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A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell 
caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors which rely on a low-
er-bound curve taken from experimental data. Recent research has indicated that the NASA knock-down factors are inclined to 
produce very conservative estimations for the buckling load of imperfect shells, due to the limitations of the computational 
power and the experimental skills available five decades ago. A novel knock-down factor is proposed composed of two parts 
for the metallic stiffened cylinders. A deterministic study is applied to achieve the first part of the knock-down factor consid-
ering the measured geometric imperfection, the other types of imperfections are considered in the second part using a stochas-
tic analysis. A smeared model is used to achieve the implementation of the measured geometric imperfection for the stiffened 
cylinder. This new robust and less conservative design for the stiffened cylinders is validated by using test results. 
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1  Introduction  

Launcher structures usually use thin-walled structures, such 
as cylindrical shells, as primary components. These thin- 
walled cylinders are prone to be limited in their load carry-
ing capability by buckling. In addition, many shell type 
structures exhibit unstable post-buckling behavior and are 
highly sensitive to geometric imperfections and/or load im-
perfections [1,2]. In the early 1900 s, researchers observed 
that the measured buckling loads in tests were much lower 
than the corresponding numerically predicted buckling 
loads of a geometrically perfect cylinder using the classical 
buckling theory. It seems that the classical buckling theory 

cannot be applied to realistic structures where initial geo-
metric imperfections are always present. Some relative im-
provements [3,4] have been made to the classical theory to 
take into account the effect of initial geometric imperfec-
tions. Among these studies [3–6], the most famous one is 
that of Koiter [6] who predicted accurately the imperfection 
sensitivity trends in 1945 that were observed experimentally. 
Actually, design guidelines which can quickly consider the 
influences of imperfection sensitivity are much more inter-
esting to engineers. In 1965, the well-known NASA 
SP-8007 guideline [7] was proposed based on a collection 
of experimental results [8,9] for cylindrical shells. The low-
er-bound curve of all the test results gives the shell buckling 
knock-down factors which are normally less than 1 to 
measure the decline of the buckling load in a cylinder 
caused by imperfections. The load carrying capability of the  
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cylinder is achieved easily by multiplying the buckling load 
of perfect cylinder obtained using the classical buckling 
theory with the corresponding knock-down factor. Here, the 
perfect cylinder means that there is no imperfection in the 
structure. At that time there was not sufficient computation-
al power to carry out nonlinear structural analyses [10,11] 
which could accurately represent and predict the complex 
behavior of imperfection sensitive structures in the case of 
buckling, hence the accuracy of NASA knock-down factors 
relies heavily on the reliability of the experimental results. 
The manufacturing and experimental techniques [12] have 
been significantly improved since 1968. Recently, many 
researchers have found that the current NASA SP-8007 
guideline leads to conservative structures. In addition, the 
knock-down factors from NASA were proposed mainly for 
unstiffened cylinders. Thus the EU project DESICOS was 
proposed with the aim of constructing a new robust design 
for imperfection sensitive structures which can fully exploit 
the potential of the load carrying capability of the thin- 
walled launcher structures. In this robust design approach, 
the novel knock-down factor is composed of two knock- 
down factors in contrast to one single knock-down factor as 
proposed by NASA.  

Several types of imperfections may exist in the manu-
factured structures [10,13], such as material imperfections, 
load imperfections [1], e.g. eccentricities, thickness imper-
fections and geometric imperfections [14]. In addition, the 
hygro-thermal condition of a structure, which influences the 
static bending strength, can also be regarded as a imperfec-
tion [15,16]. A robust knock-down factor should take into 
account the effects of the realistic imperfections as much as 
possible. Among all the realistic imperfections, geometric 
imperfections are the most recognized imperfection type in 
engineering and some researches [1,14,17,20] have found 
that the buckling loads of the thin-walled structures are very 
sensitive to geometric imperfections. There are many ways 
to model geometric imperfections in the buckling analysis, 
e.g. measured geometric imperfections [1,2], a linear com-
bination of the first few buckling modes to achieve an im-
perfection shape [17], or the application of small perturba-
tion loads to generate initial deformations [18]. The way to 
use a small perturbation load on the structure to generate an 
initial imperfection shape is called the single perturbation 
load approach (SPLA) [17–20].  

The outline of this paper is as follows. The new robust 
design and the two metallic stiffened cylinders analyzed in 
this study are introduced in Section 2. The first and second 
parts of the knock-down factor proposed in this robust  
design are achieved using a deterministic study and a sto-
chastic analysis, respectively, in Sections 3 and 4. In Sec-
tion 5, the novel knock-down factor is combined and com-
pared with the NASA knock-down factors and the test re-
sults. We summarize the paper and draw conclusions in 
Section 6. 

