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Abstract

The salinity profile in a coastal sea-river system is the result of balancing of salt transport due
to mixing of the water by tides and the freshwater discharge from the river. When for example
during times of drought freshwater discharge suddenly declines, the salinity in the river may in-
crease significantly and threaten drinking water supplies and agriculture. The time it takes for
the salinity to reach the new equilibrium may be considerable. Thorough understanding of the
adaptation process is essential for taking appropriate prevention measures. However, much about
this adjustment process is still unknown, in particular regarding the interaction between the river
and the adjacent sea. In this study, a simplified linear model is developed to describe a well-
mixed river and the adjacent sea where the water flows radially away from the mouth of the river.
The unique assumptions, most notably a time-independent intrusion length, allow for a unique
analytical approach using the method of eigenfunction expansion.

The smallest eigenvalues are found to define a time scale of the adjustment process. The
eigenfunctions provide insight about how the salinity adjustment time varies within the system.
The adjustment time does not only depend on the parameters that describe the new equilibrium,
but also on the initial salinity. The eigenvalue time scales corresponding to the sea and to the river
can then be used to determine the time scale of the coupled system. It is found that when the sea
adjusts much faster than the river, the time scale of the river is leading the adjustment. When
the eigenvalue time scale of the sea is similar to or larger than the eigenvalue time scale of the
river, the adjustment time is significantly increased by the sea. When salinity is increasing, the
sea restricts the inflow of salt in the river, while for decreasing salinity, the sea keeps transporting
salt to the river by mixing which delays the adjustment.

The model is applied to analyse a sudden decrease in freshwater discharge in the Rotterdam
Waterway, which is part of the Dutch Rhine-Meuse delta. Results show that the salinity response is
delayed compared to freshwater discharge, indicating that the adjustment time of the river indeed
plays an important role. Further research should consider a more general dispersion relation or
an extra vertical dimension to better describe estuaries that are not well-mixed. Using numerical
methods there are many other possibilities to extend the model. The effect of tides on the presence
and dynamics of the fresh water bulge in the sea is of specific interest.
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Chapter 1

Introduction

A river and a sea are two very different bodies of water. Not only the geometry and the flow of water
differ between the sea and the river, but also the water itself is very different as typical sea water
contains much more salt than that in a river. Where a river meets the sea, these vastly different
systems interact. Hence the river becomes a little bit salty and affected by tides, while the water in
the sea becomes fresher and on average flows away from the river. The wider and lower part of the
river influenced by tides is called an estuary and this is where these interactions take place. Water
from the upper part of an estuary is sometimes used for drinking water and agriculture. Under
normal conditions this is possible because salt does not intrude that far into the estuary. However,
when freshwater river discharge declines during times of drought, salt can possibly intrude much
further into the estuary and threaten drinking water supplies and agriculture. The time it takes
for estuarine salinity to adjust to such a decrease in freshwater discharge may be considerable.
Thorough understanding of the adaptation process is essential for taking appropriate prevention
measures.

The salinity profile in an estuary is the result of the balancing of many salt transport mecha-
nisms. The river discharge transports salt to the sea, while the salinity difference and the mixing
of water between the sea and the river causes transport of salt to the river. Far in the open ocean
salinity is approximately constant and it decreases in the upstream direction. Salinity does not
only depend on distance from the river mouth, but salinity is generally also vertically distributed
as salt water is more dense than fresh water.

Most research on estuarine salinity has been done under the assumption of steady state. Even
so, Banas et al. (2004) showed that in practice the salinity might be out of balance. A method to
determine a time scale corresponding to an estuarine adjustments could therefore be important in
justifying whether the system is in steady state or not.

C. Kranenburg (1986) was first to develop a time scale for estuarine salinity adjustments due
to a change in freshwater discharge. He studied a river where the salinity at the mouth of the river
is constant. The time scale is then expressed in parameters that describe the salt transport and
geometry of the estuary. Others have continued the analytical development of adjustment time
scales. MacCready (2007) relates the time scale of changes in intrusion length to the time it takes
for a particle to flow through the river. Both Monismith (2017) and Chen (2015) have found that
adjustment times do not only depend on the new estuarine parameters, but also on the initial
salinity distribution. The adjustment time is asymmetric for increasing and decreasing salinity.

