝑗=1 = 1,                                                 ∀𝑖 ∈ 𝑉,                                                            (2.3) 

∑ 𝐴𝑖𝑗 . 𝐷𝑖
𝑣
𝑖=1 ≤ 𝑄𝐻𝑢𝑏 ,                                    ∀𝑗 ∈ 𝑉,                                                                 (2.4) 

∑ 𝐴𝑖𝑗 . 𝐷𝑖
𝑣
𝑖=1 ≤ 𝑁𝑗 ∗ 𝑄𝐿𝐸𝐹𝑉,                          ∀𝑗 ∈ 𝑉,                                                                 (2.5) 

𝐴𝑖𝑗 , 𝑃𝑗 ∈ [0,1],   𝑁𝑗 ∈ 𝑅,                              ∀𝑖, 𝑗 ∈ 𝑉,                                                              (2.6) 

The model aims to form customer clusters by finding the values of variables 𝑃𝑗 , 𝐴𝑖𝑗 and 𝑁𝑗   such that the 

objective function (2) is minimized. This objective function comprises of two cost components, (1) LEFV 

running costs between cluster centroids to assigned customer points, (2) The fixed cost associated with LEFV. 

Constraint (2.1) ensures that a customer is allocated to only a centroid customer. Constraint (2.2) ensures that 

the total number of centroids is equal to the input number of clusters 𝑛𝑐. Constraint (2.3) ensures that every 

customer is assigned to one centroid. Constraint (2.4) restricts the total demand of a cluster to no exceed 

beyond the micro hub's capacity. Constraint (2.5) ensures that enough LEFV trips required at each cluster are 

adequate based on payload capacity. Constraints (2.6) are binary and integer constraints for the variables.   

3.4.2.1.4 Parameterization of customer clusters. 

The optimal clusters thus obtained from the clustering model is parameterized before inputting them to the 

following model. Since centroids are unique to a customer cluster, every cluster formed by the above model 

is represented by their respective centroid 𝑗. These cluster centroids are enclosed in a customer subset  𝐶 ⊆

 𝑉 with a cardinality 𝑛𝑐. The list of parameters, as shown in . 

Table 3-8, is calculated for every cluster 𝑗 ∈  𝐶. The distance traveled by LEFVs is analytically approximated 

using the CA model by Figliozzi (2008). To use this approximation model, a minimum area rectangle (MAR) 

bounding the customer is first created to represent the service area of each cluster. Next, distance traveled 

by LEFVs is approximated by assuming that the customer points enclosed in a  cluster are uniformly distributed 

within their respective service area(MAR). 

Table 3-8: Parameters of a customer cluster. 

𝑵𝒋 Number of LEFV trips required to service the customer cluster 𝑗 

 𝑸𝒋 The total customer demand for cluster 𝑗 

𝑨𝒋 The area of minimum area rectangle (MAR) bounding all customers in cluster 𝑗 

𝑻𝒅𝒋 The approximate total distance traveled by 𝑁𝑗  LEFVs within the cluster 𝑗 

= 𝑘 ∗
 𝑛𝑗−𝑁𝑗

 𝑛𝑗
∗ √ 𝑛𝑗. 𝐴𝑗 (Value of local tour parameter is provided as input) 
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3.4.2.1.5 Working of the clustering model  

To demonstrate the working of the above clustering model, an example problem instance with nine customers 

is assumed to be solved by the above clustering model for 2 clusters. The problem and the plausible clustering 

solution is shown in Figure 3-8 for representation purposes only. It is evident from the output that the model 

picks customers 2 and 7 as the centroids and groups the other customers around them, such that the obtained 

clusters are compact and relatively balanced. The latter means that the LEFV trips are not making trips with 

very fewer packages. After cluster formation, each cluster is parameterized, as shown in Figure 3-9. 

 

Figure 3-8: Clustering model example input and output 

 

 

Figure 3-9: Parameterization of customer clusters 

3.4.2.2 Location and fleet size model; 

With parameterized clusters as inputs, Location and fleet size problem (LFP) must take the following decisions 

concurrently: (1) select location for a micro hub and its size (2) allocate every parameterized cluster to one of 

these activated micro hub locations, (3) determine LEFV fleet sizes at each activated micro hub location, (4) 

determine the routes of trucks in the first echelon. An integer programming model based on the 2E-LRP model 

of Crainic et al., (2011) and facility location and allocation model of Tragantalerngsak et al. (2000) is proposed 

to solve the above LFP. 

 

Two sets of binary decision variables are used to indicate which prospective micro hub location needs to be 

activated and which customer cluster should be allocated to each of these activated micro hub locations. The 
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size of the micro hubs can be obtained by defining multiple prospective micro hub locations with identical 

coordinates. In this way, a larger micro hub can be represented by multiple identical hubs being activated at 

the same place. Additionally, another set of integer variables is used to denotes the fleet size of LEFVs required 

at each micro hub. For simplicity, the value of these variables is aggregated as the quotient of total distance 

traveled by the LEFVs from micro hubs (in allocated clusters) and the driving range of LEFVs. Moreover, the 

proposed model also determines the optimal routes of the box trucks in the first echelon using another set of 

binary decision variables.  

3.4.2.2.1 Model Assumptions: 

The following assumption are underlying in the proposed model: 

• All micro hubs are homogeneous and have limited capacity.  

• The problem is static (demand of customers is deterministic). 

• All LEFV travel equal to their driving range limit. 

• The LEFV and box truck fleets are homogenous and capacitated.  

• The model has a single objective function minimizing the daily TLC. 

• No time windows included are included in the model. 

• The LEFVs are charged overnight at the micro hubs. 

3.4.2.2.2 Model Notation: 

The model is described using the notation summarised in Table 3-9, Table 3-10 and Table 3-11 

Table 3-9: LFP model sets and indices 

𝑪 Set of clusters obtained as outputs from the clustering model  

𝑽 ={0,1 … … . 𝑣}: index set of prospective micro hub locations where micro hub location 

at indexed at 0 denotes depot location. 

𝑷 ={1 … … . 𝑝}: index set of homogeneous box trucks 

𝒋 ⊆ 𝑪 

𝒉, 𝒍 ⊆ 𝑽 

𝒌 ⊆ 𝑷 

 

Table 3-10: LFP model Decision and intermediate variables 

𝑾𝒉 Binary decision variable denotes if a micro hub ℎ is activated 

𝑿𝒋𝒉 Binary intermediate variable denotes if a cluster 𝑗 is assigned to a micro hub location 

ℎ 

Mh Integer decision variable denoting LEFV fleet size at micro hub location ℎ  

𝒁𝒌𝒉𝒍 Binary decision variable denoting if a box truck 𝑘 is used to move bundled packages 

between micro hubs ℎ and 𝑙 , where ℎ ≠ 𝑙 

𝑫𝒉 Integer intermediate variable denoting total distance travelled by Mh LEFVs from 

micro hub ℎ to serve all clusters assigned to it 

𝑸𝒉
𝒉𝒖𝒃 Integer intermediate variable denoting the total demand of all customers assigned to 

micro hub ℎ 
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Table 3-11: LFP model parameters 

𝑭𝒉 The operating cost of a micro hub per day 

𝑪𝑳𝑬𝑽 The fixed cost of LEFV per day 

𝑪𝒅 The variable cost of LEFV  

𝑪𝑻 The utilization cost of the box truck (diesel /electric)  

𝑫𝒉𝒍 The distance between hubs ℎ and 𝑙  

𝒅𝒋𝒉 The distance between centroid point of cluster 𝑗 and micro hub ℎ 

BrLEV The battery range of LEFV  

𝑸𝑯𝒖𝒃 The capacity of the micro hub  

𝑸𝟏 The payload capacity of the box truck (diesel /electric) 

𝑻𝒅𝒋 LEFV travel distances within customer cluster 𝑗  from clustering model  

𝑵𝒋 Number of LEFV trips required for each cluster 𝑗 from clustering model  

 𝑸𝒋 The Customer demand for cluster 𝑗 from clustering model 

 

3.4.2.2.3 Model formulation: 

Minimize: 

 ∑ 𝑾𝒉. 𝑭𝒉

𝒗

𝒉=𝟏

+ ∑ 𝑪𝑳𝑬𝑽. 𝑴𝒉

𝒗

𝒉=𝟏

+ ∑ 𝑪𝒅.

𝒗

𝒉=𝟏

𝑫𝒉 + ∑ ∑ ∑ 𝑪𝑻. 𝑫𝒉𝒍. 𝒁𝒌𝒉𝒍

𝒗

𝒍=𝟎 𝒉≠𝒍

𝒗

𝒉=𝟎

𝒑

𝒌=𝟏

− ∑ 𝑪𝑻. 𝟐. 𝑫𝟎𝒍

𝒗

𝒍=𝟏

. |𝑾𝒍 − 𝟏|       (3.1) 

 

 

 

Subject to  

• 𝑋𝑗ℎ ≤ 𝑊ℎ                                                                   ∀𝑗 ∈ 𝐶 , ℎ ∈ V \ {0}                                (3.2)                            

• ∑ 𝑋𝑗ℎ
𝑣
ℎ =1 = 1                                                   ∀ 𝑗 ∈ 𝐶                                           (3.3)                               

• 𝐷ℎ = ∑ 𝑋𝑗ℎ . [ 𝑇𝑑𝑗𝑗∈𝐶 + 2( 𝑑𝑗ℎ . 𝑁𝑗) ]           ∀  ℎ ∈ V \ {0}                                  (3.4)                              

• 𝑀ℎ . 𝐵𝑟𝐿𝐸𝑉  ≥  𝐷ℎ                                                ∀  ℎ ∈  𝑉 \ {0}                (3.5)                           

• 𝑄ℎ
ℎ𝑢𝑏 =  ∑ 𝑋𝑗ℎ . 𝑄𝑗𝑗∈𝐶                                       ∀ ℎ ∈  𝑉 \ {0}                (3.6)                             

• 𝑄ℎ
ℎ𝑢𝑏 ≤  𝑄ℎ𝑢𝑏                                                    ∀ ℎ ∈  𝑉 \ {0}                (3.7)                              

• ∑ ∑ 𝑍𝑘ℎ𝑙
𝑣
ℎ=0 ℎ≠𝑙

𝑝
𝑘=1 = 1                                   ∀ 𝑙 ∈ 𝑉 \ {0}                                (3.8)                                   

•  𝑍𝑘ℎ𝑙 ≤ 𝑊𝑙                                                           ∀ ℎ, 𝑙 ∈ 𝑉 \ {0}, ℎ ≠ 𝑙, 𝑘 ∈ 𝑃                             (3.9) 

• ∑ 𝑍𝑘0𝑙
𝑣
𝑙=1 = 1                                                    ∀ 𝑘 ∈ 𝑃                                      (3.10)                                 

• ∑ 𝑍𝑘ℎ𝑙
𝑢
ℎ=0 ℎ≠𝑙 = ∑ 𝑍𝑘𝑙ℎ

𝑢
ℎ=0 ℎ≠𝑙                       ∀ 𝑙 ∈ 𝑉, 𝑘 ∈ 𝑃              (3.11) 

• ∑ ∑ 𝑄𝑙
ℎ𝑢𝑏 . 𝑍𝑘ℎ𝑙

𝑢
𝑙=1 ℎ≠𝑙

𝑢
ℎ=0 ≤  𝑄1                    ∀ 𝑘 ∈ 𝑃                                  (3.12)                                      

• ∑ ∑ ∑ 𝑍𝑘ℎ𝑙𝑙∈𝑆 ℎ≠𝑙 ≤ℎ∈𝑆
𝑝
𝑘=1   |𝑆| − 1             ∀𝑆 ⊆ 𝑉 \ {0}                                                              (3.13) 

The objective function (3.1) represents that daily TLC. It comprises of three main cost components, the total 

daily fixed operating cost of micro hubs, total daily fixed and variable cost of LEFVs, and total utilization cost 

Total daily 

fixed cost of 

micro hubs  

Total daily 

fixed cost of 

LEFV 

Total variable 

transport 

cost of LEFV 

Total utilization cost of box 

trucks (costs for visiting 

activated & deactivated 

micro hubs) 

Box truck utilization costs for 

visiting only deactivated 

micro hubs 
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of box trucks in the first echelon of goods transport. For finding the total utilization costs of box trucks, the 

costs of unnecessary visits to deactivated micro hubs by the additional box trucks are invalidated. This 

approach is adopted to avoid nonlinear constraints and objective functions. Constraint (3.2) ensures that a 

customer cluster 𝑗 is assigned to micro hub location ℎ (𝑋𝑗ℎ=1) only if micro hub location ℎ is activated (𝑊ℎ =

1). Constraint (3.3) makes sure that every cluster is assigned to only one micro hub location. Constraints (3.4) 

and (3.5) ensures that, for each micro hub ℎ, the total battery range of 𝑀ℎ number of LEFVs is at the least 

equal to the total distance required to service customer clusters assigned it. Constraints (3.6) and (3.7) ensures 

the storage capacities of micro hubs are not violated. Constraint (3.8) is a flow constraint in the first echelon, 

which ensures that every micro hub (activated /deactivated) is visited by a box truck form either the depot or 

another micro hub. Constraints (3.9) will ensure that the box truck can serve multiple micro hubs on a trip only 

if they are activated. Constraints (3.10) ensures that every truck 𝑘 starts its trip from the depot. Constraint 

(3.11) guarantees that the number of box trucks arriving is equal to those leaving at every micro hub and 

depot. In this way, Constraints 3.8, 3.9, 3.10, and 3.11 make sure that the activated micro hubs are visited by 

a vehicle either from the depot or another activated micro hub whereas, deactivated micro hubs are visited 

by individual box truck from the depot. The costs of these dedicated routes to deactivated micro hubs from 

the depot are deducted from the total utilization cost of box trucks, as seen in the objective function. In this 

way, only the costs of utilizing box trucks for activated micro hubs are considered in TLC computation. 

Constraint (3.12) makes sure that the payload capacity of box trucks is not violated, and constraint (3.13) is a 

sub route elimination constraint for the first echelon. 

3.4.2.2.4 Solution procedure. 

To model the proposed approximate 2E-LRP corresponding to alternatives 3 and 4, the clustering problem and 

LFP for these two network alternatives are individually modeled using the above two formulations. The values 

for their model parameter are either assumed (for the number of customer clusters 𝑛𝑐) or derived based on 

the defined operating costs and constraints of functional elements (for LEFVs, micro hubs, and box trucks). 

Upon inputting these parameter values to their respective models, both these models are solved exactly but 

in a sequential manner. Firstly the clustering problem is solved using demand scenarios as input. Later, using 

outputs of the cluster model as inputs, the LFP model is solved to give the cost-optimal configurations and 

corresponding minimum TLCs for network alternatives 3 and 4. However, due to this sequential flow of data 

between the models, the value for the parameter 𝑛𝑐  inputted exogenously into the clustering model indirectly 

influences the outputs obtained from solving the LFP model. Simply put, the minimized TLC value and the 

corresponding cost-optimal network configurations obtained by solving the LFP model varies with the value 

of 𝑛𝑐  inputted into the clustering model. Therefore, it is possible that by changing the value of 𝑛𝑐 , the 

minimum  TLC can drop further and yield a better cost-optimal configuration.  

