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Abstract—The fundamental diagram (FD) describes the
relation between the flow and density in equilibrium condi-
tions. In this paper, we propose an estimation approach to
estimate the FD based on data from moving observers.
This approach consists of two main steps: (1) estimate
flow and density for space-time areas based on trajectories
of moving observers and the times and locations they
are overtaken or being overtaken and (2) estimate the
FD based on the {flow,density}-estimates. To evaluate and
gain a deeper understanding of the proposed approach,
a simulation study was conducted. This study shows that
the {flow,density}-estimates provide valuable information
to estimate the FD. Furthermore, the FDs belonging to the
simulated traffic flow are estimated accurately. We realize
that the second step is expected to be less accurate for
traffic that behaves stochastic. Therefore, we provide a
potential solution path to extend the second step in future
work.

Index Terms—moving observers, Edie’s definitions, fun-
damental diagram

I. INTRODUCTION

The fundamental diagram (FD) describes the relation
between the macroscopic traffic flow variables flow q and
density k when traffic is in equilibrium. In combination
with q = ku, where u is the mean speed, it describes
the relation between all three macroscopic variables in
equilibrium. The (parameters of the) FD are valuable for
traffic state estimation and prediction [1], and in traffic
control measures, e.g., [2].

This paper proposes an alternative approach to es-
timate the FD based on traffic sensing data collected
by moving observers. This method consist of two main
steps. First, we use the individual passings observed by
moving observers to estimate q and k for a set of areas
in space-time using Edie’s definitions [3]. Using these
data in combination with Edie’s definitions is new to FD

This research has been funded by the Netherlands Organisation for
Scientific Research (NWO in Dutch). Grant-number: 022.005.030.

estimation. Secondly, we estimate the FD based on the
{q, k}-estimates. Our methodology takes into account
the representativeness of the {q, k}-estimates for the FD
and does not require prior knowledge or assumptions
related to any parameters of the FD. In this way it differs
from existing methodologies that are discussed in the
next section.

This paper is organized as follows. In Section II a
literature overview is given that serves as background
information for the proposed approach. Sections III and
IV respectively explain the methodologies designed for
the first and second step of the approach. Next, in Section
V, the simulation study to test the proposed approach
is explained, after which the results of the study are
reported in Section VI. Conclusions and an outlook are
provided in Section VII.

II. BACKGROUND ON FUNDAMENTAL DIAGRAM
ESTIMATION

This section covers the important topics related to
exposing the fundamental relation between the macro-
scopic traffic flow variables, i.e., the fundamental dia-
gram (FD). For this purpose, we discuss: (1) the macro-
scopic description of traffic flow, (2) the traffic sensing
data that is used to estimate the fundamental diagram
and (3) the important characteristics of the proposed FD
estimation methodology.

Traffic flow can be described on a macroscopic level
using flow q and density k. Edie [3] provided the
generalized definitions for these two variables for an
space-time area:

q =

∑
i di
A

(1)

k =

∑
i tsi
A

(2)
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where the sum of the distance traveled and time spent
by all vehicles with the area, i.e.,

∑
i di and

∑
i tsi are

respectively the total travel distance (TTD) and total
time spent (TTS). Furthermore, size of the space-time
area is given by A. Given that flow and density are
known, the mean speed for the space-time area is also
known given the relation u = q

k .
Edie’s definitions provide the true aggregated traffic

conditions for the full space-time area. However, within
this area different traffic states can be present. Cassidy
[4] argues that there is no reason to expect Edie’s
q, k and u to lie on a reproducible function, as the
values will be merely a weighted average of the different
traffic states. If traffic behaves according to a concave
FD (e.g., the triangular FD) the weighted average of
different traffic states will lie on (if both states are on
the same linear function) or below (otherwise) the FD.
Furthermore, if one traffic state holds for the full space-
time area, the traffic state will lie on the FD.