Though these studies give very relevant insight in the adjustment process, they do not account
for the effects of the adjacent sea. The sea is modeled as a uniform salt reservoir that can instan-
taneously deliver or extract salt from the mouth of the river. However, because of all the fresher
water that enters the sea at the mouth of the river there is a transition region until the salinity
remains constant in the open sea. In the Rhine-Meuse delta, such a transition region of up to ten
kilometer in radius is observed.

Hetland and Geyer (2004) have used a numerical model that does include a coastal sea in
their study on adjustment times. However, they introduced an artificial mechanism “to prevent
the formation of a bulge of freshwater at the estuary mouth, which could potentially choke the
estuarine inflow”. It therefore remains unknown what the effect of the coastal sea on the adjustment
is.

This study will specifically focus on the interactions between the coupled sea-river system and
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its effect on the adjustment time. It is expected that when the sea adjust slowly, the time scale of
the river is affected. We will seek answer to the research question:

Under what conditions and to what extent does a well-mixed radial coastal sea affect
the time scale of well-mixed estuarine salinity adjustments?

The analysis is limited to well-mixed systems. That means that vertical stratification due to
density differences is not considered. Furthermore the flow is considered uniform in a rectangular
river. In the sea, the flow is radially distributed. The intrusion length is assumed to be constant in
time. These assumptions are stricter than in previous studies. This allows for a unique analytical
approach using eigenfunction expansion. Such analytical methods are preferred as they generally
provide better fundamental understanding of the process. To solve the coupled sea-river system a
numerical method is used.

In Chapter 2 the simplified linear one dimensional model will be developed that captures
relevant estuarine properties while retaining analytical solvability. Chapter 3 focuses on both
the analytical solution method (eigenfunction expansion) and numerical solution method (finite
differences). In Chapter 4 results are presented. First the effect of the sea on steady state solutions
is discussed. Then an eigenvalue time scale is introduced and analysed for the uncoupled sea and
river. The chapter concludes with the analysis of numerical solutions of the coupled river-sea
system. In Chapter 5 the model is applied to the Rhine-Meuse delta and compared with data
from a sudden period of drought in 2018. The results are discussed in Chapter 6. At last, the
conclusions are set out in Chapter 7.
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Chapter 2

The Model

In this chapter we will first describe the physical mechanisms that transport salt through the
sea-river system. Then we will set up a simplified one dimensional model capturing most rel-
evant properties, which is further investigated in the following chapters. Finally, dimensionless
parameters are introduced and the steady state solution is presented.

2.1 Salt Balance and Transport Mechanisms

As salt is neither produced nor destroyed but only moved through the system, a change in salinity
in a certain volume is accompanied by transport of salt through the boundary of that volume.
Mathematically:

d

dt

∫
V

sdx =

∮
∂V

Tdx, (2.1)

where s is the salinity in the considered volume V and T is the salt transport rate through the
boundary of V .

Let s(x, y, z, t) denote the salinity at a certain point in space and time. We can write

s(x, y, z, t) = s0(x, t) + s′(x, y, z, t), (2.2)

where s0(x, t) is the salinity averaged over depth, width and a tidal cycle at a point in the river
and s′(x, y, z, t) is the deviation from that average. Similarly, the flow velocity in the longitudinal
direction u(x, y, z, t) can be written as

u(x, y, z, t) = u0(x, t) + u′(x, y, z, t), (2.3)

where u0(x, t) is the velocity averaged over depth, width and a tidal cycle at a point in the river
which is due to freshwater discharge, and u′(x, y, z, t) is the deviation from that average which
includes turbulent tidal eddies, for example.