To take into account of this relationship, it is imperative to find ideal input values of the parameter 𝑛𝑐 from all 

its possible values to identify the best cost-optimal configuration that results in the lowest minimum TLC value. 

For this reason, a solution algorithm (as illustrated in Figure 3-10) is built to iteratively solve the above models 

(in the sequential order) for a range of input values of 𝑛𝑐. At the end of every iteration, the minimized TLC 

values obtained are plotted against input cluster number 𝑛𝑐. After all iterations of the solver algorithm are 

completed, the input value of 𝑛𝑐 which induced the lowest minimum TLC value is identified from this minimum 

TLC vs 𝑛𝑐 plot. The cost-optimal network configuration corresponding to this lowest minimum TLC value is 

recognized as the best cost-optimal configuration of the network, and the solution for the overall 

approximated 2E-LRP. This proposed solution method is a heuristic approach adopted instead of a complex 

bilevel optimization problem. Although the global optimum solution may not be found, a local optimum with 

a feasible network configuration can be determined with this approach. 
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Since the range of input values of 𝑛𝑐 is the equal to the number of customer points in the demand scenario, a 

large number of iterations can be carried out to explore all possible value of 𝑛𝑐 before finding the best cost-

optimal configuration. Consequently, the computational times will increase beyond reasonable levels, 

especially for realistic demand scenarios (>200 customers). Thus, the number of iterations can be reduced by 

narrowing down the range of input values of 𝑛𝑐. Small values of  𝑛𝑐 result in big customer clusters having a 

total demand more than the capacity of micro hubs is infeasible. Therefore, the values of the lower limit of  

𝑛𝑐 (𝑛𝑚𝑖𝑛 ) is calculated within the algorithm as the ratio between the number of customers in demand scenario 

to micro hub’s storage capacity.  On the other hand, large values of  𝑛𝑐  results in small clusters that have a 

total customer demand less than LEFV payload capacities, resulting in underutilized LEFVs and concomitant 

increase in TLC. Hence, the value of the max limit of 𝑛𝑐 denoted by 𝑛𝑚𝑎𝑥 must be predetermined based on 

the number of customers within the demand scenario and payload capacity of LEFVs utilized. 

 

Figure 3-10: Sequential iterative solution algorithm for approximated 2E-LR 

3.5 NETWORK PERFORMANCE COMPARISON  
The final step in the DST involves measuring and comparing the performance of network alternatives with 

each other using the thus obtained cost-optimal configurations. This step is crucial as it provides the required 

insights for changing from the current network to an urban transshipment network. The performance is 

measured using three broad categories of KPIs, namely economic, environmental, and operational KPIs. All 

the individual KPIs from these categories are elucidated in the following sections.  

3.5.1 Economic Performance: 

From an economic point of view, two KPIs are analyzed, daily TLC and the average cost per unit. The daily total 

logistics cost of a network alternative is equivalent to the minimum TLC corresponding to the cost-optimal 

configuration of networks. Whereas, the average cost per unit is estimated using the below formulae. 
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• 𝑻𝒉𝒆 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒄𝒐𝒔𝒕 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 =  
𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 𝑐𝑜𝑠𝑡 (𝑇𝐿𝐶 )

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑  
 

3.5.2 Environmental Performance:  

From an environmental perspective, network alternatives are compared based on the total Well-to- Wheel 

(WTW) CO2 emissions from freight vehicles. This KPI involves two sub-components, Well-to-Tank (WTT), and 

Tank- to-wheel (TTW) emissions. The former accounts for the CO2 emissions discharged during the production 

of fuel or electricity, whereas the latter includes tailpipe discharge from vehicle fleets. The following set of 

formulas are used to measure the value of total WTW CO2 emissions: 

• 𝑻𝒐𝒕𝒂𝒍 𝑾𝑻𝑾 𝑪𝑶𝟐 𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑇𝑇 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑚𝑜𝑑𝑒𝑠 +

                                                                𝑇𝑜𝑡𝑎𝑙 𝑇𝑇𝑊 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑚𝑜𝑑𝑒𝑠   

 

Where, 

 

- 𝑊𝑇𝑇 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 ×

                                                                                      𝑉𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×

                                                            𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  

 

- 𝑇𝑇𝑊 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 =   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 ×

                                                                                       𝑉𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×

                                                               𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

 

For the above formulas, Total distance traveled per vehicle mode is obtained as outputs from network 

optimization models. Values for vehicles' energy consumption is equivalent to fuel or energy consumption of 

diesel and electric vehicles used in network alternatives (from defined vehicle specifications). Whereas, the 

average values for CO2 emissions per liter of diesel and kWh of electricity produced or consumed must be 

inputted exogenously by the LSP. 

Additionally, from an environmental perspective, It is essential to check if an LSP would consider shifting from 

the conventional network alternatives with diesel vehicles to sustainable network alternatives with electric 

vehicles. Therefore, a new qualitative KPI called the likelihood of adoption is defined to predict the chances of 

an LSP to adopt network alternatives 2, 3, and 4 from network alt 1. Considering that network alt 1 is the 

current network that uses diesel vans in LEZ, the likelihood of adoption is measured explicitly for network alt 

2, 3, and 4, which employ either LEFVs or electric box trucks. This KPI is measured based on two parameters, 

minimum LEZ penalty on diesel vans to shift from alternative 1 (MPDS) and the actual LEZ penalty as levied by 

the municipality.MPDS is determined using the outputs of the network optimization models, whereas actual 

LEZ is exogenously inputted based on the context. The formulas used to calculate the parameters and the KPI 

are shown below. 

• 𝐋𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 𝐨𝐟 𝐚𝐝𝐨𝐩𝐭𝐢𝐨𝐧 = HIGH,  if MPDS < actual LEZ penalty 

 

                                                       LOW,  if MPDS > actual LEZ penalty 

Where, 

 

- 𝑀𝑃𝐷𝑆 =
𝐷𝑎𝑖𝑙𝑦 𝑇𝐿𝐶−𝐷𝑎𝑖𝑙𝑦 𝑇𝐿𝐶 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑙𝑡 1

𝑇ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑣𝑎𝑛𝑠 𝑓𝑜𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑙𝑡 1 
 

Or 



Methodology 

36 
 

The values for Daily TLC and optimal fleet sizes of diesel vans for network alt 1 are obtained from the outputs 

of network optimization models. Whereas, the actual LEZ penalty is as an input parameter. 

3.5.3 Operational  Performance:  

Considering that time is very crucial in last-mile deliveries to LSP’s financial resources and customer 

satisfaction, two KPIs, namely total operation time and average service time per customer, are measured for 

network alternatives. Measuring these KPIs shows if a network requires more or reduced time to perform 

deliveries to customer locations compared to other network alternatives.  

• 𝑻𝒐𝒕𝒂𝒍 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 = 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒𝑠 +

                                                      𝑇𝑜𝑡𝑎𝑙 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒𝑠       
 

Where,                            

- 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 =
 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 
   

 

- 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 =  𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 +

                                                                        𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑚𝑖𝑐𝑟𝑜 ℎ𝑢𝑏𝑠 (𝐿𝐸𝐹𝑉 𝑜𝑟 𝑏𝑜𝑥 𝑡𝑟𝑢𝑐𝑘𝑠) 
 

• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐬𝐞𝐫𝐯𝐢𝐜𝐞 𝐭𝐢𝐦𝐞 𝐩𝐞𝐫 𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
           

For the above formulas, Distances traveled by the vehicles are obtained as outputs from network optimization 

models. Whereas, the values of the average speed of vehicles, delivery time per customer, and handling time 

at micro hubs for LEFVs or box trucks are exogenously specified based on the information collected from 

existing operations.  
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4 APPLICATION: 

The proposed DST is applied to a synthetic case in this chapter. The complete case is not described in this 

research. Instead, the sources of internal and external information required from the case for every process 

of the DST (see Figure 3-1)  is derived from an array of external information sources. The description of the 

information sources and their application in the DST is explained in the following sections  

4.1 GENERATION OF DEMAND SCENARIOS:  
Demand scenarios are generated using VRP benchmark instances previously proposed by OR scholars to mimic 

the service needs of an LSP on a typical weekday. These problem instances are used because they are designed 

to provide a balanced experimental setting for benchmarking the performance of VRP solution algorithms. 

Recently, Uchoa et al. (2017) created a set of problem instances containing a realistic distribution of points of 

deliveries (POD) for testing CVRP solution algorithms. From this set, three problem instances with 260, 500, 

and 950 PODs are specially selected, such that the density of PODs linearly increases across the instances. 

Meaning that the area in which PODs are enclosed remains the same, but the number of customer points 

increases nearly doubles (=1.9) across instances. Three different demand scenarios are created by 

representing every POD in these instances as individual customer points ( schematized in Figure 4-1). The 

reason behind choosing these demand scenarios in this study is to analyze how the performance of network 

alternatives change as the customer density within LEZ changes. 

 

Figure 4-1: Generated demand scenarios 

The additional assumptions that are considered in the above demand scenarios are listed below; 

 

• The service is limited only to package delivery. 

• Each customer point has a demand for one package. All parcels are assumed to be of the size 42L. The 

value is based on the average package size considered in Lee et al. (2019a). 

• The demands of all customers in the scenario are assumed to be fulfilled within one operational day. 

• The travel distance between any two points in the scenarios is measured in the Euclidian distance metric 

with each metric equivalent to 10 meters. This value is based on the estimated average distance per parcel 

in Clarke & Leonardi (2017). 

• A virtual square area encompassing all customer points is used to represent the LEZ in all three demand 

scenarios, as shown in Figure 4-1. The lengths of the square LEZ area are set as 10km and retained the 

same across all three demand scenarios. 
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• The location of the depot is fixed at 20km distance from the boundary of LEZ in all three scenarios. This 

length is based on the average distances between the depot and the first delivery stop in case studies used 

by Clarke & Leonardi (2017). 

4.2 PROSPECTIVE MICRO HUB LOCATIONS IN DEMAND SCENARIO: 
For network alternative types 3 and 4, prospective locations where micro hubs can be established must be 

specified alongside customer points in the demand scenario. From these locations, the proposed solver 

algorithm then activates the locations of the micro hubs. Six arbitrary sites on the periphery of the LEZ are 

selected to serve as prospective micro hub locations for alternative type 3. These potential hub locations are 

retained the same across all demand scenario. On the other hand, the six random sites from dense regions are 

selected as prospective hub locations for network type 4. The potential sites of alternative 4 are unique to 

each demand scenario. The prospective hub locations for both alternatives 3 and 4 in each demand scenario 

are shown in Figure 4-2. 

 

Figure 4-2:Prospective micro hub locations in demand scenarios 

4.3 DEFINE OPERATING COSTS AND CONSTRAINTS OF FUNCTIONAL COMPONENTS  
To simulate realistic logistic network alternatives, the cargo vehicle variants analyzed within the Panteia’s total 

cost of ownership (TCO) model are selected for application within the network alternatives. The prices and 

specifications of these vehicles are extracted from the information database of the TCO model (refer appendix 

A). The operating costs and constraints are derived using the information, calculation procedures, and 

parameters available in this TCO model. Furthermore, the information relevant to micro hubs is obtained 

based on the results of the LEFV-LOGIC project (Ploos Van Amstel et al., 2018). All the derived values for the 

operating costs and specifications, along with the calculation procedures, are explained in Table 4-1.  
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Table 4-1 Operating costs and specifications of network elements 

Network 

components  

Costs and specifications of 

network elements 

Calculation procedures  

Diesel vans 

(for alt 1) 

 

•  Daily depreciation cost = 9.64 € 

 

• Daily labour costs/vehicle= 120 

€ 

 

• Running cost of the vehicle 

=0.18 €/km 

 

• The cargo capacity of the vehicle 

= 4200 L 

 

• The daily depreciation cost of a 

vehicle is calculated as 

 

{Acquisition costs - Resale price} /  

{ownership period * No. of working days 

in a year} 

 

Assuming,  

- No. of working days in a year =260 

days  

- Ownership period of vehicles = 8 

years 

- Acquisition costs of vehicle= 

{Purchasing price + insurance cost and 

road tax for the ownership period} 

- Resale price of the vehicle (end of 8 

years) = 19% of the purchasing price 

 

• The daily labour costs are given by: 

 

Hourly wage of vehicle operator * 

working hours/day   

 

Assuming,  

- Hourly wages of delivery van operator 

=15 €  

- Hourly wages of LEFV operator=12€ 

- Working hours/day for delivery van = 

8 hours 

- Working hours/day for LEFV= 6 hours  

 

• The running cost of vehicle is given by:  

 

{Vehicle mileage* Energy price} + 

Maintenance cost  

 

Assuming,  

- Energy price for all diesel-powered 

vehicles 

Battery 

electric vans 

(for alt 2) 

 

• Daily depreciation cost = 17.44€ 

 

• Daily labour costs/vehicle= 120 

€ 

 

• Running cost of the vehicle = 

0.08 € 

 

• The cargo capacity of the vehicle 

= 4200 L 

 

• Driving range = 145 km 

 

LEFV 

(for both alt 3 

and 4) 

 

• Daily depreciation cost = 4.26 € 

 

• Daily Labour costs/vehicle= 72 € 

 

• Running cost of the LEFV              

= 0.02 €/km 

 

• The cargo capacity of the vehicle 

= 850 L 

 

• Driving range = 70 km 
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Diesel box 

trucks 

(for alt 3) 

 

▪ Utilization cost = 0.87 €/km 

 

▪ The cargo capacity = 10800 L  

 

= 1.3 €/L (diesel price) 

- Energy price of electric vehicles 

include electricity price and a 

surcharge for charging infrastructure  

▪ Energy price of electric van/truck 

= 0.45 €/kWh (20kw charging) 

▪ Energy price of LEFV= 0.22 

€/kWh 

(3kw charging) 

 

• The utilization cost of a box truck is 

calculated as 

 

{Daily depreciation cost of box truck / 

average distance travelled} + the 

running cost of box truck + service cost  

 

Assuming,  

- Service cost = {Hourly wage of box 

truck operator * Average speed of box 

trucks} 

- The average distance travelled by box 

truck = 50 km 

- Hourly wages of box truck operator= 

15 €  

- The average speed of box truck = 40 

km/h 

  

 

Electric box 

trucks 

(for alt 4) 

 

▪ Utilization cost = 1.09 €/km 

 

▪ The cargo capacity = 10800 L  

 

Micro hub 

(for both alt 3 

and 4) 

 

▪ The daily operating cost of the 

micro hub (€) = 115 euros 

 

▪ The storage capacity of micro 

hub =8500 L 

 

• The daily operating cost of the micro hub 

is given by: 

The yearly cost of micro hub / No. of 

working days in a year  

Assuming,  

- The yearly cost of micro hub = 

30000 € (incl. rent and staff) 

- No. of working days in a year =260 

days 
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4.4 MODEL PARAMETER VALUES:  
For modeling the CVRP or approximated 2E-LRP corresponding to network alternatives, the values of the 

model parameters are estimated based on the above-defined operating costs and constraints of network 

elements(refer Table 4-1). Since both network alternatives, 1 and 2 are modeled into a CVRP model, values of 

their corresponding model parameters are listed together in Table 4-2. Parameter values for modeling 

approximated 2E-LRP model (clustering model and cluster allocation models) corresponding to network 

alternatives 3 and 4 are listed in Table 4-3. Furthermore, assumptions made for deriving model parameter 

values from operating costs and specifications of functional elements are specified for every model parameter. 