To estimate the FD we rely of observations of traffic
flow, i.e., traffic sensing data. The dominant source of
sensing data that are used to estimate the FD are sta-
tionary detectors that observe flow and speed aggregated
over a time-period. For instance, Dervisoglu et al. [5]
and Knoop and Daamen [6] use loop-detector data to
fit/calibrate the FD. However, there are multiple impor-
tant problems related to using stationary detectors for FD
estimation: For instance, (1) density is underestimated
(even when observing harmonic mean speeds) if traffic
is non-stationary during the aggregation period, (2) the
detectors do not detect traffic at standstill [6], and (3)
FD estimation is limited to those road sections where
detectors are installed [1]. Alternatively, it has been
proposed to use probe data for FD estimation, e.g., Seo
et al. [7]. The general downsides of probe data are that
include individual driving behavior, e.g., aggressive vs.
timid driver are likely to behave differently in the same
situation, and that it is difficult to accurate estimate flow
and density. To overcome the latter problem, Seo et al.
[7] assume that the jam density is known.

Due to technological advances, an increasing number
of vehicles is equipped with sensing equipment that can
observe other road-users [8]. These vehicles can be used
to collect new types of traffic sensing data. For instance,
they can serve as moving observers that observe passings
of other road-users with respect to their own position
over time (trajectory) [8], [9]. Such new data may be
used to estimate the FD.

The important characteristics of the proposed method-
ology are as follows. Our methodology does not require

𝑥 

𝑡 

(a) Vehicle trajectories on a road stretch
(blue dashed lines) and moving observers
(black lines)

𝑥 

𝑡 

(b) Two space-time areas (grey) that are
enclosed by moving observers

Fig. 1: Moving observers and relevant space-time areas.

prior knowledge or assumptions related to any parame-
ters of the FD, e.g., [5], [6] and [7] respectively define a
minimum value for the free-flow speed, the value for the
wave speed and the value of jam density. Furthermore,
we estimate q and k for areas in space-time based on
Edie’s definitions. Thereby we overcome the discussed
downsides of stationary detector and probe data. How-
ever, as discussed above, some estimates, which include
multiple traffic states, may not be representative for the
FD. Therefore, in the proposed methodology, we use the
expectation that traffic behaves according to a concave
FD and thus that these estimates lie on or below the FD.

III. ESTIMATING FLOW AND DENSITY FOR
SPACE-TIME AREAS USING MOVING OBSERVERS

In this study, we use relative flow data that are
collected by moving observers. The path in space-time
over which the moving observer travels is denoted as the
observation path. We assume that each individual vehicle
passing (and its direction) is observed.

Figure 1a shows the observation paths of five mov-
ing observers (black lines) and the observed individual
passings (dots). In this example, respectively three and
two moving observers travel in the driving and in the
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opposite-driving direction of the observed traffic flow.
There are multiple advantages of observing the opposite-
driving direction. For instance, these moving observers
report more vehicle passings. However, for this paper the
most important advantage is that there are more intersec-
tions (indicated with the blue dots) of the observation
paths, as will be discussed below.

A set of intersecting observation paths can form areas
in space-time for which all boundaries are observed, i.e.,
all boundaries are part of an observation path. Figure 1b
shows the areas for which this holds given the same set
of observation paths that are shown in Figure 1a. Given
that we observe all passings over the observation paths,
we observe each individual vehicle that enters or leaves
the space-time area.

Based on the individual passings and their direction
(in- or outflow of the area), we can determine the
TTD and TTS. To determine the TTD and TTS,
the trajectories of the observers traveling in driving
direction have to be taken into account. A weight of
0.5 is assigned to these trajectories as the boundaries
separate two adjacent areas. Furthermore, the size of the
space-time area, i.e., A, can be determined based on the
spatial-temporal characteristics of the observation paths.
This provides the required information to estimate q and
k using Edie’s definitions, i.e., equations (1) and (2),
thereby yielding a {q, k}-estimate for each enclosed area.

IV. ESTIMATING THE FUNDAMENTAL DIAGRAM
PARAMETERS

The methodology explained in this section can be used
to fit a triangular FD to {q, k}-estimates obtained in
Section III. A triangular FD is a simple two-variate FD
that consists of two connected linear branches, which we
refer to as the free-flow and congested branch. According
to Seo et al. [1] the triangular FD is popular due to
its simplicity, theoretically preferable features and some
empirical evidence. Figure 2 schematically visualizes a
triangular FD with the important parameters, i.e., free-
flow speed vf , wave speed ω, capacity qC , critical
density kcr, jam density kj and passing rate r. The
triangular FD is described by the following function:

q = vfk if k ≤ kcr,
q = r − ωk if k > kcr . (3)

The free-flow and congested branch are connected at
{kcr, qC}, i.e., qC = vfkcr = r−ωkcr. Therefore, three
parameters suffice to define the triangular fundamental
diagram (e.g., vf , ω and kcr).