Now most generally salt is transported by the flow of water, and by molecular diffusion due to
concentration differences. Molecular diffusion is negligible on estuarine scale.1 The total transport
T is therefore given by:

T = u0s0 + u0s
′ + u′s0 + u′s′. (2.4)

Averaging over width and depth and averaging over a tidal cycle, only two terms remain:

T = u0s0︸︷︷︸
TA

+< u′s >︸ ︷︷ ︸
TD

, (2.5)

where · denotes cross sectional averaging and < · > denotes tidally averaging. The salt transport
due to river flow is denoted by TA. This advective transport is given by

TA = u0s0, (2.6)

1The diffusion coefficients for ions in water are of order 10−9 m2 s−1, see for example ”Transport Phenomena Data
Companion” by L.P.B.M. Janssen and M.M.C.G. Warmoeskerken, 2006. The order of the dispersion coefficient is
typically much larger. For example in the study by Dijkstra, Schuttelaars, and W. Kranenburg (2022), the dispersion
coefficient is in the range of 25− 500 m2 s−1.

3



1965] Hansen and Rattray: Gravitational Circulation in Estuaries 105

30
CENTRAL
REGIME

0

0
20

z IOUTER INNER
REGIME I REGIME

I.-- Iz I:::i 10 I<l
I SURFACE I(J)

I I
I I
I I

0 I
20 40 80

DISTANCE IN KILOMETERS

Figure I. Longitudinal salinity distribution in the Delaware River (from Pritchard 1954-a).

and a system of currents induced by the density difference between freshwater
and seawater. Analysis of the estuarine regime therefore constitutes a problem
of both forced and free convection. One-dimensional mathematical models,
such as that of Arons and Stommel (1951) or Ippen and Harleman (1961),
relate to integral properties of the forced flow and suppress or obscure the free-
convection aspect of the problem, i.e., the influence of density gradients on
the velocity distribution; such models can therefore adequately portray con-
ditions only in the innermost part of shallow estuaries, where such influence
is slight. The effect of density gradients on the velocity distribution has been
considered by O'Brien (1952) and Abbott (1960) without reference to the
role of currents in maintaining the salinity distribution. Agnew (1961) devel-
oped separately two aspects of the free-convection problem: (i) the influence
of an assumed density gradient on tidal currents in estuaries, and (ii) the tend-
ency of an assumed free-convection velocity gradient and horizontal density
gradient to induce vertical density strati fication. The interdependence of the
salinity and velocity fields was recognized in the dynamical equations employed
by Rattray and Hansen (1962), who developed the free-convection aspect of
the problem but suppressed the forced-convection aspect to obtain an approx-
imate solution for the outer regime, in which it was again necessary to assume
knowledge of the horizontal density gradient.
This paper presents some solutions of the basic differential equations for the

central and inner regimes; both forced and free convections are considered, and
two-dimentional salinity distributions are derived from external parameters.

Figure 2.1: A typical salinity profile based on the Delaware River. Adopted from Figure 1 in
Hansen and Rattray (1965).

where u0 is the velocity of flow due to river discharge and equals Q/A for discharge Q through
cross section A.

The flow of water u′ is complicated. There is turbulent flow due to tides and gravitational
circulation due to a vertical density gradient. This leads to highly nonlinear equations that can
only be solved numerically. Oftentimes however, it is not practical or even necessary to consider
small scale variations when analysing large systems. In this study we take the approach to simplify
for the benefit of analytical solution methods. We use a dispersion relation to describe all transport
that does not happen by advection due to freshwater flushing. In the simplest case, the dispersive
transport TD resembles Fickian diffusion and depends linearly on the concentration gradient by

TD = −Kds0
dx

, (2.7)

where K is an empirically determined parameter. Some call this eddy-diffusivity, referring to the
tidal eddies that cause the transport (e.g. Chatwin (1976)), or tidal stirring.

A typical salinity profile is shown in Figure 2.1. In order the match the observed negative
salinity curvature near the mouth, some let the dispersion coefficient K depend continuously on
position x (e.g. MacCready (2004)). We will however generally consider the dispersion coefficient
to be constant in position, and constant in time unless mentioned otherwise. The addition of the sea
to the model will allow for a unique model where the dispersion is relatively simple and the typical
salinity profile can be described well. Using more degrees of freedom in a nonlinear dispersion
relation may provide a more accurate description at the cost of mathematical complexity.

2.2 Geometrical Setup and Partial Differential Equation

The system is divided into two separate parts as the river and sea have different characteristics, see
Figure 2.2. The rectangular river is modeled with constant cross section and uniform freshwater
discharge. In the sea, the freshwater discharge is assumed to be radially distributed after averaging
over a tidal cycle. After defining the governing equations in the interior of the two domains, they
are coupled. We will from now on denote s0 by s for simplicity.