2  New robust design 

2.1  Comparison of two designs 

The knock-down factor proposed in NASA SP-8007 guide-
line is given by a lower-bound curve of the experimental 
results collected in 1965, as shown in Figure 1, where the 
buckling load of the perfect cylinder is scaled to 1, each dot 
denotes one test result, and the x axis represents the ratio of 
the cylinder radius over the skin thickness. The knock-down 
factor of a specific cylinder can be figured out using this 
lower-bound curve.  

Based on the NASA guideline, the load carrying capabil-
ity of the cylinder can be achieved: 

 design perfect NASA ,F F k   (1) 

where Fperfect is the buckling load of the perfect structure, 
Fdesign represents the design load, and kNASA denotes the 
knock-down factor obtained from the NASA guideline. The 
NASA knock-down factor is proposed based on the experi-
mental results collected before 1965. Nowadays, the com-
plex behavior of imperfection sensitive structures can be 
accurately predicted numerically, with the development of 
computational powers. In this work, a novel robust design is 
proposed based on the numerical techniques, as given by 

 design perfect ,F F k   (2) 

where 

 1 2 ,k k k   (3) 

where the new knock-down factor k is composed by two 
parts, k1 and k2. k1 is obtained considering the geometric 
imperfection while the effects of other imperfections are 
taken into account in k2.  

2.2  Two tested metallic stiffened cylinder 

Two configurations of metallic stiffened cylinders, specified 
in Table 1, were manufactured, tested and analyzed numeri-          

 

Figure 1  (Color online) Knock-down factors proposed in NASA 
SP-8007 guideline. 
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Table 1  Configurations of two stiffened cylinders analyzed in this study (MPa, mm) 

Id 
Material Cylinder  Skin Stiffener 

NASA SP8007 knock-down factor 
E, μ Radius Height  thickness Thickness Height Number 

A 70000, 0.33 400 1000  0.8 0.8 5.2 90 0.4616 
B 70000, 0.33 400 1000  0.55 0.55 5.2 126 0.4387 

 
 
cally. According to the NASA guideline, the knock-down 
factors of these two stiffened cylinders are kNASA_A = 0.4616 
and kNASA_B = 0.4387, respectively. Two types of finite el-
ement models are constructed using ABAQUS, as shown in 
Figure 2. One is the stringer shell model, where all the 
stiffeners inside the cylindrical shell are modeled using shell 
elements. The other is the smeared model, the stiffeners are 
not modelled and the effect of the stiffeners in the analysis 
is taken into account using a general shell stiffness. 

The three translations of the element nodes along the 
circumference of the cylinder bottom are constrained. A 
compressive load is applied uniformly at the top of the cyl-
inder. A linear eigenvalue analysis and a nonlinear structur-
al study are carried out respectively for perfect cylinders A 
and B, using both the stringer shell model and the smeared 
model, the results are compared in Figure 3 and Table 2. It 
can be seen from Figure 3 and Table 2 that the results cal-
culated from these two models agree very well for both 
cylinders, excepting the first buckling mode of cylinder B. 
Two properties make the smeared model attractive: first, in 
cases where we do not care about the buckling deformation 
of the stiffeners we can use a relatively coarse mesh to de-
crease the computational cost significantly (Table 2). The 
complete execution time is measured on a standard PC with 
a single core and 4 GB physical memory; second, the real 
measured geometric imperfections of the unstiffened cylin-
ders can be implemented into the smeared model of the 
stiffened cylinders for imperfection-sensitivity analyses due  

 

Figure 2  (Color online) Finite element models of the stiffened cylinder. 
(a) stringer shell model; (b) smeared model. 

 

Figure 3  (Color online) The first buckling modes of two cylinders, com-
pared between the stringer shell model and the smeared model. (a) Cylin-
der A; (b) cylinder B. 

to a lack of the measured imperfection data on the stiffeners. 

3  Knock-down factor k1 

The effect of geometric imperfections is considered using 
the knock-down factor k1. Here, we use the single perturba-
tion load approach and the real measured geometric imper-
fection to model the geometric imperfections in imperfec-
tion sensitivity analyses. 

3.1  Single perturbation load approach 

Single perturbation load approach, shown in Figure 4, uses 
a single perturbation load (SPL) to create a single buckle 
imperfection, which classifies as a “worst”, “realistic” and 
“stimulating” imperfection [18–20]. A nonlinear structural 
analysis is applied for each value of the single perturbation 
load to obtain the corresponding buckling load. With the 
increasing of the single perturbation load, the buckling load 
becomes nearly constant after a given level of single per-
turbation load P1 in Figure 4. This phenomenon determines 
the lower- bound of buckling loads, which can be used to 
determine the knock-down factor for a safe design, as given 
by 

 
perfect

KDF 1 .
F

F
  (4) 

Table 2  Comparison of stringer shell model and smeared model (kN) 