!

""#"$%

!&

'( )

*

Fig. 2: Triangular fundamental diagram with important
parameters.

To estimate the FD based on combined estimates
of q and k, i.e., {q, k}-estimates, we need to know
which {q, k}-estimates are representative for the free-
flow branch and which are representative for the con-
gested branch. As explained before, the {q, k}-estimates,
that are obtained using Edie’s definitions, will be the
weighted average of the different traffic states in the
area. Therefore, if traffic is deterministic and its behavior
is correctly described by a triangular FD, the {q, k}-
estimate either lie on or below the FD.

The critical density kcr is the location of a structural
break in describing q based on k. Estimates for which
k ≤ kcr can be representative for the free-flow branch,
but not for the congested branch. Alternatively, estimates
for which k > kcr be representative for the congested
branch. However, in both cases, the observation might
still include traffic states from both traffic phases, which
are expected to lie below the line (branch) of the FD. If
we known the location of the structural break, i.e., if we
know kcr, we can choose the remaining two parameters
(defining the FD) such that all observations lie on or
below the FD. To this end, we need an approach to find
this unknown structural break.

Finding unknown structural breaks is studied exten-
sively in the field of time-series analysis. The Quandt-
Andrews breakpoint test [10], [11] is commonly applied
approach to (1) find the location of the ‘largest’ structural
break and (2) test if this structural break is significant.
This test examines the different possible locations of
the structural break and applies a Chow test [12] for
each location. For each Chow-break-test, the F-statistic is
calculated and the location with the maximum (supreme)
F-statistic is selected as the structural break location.
Depending on the F-statistic at this location and in the
case that all assumptions related to the error distribution
hold, we can say whether there is a significant structural
break.

The proposed methodology is based on the Quandt-
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Andrews breakpoint test; however, there are two im-
portant differences. Firstly, in contrast to time-periods
(which are used as explanatory variables in time-series
analysis), k is a continuous and will (most-likely) have
varied intervals. This limits the accuracy in finding the
correct kcr, as the correct kcr may lie in between
two consecutive kcr that are considered. However, by
reducing the step-size in the kcr that are evaluated, we
can improve the accuracy in finding the structural break.
Secondly, the assumptions related to the error distribu-
tion will not hold as all ‘errors’ will be negative (lie
below the fitted line). The term ‘errors’ is used as there
can still be differences between the fitted FD and {q, k}-
estimate while the fitted FD is correct. Therefore, in the
remainder of this article we refer to differences instead
of errors. However, similar to an error we still minimize
a difference statistic (see FD estimation sequence) as an
erroneous FD induces larger differences. Dealing with
differences instead of errors prevents us from testing
whether the structural break is significant. However, this
is not the purpose of the proposed methodology, as we
always assume that there is a structural break in the FD.

Given the explanations and assumptions discussed
above, the following FD estimation sequence is designed
(note that steps 2b and 2d are a result of the expectation
that all {q, k}-estimate either lie on or below the FD). In
the estimation sequence, the full set of {q, k}-estimates
is given by O. To find the location of the structural
break we minimize a difference statistic between the
estimated FD and {q, k}-estimates. The choice for the
sum of squared differences (see below) in not crucial.
Other statistics, e.g., the mean absolute difference, may
be chosen without having a large effect on the final
result.

FD estimation sequence
1) Define a set of n to-be evaluated kcr, i.e., kcr =

[kcr1 · · · kcrn ]

2) For each kcri :
a) Define subsets of free-flow observations, i.e.,
OF = {o ∈ O|ko ≤ kcri }, and congested
observations, i.e., OC = {o ∈ O|ko > kcri }.

b) Find the free-flow speed vfi :

vfi = max
o∈OF

(
qo
ko

)
(4)

c) Calculate capacity qCi :

qCi = vfi k
cr
i (5)

d) Find the wave speed ωi:

ωi = max
o∈OC

(
qo − qCi
ko − kcri

)
(6)

e) Calculate passing rate ri:

ri = qCi − ωikcri (7)

f) Calculate the Sum of Squared Differences
SSDi:

SSDi =
∑

o∈[ko≤kcri ]

(
qo − vfi ko

)2
+

∑
o∈[ko>kcri ]

(qo − (ri + ωiko))
2 (8)

3) Find the location of the structure break, i.e., find
i for which mini = SSDi, and select the related
parameters as the estimate for the FD.

