Large-scale efficient extraction of 3D roof segments from aerial stereo imagery

Martijn Vermeer

TU Delft: Mentor #1: Hugo Ledoux Mentor #2: Tom Commandeur Co-reader: Pirouz Nourian Readaar: Sven Briels

READAAR

From: Aerial stereo imagery

To: 3D roof segments

• For large area: Municipalities & Provinces

Relevance: PV potential & Asbestos

READAAR:

- Photovoltaic potential
 - Number of panels and orientation
 - Solar panel yield
- Detection of asbestos
 - Asbestos illegal in 2024
 - Estimated 120km²
 - 1000 asbestos related deaths yearly

Current method READAAR has its limitations

- Based on gridded LiDAR
 - Not always available outside NL
 - Expensive to gather
- Potential improvement using aerial stereo imagery

LiDAR vs stereo

- Color
- Density
- Gaps/noise

LiDAR vs stereo

- Color
- Density
- Gaps/noise

Goal: Large-scale efficient extraction of 3D roof segments using only aerial stereo imagery

- 1. Scalability & Efficiency:
 - Municipalities/provinces
 - Fully automatic
 - Within reasonable time
- 2. 3D roof segments:
 - Watertight building models not required
- 3. Aerial stereo imagery
 - Not dependent on LiDAR data

Related work: Model vs data driven

- Model-driven (Fitting primitives from library)
 - Watertight roofs ____
 - Limited to shapes _ in library
- Data-driven (Segmentation of pointcloud/image)
 - Roofs of any shape _
 - Not watertight

TUDelft READAAR

Point cloud

+Second primitive

First primitive

Reference image

Related work: Segmentation

- Directly searching planes
 - RANSAC
 - Hough transform
- Image segmentation based on color/normals
 - Thresholding
 - Region growing
 - Watershed
- Clustering normals
 - K-means
 - Mean-shift

Literature study conclusions

- 1. Data-driven approach
 - Any shape
 - Watertight building models not required
- 2. Potentially useful algorithms for large-scale applications
 - Thresholding
 - Watershed
 - Mean-shift
- 3. Two step segmentation approach (first color than orientation)
 - Exploiting color
 - Dealing with gaps/noise
 - Efficient

Methods:

- All processing steps are per building
- This Ensures scalability

Methods: Clip, rectify & match

Left View

Right View

Disparity

Method: Conversion to pointcloud

Methods: Color segmentation

Left View

Gradient Magnitude

Watershed

Methods: Cluster color segments

Normal x component

Normal y component

Mean-Shift clustering of color segments based on orientation

Methods: Height jumps

Disparity based on plane models

Height Jumps

Methods: Reconstruction

Vectorize & Cut with Footprint

3D roof segments

Quality assessment:

True Positive (TP):
>50% overlap

False Positive (FP):
<50% overlap

 False Negative (FN): Not detected

TUDelft READAAR

Extracted Segments

Quality assessment:

• Completeness
$$= \frac{|TP|}{|TP|+|FN|}$$

• Correctness =
$$\frac{|TP|}{|TP|+|FP|}$$

•
$$Quality = \frac{|TP|}{|TP|+|FP|+|FN|}$$

Results: Terraced

Results: Free-standing

Results: Industry

Results: Segmentation quality

Stereo		Comp	Corr	Q
Terraced		92.9	86.4	81.0
	>10m ²	96.7	98.6	95.4
Free-standing		64.5	76.2	53.7
	>10 <i>m</i> ²	86.1	96.3	83.3
Industry		88.2	48.9	45.9
	>10m ²	95.7	90.0	86.5

Results: Problems

Overhanging roofs

Shadowing effects

Results: Problems

Dormers

Roof objects (Chimneys)

Results: Computation time

- Without loading times
- Roughly 14400 buildings/hour
- Average municipality in The Netherlands has 25000 buildings

Process	Time (s)		
Rectification	0.069		
Matching	0.027		
Watershed	0.018		
BAG_Filter	0.033		
Plane fitting	0.036		
Height Jumps	0.004		
Clustering	0.039		
Reconstruction	0.031		
Total	0.257		

Results: Comparison

Results: Comparison

	Stereo		Comp	Corr	Q
	Terraced	5.	92.9	86.4	81.0
		>10m ²	96.7	98.6	95.4
	Free-standing	52-11	64.5	76.2	53.7
		$>10m^{2}$	86.1	96.3	83.3
	Industry		88.2	48.9	45.9
		$>10m^{2}$	95.7	90.0	86.5
	LIDAR				
	Terraced		85.7	88.0	76.8
		$>10m^{2}$	89.7	97.0	87.2
	Free-standing		34.3	49.7	25.5
		$>10m^{2}$	58.2	79.8	50.7
	Industry		74.5	47.5	40.9
<i>k</i>		$>10m^{2}$	80.9	92.7	76.0
ŤU Delft	READAAR				

Conclusions/contributions

- Integration of stereo matching and roof segment extraction (scalable)
- Efficient method for extraction of 3D roof segments from aerial stereo images only
- Higher quality than the current LiDAR-based method
- Problems with shaded areas, overhanging roofs, roof objects and complicated roof shapes

Future work: Matching with neural network

• Promising results

Network trained with traffic situations only

SGM

Train network with aerial stereo images and disparity from AHN

Neural network (Luo, 2016)

Future work: Integrate LiDAR

Improve results in shaded areas

Future work: Process building blocks

- Improve results when roofs within block are similar
- Not possible for blocks with varying roof shapes

Future work: Intersect segments

Thank you for your attention