Models Elements CPU time for nonlinear analysis Linear buckling load Fperfect Nonlinear buckling load for perfect cylinder

Stringer shell model 
174960 

S4R 
7 h 

Cylinder A: 205.92 
Cylinder B: 103.09 

Cylinder A: 193.466 
Cylinder B: 102.845 

Smeared model 
25100 
S4R 

2 h 

Cylinder A: 203.27 
(1.29% error) 

Cylinder B: 103.76 
(0.65% error) 

Cylinder A: 192.457 
(0.475% error) 

Cylinder B: 101.973 
( 0.85% error) 
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Figure 4  Sketch map of the single perturbation load approach. (a) Single 
perturbation load; (b) knock-down curves. 

where Fperfect is the linear buckling load of the perfect struc-
ture, F1 is the buckling load calculated when the single per-
turbation load is equal to P1. 

Nonlinear buckling analyses with different values of sin-
gle perturbation loads are carried out on cylinder A, and the 
structural response curves are plotted in Figure 5(a). Since 
the SPL can be applied either on the skin or on the stiffener, 
both cases were studied. The knock-down curves of cylin-
der A are plotted in Figure 5(b), from which it can be seen 
that the location of the SPL will not influence the buckling 
behavior. The deformations of cylinder A along the load 
shortening curve are given in Figure 6, for the case that the 
SPL is 30 N. It is also demonstrated, in Figure 5(b), that the 
value of the buckling load leads to constant value when the 
SPL is larger than 49 N, which leads to the knock-down 
factor k1_A = 0.62 for cylinder A. In the same way, the 
knock-down factor of cylinder B was calculated to obtain a 
value of k1_B = 0.64.   

3.2  The measured geometric imperfections 

Geometric imperfection data measured from Z15, Z17 and  

 

Figure 5  (Color online) End-shortening curves and knock-down curves 
of cylinder A. (a) End-shortening curves; (b) knock-down curves. 

 

Figure 6  (Color online) Deformations of cylinder A, along the load- 
shortening curve. 

Z20 unstiffened cylinders are implemented into the smeared 
model of the stiffened cylinder. The way to produce such 
measured geometric imperfection is to translate the nodes 
directly in the finite element mesh. The knock-down curves 
are shown in Figure 7. The knock-down factors of cylinders 
A and B are roughly 0.621 and 0.638, respectively, after 
averaging the results obtained using three measurements. 
The knock-down factors obtained using the measured geo-
metric imperfection are coincident with those (k1_A = 0.62 
and k1_B = 0.64) achieved using the SPLA. 

4  Knock-down factor k2  

In stochastic analysis, the buckling behavior of the stiffened 
cylinder is analyzed as a probabilistic phenomenon due to 
the distribution of the input parameters. Then, once the  

 

Figure 7  Knock-down curves of cylinders A and B, using the measured 
geometric imperfections Z15, Z17 and Z20. (a) Cylinder A; (b) cylinder B. 
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distribution of buckling loads is known, a lower bound can 
be defined at a 99% confidence level, which determines the 
value of the knock-down factor, as given in Figure 8. 

Five input parameters, material property, thickness of the 
skin, thickness of the stiffener, applied compressive load on 
each node and measured geometric imperfections, are taken 
into account as random variables in the stochastic analysis. 
The distributions of these input parameters are all assumed 
to be a normal distribution with a mean equal to the initial 
design/measured value and a coefficient of variation (CV) = 
5%. The ABAQUS is used in the Monte Carlo simulation. 
The corresponding 1000 data set of buckling load is ob-
tained from a number of 1000 of samples of the input pa-
rameters. Two families of stochastic analyses are carried out 
below, according to whether taking into account the geo-
metric imperfection as the random variable or not. 

1) The geometric imperfection is not included. The 
knock down factors obtained here are used as the 
knock-down factor k2. The coefficient of variation for the 
load imperfection is set to be 3%, 5% and 10%, respectively, 
to detect the imperfection sensitivity. 

2) The geometric imperfection is included. The second 
family considers all of the 5 random variables to make a 
comparison to the proposed new knock-down factor. In 
each Monte Carlo simulation, the amplitude of the meas-
ured geometric imperfection is assumed to be a normal dis-
tribution. The three measured geometric imperfections (Z15, 
Z17, Z20) are respectively used to obtain a robust result. 

The probability density function (PDF) and the cumula-
tive distribution function (CDF) of the data are plotted 
against a normal distribution, respectively, to check whether 
they has a normal distribution. We take one simulation case  

 

Figure 8  (Color online) Definition of the knock-down factor in stochastic 
analysis. 

of cylinder B as an example. In Figure 9, buckling loads are 
plotted using the histogram with a probability density curve 
of a normal distribution. The buckling data are plotted 
against a CDF of a normal distribution in Figure 10, where 
the data points should assume an approximate red straight 
line, and scatters from this straight line indicate the 
non-representativeness of this distribution. From Figures 9 
and 10 it can be seen that the distribution of buckling loads 
satisfies the normal distribution. In the same way, all the 
data sets of buckling loads obtained from stochastic anal-
yses for cylinders A and B satisfy the normal distribution.  