V. SIMULATION STUDY

A simulation study is conducted to evaluate the per-
formance of the proposed FD estimation approach. This
section contains the following elements: explanation of
(1) the two applied (microscopic) car-following models
and the simulation traffic conditions and data charac-
teristics and (2) the evaluations performed to test and
understand the methodology.

A. Microscopic simulation of traffic

Traffic is simulated using two different car following
models: Newell’s car following model [13] and the In-
telligent Driver Model (IDM) [14]. The main difference
between the models lies in the presence of transient
phases. In Newell’s model speed changes occur instan-
taneously and hence no transient phases are found. The
IDM includes acceleration and deceleration towards a
desired speed and hence includes transient phases. Table
I contains the parameters that we use for simulating
traffic using Newell’s model and IDM.

Both models are deterministic, which means that the
traffic flow simulated with both models results in a
deterministic FD. However, the shape of the FD differs
for the two models. When using Newell’s model, the FD
is triangular and is given by:

q = vfk if k ≤ kcr,
q = 1

τ −
sjam

τ k if k > kcr . (9)

4
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TABLE I: Parameters used for Newell’s model and IDM

Model Parameter Value Unit

Newell’s vf 33.33 m/s
sjam 6.00 m
τ 0.90 s

IDM1 v0 33.33 m/s
T 1.20 s
δ 4.00 -
a 0.80 m/s2

b 1.25 m/s2
s0 1.00 m
l 5.00 m

1) Default values from Treiber et al. [15]

When using IDM, the FD is a smooth continuous func-
tion. We can describe the spacing s as a function of
speed u for equilibrium conditions, i.e., the acceleration
is zero:

s =

√√√√√ (s0 + l + uT )
2

1−
(
u
v0

)δ (10)

Based on this function we can plot the FD, where k =
1/s and q = u/s.

In this simulation study, we want to estimate the FD
for a road. For this purpose, traffic is simulated in two
directions and data is collected from moving observers
that are driving on this road and those that are driving
in opposite direction. In both directions 250 veh are
simulated over a period of 600 s with time-steps of 0.1 s.
We only estimate the FD for one direction. Traffic in this
direction is denoted as the ‘observed traffic’, while the
opposing direction is denoted as the ‘observing traffic’.
The initial positions of the most upstream vehicle is
respectively 0 m and 30,000 m for the observed and
observing traffic. To determine the spacing between each
combination of consecutive vehicles, we take a random
draw from an exponential function with mean 10 m plus
sjam+uτ (for Newell’s model) or s0+l+uT (for IDM).

As we need to observe both free-flow as congested
states in order to estimate the FD, a bottleneck is
simulated in the observed traffic flow. In the simulation
with Newells model, a bottleneck is simulated on the
observed stream by reducing the speed of the first vehicle
to 0 m/s for 30 s ≤ t < 150 s, to 5 m/s for 150 s ≤ t <
300 s, and increasing it back to vf at t = 300 s until the
end of the simulation. In the IDM simulation, the first
vehicle decelerates with a m/s2 to standstill starting at t
= 30 s, and accelerates back to vf with a m/s2 starting at

Time [s]
0 50 100 150 200 250 300 350 400 450 500

S
pa

ce
 [m

]

×104

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Moving observers observing traffic
Every 10th vehicle observed traffic
Moving observers observed traffic
Intersection moving observers

(a) Newell’s model

Time [s]
0 50 100 150 200 250 300 350 400 450 500

S
pa

ce
 [m

]

×104

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Moving observers observing traffic
Every 10th vehicle observed traffic
Moving observers observed traffic
Intersection moving observers

(b) IDM

Fig. 3: Simulated traffic flow and moving observers.

t = 250 s. Congested states are found upstream of this
vehicle. No bottlenecks are included in the observing
traffic flow, which thus has a constant speed of vf .

It is assumed that the moving observers are able to
observe all vehicles that they pass in opposite direction,
i.e., the moving observers that are part of the ‘observing
traffic’ observe the ‘observed traffic’. For both directions
5 % of the vehicles is a moving observer. Following
the principles explained in Section III, the trajectories of
these vehicles are used to construct areas in space-time
for which we can obtain {q, k}-estimates.