It should be noted that in the above models, all cargo vehicles and micro hubs are considered to be capacitated 

based on the volume of the package. The reason is that the size to weight ratio of the parcels in last-mile 

deliveries is usually considerably large (Lee et al., 2019a). 

Table 4-2:CVRP model parameters input values 

Model parameters Network alt 1 

(diesel vans) 

Network alt 2 

(battery-electric 

vans) 

Assumptions 

The fixed cost of the van per 

day (€) - 𝑪 

129.64 137.44 = Daily depreciation cost + Daily 

labour costs/vehicle 

The variable cost of a van 

(€/km)- 𝒄 

0.18 0.08 = Running cost of the vehicle  

 

The payload capacity of the 

van (packages)- 𝑸 

100 100 = The cargo capacity of the vehicle/ 

size of a package (42 L) 

Battery range limit of the 

electric van (km)- 𝑩𝒓𝒗𝒂𝒏 

N/A 145 = Driving range of a vehicle  

Distances between customer 

𝑖  and 𝑗 - 𝒅𝒊𝒋 

{Euclidean metric} * 10 

meters 

Based on the defined demand 

scenario  

 

Table 4-3: Approximated 2E-LRP model parameters 

Model parameters Network Alt 3 

(LEFV+ micro- 

hubs+ diesel 

box trucks) 

Network Alt 4 

(LEFV + micro- 

hubs+ electric 

box trucks) 

Assumption 

The variable cost of LEFV 

(€/km) -𝑪𝒅 

0.02 

 

0.02 

 

= Running cost of LEFV 

Fixed cost of a LEFV per trip -

𝑪𝑽 

76.26 76.26 = Daily depreciation cost of LEFV + 

Daily labour costs/LEFV  

The capacity of a micro hub-

 𝑸𝑯𝒖𝒃 

200 200 = The storage capacity of the 

micro hub/ size of a package (42 L) 

The payload capacity of 

LEFV- 𝑸𝑳𝑬𝑭𝑽 

20 20 = The cargo capacity of the 

vehicle/ size of a package (42 L) 

The operating cost of a 

micro hub per day (€)- 𝑭𝒉 

115 115 = The daily operating cost of the 

micro hub 

The fixed cost of LEFV per 

day (€/km)- 𝑪𝑳𝑬𝑽 

76.26 76.26 =Daily depreciation cost of LEFV + 

Daily labour costs/LEFV  
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The utilization cost of the 

box truck (€/km)-𝑪𝑻 

0.87 1.09 = Utilization cost of box trucks 

Battery range of LEFV (km)- 

BrLEV 

70 70 = the driving range of a LEFV 

The payload capacity of box 

truck (packages)-𝑸𝟏 

250 250 = The cargo capacity of the 

vehicle/ size of a package (42 L) 

Distances between hubs ℎ 

and 𝑙 (km)-𝑫𝒉𝒍 

{Euclidean metric} * 10 

meters 

Based on the assumption in the 

defined demand scenario (refer 

Section 4.1 ) Distances between cluster 

centroid 𝑗 and micro hub 

ℎ (km)- 𝑫𝒋𝒉 

Distances between customer 

𝑖  and 𝑗 - 𝒅𝒊𝒋 

Travel distances within 

customer cluster 𝑗  (km)-𝑻𝒅𝒋 

Outputs from the clustering 

model 

Based on the sequential flow of 

data in the approximated 2e-LRP 

model (refer section 3.4.2.2.4) Number of LEFV trips 

required for each cluster 𝑗-

𝑵𝒋 

The Customer demand for 

cluster 𝑗- 𝑸𝒋 

 

4.4.1 Specify the value of local tour parameter K in the CA model: 

CA-based model is utilized in the proposed approximate 2E-LRP to estimate the total distance traveled by 

LEFVs tours within a cluster. Like shown earlier in Section 3.4.2.1.4, The CA model used in the approximate 2e-

LRP model has the following terms: 

• local tour parameter k 

• Total distance approximation formulae  
𝑛−𝑁

𝑛
. √𝑛 ∗ 𝐴    

To solve the proposed approximate 2e-LRP model, the value of the local tour parameter k for the CA model 

must be specified as an input. However, the value of k is contingent on the spatial distribution of customer 

points in the demand scenario. Therefore, its value must be derived through linear regression for each of the 

above-generated demand scenarios.   

Regression analysis is performed by setting the total distance approximation term as a single explanatory 

variable, and the exact total distance traveled as the dependent variable. In every demand scenario, a 

collection of circular areas are created with the random customer as centers and with varying radius. For the 

customer pints within each of these circles, exact distances traveled by LEFVs originating from the center is 

determined. This exact distance is determined by formulating a CVRP for each of these circles and solving it 

exactly. In parallel, The approximate distance traveled by LEFV within these circles is determined using the CA 

model. The relationship between these two variables is analyzed by fitting a linear model to these observed 

set of values for travel distances. The intercept is considered zero as all LEFVs start trips from the center. 

Concurrently, the value of local tour parameter K can be obtained as the coefficient values. The values of K 

determined for each scenario are tabulated for the demand scenarios, as shown below in Table 4-4. 
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Table 4-4: Local tour parameter values 

Demand scenario Value of 'K' 

Demand scenario 1 -260 2.4 

Demand scenario 2 -500 2.5 

Demand scenario 3 -950 2.45 

 

4.4.2 Specify the maximum limits of the iterative solver algorithm 𝒏𝒎𝒂𝒙 

As discussed in Section 3.4.2.2.4, the upper limits to the input number of cluster of 𝑛𝑐 must be defined to limit 

the number of iteration in the solver algorithm. We consider the  value of 𝑛𝑚𝑎𝑥   equal to the ratio of the 

number of customers in the demand scenario 3 to half of  LEFV’s payload capacity. The reason is that demand 

scenario 3 has the largest number of customer points. Considering that LEFV can hold 20 packages and demand 

scenario 3 has 950 customers, the value of 𝑛𝑚𝑎𝑥 is equal to 95. This value of 𝑛𝑚𝑎𝑥 is kept the same across all 

three demand scenarios.  

4.4.3 Model implementation 

The CVRP model, as mentioned in SCVRP model implementation procedure 3.4.1.4, is implemented in Python 

3.8 and solved using Local solver. On the other hand, the approximated 2E-LRP model and the iterative 

solution algorithm is implemented in Python 3.8 and solved using GUROBI. The implementation of both these 

models is carried on a 1.8 GHz Intel Core i5 processor with  8 GB RAM. 

4.5 NETWORK PERFORMANCE COMPARISON 
As seen in Section 3.5, the measurement of environmental, operational KPIs requires few parameters values 

that should be defined by LSPs exogenously based on their business context. For the synthetic case study, 

these values have been assumed using relevant sources of information, as listed in Table 4-5.  

Table 4-5:Parameters for KPI calculation 

KPI category Parameter for KPI measurement  Values (sources of information) 

Environmental 

performance 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 

𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 

• 0.617 kg/litre (based on the energy 

conversion factor in BEIS, 2019) 

• 0.616 kg/kWh ( For electric vehicles 

based on average EU mix in European 

Association for Battery Electric 

Vehicles,2009) 

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 

𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 

• 2.67 kg/l (For diesel vehicles based on 

Soares, 2012) 

• 0 kg/kWh (For electric vehicles no 

tailpipe emissions) 

 
𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝐸𝑍 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

95 €  based on the average penalties 

stated by Dablanc & Montenon, (2015) 
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Operational 

Performance 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 

▪ Diesel/Electric vans– 18 Km/h (Balm 

et al., 2018) 

▪ LEFV – 12.5 km/h  (Balm et al., 2018) 

▪ Diesel /electric Box trucks– 38 km/h 

(Panteia TCO model) 

𝑇𝑖𝑚𝑒 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛  2 mins (Ballare & Lin, 2020) 

𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑚𝑖𝑐𝑟𝑜 ℎ𝑢𝑏𝑠 

• Handling time LEFV- 10 min (self-

assumption) 

• Handling time Box truck- 30 min 

(Ballare & Lin, 2020) 
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5 RESULTS AND INTERPRETATION: 

In this chapter, the evaluation of the case study results is performed. The outputs from the network 

optimization models are presented and discussed individually, followed by the validation of the approximation 

techniques employed within the proposed optimization model. Lastly, the performance comparison of 

network alternatives is discussed. 

5.1 NETWORK OPTIMIZATION RESULTS 
In this section, the outputs obtained from the CVRP and the approximated 2E-LRP models are discussed. 

Furthermore, outputs from the two sub-models within the approximated 2E-LRP are also presented and 

discussed.  

5.1.1 Solutions of CVRPs 

Figure 5-1 shows the cost-optimal fleet sizes of delivery vans (diesel and electric) used in network alt  1 and 2 

as obtained by solving their respective CVRPs for three different scenarios. It appears that the network alt 2 

requires one additional vehicle for fulfilling all demand scenarios when compared with network alt 1. This 

difference is primarily due to the limited driving range constraints of battery-electric vans in network alt 2. 

Furthermore, the TLC corresponding to the cost-optimal fleet size of network alt 1 and 2 are indicated in Table 

5-1. Due to the additional vehicles required in the fleet, TLC of network alt 2 increases compared to that of 

network alt 1. 

 

Figure 5-1: Optimal fleet sizes of delivery vans for network alt 1 and 2 

 

Table 5-1: Solutions of CVRP models for network alt 1 and 2 

Demand scenario 

Alternative 1 Alternative 2 

Fleet size 

(Diesel vans) 

TLC (€) Fleet size 

(Electric vans) 

TLC (€) 

Scenario 1 (260 customers) 3 451.4 4 584.3 

Scenario 2 (500 customers) 5 740.9 6 876.4 

Scenario 3(950 customers) 10 1457.5 11 1606.8 
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5.1.2 Solutions of approximated 2E-LRPs  

The cost-optimal configurations of network alt 3 and 4 obtained by solving their corresponding approximate 

2E-LRPs is discussed in this section. Firstly the outputs from the iterative solver algorithm and the overall 

solution of the approximate 2E-LRPs are presented. Next, the solutions of the subproblems integral to the 

approximate 2E-LRP are discussed. 

5.1.2.1 Outputs of the iterative solver algorithm: 

In the process of solving the approximated 2E-LRPs corresponding to network alternatives 3 and 4, the plots 

of minimum TLC vs. the number of clusters 𝑛𝑐 obtained as outputs of the iterative solver algorithm is shown 

in Figure 5-2 and Figure 5-3. It is evident from these plots that minimum TLC value initially decreases as the 

value of 𝑛𝑐 increases from its minimum (𝑛𝑚𝑖𝑛). However, after a certain point, increasing the 𝑛𝑐  causes a rise 

in the minimum TLC values. This raise in TLC  indicates that decreasing the size of customer clusters beyond a 

certain threshold will lead to underutilization of LEFV's payload capacity, and this way, resulting in more LEFV 

trips and higher costs.   

 

Figure 5-2:Minimum TLC vs. number of cluster plot for network alt 3 

 

Figure 5-3:Minimum TLC vs. Number of cluster plot for network alt 4 

Furthermore, there are visible peaks in the minimum TLC vs 𝑛𝑐 plots. These peaks are likely caused by the 

absence of a two-way interaction between two optimization subproblems in the solver algorithm. As the 

algorithm directly inputs the clustering problem solution into the LFP model, variations (from the optimum) 

to the clustering model outputs to improve the LFP solutions are not allowed. Consequently, for a few 

iterations in the solver algorithm,  the optimal solution obtained from the clustering algorithm is sub-optimal 

for the overall 2E-LRP.  

Figure 5-4 shows the number of activated micro hubs and LEFV fleets size in the best cost-optimal 

configurations of network alternatives 3 and 4 (resulting in the lowest minimum TLC) for all three demand 

scenarios. It is interesting to see the difference in the number of activated micro hub locations and LEFV fleet 

sizes between network alt 3 and 4. For demand scenarios 2 and 3, network alt 4 utilizes either less micro hubs 

or smaller LEFV fleet sizes compared to that of network alt 3. This difference indicates that when the customer 
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density is high within a LEZ, the proximity of micro hubs to customer points (locating the micro hubs inside LEZ 

makes) helps LEFVs to reach more customer points with fewer distances.  

 

Figure 5-4:LEFV fleet size and Micro hubs activated in the cost-optimal config of network alt 3 and 4 

5.1.2.2 Clustering problem solution   

As discussed in Section 3.4.2.2.4, in every iteration of the approximated 2E-LRP solver algorithm, the clustering 

problem is first solved using a linear programming model proposed in section 3.4.2.1. During the process of 

solving the 2E-LRP corresponding to network alt 3 for demand scenario 2, the minimum TLC vs. plot (as shown 

in Figure 5-2) reveals that the best cost-optimal configuration with lowest minimum TLC is obtained in the 

iteration with input cluster number 𝑛𝑐 equals to fourty-five. The clustering model outputs for this particular 

iteration are shown in Figure 5-5, and Figure 5-6. Figure 5-5 displays the customer points that are selected as 

the cluster centroids by the model. Regions with high customer density have relatively more clusters centroids 

compared to other regions, indicating that the model seeks to group customer points as close as possible to a 

cluster centroid. Furthermore, It can be observed that the chosen cluster centroids are separated from each 

other to the utmost level, indicating that the customers chosen as centroids are nearly in the middle of their 

corresponding clusters.  

 

Figure 5-5:Clustering model output for network alt 3 in demand scenario 2 



Results and interpretation: 

48 
 

The frequency distribution of the number of customers in a cluster (shown in  Figure 5-6) reveals that only five 

clusters have less than six customers, which shows that the underutilization of LEFV trips is minimal. The 

number of customers encompassed within each of these customer clusters is listed in appendix B. Similarly, 

the optimal cluster centroids for other network alternatives and demand scenarios are shown in Appendix C. 

 

Figure 5-6: Customer distribution in clusters 

5.1.2.3 Location and fleet size problem solution: 

Using the solution of the clustering problem, the LFP is solved in every iteration to obtain the cost-optimal 

configurations of network alt 3 and 4. Similar to the previous section, the solutions of the LFP that yields the 

best cost-optimal configuration of network alt 3 for demand scenario 2 is discussed in this section.Figure 5-7 

displays the locations of the micro hubs that are activated for operation and routes of the diesel box trucks (in 

the first echelon) to serve these activated micro hubs. It is important to note that the routes obtained in the 

first echelon from the model are likely to be much different from the real courses. The reason is that diesel 

box trucks are not allowed to enter the LEZ region. Nevertheless, the sequence of stops obtained from this 

model is still valid and can be later considered for estimating the actual routes. 

 

Figure 5-7:Activated micro hubs and first echelon routes in network alt 3 for demand scenario 2 
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Figure 5-8 shows the allocation of the customer clusters (obtained from clustering solution) to each of these 

activated micro hubs in the second echelon. Finally, in Table 5-2, the LEFV fleet sizes required at each of these 

activated micro hubs are listed. It is observed that four micro hubs are activated by the LFP model, although 

three micro hubs would suffice based on their capacity. This result is likely caused due to cost trade-off 

between increasing LEFV fleet size to reach out to more customer points or activating another micro hub 

location. Furthermore, the LEFV fleet sizes and the quantities assigned to each micro hub (as shown in Table 

5-2)  indicate that the LEFVs are performing multiple trips from the micro hubs in a day to exploit maximally 

the driving ranges offered by these vehicles. The locations of the activated micro hubs for alternatives 3 and 

4 in all the other demand scenarios are shown in Appendix D. 