The lower-bound of the confidence interval can be 
quickly achieved with a 99% confidence level once the dis-
tribution of the buckling loads is confirmed to be normal. 
From Table 3, we can conclude that the value of the knock-  

 

Figure 9  (Color online) Histogram of buckling loads of cylinder B, 
without geometric imperfections, CV=3%. 

 

Figure 10  (Color online) Cumulative distribution of buckling loads of 
cylinder B, without geometric imperfections, CV=3%. 

Table 3  Knock-down factors obtained using stochastic analyses 

Simulation cases Knock-down factors of cylinder A Knock-down factors of cylinder B 

4 input parameters, without geometric imperfection, 
with a different CV for load imperfection 

k2 =  
0.90 (CV 3%), 0.89 (CV 5%), 0.87 (CV 10%)

k2 =  
0.86 (CV 3%), 0.84 (CV 5%), 0.81 (CV 10%)

5 input parameters, with geometric imperfection 0.79 (Z15),  0.62 (Z17),  0.66 (Z20) 0.63 (Z15),  0.65 (Z17),  0.63 (Z20) 
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down factor decreases slightly with an increasing CV value 
for the load imperfection, which demonstrates that the load 
imperfection has insignificant effect on the value of the 
knock-down factor. It can also be seen from Table 3 that the 
value of the knock-down factor obtained using the stochas-
tic analysis obviously decreases if the measured geometric 
imperfection is taken into account as an input parameter, 
which indicates that the geometric imperfection is very sen-
sitive to the buckling load. 

5  Novel knock-down factors 

The new combined knock-down factors for cylinders A and 
B are represented by the triangular markers in Figure 11 and 
compared with the knock-down factors obtained by NASA. 
For each cylinder, three new knock-down factors (k_a, k_b, 
k_c) are listed, respectively, corresponding to the three val-
ues of k2 which were obtained using different values of the 
coefficient of variation for the load imperfection in the sto-
chastic analysis. Two reduced experimental samples were 
manufactured and tested for each cylinder in NPU China. It 
can be seen from Figure 11 that all the numerical results 
obtained from the new robust design are below the test re-
sults but above the NASA knock-down factors, which 
demonstrates that the new knock-down factors are safe and 
less conservative than those proposed in NASA SP-8007. In 
Figure 11, the improvement of the new knock-down factor 
compared to the NASA knock-down factor is represented 
by the value in the bracket. The improvements indicate that 
the structural weight and design cost [21,22] of an aero-
space structure can be significantly reduced using this new  

 

Figure 11  New combined knock-down factors of cylinders A and B, with 
different CV values for the load imperfection. (a) Cylinder A; (b) cylinder 
B. 

Table 4  Novel knock-down factors compared with Almroth’s work 

Cylinders Knock-down  
factors by Almroth

Knock-down factors 
in this study 

Improvement

Cylinder A 0.469 0.55 17.3% 

Cylinder B 0.461 0.54 17.1% 

 
 
robust design. In addition, the novel knock-down factors are 
also less conservative compared to those obtained by Brush 
and Almroth [23] in 1975, as shown in Table 4. 

The values of the new knock-down factors are low com-
pared to the values of the knock-down factors obtained in 
the stochastic analysis considering the geometric imperfec-
tion as given in Table 3. The reason is that the effect of the 
“worst” geometric imperfection is considered in the first 
part k1 of the new knock-down factor based on a lower- 
bound buckling value in Figure 5, however the amplitude of 
the geometric imperfection used in the stochastic analysis is 
the measured value, amplitude/thickness<3, which is obvi-
ously not the worst case as shown in Figure 7. 

6  Conclusions  

The buckling performances of two stiffened cylinders were 
studied using a deterministic study and a stochastic analysis. 
A smeared model of a stiffened cylinder was used to im-
plement the real measured geometric imperfection. In order 
to obtain a robust and less conservative design, the new 
knock-down factor was derived from a combination of the 
knock-down factor k1 obtained by considering the geometric 
imperfection and a knock-down factor k2 achieved by taking 
into account other imperfections. Compared to the NASA 
knock-down factors and the test results, the results present-
ed in this study demonstrate that for axially loaded stiffened 
cylinders the new combined knock-down factor leads to a 
safe and less conservative design compared to the respective 
NASA design. This allows for a significant reduction in 
structural weight and design costs. 

This work was supported by the European Community’s Seventh Frame-
work Programme FP7/2007-2013 (Grant No. 282522). Thanks are given to 
Miranda Aldham-Breary for reviewing the English text carefully. 
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