2.2.1 River

Let s(x, t) (kgm−3) denote the salinity with 0 < x < L (m) the longitudinal position in the
upstream direction of the river with x = 0 m at the mouth. t > 0 (s) is the time elapsed from a
given initial salinity profile s(x, 0) = h1(x) , where subscript 1 emphasises the river domain. At
x = 0 m, the salinity is considered to be a function of time s(0, t) ≡ f(t), which will follow from
coupling the river with the sea. At x = L, the salinity is 0 kgm−3. The water discharge Q (m3 s−1)

4
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Figure 2.2: A schematic overview of the rectangular river (left) and the adjacent sea (right). The
direction of flow is indicated by arrows.

flows in the negative x-direction and is taken constant in time. The cross sectional area of the
river is A (m2) is constant such that the river is rectangular. The flow velocity is u0 = −Q/A.
The dispersion coefficient is given as k (m2 s−1) and is constant in time and space.

Considering the salt balance (eq. 2.1) of a small volume in the estuary with the dispersion
given in equation 2.7 as demonstrated in Appendix A, results in the following partial differential
equation for s:

∂s

∂t
= k

∂2s

∂x2
+
Q

A

∂s

∂x
, 0 < x < L, t > 0, (2.8)

with boundary and initial conditions

s(L, t) = 0,

s(0, t) = f(t),

s(x, 0) = h1(x).

(2.9)

2.2.2 Sea

Let s(r, t) (kgm−3) denote the salinity with a < r < R (m) the radial position in the downstream
direction of the river with r = a at the mouth. t > 0 (s) is the time elapsed from a given initial
salinity profile s(r, 0) = h2(r), where subscript 2 emphasises the sea domain. At r = a the salinity
is considered to be a function of time s(a, t) = f(t), which will be determined by coupling the sea
and river. At r = R, the salinity is a constant ssea. The water discharge Q (m3 s−1) flows in the
positive r-direction and is constant in time. Note that Q is the same as in the river. The cross
sectional area of the sea is A(r) = πrD, where D (m) is the depth of the sea. The dispersion
coefficient is given as κ (m2 s−1).

Again following the approach in Appendix A, we arrive at the following partial differential
equation for s:

∂s

∂t
= κ

∂2s

∂r2
+

1

r

(
κ− Q

πD

)
∂s

∂r
, a < r < R, t > 0, (2.10)

with boundary and initial conditions

s(a, t) = f(t),

s(R, t) = ssea,

s(r, 0) = h2(r).

(2.11)

2.2.3 Coupling

The sea and river will be coupled at the boundaries x = 0 and r = a. The value of a follows by
requiring continuity of flow velocity: Q

A = Q
πaD . At the boundary we impose the following two
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conditions for the salinity:

s(0, t) = s(a, t) ≡ f(t), (2.12)

Qs(0, t) + kAsx(0, t) = Qs(a, t)− κπaDsr(a, t). (2.13)

Here condition 2.12 imposes continuity of the salinity profile, or in other words it defines s(r = a)
and s(x = 0) to be the same point. Condition 2.13 imposes that the salt transport through this
boundary layer is the same from both sides and simplified to ksx(0, t) = −κsr(a, t) using the first
condition.

2.3 Dimensionless Parameters

The use of dimensionless parameters is a powerful tool as it allows for reducing the number of vari-
ables. In the partial differential equation 2.8 there are seven independent variables (s, x, t, k,Q/A,L, ssea)
and three units (kg, m, s). Using the Buckingham-Π theorem, we can express the equations in
only 7− 3 = 4 dimensionless parameters. These are chosen as follows for the river:

ζ = s/ssea

ξ =
x

L

τ1 =
tk

L2

Pe =
QL

kA
.

(2.14)

There are many ways to choose these dimensionless paramters. We chose to include the Péclet
number Pe because it is the ratio of advective and dispersive transport rates. ζ and ξ are the
normalised salinity and position. We find that the dimensionless time is obtained by dividing time
by the dispersion time L2/k.