 

Figure 5-8:Cluster allocation to activated micro hubs in network alt 3 for demand scenario 2 

 

Table 5-2: LRP model outputs of network alt 3 for demand scenario 2 

Prospective 

locations of 

micro hubs 

Activated 

(Yes/No) 

Quantities 

assigned 

(Packages) 

LEFV 

fleet size  

Distances 

traveled by the 

LEFV 

(800,1000) No 0 0 0 

(200,1000) Yes 177 3 204.70 

(0,600) Yes 130 2 125.33 

(0,200) No 0 0 0 

(1000,600) Yes 120 2 135.36 

(800,0) Yes 73 2 139.65 
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5.2 VALIDATION OF THE OUTPUTS FROM THE CA METHOD 
In this section, we aim to check the validity of the CA-based approach integral to the proposed approximated 

2E-LRP model. The CA approach, as discussed in 3.4.2, is used to find the distance traveled by the LEFVs and 

the concomitant LEFV fleet sizes required at every activated micro hub. Table 5-2 shows the LEFV fleet sizes 

required at each activated micro hubs in the best cost-optimal configuration of network alternative 3 in 

demand scenario 2. As seen in the previous section, these values are obtained through CA methods. Therefore, 

to validate the CA approach, CVRP models (used for finding the cost-optimal configuration of network 

alternatives 1 and 2) can be used to find the exact routes, travel distances, and fleet sizes of LEFVs at every 

micro hub. For the best cost-optimal configuration of network alternative 3 for demand scenario 2, the 

solutions of the CVRP for activated micro hubs are shown below in Table 5-3. Comparison of the CVRP results 

against that of the approximated 2E-LRP model shows that both models provide with the same estimates for 

LEFV fleet sizes. However, the latter model estimates slightly higher values for total LEFV travel distances 

(average 12 km). 

Table 5-3: CVRP results vs. approximated 2E-LRP results of network alt 3 for demand scenario 2 

Activated 

micro hubs  

CVRP  

Model outputs  

Approximated 2E-LRP 

Model outputs 

The difference in total 

distance traveled by 

LEFVs between CVRP 

and approximated  

2E-LRP (km) 

LEFV 

fleet size  

Total distance 

traveled by LEFVs 

(km) 

LEFV 

fleet size  

Total distance 

traveled by LEFVs 

 (km)  

(200,1000) 3 191.67 3 204.7 13.03 

(0,600) 2 112.54 2 125.33 12.79 

(1000,600) 2 126.78 2 135.36 8.58 

(800,0) 2 125.33 2 139.65 14.32 

The average difference in total distance traveled by LEFV (km) 12.18 

 

5.3 PERFORMANCE COMPARISON 
In this section, the comparison of KPIs between network alternatives is discussed. The results are plotted 

across all three demand scenarios from the case study to investigate how the KPI values change with customer 

density. Firstly, a comparison of economic KPIs, namely daily TLC and average logistics cost per unit, is 

discussed, followed by the comparison of WTW emissions of vehicle fleets is performed from an 

environmental perspective. Later, the comparison of operational KPIs is analyzed, and a summary of results is 

provided. 

5.3.1 Economic KPIs comparison  

In Figure 5-9, the value of the daily TLC corresponding to the cost-optimal configurations of network 

alternatives are compared with each other. Additionally, the breakdown of the daily TLC to its fixed and 

variable cost components is also indicated in this figure.  
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Figure 5-9:Daily TLC comparison between network alternatives 

To fulfill any of the demand scenarios in the synthetic case study, daily TLC for network alt 1 is much lesser 

compared to other network alternatives, followed by network alt 2, which remains second-best across all 

demand scenarios. This gap indicates that network alternatives with a single echelon distribution system 

(network alt 1 and 2) seem to outperform the two-echelon network alternatives 3 and 4. However, Figure 5-4 

shows that the average percentage increase in daily TLC for network alt 1 and 2 across demand scenarios is 

relatively higher compared to that of network alt 3 and 4. Doubling the customer density causes daily TLC for 

network alt 1 to increases on an average by 80%, whereas daily TLCs of network alt 3 and 4 increase by a value 

of 50 %. This difference implies that for a  demand scenario having a customer density higher than that of 

considered demand scenario 3, then it is likely that the network alt 3 and 4 will potentially compete with 

conventional single echelon networks. Additionally, comparison of daily TLC values between network alt 3 and 

4 shows that network alt 4 outperforms alt 3 in the other two scenarios. This result is expected as network alt 

4 requires either lesser micro hubs or LEFVs compared to network alt 3 to serve demand scenarios 2 and 3 

(see Section 5.1.2.3). 

Table 5-4: % increase in TLC for network alternatives between demand scenarios 

Last-mile delivery 

 networks 

% increase in TLC from 

demand scenario 1 to 2 

% increase in TLC from 

demand scenario 1 to 2 

Average % 

increase in TLC  

Network Alternative 1 0.64 0.96 0.80 

Network alternative 2 0.67 0.83 0.71 

Network Alternative 3 0.58 0.50 0.53 

Network alternative 4 0.49 0.48 0.48 

 

Furthermore, It is interesting to see that the average cost per unit for network alt 3 and 4 drops significantly 

across the demand scenarios (refer Figure 5-10). In demand scenario 1, the average cost per unit for network 

alt 3 and 4 is much higher than that of networks 1 and 2. However, this gap almost closes in the case of demand 
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scenario 3. Thus, the results indicate that customer density seems to have a direct effect on the economic 

performance of network alternatives. 

 

Figure 5-10:Average cost per unit vs. demand scenario for network alternatives 

5.3.2 Environmental performance  

Figure 5-11 compares, across all three demand scenarios, the total WTW CO2 emissions from the vehicle fleets 

between network alternatives. Additionally, the break down of the total WTW emissions to WTT and TTW 

emissions are also indicated in Figure 5-11. The diesel vehicles in network alt 1 increases the level of WTW 

emission levels as they produce a significantly high amount of TTW emissions. In contrast, the WTW emissions 

from their electric counterparts in network alt 2 are much lesser as they produce zero TTW emissions.  In the 

case of network alt 3, the TTW emissions from the box truck is a significant part of the WTW emissions, and 

replacing them with electric ones lowers the total WTW emissions drop as seen in the case of network alt 4. 

It essential to note that WTT emissions are lower when diesel vehicles are used, whereas the TTW emission 

level is significantly high.  

 

Figure 5-11:Total WTW CO2 emissions from vehicles 
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Table 5-5 shows the results of the second environmental KPI- the likelihood of adoption. Alongside the results, 

The estimated minimum penalty on diesel van to shift from alternative 1 (MPDS) is shown, which is the basis 

of measuring the likelihood of adoption for network alternatives. In the case of demand scenario 1, The value 

of MPD for network alt 2 is always much lower than the penalty that the municipality is planning to issue for 

LEZ entry (95€.). Consequently, the likelihood of adopting network alt 2 is HIGH in all demand scenarios. In 

contrast, the likelihood of adoption for network alt 3 and 4 to serve demand scenarios 1 and 2  is LOW, because 

their corresponding MPD is higher than 95€. On the other hand, in the case of demand scenario 3, the 

likelihood of adoption for network alt 3 and 4 changes to HIGH. Thus, LSP in question can choose to shift from 

the existing network to either of these alternatives when customer density is high.  

Table 5-5:Likelihood of adoption for network alternatives 

Demand scenarios MPDS for network alt 2 

(likelihood of adoption) 

MPDS for network alt 3 

(likelihood of adoption) 

MPDS for network alt 4 

(likelihood of adoption) 

Demand scenario 1 44 € (HIGH) 122 € (LOW) 113 € (LOW) 

Demand scenario 2 27 € (HIGH) 106 € (LOW) 96 € (LOW) 

Demand scenario 3 14 € (HIGH) 46 € (HIGH) 36 € (HIGH) 

 

5.3.3 Operational performance  

As discussed in the section, the operational performance of network alternatives is compared based on the 

two KPIs, total operation times, and average service time per customer. Figure 5-12 compares the total 

operation times for all four network alternatives, along with break down to traveling time and handling time. 

It is evident that in all three demand scenarios, network alt 1 takes the lowest time to finish its operations. 

The handling time of network alt 2 remains the same as network alt 1, but the larger fleet sizes in the former 

cause a corresponding increase in the travel times. Even though LEFV is significantly fast on urban roads(refer 

Section 4.5), the additional time required for box truck fleets to unload at the micro hubs increases the total 

operation time. However, it is interesting to see that the vehicle travel time in alternative 4 is lesser compared 

to network alt 3 when serving demand scenario 3. The reason for this could be the proximity of micro hubs to 

customer points and the smaller LEFV fleet sizes (see Section 5.1.2.3).  

 

Figure 5-12:Total operation time for network alternatives 
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In Figure 5-13, the average service time per customer for network alternatives is plotted across the demand 

scenarios. Network alternatives 3 and 4 requires, on average, more time to serve a customer compared to 

network alternatives 1 and 2. However, this gap closes across demand scenarios. As the customer density 

increases across the demand scenarios, the rate at which this KPI drops is higher for alternatives 3 and 4 

compared to alternatives 1 and 2. Notably, the drop is significant for network alternative 4 compared to 3. In 

demand scenario 2, average service time per parcel is slightly lesser for network alt 3 compared to alt 4. 

However, for demand scenario 4, network alternative 4 costs considerably less than network alt 3.  

 

Figure 5-13:Average service time per customer for all network alternatives 

5.3.4 Summary of performance comparison 

The comparison of economic KPIs shows that the rate at which daily TLC of network alternatives 3 and 4 

increases with LEZ’s customer density is lower compared to that of network alternatives 1 and 2. 

Consequently, the average cost per unit also drops significantly for network alternatives 3 and 4 compared to 

network alternatives 1 and 2 as customer density increases. Both these results indicate that that conventional 

single echelon network alternatives cost compared to urban transshipment network hubs when customer 

density within LEZ is low. On the contrary, when the customer density is high, the urban transshipment 

networks can cost the same or lesser compared with conventional networks.  The results of operational KPI 

performance comparison are similar to the results of economic KPIs. Network alternatives 3 and 4 require high 

service times compared to network alternatives 1 and 2  when customer densities within LEZ are low.  

However, average service time per customer drops significantly for network alternatives 3 and 4 as customer 

density increases. Therefore the results of the average cost per unit and average service time per customer 

show that network alternatives with micro hubs and LEFV leverage economies of scale better compared to 

conventional single echelon network alternatives. Additionally, it is observed that network alternative 4 

performs better, both economically and operationally, compared to network alternative 3 provided the 

customer densities are high. 

The analysis of environmental KPIs showed that the network performed very low as they employ high polluting 

diesel vans. On the other hand, network alternatives 2 and 4 produced the lowest amount of WTW emissions. 

Notably, network alternative 4 performed the best among all four network alternatives, indicating that urban 

transshipment networks can result in lesser emissions than a single echelon network.  The analysis of the 

likelihood of adoption suggests that the possibility of LSP to change from existing network alternatives 3 and 

4 is low when customer density in LEZ is low, implying that network alternative 2 is likely to be adapted. 
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Nevertheless, taking account of the results of previous KPIs, network alternatives 3 and 4 may be chosen over 

network alt 2 to serve a LEZ with high customer density. The reason is that network alternatives 3 and 4 can 

leverage economies of scale better and perform either equally well from an environmental perspective.  
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6 DISCUSSION, CONCLUSIONS, AND LIMITATIONS 

In this chapter, the discussion and conclusion for the research are provided. Subsequently, limitations of the 

present research and opportunities for future research are explained. 

6.1 DISCUSSION 
This section firstly discusses the adopted methodology with a focus on the approach, models, and assumptions 

that are made. Later, the case study results are discussed.     

6.1.1 Methodology  

This research proposes a DST for LSPs to strategically evaluate the performance of urban transshipment 

networks with LEFVs for providing last-mile delivery service within a LEZ. The DST is proposed mainly due to 

two reasons. Firstly, ex-ante performance evaluation of new logistics networks is crucial as their adoption in 

real-life involves a significant commitment of LSP's resources over an extended period. Second, executing the 

process before any form of application (trials /pilots) is complex as the data required for performance 

measurement is not readily available to conduct analysis. In the latter context, network optimizations models 

are integrated into the proposed DST to derive the data required for measuring the performance of a network. 

Similarly, Amodeo et al. (2015) argue that network optimization models help in simulating the resulting 

distribution activity because it is logical for an LSP to adopt a cost-optimal network configuration. The network 

optimization models, used in the proposed DST, determines the network configurations that result in 

minimum TLCs. The proposed DST measures the performance of logistics networks based on their minimum 

TLC configurations. This assumption is in line with Rybakov (2017), where the author argues for designing a 

logistics network such that the TLC is optimized, rather than separate optimized logistics cost elements.  

Four different network alternatives are evaluated within the DST, whose structures are assumed to be 

generalized. Two network alternatives are based on single echelon distribution systems and homogeneous 

vehicle fleets. Whereas, the other two are urban transshipment network with micro hubs and homogeneous 

LEFV fleets. The LSP in question is assumed to be currently employing a network alternative with a single 

echelon distribution system with diesel vehicles for their last-mile delivery services. However, Janjevic et al. 

(2013) show that LSPs usually arrange their networks in several creative ways such as multi-echelon systems, 

urban consolidation centers, and mixed vehicle fleets. Additionally, a scenarios-based framework is adopted 

in the proposed DST to analyze multiple what-if situations.  

A set of two optimization models is used for determining cost-optimal network configurations of network 

alternatives. Standard CVRP models are used for single echelon network alternatives, while a new optimization 

model based on CA methods is proposed for urban transshipment type networks. The proposed model 

comprises of two interconnected sub-models, clustering problem and location and fleet size problem model. 

Solving the proposed model involves solving the two sub-models such that the output of the clustering model 

is input for location and fleet size problem. An iterative algorithm is developed to solve these two sub-models 

for a hierarchy of clusters for finding the best cost-optimal network configuration. The proposed model is 

offered as a substitute for the existing models as they combine two NP-hard problems and hard to apply in 

real-life contexts (Prodhon & Prins, 2014). Although the new model does not result in the precise data, it still 

provides a close approximate to the global optimum. The clustering-based model developed in this research 

is similar to the tour scheduling model recently developed by Chiara et al. (2020). This model firstly divides the 

given customer distribution into a hierarchy of disjoint clusters and then determines the fleet size of cargo 
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bikes or delivery vans to serve these clusters using a CVRP. Furthermore, similar to the proposed DST, this tour 

scheduling model was an integral part of a meta-framework that was operationalized by demand and 

operational scenarios. These operational scenarios are similar to the network alternatives used in this 

research. Finally, the performance of each network's performance is measured using the predefined KPIs, 

which demonstrate how a network alternative meets the goals of organizations involved in fast-moving 

consumer goods sectors. (Paddeu, D. 2016). 