Figure 3 shows the trajectories of the observed traffic
and the moving observers in space-time for Newell’s
model and IDM.

B. Evaluation of the proposed methodology

The objective of this simulation study is to evaluate the
performance of the proposed methodology in correctly
estimating the FD. Therefore, we compare the estimated
FD with the true FD.

For both traffic models (Newell’s model and IDM)
we show (1) the {q, k}-estimates, (2) the estimated
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Fig. 4: Estimated FD for Newell’s model.

triangular FD and (3) the true FD. Furthermore, for each
of the evaluated kcr the Sum of Squared Differences,
i.e., SSD is reported. Due to the extreme variation in
SSD, we report the log(SSD). These plots allow us to
evaluate the performance of the proposed methodology
and discuss in more detail how it works.

VI. RESULTS

Figures 4 and 5 respectively show the estimated trian-
gular FDs for traffic that is simulated using Newell’s
model and the Intelligent Driver Model (IDM). Fur-
thermore, they depict the sum of squared differences
between the estimated FD and {q, k}-estimates. For both
car following models, we observe {q, k}-estimates that
lie approximately on a line between a traffic state on the
free-flow branch and the jam density traffic state, see
Figures 4a and 5a. These estimates are weighted averages
of the free-flow and jam density traffic states within the
space-time area related to these estimates. Below, we
separately discuss the accuracy of the estimated FDs for
traffic simulated with both models.
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(a) Estimated FD
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22

(b) SSD for different kcr

Fig. 5: Estimated FD for IDM.

The proposed methodology accurately estimates the
FD that holds for the traffic simulated with Newell’s
model. The estimated (blue lines) and true (red dotted
line) FD almost perfectly overlap in Figure 4a. In case
a kcr is considered that is below the true kcr, there
might be observations in the free flow branch which are
now (incorrectly) assigned to the congested branch. This
changes the direction of the congested branch, giving a
positive wave speed ω. This explains the instant decrease
in log(SSD) in Figure 4b between kcr = 27.77 veh/km
and kcr = 27.78 veh/km.

The estimation of the IDM FD is not as accurate as
for Newell’s triangular FD. The proposed methodology
makes two important assumptions, i.e., (1) the FD has
a triangular shape and (2) all {q, k}-estimates lie on or
below the FD. As shown in Figure 5a the true FD (red
dotted line) does not have a triangular shape. However,
given the restrictive shape, the estimated FD (blue line)
still seems to be a good fit. The sum of squared dif-
ferences SSD (Figure 5b) shows a less extreme change
prior to the optimum kcr than for the Newell’s model-
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based FD. This is a result of the smoothed top of the true
IDM-FD. The combination of the two assumptions may
lead to a larger difference between the true and estimated
FD if other states on the FD are observed. For instance,
at lower density k a larger speed u can be observed.
If such a state is part of the set of {q, k}-estimates,
the proposed methodology would estimate a larger vf .
Therefore, instead of the maximum observed u, we may
want to consider all {q, k}-estimates that are relevant for
the free-flow branch. In this case, the challenge lies in
defining which estimates are relevant.

VII. CONCLUSIONS AND OUTLOOK

This paper proposes an approach to estimate the
fundamental diagram (FD) based on relative flow data
collected with moving observers. This approach consists
of two steps: (1) estimate flow and density based on
the sensing data for areas in space-time using Edie’s
definitions and (2) estimate a triangular FD based on the
flow and density estimates, and their theoretical relation
to the FD.

The proposed approach works well. The flow and
density estimates, i.e., {q, k}-estimates, provide valuable
information to find the FD. With a simple algorithm,
which assumes that the {q, k}-estimates lie on or below
the FD, we were able to accurately expose the FD.

In reality the {q, k}-estimates can lie above the desired
FD. For instance, if traffic behaves stochastic and we
may observe states that lie above the desired mean FD.
Furthermore, we may have to deal with observation
errors, which yield {q, k}-estimates that do not perfectly
describe the true traffic conditions. In this case, the
approach proposed in this work can still be followed,
i.e., obtain {q, k}-estimates using Edie’s definitions and
estimate the FD based on these {q, k}-estimates. How-
ever, one should alter the second step and estimate
each branch based on the {q, k}-estimates relevant for
that branch. This is more complex than selecting the
maximum value for each branch and will therefore lead
to a more extensive methodology.
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