In the sea-domain of equation 2.10, there are eight independent variables (s, r, t, κ,Q/D, a,R, ssea).
We can now change to five dimensionless parameters:

ζ = s/ssea

ρ =
r − a

R− a

τ2 =
tκ

(R− a)2

q =
a

R− a

P =
Q

κπD
.

(2.15)

The dimensionless number P resembles a Péclet number where the velocity of flow is determined
at the characteristic length. ζ and ρ are the normalised salinity and position and q is a parameter
that describes the geometry of the sea.

The partial differential equations can then be written as

∂ζ

∂τ1
=
∂2ζ

∂ξ2
+ Pe

∂ζ

∂ξ
, 0 < ξ < 1, τ1 > 0, (2.16)

subject to
ζ(0, τ1) = f(τ1)/ssea,

ζ(1, τ1) = 0,

ζ(ξ, 0) = h1(ξ),

(2.17)

and
∂ζ

∂τ2
=
∂2ζ

∂ρ2
+

1

ρ+ q
(1− P )

∂ζ

∂ρ
, 0 < ρ < 1, τ2 > 0, (2.18)

subject to
ζ(0, τ2) = f(τ2)/ssea,

ζ(1, τ2) = 1,

ζ(ρ, 0) = h2(ρ).

(2.19)
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2.4 Steady State

In steady state, the salinity profile ζ does not change in time, i.e. ∂ζ
∂τ = 0. In the case of a stable

partial differential equation with constant coefficients, the solution will converge to its steady-state
equilibrium as time goes to infinity. For ∂ζ

∂τ = 0, we have a linear second order ordinary differential

equation that can be solved. Let ζ̃ denote the equilibrium solution, then

0 =
d2ζ̃

dξ2
+ Pe

dζ̃

dξ
, (2.20)

with solution
ζ̃(ξ) = c1e

−Peξ + c2. (2.21)

In the sea part we have

0 =
d2ζ̃

dρ2
+

1− P

ρ+ q

dζ̃

dρ
, (2.22)

with solution
ζ̃(ρ) = c3 (ρ+ q)

P
+ c4. (2.23)

Imposing the two boundary conditions (ζ̃(ξ = 1) = 0, ζ̃(ρ = 1) = 1) and the two coupling
conditions (ζ̃(ξ = 0) = ζ̃(ρ = 0), −kζ̃ξ(ξ = 0) = κζ̃ρ(ρ = 0)) we can solve for the constants and
find:

ζ̃(ξ) =
κ

k

P

Pe
qP−1

[
κ

k

P

Pe
qP−1

(
1− e−Pe

)
+ (1 + q)P − qP

]−1 (
e−Peξ − e−Pe

)
, (2.24)

ζ̃(ρ) =

[
κ

k

P

Pe
qP−1

(
1− e−Pe

)
+ (1 + q)P − qP

]−1 (
(ρ+ qP )− (1 + q)P

)
+ 1. (2.25)
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Chapter 3

Solution Methods

In this chapter we first take a look at analytical methods to solve the coupled partial differential
equations. As we will see, these analytical methods provide insight into the adjustment process
but do not yield an explicit closed form solution of the coupled equation. Hence in the second part
of this chapter a numerical method is developed to approximate the solution. We return to the use
of the original dimensional equation since we need both to have the same timescale to couple the
equations. This could be done entirely in dimensionless parameters, but would be more tedious.

3.1 Analytical Methods

We will employ eigenfunction expansion in the sea and river domains separately assuming the
known Dirichlet boundary condition at the coupling boundary. We will later use the remaining
coupling condition to find an equation for this assumed salinity. The details of the method of
eigenfunction expansion are discussed in Appendix B. The method is summarised here.