The application of the DST on the synthetic case study has demonstrated the capability of this model to assist 

LSPs in evaluating the performance of the urban transshipment network. The proposed model can simulate 

closely the network configuration, which will be adopted by an LSP and to derive the quantitively the data 

adequate for its strategic performance evaluation. The model also is capable of solving large realistic problems 

with above 900 customer points without the need for sophisticated solving approaches. 

6.1.2 Results: 

It is essential to bear in mind that the case study results shown in the previous chapter do not represent the 

actual performances of the network alternatives. However, it shows how urban transshipment networks with 

electric vehicles compete against conventional single echelon networks in last-mile distribution. 

Form an economic standpoint, the performance comparison results show that network alt 1 with a single 

echelon distribution network and diesel delivery vans outperforms all other network alternatives in all three 

demand scenarios considered in the case study. Followed by network alt 1, network alt 2 with battery-electric 

vans and a single echelon distribution system, is visibly the next best economic option. On the other hand, 

two-echelon based urban transshipment networks with LEFVs are unable to compete, economically, with 

single echelon network alternatives for all demand scenario considered in the case study. Nevertheless, as 

customer density nearly doubles within the demand scenarios, the average cost per parcel for urban 

transshipment network alternatives drops significantly. Therefore, indicating that urban transshipment 

network with electric vehicles could outperform or match single echelon networks in case of the customer 

density within the LEZ is very high.  

The result, thus obtained, is in line with the study by Ballare & Lin, (2020), where the results showed that the 

performance of a crowd shipping powered micro hub network significantly increased with an increase in 

customer density. Similar to economic performance, the operational performance of urban transshipment 

networks with LEFV improved as customer density increased. The average delivery time per parcel of an urban 

transshipment network converges to that of a conventional network when customer density grows. The 

results of both economic and operational KPIs indicate that the urban transshipment network with LEFVs 

allows LSP to leverage economies of scale more efficiently than single echelon network alternatives. 

From an environmental perspective, the conventional network alternative results in the highest WTW 

emissions level as the fleet of diesel vehicles produce significantly high levels of TTW emissions. Compared to 

this alternative, the remaining three alternatives cause much lesser WTW emissions. More importantly, these 

TTW emissions negatively affect air quality in urban spaces but, TTW emissions from electric vehicles result in 

emissions far away from the city (close to the production). In this way, electric vehicles help to reduce the 

externalities of last-mile transport in urban areas. Notably, urban transshipment network with electric vehicles 

adopted at both echelons shows the highest potential in meeting with such urban transport sustainable goals. 

However, considering that LSP is more inclined towards their financial goals, the likelihood of LSPs to adopt 

an urban transshipment network from a conventional network for serving a LEZ with low customer density is 

faint. The reason is that excess costs required to incorporate these new networks are more than the costs 
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incurred in the form of penalties on diesel vehicle entry into LEZ. The LSP is likely to substitute the diesel vans 

with electric vans for such instances. On the contrary, the results show that the LEZ entry penalty encourages 

the adoption of the urban transshipment network if the density of customer points in LEZ is high. The results 

obtained are in line with the insights from expert interviews by Dablanc & Montenon (2015), which showed 

that the introduction of legal restrictions such as LEZ compels large LSPs to incorporate electric vehicles and 

private hub networks. 

Finally, the results highlighted the importance of locating the micro hubs close to the point of reception. By 

doing so, it was evident that urban transshipment networks perform better, economically, operationally, and 

environmentally. Similarly, Muñuzuri et al. (2012) highlighted the importance of centrally located micro hubs.  

All of this indicates that when considering an option to shift to an urban transshipment network, LSPs will 

consider locating the micro hubs inside the LEZ even though it is  required to use heavy electric freight vehicles 

in the first echelon.  

6.2 CONCLUSION  
Although several different factors influence the performance of a logistics network, this research has used 

operations research techniques to virtually evaluate new transshipment based networks for the last mile. In 

this section, we answer the sub-questions, followed by the final question.   

RQ1: What are the main criteria to evaluate the performance of the urban transshipment network 

from the perspective of a private logistics firm? 

Commonly, LSPs are private-owned companies seek to increase their profits, ensure customer satisfaction, 

and meeting with all the legal regulations. However, over recent years, the increased awareness about 

negative externalities and pressure form national organizations has forced LSP to establish sustainability goals. 

Therefore, accounting for all these goals, the present research has adopted KPIs from an economic, 

operational, and environmental perspective. Economic KPIs include total logistics cost, the average cost per 

unit, whereas operational KPI involves total operating times, and average service time per customer. 

Environmental KPIs involves the WTW CO2 emissions from vehicle fleets and the likelihood to shift from 

conventional high polluting networks to less polluting network alternatives.  

RQ2: What is the data or information required to evaluate the performance of this network? 

Two different data sets are required to evaluate the performance of urban transshipment networks. The first 

set of data includes all the exogenous information inputted into the DST, which includes the prices, 

specifications of vehicle fleets, and micro hubs used in network alternatives. Furthermore, the WTT and TTW 

CO2 emissions and average handling times per vehicle mode are also inputted exogenously to the DST. The 

exogenous data set can be accumulated through market research, previous studies or pilots, or from a 

consultancy company that has worked on similar projects (as in the case of this research). The second set of 

data must be obtained endogenously, which includes the cost-optimal network configurations and the 

distances traveled by the vehicle fleets. The cost-optimal configuration provides with size, locations, and the 

number of micro hubs and vehicles in the urban transshipment network.  

RQ3: What is the baseline for the performance evaluation of the urban transshipment network? 

In this research, a performance comparison between the urban transshipment network and other plausible 

network substitutes is drawn in parallel. The other networks used for comparison include single echelon 

distribution networks with diesel or electric vehicles, for which the set of data is accumulated or obtained 
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similar to that of an urban transshipment network. The performance of these networks acts as the baseline 

for evaluating the performance of urban transshipment networks.   

RQ4: What model can be used to get the data required for performance assessment? 

A set of two different optimization models is employed to obtain the minimum TLC configuration and distances 

traveled by vehicle fleets of network alternatives. CVRP model is used in the case of single echelon networks, 

while a new CA-based optimization model is employed for urban transshipment networks. The proposed CA-

based model constitutes two distinct, but interconnected sub-models called the clustering model and location 

routing model. The clustering model firstly determines the disjoint customer clusters and then approximates 

the distance traveled by vehicles within these clusters. Next, using the outputs of clustering models as inputs, 

the Location fleet size problem determines the minimum TLC configuration of the network.  

Main RQ: How to evaluate the performance of urban transshipment network with electric vehicles 

in low emission zone? 

This research proposes an optimization model-driven decision support tool to assist logistics service providers 

in evaluating the performance of urban transshipment networks with electric vehicles for their last-mile 

deliveries within a LEZ. The proposed tool can virtually replicate the configuration of the network that would 

be employed and the corresponding data about distribution activities. The tool has proved its capability to 

obtain reliable data that is required by LSP to check the effectiveness of urban transshipment networks 

towards achieving organizational goals.  

6.3 LIMITATIONS AND FUTURE WORK:  
Although last-mile delivery networks are the final phase of distribution of the supply chain involving the LSP 

and the customer, there are still several aspects that could be accounted to reproduce their distribution 

activities in reality. Incorporating all these aspects may not only complicate the process of developing the 

model but also impede understanding of the model for the logistics practitioners. Thus, the primary challenge 

of this research was to use analytical approximation methods to aggregate operational details such that 

strategic information could be derived easily. Therefore, allowing LSPs to test multiple input values without 

much complexity. However, opportunities to improve the proposed model and extending the DST are 

identified for future work. 

• Improvements to the iterative solution algorithm: As explained in Section 5.1.2.1, the solver 

algorithm proposed for solving the approximate 2E-LRP model was missing a dynamic improvement 

link between the clustering model and the LRP. This missing link caused the peaks in minimum TLC vs. 

the number of clusters 𝑛𝑐 plots. Therefore, the development of a new heuristic solution procedure 

integrated with this improvement link can result in a solution closer to the optimum global point.  

 

• Sophisticated approximation and optimization models: Extension to the CA model by Figliozzi (2008) 

was developed by Winkenbach et al. (2016), called as augmented routing cost estimation formula .This 

approximation formula accounts for different vehicle capacities, service times, and combined pickup 

and delivery routes. Thus, integrating this approximation method could estimate, precisely, the 

distances traveled by the LEFVs in last-mile delivery services. Furthermore, the integer linear LRP 

model can be extended to allow multiple product flow; heterogenous vehicles fleet both at the depot 

as well at micro hubs, customer delivery routes starting from micro hubs as well as the depot.  
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• Creative network alternatives: In the present research, only a single echelon or two-echelon 

distribution networks are considered. However, as turnover is a critical factor for economic 

performance of such networks, a third echelon can be added to the last-mile delivery network to 

bundle the deliveries together in an urban consolidation center. Evaluating the performance of such 

innovative schemes would require extending the approximated 2E-LRP model to cope with multiple 

echelons.  

 

• Extending the use of decision support framework:  Although the proposed DST is intended to assist 

private logistics firms, the DST can also be applied by public authorities to evaluate the impact of their 

LEZ polices on LSPs engaged in last-mile delivery services. The LEZ area and entry penalties can be 

varied across demand scenarios to predict the resulting network adaptations by a typical LSP. 

Furthermore, The DST can be integrated into an agent-based simulation to check how LSPs having 

different customer densities will change their operations if LEZ is introduced into their service regions. 
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APPENDIX  

A. PRICES AND SPECIFICATIONS OF CARGO VEHICLES USED IN NETWORK ALTERNATIVES: 

Type, features, 

specifications 

Diesel 

delivery van 

Battery Electric 

delivery van 

LEFV  Diesel 

box truck  

Electric box 

truck 

Vehicle type  Nissan NV200 Nissan eNV200 NA Sprinter  eSprinter  

Purchasing price  15652 € 34028 € 5200 € 22349 € 52000 € 

Insurance cost/ 

year  

610 € 1088 € 166 € 687 € 1664 € 

Road tax /year 312 € 0 0 312 € 0 

Vehicle mileage 0.12 L/km 0.153 kWh/km 0.06 kWh /km 0.14 L/km 0.31 kWh /km 

Maintenance cost 0.0205 €/km 0.0096 €/km 0.0048 €/km 0.0432 

€/km 

0.020 €/km 

Driving range  - 145 km 70 km - - 

Cargo capacity 4200 L 4200 L 850 L 10800 L 10800 L 
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B. CHARACTERISTICS OF CLUSTERS FOR NETWORK ALTERNATIVE 3 IN DEMAND SCENARIO 2 . 

 

 

 

 

  

Clusters centroids  𝑸𝒋  

(number of customers) 

 𝑵𝒋  

(number of LEFV trips) X coordinate Y coordinate 

326 818 11 1 

171 615 11 1 

538 428 10 1 

675 128 9 1 

768 660 9 1 

308 298 5 1 

38 76 4 1 

916 597 9 1 

175 386 9 1 

24 791 7 1 

139 270 7 1 

472 66 12 1 

763 327 9 1 

959 282 8 1 

529 231 6 1 

577 949 8 1 

327 985 5 1 

441 883 7 1 

934 42 8 1 

948 742 10 1 

371 447 6 1 

504 676 13 1 

227 60 7 1 

262 554 18 1 

433 330 8 1 

939 901 9 1 

284 656 15 1 

58 388 7 1 

118 496 18 1 

753 510 12 1 

591 648 13 1 

228 732 18 1 

121 722 20 1 

700 602 19 1 

576 520 12 1 

655 637 20 1 

168 777 15 1 

764 912 11 1 

601 803 10 1 

353 642 16 1 

467 625 19 1 

31 499 14 1 

372 727 20 1 

170 895 9 1 

31 623 7 1 
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C. CLUSTERING OUTPUTS FOR NETWORK ALTERNATIVE 3 AND 4 IN DEMAND SCENARIOS. 
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D. LRP MODEL OUTPUTS FOR NETWORK ALTERNATIVES 3 AND 4 WITH DEMAND SCENARIOS. 
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Abstract- Urban transshipment network is a transshipment solution for last-mile distribution in dense metropolitan regions. In this 

network, a set of micro hubs located in the urban areas are used for deconsolidating shipments and transferring them from high 

capacity vehicles to light freight vehicles that eventually deliver to customer locations. Due to the shorter distances between the micro 

hubs and final customers, these networks can be combined with light electric freight vehicles with limited driving ranges to deliver 

shipments from micro hubs networks. Thus, logistics service providers can potentially adopt these networks for complying with new 

low emission zone policies that restrict diesel cargo vehicles to enter dense urban regions. However, before deciding to adopt these 

new networks over existing conventional ones, it is imperative to assess the performance of these networks towards achieving overall 

business objectives. Although optimization models can be used for the evaluation process, the existing models that can be used for 

urban transshipment networks are computationally complex, causing their limited application to real-life contexts. Thus, this research 

presents a new continuous approximation-based model in the form of a support system for LSP to evaluate the performance of urban 

transshipment networks in a simpler aggregate manner. The application of the support system to a synthetic case study revealed that 

the model was able to provide a feasible solution that was adequate for strategic evaluation and performance of urban transshipment 

networks was contingent on the density of customer points in LEZ 

 

Index Terms- Transshipment networks, Micro hubs, light electric freight vehicles, low emission zones, performance evaluation 

 

I. INTRODUCTION 

ransshipment network is an existing practice in the logistics sector, in which goods are shipped to an intermediate logistics facility 

called a hub before transporting them to their final destination (Huber et al., 2015). The urban transshipment network is an 

adaption of the above logistic practice for last-mile distribution in dense metropolitan regions. In this network, a set of micro hubs 

located in the urban areas are used for deconsolidating shipments and transferring them from high capacity vehicles to light freight 

vehicles that deliver to customer locations (Merchan et al., 2016). The micro hubs are storage facilities but with a smaller physical 

footprint dedicated purely for mode shift. Due to the shorter distances between the micro hubs and final customers, these networks can 

be combined with light electric freight vehicles (LEFV) with limited driving ranges to deliver shipments from micro hubs (Quak, 

Nesterova, & Van Rooijen, 2016). Recently, municipalities are introducing low emission zone (LEZ) in high-density urban areas to 

limit access to diesel-powered cargo vehicles (Dablanc & Montenon, 2015). Consequently, logistics service providers (LSP) engaged 

in last-mile delivery services within these LEZs are compelled to change their existing logistics systems with diesel vehicles. Urban 

transshipment networks, combined with LEFVs, offer a potential solution for LSPs to perform uninterrupted operations in LEZ as 

LEFVs usually meet the entry requirements of LEZ. However, before deciding to adopt these new networks over existing 

conventional ones, private LSPs must assess the performance of these networks towards achieving their strategic business objectives 

(Gunasekaran et al., 2004). 