3.1.1 River

For the river we first write

s(x, t) = ψ(x, t) +

∞∑
n=1

Tn(t)ϕn(x), (3.1)

where ψ(x, t) is chosen to make the boundary conditions homogeneous for the remaining problem,
which is solved by expanding it in eigenfunctions:

∑∞
n=1 Tn(t)ϕn(x). These eigenfunction are

analytically solved:

ϕn(x) = e−
Q

2kAx sin
(nπx
L

)
, n ≥ 1, (3.2)

with eigenvalues

λn =
(Q/A)2

4k
+ k

(nπ
L

)2
, n ≥ 1. (3.3)

Note that these eigenfunctions are not orthogonal. An expression for Tn(t) is derived using a
Galerkin method for the first N eigenfunctions. We finally arrive at

Tn(t) =e
−λnt

N∑
j=1

[
G−1

]
n,j

∫ L

0

h(x)ϕj(x)dx

− f(t)

N∑
j=1

[
G−1

]
n,j

∫ L

0

(
1− x

L

)
ϕj(x)dx

+

∫ t

0

f(t̄)eλn(t̄−t)dt̄

λn N∑
j=1

[
G−1

]
n,j

∫ L

0

(
1− x

L

)
ϕj(x)dx−

N∑
j=1

[
G−1

]
n,j

∫ L

0

Q

AL
ϕj(x)dx

 .

(3.4)
Here

[
G−1

]
n,j

are known coefficients from integrating products of eigenfunctions. f(t) represents

the unknown salinity at the boundary of the river and sea.

8



3.1.2 Sea

In the sea domain the same approach is applied. Only now the eigenvalues cannot be solved
analytically, so a numerical root finder is used. The eigenfunctions are of the form

ϕn(r) = (r)
Q

2κπD J Q
2κπD

(√
λn
κ
r

)
+ dn (r)

Q
2κπD Y Q

2κπD

(√
λn
κ
r

)
. (3.5)

Here J and Y are Bessel functions of the first and second kind. Following the same procedure
yields

Tn(t) =e
−λnt

(
N∑
j=1

[
G−1

]
n,j

∫ R

a

h(r)ϕj(r)dr −
N∑
j=1

[
G−1

]
n,j

∫ R

a

r − a

R− a
ϕj(r)dr

− 1

λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr

)

− f(t)

N∑
j=1

[
G−1

]
n,j

∫ R

a

R− r

R− a
ϕj(r)dr

+

∫ t

0

f(t̄)eλn(t̄−t)dt̄

−
N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr + λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

R− r

R− a
ϕj(r)dr


+

1

λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr.

(3.6)
Again, f(t) remains unknown. All other terms can be (numerically) calculated.

3.1.3 Coupling

The first coupling condition 2.12 is already met by introducing f(t). To solve for f(t) we require
the second coupling condition 2.13:

Qf(t) + ksx(0, t) = Qf(t)− κsr(a, t), (3.7)

such that

kψx(0, t) + k

N∑
n=1

Tn(t)(ϕn)x(0) = −κψr(a, t)− κ

N∑
n=1

Tn(t)(ϕn)r(a). (3.8)

Rewriting this equation results in a form

0 =

N∑
n=1

C(0)
n + e−λntC(1)

n + f(t)C(2)
n + C(3)

n

∫ t

0

f(t̄)eλn(t̄−t)dt̄. (3.9)

Here f(t) is the only unknown. All coefficients C
(i)
n are known and can be expressed in definite

integrals over the eigenfunctions, initial condition etc. It has been attempted without success to
approximate the function f(t) numerically by considering discrete time steps, integrating with the
trapezoidal rule and then finding the root of equation 3.9 for the next time step. It is not clear
why this method fails, but convergence of the differentiated series might pose a problem. The
trapezoidal integration scheme does require fine time discretisation, but this does not seem to be
the cause of the problem.

3.2 Numerical Methods

In this section, we will introduce a finite differences scheme that allows to determine the solution
of the PDE up to any required accuracy as available computing power permits. We divide the
x and r domains in n and m equidistant grid points respectively. First order spatial derivatives
are approximated by second order forward differences and second order spatial derivatives are

9



approximated by central differences. Because of the coupling boundary conditions the first order
derivatives can only be determined by forward differences. The salinity at the boundary of the two
domains is eliminated from the scheme using the coupling conditions. Time integration is performed
using the trapezoidal or Crank-Nicolson method. This method is chosen for its unconditional
numerical stability. For a more detailed description, we refer to Appendix C.