 

Performing the evaluation of a logistics network's performance prior any application is complicated because the configuration of the 

network which affects the overall distribution activity is not known. A configuration of an urban transshipment network is 

characterized by the size, location, numbers of micro hubs, and fleet sizes of the cargo vehicle fleets employed in the network 

(Merchan et al., 2016). However, it is apparent that the LSP would consider applying only that configuration which minimizes the 

costs to the firm (Rybakov, 2017). For this reason, network design optimization models play an essential role, as they can determine 

the cost-optimal configuration from all possible configurations and analytically reproduce the corresponding distribution activities  

(Amodeo et al., 2015). In the case of urban transshipment networks, finding cost-optimal configurations is complicated as it involves 

two interrelated decisions, micro hub location, and vehicle routing. Location routing problems (LRP) model is a specific type of 

T 



  

   

network design optimization model that is capable of coping with the interrelationship mentioned above to determine cost-optimal 

configurations of urban transshipment networks (Prodhon & Prins, 2014). Nevertheless, the existing LRP models are computationally 

complex, causing their limited application to real-life contexts (Cuda et al., 2015a). Parsimonious techniques like continuous 

approximation (CA) have shown to alleviate the complexity of these models, especially at the routing level, to provide near-optimal 

solutions for large scale problems (Ansari et al., 2018) 

 

This research presents a model-driven decision support tool (DST) that compares the performance of urban transshipment networks 

with other feasible networks for last-mile delivery services. The performance of the networks is analyzed based on their cost-optimal 

network configurations. Classic optimization models are adopted for determining cost-optimal configurations of conventional network 

types, while a new CA-based model is proposed for urban transshipment networks. The DST is presented as a sequential framework, 

which guides the LSPs to analyze the performance of urban transshipment networks for their last-mile operations. Finally, the 

proposed DST is applied to a synthetic case study to demonstrate its capabilities. 

II. BRIEF LITERATURE REVIEW ON LRP MODELS 

In operation research (OR), intermediate logistics facilities such as micro depots, are termed as 'hubs' in operations research. OR 

models that account for interdependencies between hub location and vehicle routing while finding the optimal network configuration 

are called as location routing problems (LRP) (Aykin, 1995). In contexts where goods flow occurs in two distinct echelons, such as the 

cases of urban logistics with micro hubs, the LRP is termed as a Two-Echelon LRP (2E-LRP) (Drexl & Schneider, 2015). The first 

echelon goods flow is between faraway storage depots to intermediate micro hubs, whereas the second echelon deals with goods 

delivery from micro hubs to customer locations. 2E-LRP aims at finding the locations for hubs among candidate locations and 

simultaneously determine the routes of the vehicle fleet at both echelons, such that the value of the objective function is either 

minimized or maximised (Crainic et al., 2010). 

 

 Boccia et al. (2010) formalized the 2E-LRP, and later, Crainic et al. (2011) proposed three multi integer formulations for the 2E-LRP 

and solved them using a commercial solver. The exact approach was capable of solving small instances consisting of not more than 25 

customers, and when used on more extensive problems, the solution gaps were as high as 25%. Contardo et al. (2012) proposed a two 

index multi integer linear 2E-LRP formulation that was strengthened by a family of inequalities. The authors developed a branch and 

cut algorithm to solve the model on CPLEX. This method could solve the problem with 50 customers and is recognized as the best in 

a class of exact methods for solving a 2E-LRP (Contardo et al., 2013). The inability to solve realistic large 2E-LRPs with exact 

methods is because these problems are NP-hard as it constitutes of two other NP-hard problems; facility location and vehicle routing 

problems (Cuda et al.,2015). 

 

Since exact methods alone are incapable of solving large 2E-LRPs, the majority of researchers have drawn focus to (meta-) heuristic 

methods. Boccia et al. (2010) proposed a tabu search method that decomposes the 2E-LRP problem into two subproblems: facility 

location problems (FLP) and vehicle routing problem (VRP) (at both the echelon). A similar approach was adopted by Gao et al. 

(2016), where they used K means clustering and Ant colony optimization for solving an FLP and VRP, respectively. Nugen et al. ( 

2012a, 2012b) propose two heuristic procedure greedy randomized adaptive search procedure (GRASP) and a multi-start iterated local 

search (MS-ILS). Contardo et al. (2012) proposed an adaptive large-neighborhood search (ALNS) meta-heuristic to find, in reasonable 

times, good quality solutions for instances with 200 customers.  However, in real-life applications, the size of LSP operating within an 

entire city corresponds to bigger problem instances than above. Notably, the routing aspect, which involves many small vehicles and 

hundred of customers per square kilometer, will render the corresponding 2E-LRP intractable (Cuda et al. 2015). 

 

Winkenbach et al. (2016), in cooperation with French PO- 'La Poste,' demonstrated a different approach to resolve a 2E-LRP model by 

using a continuous approximation (CA) techniques. The routing costing in the second echelon was approximated using route length 

estimation formulas instead of finding the explicit routes of vehicles in the second echelon through VRP  formulations. The authors 

argue for this method as routing decisions in operational levels play a secondary role as LRP is used for strategic network design. 

However, the approach ignores the spatial distribution of the customer points by dividing the entire problem instance equally to 

rectangular spaces with uniform distribution of customers. This assumption could result in more travel distances and consequently 

increase fleet sizes of electric vehicles, which have limited driving ranges. To our best knowledge, aside from Winkenbach et al., 

(2016), studies adopting CA approaches to solve 2E-LRP have not been conducted in the past. 



  

   

III.  METHODOLOGY  

This section explains the model-driven DST, based on the works of is developed to help LSPs virtually evaluate urban transshipment 

networks for their last-mile operations in the LEZ region. It consists of several distinguishable steps that guide the LSPs to evaluate, as 

presented in Figure 1. The required input data for each step in the DST is extracted from information sources either internally or 

externally available to the LSP. Upon clearly defining the current network and alternative networks, a set of optimization models 

determine their cost-optimal network configurations that fulfill the generated demand scenario with minimum TLC. These cost-

optimal configurations, later, serve as the basis for performance comparison between network alternatives. 

A. Demand scenario: 

The first step in DST deals with generating demand scenarios to reproduce either the current or future daily service needs of LSP 

inside a LEZ of interest. The demand scenario is created using the data on customers (demands and locations) located inside a LEZ on 

a typical working day. Alongside the spatial distribution of customers, the depot location is fixed in the demand scenario. 

B. Define Network alternative:  

The following step in the DST involves defining different logistics networks that alternatively can be adopted by the LSP to fulfill the 

above-defined scenario. These include the currently employed network as well as three other possible substitute networks that either 

use electric vehicles and transshipment facilities to deliver customers within the LEZ. The structures of these networks are generalized 

for the application of the DST, as shown in Table 1. Various types of functional elements are being employed in network alternatives. 

These elements include a range of cargo vehicles (diesel or electric vans, LEFVs, diesel or electric trucks), and micro transshipment 

facilities. Based upon the prices and specifications of all functional elements, the list of operating costs and constraints for each of 

these functional elements must be defined, as shown in Table 2.  

 
Table 1: Network alternatives 

Network alternative 1 Distribution strategy: Single echelon distribution system 

Vehicle fleet: Homogeneous diesel vans 

 
Network alternative 2 Distribution strategy: Single echelon distribution system 

Vehicle fleet: Homogeneous battery-electric cargo vans 

Vehicle charging strategy: overnight charging 

 
Network alternative 3 Distribution strategy: Two echelon distribution system  

Vehicle fleets: Homogeneous LEFVs and diesel box trucks 

Logistics facilities: Micro hubs  

Electric vehicle charging strategy: overnight charging 

 
Network alternative 4 Distribution strategy: Two echelon distribution system  

Vehicle fleets: Homogeneous LEFVs and Electric box trucks 

Logistics facilities: Micro hubs  

Electric vehicle charging strategy: overnight charging 

 

 
Table 2: Operating costs and constraints of network elements 

Functional elements Operating 

constraints 

Operating 

Costs 

Diesel vans - Cargo capacity Daily depreciation cost (incl. insurance, road tax) 

Daily labour costs/vehicle  

Running cost of the vehicle (incl. fuel costs, 

maintenance) 

Battery electric vans - Cargo capacity 

- Driving range 

 

Daily depreciation cost (incl. insurance, road tax) 

Daily labour costs/vehicle  

Running cost of the vehicle (incl. fuel costs, 

maintenance, surcharge for charging) 
LEFV 

Micro hub Storage capacity (L) Daily operating cost (€) (incl. rent and Staff) 

Diesel box trucks  - Payload capacity (L) Utilization cost (€/km) (incl.  depreciation, labour, 



  

   

 fuel) 

Electric box trucks - Payload capacity (L) 

- Driving range  

 

C. Network optimization module:  

A set of two different combinatorial optimization models is adopted for determining the cost-optimal configurations of network 

alternatives. Finding the cost-optimal configurations of the network alternative 1 and 2 implies determining fleet sizes of delivery vans 

that minimizes the TLC. A three-index flow formulation proposed by Baldacci et al. (2004) is employed to model alternatives 1 and 2 

into distinct CVRPs with TLC as the objective function. The model description and formulation not explained in the paper. Finding 

the cost-optimal configurations of network alternatives 3 and 4 implies determining the locations, numbers, and sizes of micro hubs 

and vehicle fleet sizes that will minimize the daily TLC and satisfy the demand scenario in question. a new CA-based two-step 

optimization method with daily TLC as the objective function is proposed as a substitute for the traditional 2E-LRP models. This 

model is henceforth called the approximated 2E-LRP model. The proposed method reduces the computational complexity by 

decomposing a single complex optimization problem into two relatively simpler optimization subproblems. The clustering problem is 

the first subproblem, which aims to create a set of compact customer clusters, Such that every customer point from the demand 

scenario is encompassed by one cluster. Upon forming these clusters, the distance traveled by LEFVs, total customer demand, and 

LEFV trips required are determined for each of these created clusters. Next, the location fleet size problem (LFP) involves allocating 

these parameterized clusters to a set of prospective micro hub locations and determining the fleet size of the vehicles in the network. A 

set of notations shown in Table 3:Clustering model notation is used in explaining the formulation of the clustering model as 

shown below, 

 

Table 3:Clustering model notation 

𝒊, 𝒋 ∈ {1 … … . 𝑣}: Set of customer points 

𝑷𝒋 Binary decision variable indicating if a customer 𝑗 is selected as a centroid point 

𝑨𝒊𝒋 Binary intermediate variable indicates if a customer 𝑖 is assigned to a centroid point 𝑗 

𝑵𝒋 Binary decision variable indicating the number of LEFVs trips required to service each cluster 𝑗 

𝒏𝒄 Number of clusters  

𝑪𝒅 The variable cost of LEFV  

𝑪𝒗 The fixed cost of LEFV per trip 

𝑸𝑯𝒖𝒃 The storage capacity of micro hub 

𝑸𝑳𝑬𝑭𝑽 The payload capacity of LEFV 

𝒅𝒊𝒋 Distances between customer 𝑖 and 𝑗 

 

Minimize  ∑ ∑ 𝒅𝒊𝒋. 𝑨𝒊𝒋. 𝑪𝒅𝒗
𝒊=𝟏

𝒗
𝒋=𝟏 + ∑ 𝑵𝒋. 𝑪𝒗𝒗

𝒋=𝟏                                                                             (2) 

Subject to  

𝐴𝑖𝑗 ≤ 𝑃𝑗 ,                                                         ∀𝑖. 𝑗 ∈ 𝑉,                                                             (2.1) 

∑ 𝑃𝑗
𝑣
𝑗=1 = 𝑛𝑐 ,                                                                                                                              (2.2) 

∑ 𝐴𝑖𝑗
𝑣
𝑗=1 = 1,                                                 ∀𝑖 ∈ 𝑉,                                                                    (2.3) 

∑ 𝐴𝑖𝑗 . 𝐷𝑖
𝑣
𝑖=1 ≤ 𝑄𝐻𝑢𝑏 ,                                    ∀𝑗 ∈ 𝑉,                                                                 (2.4) 

∑ 𝐴𝑖𝑗 . 𝐷𝑖
𝑣
𝑖=1 ≤ 𝑁𝑗 ∗ 𝑄𝐿𝐸𝐹𝑉 ,                          ∀𝑗 ∈ 𝑉,                                                                 (2.5) 

𝐴𝑖𝑗 , 𝑃𝑗 ∈ [0,1],   𝑁𝑗 ∈ 𝑅,                           ∀𝑖, 𝑗 ∈ 𝑉,                                                               (2.6) 

 

The model aims to form customer clusters by finding the values of variables 𝑃𝑗 , 𝐴𝑖𝑗  and 𝑁𝑗 such that the objective function (2) is 

minimized. Constraint (2.1) ensures that a customer is allocated to only a centroid customer. Constraint (2.2) ensures that the total 

number of centroids is equal to the input number of clusters 𝑛𝑐. Constraint (2.3) ensures that every customer is assigned to one 

centroid. Constraint (2.4) restricts the total demand of a cluster to no exceed beyond the micro hub's capacity. Constraint (2.5) ensures 

that enough LEFV trips required at each cluster are adequate based on payload capacity. Constraints (2.6) are binary and integer 

constraints for the variables. The optimal clusters thus obtained from the clustering model is parameterized before inputting them to 



  

   

the next model. Since the centroid is unique to a customer cluster, Each cluster is represented by their respective centroid 𝑗 an 

enclosed in a set 𝐶 ⊆  𝑉 with a cardinality 𝑛𝑐. A list of parameters is calculated for every cluster 𝑗 ∈  𝐶, as shown in Table 2. 