The numerical scheme is consistent since the local truncation error vanishes as the grid be-
comes finer. The order of the method is O(∆x2 + ∆r2 + ∆t2). The scheme does not appear to
converge very fast, i.e. many grid points must be considered to obtain an accurate solution which
is computationally expensive. The trapezoidal integration method is unconditionally stable. That
means that the time integration does not amplify errors as long as the approximated differential
equation is analytically stable. Since we model a physical phenomena by a second order linear
partial differential equation it is expected to be analytically stable. This can also be seen in the
eigenfunction expansion where all terms converge under the assumption that the matrix G is in-
vertible and f(t) does converge. Hence we conclude that the numerical scheme is likely consistent
and stable, and therefore convergent.
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Chapter 4

Results

In this chapter the results are presented in three sections. The first section explores the steady-
state salinity in the coupled river-sea system. The following section compares the eigenvalue time
scales with time-dependent uncoupled solutions for increasing and decreasing freshwater discharge.
This will help us to characterise the individual systems. The last section will explore the time scale
of the coupled system.

4.1 Steady State

The geometry and dispersion coefficient in the sea have effect on the salinity steady state in the
entire system. Figure 4.1 shows the salinity profile for different parameters to show how these
parameters affect the profile. The default parameters are inspired by the Rotterdam Waterway,
part of the Rhine-Meuse delta and are listed in Table 4.1. On the left, examples of salinity profiles
are plotted for certain parameter values. The horizontal axis shows −x and r to naturally display
the estuary with the water flowing from left to right. In the panels on the right, the salinity at
the mouth is plotted as function of κ (top panels), R (middle panels) and D (bottom panels). In
the top panels, we can see that when κ is large, the salinity does not change much within the
sea because there is a lot of mixing, while for lower κ the salinity at the mouth of the estuary
can be very different from the salinity in open sea because there is not much mixing. The two
middle panels show that the larger the radius of the sea is, the larger the salinity difference between
the mouth of the river and the open sea. Compared with the effect of κ we notice that in this
configuration halving or doubling the radius seems to have less impact than halving or doubling the
dispersion coefficient. Finally, the two bottom panels show how the salinity profile changes with
the depth of the sea. In a deep sea, the salinity does not change much because the flow velocity
is relatively small compared with the dispersion coefficient. On the other hand, in a shallow sea
the flow velocity may be relatively high such that there is a large salinity difference between the
mouth at r = a and the open ocean at r = R.

Table 4.1: Default parameter values for intrusion length L, river cross section A, radius of the sea
R, depth of the sea D, water discharge Q and dispersion coefficients in the river k and in the sea
κ inspired by the Rotterdam Waterway. See Chapter 5 for details about how these parameters are
determined.

Parameter Value
L 45 km
A 7500 m2

R 7 km
D 20 m
Q 500 m3 s−1

k 900 m2 s−1

κ 180 m2 s−1
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Figure 4.1: The top left panel shows the steady state salinity profile for different values sea dis-
persion coefficient κ. The top right panel shows the salinity at the mouth of the river as function
of sea dispersion κ. The two middle panels similarly show how the size R of the transition region
in the sea and the steady state solution are related. The two bottom panels show how the steady
state solution and the salinity at the mouth depend on the depth of the sea D.
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4.2 Eigenvalue Time Scales

Since we expect that the effect of the sea on the time scale of the adjustment process depends on
the time scales of the individual sea and river subsystems, we will now investigate these separate
subsystems.

We define the salinity adjustment time tADJ of the adaptation process as the time it takes to
undergo 1 − 1/e parts (≈ 63%) of the salinity adjustment, or equivalently the time at which the
salinity only still needs to undergo 1/e of the salinity change. Mathematically we write

|s(x, tADJ)− s(x,∞)| = 1

e
|s(x, 0)− s(x,∞)| . (4.1)

This adjustment time is a function of position (x or r). Note that the salinity increases and
decreases monotonically under the used initial conditions, such that tADJ is unique for each point.
To compare different estuaries and seas, we similarly define a time scale for the adjustment of
total salt in the system. We write S(t) for the total salt in the system. In the estuary we have