 
Table 4: Parameterization of optimum clusters 

𝑵𝒋 Number of LEFV trips required to service the customer cluster 𝑗 

 𝑸𝒋 The total customer demand for cluster 𝑗 

𝑨𝒋 The area of minimum area rectangle (MAR) bounding all customers in cluster 𝑗 

𝑻𝒅𝒋 The approximate total distance travelled by 𝑁𝑗 LEFVs within the cluster 𝑗 

= 𝑘 ∗
 𝑛𝑗−𝑁𝑗

 𝑛𝑗
∗ √ 𝑛𝑗 . 𝐴𝑗 (k is the local tour parameter given as input) 

 

With the parameterized clusters as inputs, the LFP must take the following decisions concurrently: (1) select location for a micro hub 

and its size (2) allocate every parameterized cluster to one of these activated micro hub locations, (3) determine LEFV fleet sizes at 

each activated micro hub location, (4) determine the routes of trucks in the first echelon. An integer programming model based on the 

2E-LRP model of Crainic et al., (2011) and facility location and allocation model of Tragantalerngsak et al. (2000) is proposed to 

solve the above LFP. A set of notations shown in Table 5: LRP model notation is used in explaining the formulation of the 

clustering model as shown below, 

 

Table 5: LRP model notation 

𝑪 ⊆ {1 … … . 𝑗}: cluster set from clustering model  

𝑼 {1 … … . ℎ/𝑙}: set of prospective micro hub locations 

𝑷 {1 … … . 𝑘}: set of homogeneous box trucks 

𝑾𝒉 Binary decision variable denotes if a micro hub ℎ is activated 

𝑿𝒋𝒉 Binary intermediate variable denotes if a cluster 𝑗 is assigned to a micro hub location ℎ 

Mh Integer decision variable denoting LEFV fleet size at micro hub location ℎ  

𝒁𝒌𝒉𝒍 Binary decision variable denoting if a box truck 𝑘 is used to move bundled packages between micro hubs ℎ and 𝑙 , 

where ℎ ≠ 𝑙 

𝑫𝒉 Integer intermediate variable denoting total distance travelled by Mh LEFVs from micro hub ℎ to serve all clusters 

assigned to it 

𝑸𝒉
𝒉𝒖𝒃 Integer intermediate variable denoting the total demand of all customers assigned to micro hub ℎ 

𝑭𝒉 The operating cost of a micro hub per day 

𝑪𝑳𝑬𝑽 The fixed cost of LEFV per day 

𝑪𝒅 The variable cost of LEFV  

𝑪𝑻 The utilization cost of the box truck (ICE /electric)  

𝑫𝒉𝒍 The distance between hubs ℎ and 𝑙  

𝒅𝒋𝒉 The distance between centroid point of cluster 𝑗 and micro hub ℎ 

B.RLEV The battery range of LEFV  

𝑸𝑯𝒖𝒃 The capacity of the micro hub  

𝑸𝟏 The payload capacity of the box truck (ICE /electric) 

𝑻𝒅𝒋 LEFV travel distances within customer cluster 𝑗  from clustering model  

𝑵𝒋 Number of LEFV trips required for each cluster 𝑗 from clustering model  

 𝑸𝒋 The Customer demand for cluster 𝑗 from clustering model 

 



  

   

 
Minimize: 

  ∑ 𝑾𝒉. 𝑭𝒉𝒗
𝒉=𝟏 +  ∑ 𝑪𝑳𝑬𝑽. 𝑴𝒉

𝒗
𝒉=𝟏 + ∑ 𝑪𝒅.𝒗

𝒉=𝟏 𝑫𝒉 + ∑ ∑ ∑ 𝑪𝑻. 𝑫𝒉𝒍. 𝒁𝒌𝒉𝒍
𝒗
𝒍=𝟎 𝒉≠𝒍

𝒗
𝒉=𝟎

𝒑
𝒌=𝟏 − ∑ 𝑪𝑻. 𝟐. 𝑫𝟎𝒍

𝒗
𝒍=𝟏 . |𝑾𝒍 − 𝟏|    (3) 

 

• 𝑋𝑗ℎ ≤ 𝑊ℎ                                                                  ∀𝑗 ∈ 𝐶 , ℎ ∈ V \ {0}                                (3.2)                            

• ∑ 𝑋𝑗ℎ
𝑣
ℎ =1 = 1                                                   ∀ 𝑗 ∈ 𝐶                          (3.3)                               

• 𝐷ℎ = ∑ 𝑋𝑗ℎ. [ 𝑇𝑑𝑗𝑗∈𝐶 + 2( 𝑑𝑗ℎ. 𝑁𝑗) ]           ∀  ℎ ∈ V \ {0}                 (3.4)                              

• 𝑀ℎ. 𝐵𝑟𝐿𝐸𝑉  ≥  𝐷ℎ                                                 ∀  ℎ ∈  𝑉 \ {0}                (3.5)                           

• 𝑄ℎ
ℎ𝑢𝑏 =  ∑ 𝑋𝑗ℎ. 𝑄𝑗𝑗∈𝐶                                       ∀ ℎ ∈  𝑉 \ {0}                (3.6)                             

• 𝑄ℎ
ℎ𝑢𝑏 ≤  𝑄ℎ𝑢𝑏                                                     ∀ ℎ ∈  𝑉 \ {0}                (3.7)                              

• ∑ ∑ 𝑍𝑘ℎ𝑙
𝑣
ℎ=0 ℎ≠𝑙

𝑝
𝑘=1 = 1                                   ∀ 𝑙 ∈ 𝑉 \ {0}                 (3.8)                                   

•  𝑍𝑘ℎ𝑙 ≤ 𝑊𝑙                                                           ∀ ℎ, 𝑙 ∈ 𝑉 \ {0}, ℎ ≠ 𝑙, 𝑘 ∈ 𝑃                             (3.9) 

• ∑ 𝑍𝑘0𝑙
𝑣
𝑙=1 = 1                                                    ∀ 𝑘 ∈ 𝑃                       (3.10)                                 

• ∑ 𝑍𝑘ℎ𝑙
𝑢
ℎ=0 ℎ≠𝑙 = ∑ 𝑍𝑘𝑙ℎ

𝑢
ℎ=0 ℎ≠𝑙                       ∀ 𝑙 ∈ 𝑉, 𝑘 ∈ 𝑃              (3.11) 

• ∑ ∑ 𝑄𝑙
ℎ𝑢𝑏 . 𝑍𝑘ℎ𝑙

𝑢
𝑙=1 ℎ≠𝑙

𝑢
ℎ=0 ≤  𝑄1                    ∀ 𝑘 ∈ 𝑃                                   (3.12)                                      

• ∑ ∑ ∑ 𝑍𝑘ℎ𝑙𝑙∈𝑆 ℎ≠𝑙 ≤ℎ∈𝑆
𝑝
𝑘=1   |𝑆| − 1             ∀𝑆 ⊆ 𝑉 \ {0}                                                                (3.13) 

 

The objective function (3.1) represents that daily TLC. It comprises of three main cost components, the total daily fixed operating cost 

of micro hubs, total daily fixed and variable cost of LEFVs, and total utilization cost of box trucks in the first echelon of goods 

transport. For finding the total utilization costs of box trucks, the costs of unnecessary visits to deactivated micro hubs by the 

additional box trucks are invalidated. This approach is adopted to avoid nonlinear constraints and objective functions. Constraint (3.2) 

ensures that a customer cluster j is assigned to micro hub location h (X_jh=1) only if micro hub location h is activated (W_h=1). 

Constraint (3.3) makes sure that every cluster is assigned to only one micro hub location. Constraints (3.4) and (3.5) ensures that, for 

each micro hub h, the total battery range of M_h number of LEFVs is at the least equal to the total distance required to service 

customer clusters assigned it. Constraints (3.6) and (3.7) ensures the storage capacities of micro hubs are not violated. Constraint (3.8) 

is a flow constraint in the first echelon, which ensures that every micro hub (activated /deactivated) is visited by a box truck form 

either the depot or another micro hub. Constraints (3.9) will ensure that the box truck can serve multiple micro hubs on a trip only if 

they are activated. Constraints (3.10) ensures that every truck k starts its trip from the depot. Constraint (3.11) guarantees that the 

number of box trucks arriving is equal to those leaving at every micro hub and depot. In this way, Constraints 3.8, 3.9, 3.10, and 3.11 

make sure that the activated micro hubs are visited by a vehicle either from the depot or another activated micro hub whereas, 

deactivated micro hubs are visited by individual box truck from the depot. The costs of these dedicated routes to deactivated micro 

hubs from the depot are deducted from the total utilization cost of box trucks, as seen in the objective function. In this way, only the 

costs of utilizing box trucks for activated micro hubs are considered in TLC computation. Constraint (3.12) makes sure that the 

payload capacity of box trucks is not violated, and constraint (3.13) is a sub route elimination constraint for the first echelon. 

 

To model the proposed approximate 2E-LRP corresponding to alternatives 3 and 4, both the clustering problem and the location and 

fleet problem related to these network alternatives must be individually modeled using the formulations shown above. The values of 

the model parameter values are either be assumed (for the number of clusters 𝑛𝑐) or derived based on the defined operating costs and 

constraints of functional elements (LEFVs, micro hubs, and box trucks). However, due to this sequential data flow between the 

models, the value for the number of clusters 𝑛𝑐  inputted exogenously in the clustering model indirectly influences the outputs of the 

location and fleet size model. Thus, it is essential to find the ideal input values of the parameter 𝑛𝑐. For this reason, a solution 

algorithm (as illustrated in Error! Reference source not found.) is built to iteratively solve the above models (in the sequential order) 

for a range of input values of 𝑛𝑐. 



  

   

 
Figure 1:Iterative sequential algorithm 

D. Network performance  

The network's performance is measured using KPI, which can be classified into four categories, namely economic, environmental, 

operational KPIs. All the different KPIs with which the network's performance is analyzed are explained in the following sections. 

From an economic point of view, two KPIs are analyzed; namely, daily TLC and the average cost per parcel, the daily total logistics 

cost of a network alternative is equivalent to the minimized value of TLC corresponding to the cost-optimal configuration of networks. 

Whereas, the average cost per parcel is estimated using the below formulae: 

 

• 𝑻𝒉𝒆 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒄𝒐𝒔𝒕 𝒑𝒆𝒓 𝒖𝒏𝒊𝒕 𝒅𝒆𝒍𝒊𝒗𝒆𝒓𝒆𝒅 =  
𝑑𝑎𝑖𝑙𝑦 𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 𝑐𝑜𝑠𝑡 (𝑇𝐿𝐶 )

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑐𝑒𝑙𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑  
 

From an environmental perspective, network alternatives are compared based on the total Well-to- Wheel (WTW) CO2 emissions 

from freight vehicles. This KPI involves two sub-components, Well-to-Tank (WTT), and Tank- to-wheel (TTW) emissions. The 

former accounts for the CO2 emissions discharged during the production of fuel or electricity, whereas the latter includes tailpipe 

discharge from vehicle fleets. The following set of formulas are used to measure the value of total WTW CO2 emissions: 

 

• 𝑻𝒐𝒕𝒂𝒍 𝑾𝑻𝑾 𝑪𝑶𝟐 𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔 = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑇𝑇 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑚𝑜𝑑𝑒𝑠 +

                                                                𝑇𝑜𝑡𝑎𝑙 𝑇𝑇𝑊 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑚𝑜𝑑𝑒𝑠   

 

Where, 

 

- 𝑊𝑇𝑇 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 ×

                                                                                      𝑉𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×

                                                            𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑟𝑒 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  

 

- 𝑇𝑇𝑊 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 =   𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 ×

                                                                                       𝑉𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×

                                                               𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑒𝑟 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑜𝑟 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

 

For the above formulas, Total distance traveled per vehicle mode is obtained as outputs from network optimization models. Values for 

vehicles' energy consumption is equivalent to fuel or energy consumption of diesel and electric vehicles used in network alternatives 

(from defined vehicle specifications). Whereas, the average values for CO2 emissions per liter of diesel and kWh of electricity 

produced or consumed must be inputted exogenously by the LSP.Additionally, from an environmental perspective, It is essential to 

check if an LSP would consider shifting from the conventional network alternatives with diesel vehicles to sustainable network 

alternatives with electric vehicles. Therefore, a new qualitative KPI called the likelihood of adoption is defined to predict the chances 

of an LSP to adopt network alternatives 2, 3, and 4 from network alt 1. Considering that network alt 1 is the current network that uses 



  

   

diesel vans in LEZ, the likelihood of adoption is measured explicitly for network alt 2, 3, and 4, which employ either LEFVs or 

electric box trucks. This KPI is measured based on two parameters, minimum LEZ penalty on diesel vans to shift from alternative 1 

(MPDS) and the actual LEZ penalty as levied by the municipality.MPDS is determined using the outputs of the network optimization 

models, whereas actual LEZ is exogenously inputted based on the context. The formulas used to calculate the parameters and the KPI 

are shown below. 

 

• 𝐋𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 𝐨𝐟 𝐚𝐝𝐨𝐩𝐭𝐢𝐨𝐧 = HIGH,  if MPDS < actual LEZ penalty 

 

                                                       LOW,  if MPDS > actual LEZ penalty 

Where, 

 

𝑀𝑃𝐷𝑆 =
𝐷𝑎𝑖𝑙𝑦 𝑇𝐿𝐶 − 𝐷𝑎𝑖𝑙𝑦 𝑇𝐿𝐶 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑙𝑡 1

𝑇ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑙𝑒𝑒𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑖𝑒𝑠𝑒𝑙 𝑣𝑎𝑛𝑠 𝑓𝑜𝑟 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑙𝑡 1 
 

 

The values for Daily TLC and optimal fleet sizes of diesel vans for network alt 1 are obtained from the outputs of network 

optimization models. Whereas, the actual LEZ penalty is as an input parameter. Considering that time is very crucial in last-mile 

deliveries, two KPIs, namely total operation time and average service time per customer, are used as KPI for measuring the 

performance of network alternatives. Measuring these KPI will show if these new networks would result in more or reduced time to 

perform deliveries to customer locations.  

 
• 𝑻𝒐𝒕𝒂𝒍 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆 𝒑𝒆𝒓 𝒅𝒂𝒚 = 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒𝑠 +

                                                                       𝑇𝑜𝑡𝑎𝑙 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒𝑠       

 

Where,                            

- 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 =
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 
   

 

- 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑚𝑜𝑑𝑒 =  𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 +

                                                         ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑚𝑖𝑐𝑟𝑜 ℎ𝑢𝑏𝑠  
 

• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐬𝐞𝐫𝐯𝐢𝐜𝐞 𝐭𝐢𝐦𝐞 𝐩𝐞𝐫 𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑑𝑎𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
           

To calculate the above formulas, Distances traveled by the vehicles are obtained as outputs from network optimization models. LSPs 

must exogenously specify the values of the average speed of vehicles, delivery time per customer, and Handling time at micro hubs 

for LEFVs and box trucks based on their business.  

APPLICATION 

A. Generated demand scenario 

Demand scenarios are generated using the set of VRP benchmark instances by Uchoa et al. (2017). From this set, three problem 

instances with 260, 500, and 950 PODs are specially selected, such that the density of PODs linearly increases across the instances. 

Meaning that the area in which PODs are enclosed remains the same, but the number of customer points increases nearly doubles 

(=1.9) across instances. Representing every POD in these instances as one customer points, three different demand scenarios are 

created, as shown in Fig 2. The service is limited only to package delivery and each customer point has a demand for one package. All 

parcels are assumed to be of the size 42L. The value is based on the average package size considered in Lee et al. (2019a).The 

demands of all customers in the scenario are assumed to be fulfilled within one operational day.The travel distance between any two 

points in the scenarios is measured in the Euclidian distance metric with each metric unit equivalent to 10 meters. This value is based 

on the estimated average distance per parcel in Clarke & Leonardi (2017). A virtual square area encompassing all customer points is 

used to represent the LEZ in all three demand scenarios, as shown in Error! Reference source not found.. The length of the LEZ 

area is set as 10km and retained  the same across the scenarios.The location of the depot is fixed at 20km distance from the boundary 

of LEZ in all three scenarios. This length is based on the average distances between the depot and the first delivery stop in case studies 

used by Clarke & Leonardi (2017). 

 



  

   

 
Figure 2: Generated demand scenario 

For network alternative types 3 and 4, prospective locations where micro hubs can be established must be specified alongside 

customer points in the demand scenario. From these locations, the proposed solver algorithm then activates the locations of the micro 

hubs. Six arbitrary sites on the periphery of the LEZ are selected to serve as prospective micro hub locations for alternative type 3. 

These potential hub locations are retained the same across all demand scenario. On the other hand, the six random sites from dense 

regions are selected as prospective hub locations for network type 4. 

B. Define operating cost and constraints of functional elements  

To simulate realistic urban logistic network, the cargo vehicle variants analyzed within the Panteia's total cost of ownership (TCO) 

model are selected for application within the network alternatives. The operating costs and constraints are derived using information 

database, calculation procedures and parameters adopted within the TCO model, as shown in Table 6. 

 
Table 6: Operating costs and constraints of functional elements in network alternatives 

Network 

components  

Costs and specifications of network 

elements 

Calculation procedures  

Diesel vans 

(for alt 1) 

 

•  Daily depreciation cost = 9.64 € 

• Daily labour costs/vehicle= 120 € 

• Running cost of the vehicle =0.18 

€/km 

• The cargo capacity of the vehicle = 

4200 L 

 

• The daily depreciation cost of a vehicle is calculated as 

 

{Acquisition costs - Resale price} /  

{ownership period * No. of working days in a year} 

 

Assuming,  

- No. of working days in a year =260 days  

- Ownership period of vehicles = 8 years 

- Acquisition costs of vehicle= 

{Purchasing price + insurance cost and road tax for the 

ownership period} 

- Resale price of the vehicle (end of 8 years) = 19% of the 

purchasing price 

 

• The daily labour costs are given by: 

 

Hourly wage of vehicle operator * working hours/day   

 

Assuming,  

- Hourly wages of delivery van operator 

=15 €  

- Hourly wages of LEFV operator=12€ 

- Working hours/day for delivery van = 8 hours 

- Working hours/day for LEFV= 6 hours  

 

Battery electric 

vans 

(for alt 2) 

 

• Daily depreciation cost = 17.44 € 

• Daily labour costs/vehicle= 120 € 

• Running cost of the vehicle = 0.08 

€ 

• The cargo capacity of the vehicle 

= 4200  

• Driving range = 145 km 

 

LEFV 

(for both alt 3 

and 4) 

 

• Daily depreciation cost = 4.26 € 

• Daily Labour costs/vehicle= 72 € 

• Running cost of the LEFV              = 

0.02 €/km 

• The cargo capacity of the vehicle 

= 850 L 

• Driving range = 70 km 



  

   

Diesel box 

trucks 

(for alt 3) 

 

▪ Utilization cost = 0.87 €/km 

▪ The cargo capacity = 10800 L  

• The running cost of vehicle is given by:  

 

{Vehicle mileage* Energy price} + Maintenance cost  

 

Assuming,  

- Energy price for all diesel-powered vehicles 

= 1.3 €/L (diesel price) 

- Energy price of electric vehicles include electricity price 

and a surcharge for charging infrastructure  

▪ Energy price of electric van/truck = 0.45 €/kWh 

(20kw charging) 

▪ Energy price of LEFV= 0.22 €/kWh 

(3kw charging) 

 

• The utilization cost of a box truck is calculated as 

 

{Daily depreciation cost of box truck / average distance 

travelled} + the running cost of box truck + service cost  

 

Assuming,  

- Service cost = {Hourly wage of box truck operator * 

Average speed of box trucks} 

- The average distance travelled by box truck = 50 km 

- Hourly wages of box truck operator= 15 €  

- The average speed of box truck = 40 km/h 

 

Electric box 

trucks 

(for alt 4) 

 

▪ Utilization cost = 1.09 €/km 

▪ The cargo capacity = 10800 L  

 

Micro hub 

(for both alt 3 

and 4) 

 

▪ The daily operating cost of the 

micro hub (€) = 115 euros 

▪ The storage capacity of micro hub 

=8500 L 

 

• The daily operating cost of the micro hub is given by: 

 

The yearly cost of micro hub / No. of working days in a 

year  

Assuming,  

- The yearly cost of micro hub = 30000 € (incl. rent and 

Staff) 

- No. of working days in a year =260 days 

Error! Reference source not found. 

C. Model parameters and implementation 

For modeling the CVRP or approximated 2e-LRP models corresponding to network alternatives, the values of the model parameters 

are estimated based on the above-defined operating costs and constraints of network elements. Since both network alternatives 1 and 2 

are modeled into a CVRP model, values of their corresponding model parameters are listed together in Table 7. Similarly, the 

parameter values used for modeling the approximated 2E-LRP model (clustering model and cluster allocation models) corresponding 

to alternatives 3 and 4 are listed in Table 8. The value of local tour parameter for demand scenario are set as shown in Table 9 and the 

value of 𝑛𝑚𝑎𝑥 is set to 95. This value of 𝑛𝑚𝑎𝑥 is kept the same across all three demand scenarios. The CVRP model approximated 2E-

LRP model, and the iterative solution algorithm is implemented in Python 3.8 and solved using GUROBI on a 1.8 GHz Intel Core i5 

processor and 8 GB RAM.Error! Reference source not found. 

Table 7:Model parameters CVRP 

Model parameters  Network alt 1 

(diesel vans) 

Network alt 2 

(battery-electric 

vans) 

Assumption  

The fixed cost of the van per day 

(€) - 𝑪 

129.64 137.44 = Daily depreciation cost + Daily labour costs/vehicle 

The variable cost of a van 0.18 0.08 = Running cost of the vehicle  



  

   

(€/km)- 𝒄  

The payload capacity of the van 

(packages)- 𝑸 

100 100 = The cargo capacity of the vehicle/ size of a package 

(42 L) 

Battery range limit of the electric 

van (km)- 𝑩𝒓 

N/A 145 = Driving range of a vehicle  

Distances between customer 

𝑖  and 𝑗 - 𝒅𝒊𝒋 

{Euclidean metric} * 10 meters Based on the defined demand scenario  

 

Table 8:Model parameters approximated 2E-LRP 

Model parameters Network Alt 3 

(LEFV+ micro- 

hubs+ diesel box 

trucks) 

Network Alt 4 

(LEFV + micro- 

hubs+ electric box 

trucks) 

Assumption 

The variable cost of LEFV 

(€/km) -𝑪𝒅 

0.02 

 

0.02 

 

= Running cost of LEFV 

Fixed cost of a LEFV per trip -

𝑪𝑽 

76.26 76.26 = Daily depreciation cost of LEFV + Daily 

labour costs/LEFV  

The capacity of micro hub- 𝑸𝑯𝒖𝒃 200 200 = The storage capacity of the micro hub/ size 

of a package (42 L) 

The payload capacity of LEFV- 

𝑸𝑳𝑬𝑭𝑽 

20 20 = The cargo capacity of the vehicle/ size of a 

package (42 L) 

The operating cost of a micro 

hub per day (€)- 𝑭𝒉 

115 115 = The daily operating cost of the micro hub 

The fixed cost of LEFV per day 

(€/km)- 𝑪𝑳𝑬𝑽 

76.26 76.26 =Daily depreciation cost of LEFV + Daily 

labour costs/LEFV  

The utilization cost of the box 

truck (€/km)-𝑪𝑻 

0.87 1.09 = Utilization cost of box trucks 

Battery range of LEFV (km)- 

B.RLEV 

70 70 = the driving range of a LEFV 

The payload capacity of box 

truck (packages)-𝑸𝟏 

250 250 = The cargo capacity of the vehicle/ size of a 

package (42 L) 

Distances between hubs ℎ and 

𝑙 (km)-𝑫𝒉𝒍 

{Euclidean metric} * 10 meters Based on the assumption in the defined 

demand scenario (refer section) 

Distances between cluster 

centroid 𝑗 and micro hub ℎ (km)- 

𝑫𝒋𝒉 

Distances between customer 

𝑖  and 𝑗 - 𝒅𝒊𝒋 

Travel distances within customer 

cluster 𝑗  (km)-𝑻𝒅𝒋 

Outputs from the clustering model Based on the sequential flow of data in the 

approximated 2e-LRP model (refer section) 

Number of LEFV trips required 

for each cluster 𝑗-𝑵𝒋 

Demand for cluster 𝑗- 𝑸𝒋 

 

Table 9: Value of local tour parameter 

Demand scenario Value of 'K' 

Demand scenario 1 -260 2.4 

Demand scenario 2 -500 2.5 

Demand scenario 3 -950 2.45 

 

IV. RESULTS  

The results are plotted across all three demand scenarios from the case study to investigate how the KPI values change with customer 



  

   

density. Firstly, a comparison of economic KPIs, namely daily TLC and average logistics cost per parcel, is discussed, followed by 

the comparison of CO2 emissions by vehicles under environmental performance. Finally, the comparison of operational and societal 

KPIs are analyzed 

A. Economic KPI comparison: 

In Figure 3: Daily TLC, the value of the daily TLC corresponding to the cost-optimal configurations of network alternatives are 

compared with each other. Additionally, the breakdown of the daily TLC to its fixed and variable cost components is also indicated in 

this figure.  

 

 
Figure 3: Daily TLC 

the average percentage increase in daily TLC for network alt 1 and 2 across demand scenarios is relatively higher compared to that of 

network alt 3 and 4. Doubling the customer density causes daily TLC for network alt 1 to increases on an average by 80%, whereas 

daily TLCs of network alt 3 and 4 increase by a value of 50 %. This difference implies that for a  demand scenario having a customer 

density higher than that of considered demand scenario 3, then it is 3 and 4 shows that network alt 4 outperforms alt 3 in the other two 

scenarios. It is interesting to see that the average cost per parcel for network alt 3 and 4 drops significantly across the demand 

scenarios (refer Figure 4: Average cost per parcel). In demand scenario 1, the average cost per parcel for network alt 3 and 4 is much 

higher than that of networks 1 and 2. However, this gap almost closes in the case of demand scenario 3. 

 

 
 

Figure 4: Average cost per parcel 

 

B. Environmental KPI comparison: 

Figure 5 compares, across all three demand scenarios, the total WTW CO2 emissions from the vehicle fleets between network 



  

   

alternatives. Additionally, the break down of the total WTW emissions to WTT and TTW emissions are also indicated in Figure 5 11. 

The diesel vehicles in network alt 1 increases the level of WTW emission levels as they produce a significantly high amount of TTW 

emissions. In contrast, the WTW emissions from their electric counterparts in network alt 2 are much lesser as they produce zero TTW 

emissions.  In the case of network alt 3, the TTW emissions from the box truck is a significant part of the WTW emissions, and 

replacing them with electric ones lowers the total WTW emissions drop as seen in the case of network alt 4. It essential to note that 

WTT emissions are lower when diesel vehicles are used, whereas the TTW emission level is significantly high. 

 

 
 

Figure 5:Total WTW CO2 emissions 

Table 10 shows the results of the second environmental KPI- the likelihood of adoption. Alongside the results, The estimated 

minimum penalty on diesel van to shift from alternative 1 (MPDS) is shown, which is the basis of measuring the likelihood of 

adoption for network alternatives. In the case of demand scenario 1, The value of MPD for network alt 2 is always much lower than 

the penalty that the municipality is planning to issue for LEZ entry (95€.). Consequently, the likelihood of adopting network alt 2 is 

HIGH in all demand scenarios. In contrast, the likelihood of adoption for network alt 3 and 4 to serve demand scenarios 1 and 2  is 

LOW, because their corresponding MPD is higher than 95€. On the other hand, in the case of demand scenario 3, the likelihood of 

adoption for network alt 3 and 4 changes to HIGH. Thus, LSP in question can choose to shift from the existing network to either of 

these alternatives when customer density is high. 

 
Table 10: Likelihood of adopting alt 2,3 and 4 

Demand scenarios MPS for network alt 2 

(likelihood of adoption) 

MPS for network alt 3 

(likelihood of adoption) 

MPS for network alt 4 

(likelihood of adoption) 

Demand scenario 1 44 € (HIGH) 122 (LOW) 113 (LOW) 

Demand scenario 2 27€ (HIGH) 106 (LOW) 96 (LOW) 

Demand scenario 3 14€ (HIGH) 46 (HIGH) 36 (HIGH) 

 

 

C. Operational KPI comparison: 

Figure 6 compares the total operation times for all four network alternatives, along with break down to traveling time and handling 

time. It is evident that in all three demand scenarios, network alt 1 takes the least time to finish its operations. The handling time of 

network alt 2 remains the same as network alt 1, but the larger fleet sizes in the former cause a corresponding increase in the travel 

times. Even though LEFV is significantly fast on urban roads, the additional time required for box truck fleets to unload at the micro 

hubs increases the total operation time. However, it is interesting to see that the vehicle travel time in alternative 4 is lesser compared 

to network alt 3 when serving demand scenario 3.  

 



  

   

 
Figure 6: Total operation time 

In Figure 7, the average service time per customer for network alternatives is plotted across the demand scenarios. Network 

alternatives 3 and 4 requires, on average, more time to serve a customer compared to network alternatives 1 and 2. However, this gap 

closes across demand scenarios. As the customer density increases across the demand scenarios, the rate at which this KPI drops is 

higher for alternatives 3 and 4 compared to alternatives 1 and 2. Notably, the drop is significant for network alternative 4 compared to 

3. For demand scenario 3, the value of this KPI is comparable between network alt 4 and 2. 

 

 
Figure 7: Average service time per customer 

V. CONCLUSION AND FUTURE WORK   

This research proposes a DST for LSPs to strategically evaluate the performance of urban transshipment networks with LEFVs for 

serving their customers within a LEZ. The DST is proposed mainly due to two reasons. Firstly, ex-ante performance evaluation of new 

logistics networks is crucial as their adoption involves a significant commitment of LSP's resources over a more extended period. 

Second, executing the process before any form of application (trials /pilots) is complex as the data required for performance 

measurement is not readily available. A scenario-based framework is employed for the DST as it helps logistics practitioners analyze 

the performance of networks for multiple what-if situations. All the network alternatives in the DST are assumed to have a generalized 

structure. The application of the DST on the synthetic case study has demonstrated the capability of this model to assist LSPs in 

evaluating the performance of the urban transshipment network. The proposed model can simulate closely the network configuration, 

which will be adopted by an LSP and to derive the quantitively the data adequate for its strategic performance evaluation. The model 

also is capable of solving large realistic problems without the need for sophisticated solving approaches. However, opportunities to 

improve the proposed model and extending the DST are identified for future work. 

 

• Improvements to the iterative solution algorithm: As explained in section 3.2, the solver algorithm proposed for solving the 

approximate 2e-LRP model was missing a dynamic improvement link between the clustering model and the LRP. This 



  

   

missing link caused the peaks in minimum TLC vs. the number of clusters 𝑛𝑐 plots. Therefore, the development of a new 

heuristic solution procedure integrated with this improvement link can result in a solution closer to the optimum global point.  

 

• Sophisticated approximation and optimization models: Extension to the CA model by Figliozzi (2008) was developed by 

Winkenbach et al. (2016), called as augmented routing cost estimation formula (ARCE). This approximation formula 

accounts for different vehicle capacities, service times, and combined pickup and delivery routes. Thus, integrating this 

approximation method could estimate, precisely, the distances travelled by the LEFVs in last-mile delivery services. 

Furthermore, the integer linear LRP model can be extended to allow multiple product flow; heterogenous vehicles fleet both 

at the depot as well at micro hubs, customer delivery routes starting from micro hubs as well as the depot.  

 

• Creative network alternatives: In the present research, only a single echelon or two-echelon distribution networks are 

considered. However, as turnover is a critical component of the economic performance of such networks, a third echelon can 

possibly be added to the last-mile delivery network to bundle their deliveries together in a UCC. Evaluating the performance 

of such innovative schemes would require extending the approximated 2E-LRP model to cope with multiple echelons.  

 

• Extending the use of decision framework:  Although the DST is intended for the application of private logistics firms, the 

proposed DST model be applied by local authorities to evaluate the impact of their LEZ polices on LSPs engaged in last-mile 

distribution services. The area of LEZ and LEZ entry penalties can be varied across demand scenarios to predict the resulting 

network adaptations by a typical LSP. Furthermore, The DST can be integrated into an agent-based simulation to check how 

LSPs having different customer densities will behave if LEZ is introduced into their service regions. 
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