S(t) =
∫ L

0
As(x, t)dx and in the sea we have S(t) =

∫ R

a
πrDs(r, t)dr. The salt adjustment time

TADJ is then given by

|S(TADJ)− S(∞)| = 1

e
|S(0)− S(∞)| . (4.2)

From the eigenfunction expansion solutions 3.4 and 3.6, it is evident that the eigenvalues are
important in describing the temporal behaviour of the solution. Especially the smallest eigenvalue
is significant because none of the individual terms decays slower. Furthermore, the corresponding
eigenmode is likely leading as the eigenfunction has no nodes and is thus expected to have the
largest amplitude. It is difficult to make this statement exact as it depends on the estuarine
parameters and the inverse of a matrix. Further details for an example will be discussed later
in this section. Nevertheless, we argue that 1/λ1 defines a time scale of the salinity adaptation
process. Then in the river, the time scale is determined by

λ1 =
(Q/A)2

4k
+ k

π2

L2
. (4.3)

In the sea system, we do not have an explicit expression for the eigenvalues. Since these
eigenvalues are related to roots of Bessel functions, it is not expected that a polynomial or power
relation is a good parameterisation. Nevertheless, a power law of the form

Λ1 = aP bqc + dqe (4.4)

is fitted to get a better feeling for the scaling of the time scale with the parameters that describe
the system. Here Λ1 = λ1(R − a)2/κ is the dimensionless smallest eigenvalue, and P and q are
the dimensionless parameters as defined in section 2.3 that it depends on. This form is chosen
since in the river the dimensionless eigenvalue is given by Λ1 = 1

4Pe
2 + π2 and we expect the sea

may have similar behaviour with P similar to a Péclet number and with the constants possibly
depending on q. If this description of Λ1 would be the same in the sea as in the river, we would
then expect a = 1

4 , b = 2, c = 0, d = π2, e = 0. Figure 4.2 shows how Λ1 varies for 0.001 < q < 0.1
and 0.001 < P < 0.5. The panel on the left shows a heat map of the eigenvalue as function of P
and q. The middle panel shows the eigenvalue as function of q for some values of P and the fitted
power law. The panel on the right shows the eigenvalue as function of P for some values of q and
the fitted power law. The fit using an initial guess of 0 for each parameter results in the following
optimal parameters a = 0.402± 0.008, b = 1.70± 0.02, c = −0.340± 0.003, d = 10.060± 0.004, e =
0.0582 ± 0.0001. It should be noted that these values vary strongly for different domains. Since
the chosen domain is rather large, the fit is not always accurate as can be seen in the rightmost
panel of Figure 4.2. Nevertheless, it is interesting to note that the values of these parameters are
similar to what we would expect based on the result in the river. We have b = 1.70 ± 0.02 which
is not so far from 2, as in the river. Also d and e are close to π2 and 0.
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Figure 4.2: On the left a heat map of the dimensionless eigenvalue Λ1 is shown as function of the
dimensionless parameters P and q. The black lines represent constant Λ1. In the middle and on
the right, Λ1 is plotted for constant P and q respectively. The solid lines represent a fitted power
law Λ1 = (0.402± 0.008)P 1.70±0.02q−0.340±0.003 + (10.060± 0.004)q0.0582±0.0001.

4.2.1 River only

Let us now look at the adjustment time for a river only system where the boundary salinity f(t)
is fixed to 0.8ssea and compare adjustment times TADJ and tADJ with 1/λ1 to check if 1/λ1 is
a good time scale. To keep the results as general as possible, we will sometimes return to the
dimensionless equations. The dimensionless tADJ will be denoted by τADJ , the dimensionless
TADJ will be denoted by TADJ and the dimensionless eigenvalue λ1 is denoted by Λ1. Since
adjustment times may differ for increasing and decreasing salinity, we model doubling and halving
of freshwater discharge by doubling and halving Péclet number Pe to the same value. Figure 4.3
shows how a typical solution evolves from the its initial condition (dashed black line) to the final
steady state salinity (solid black line). At first, when the salinity is furthest away from equilibrium,
the salinity adjust fastest. The time at which a point reaches the black dotted line in this figure is
the adjustment time tADJ .

Figure 4.4 shows the total estuarine salt adjustment time TADJ as solid line in blue and orange
for decreasing and increasing salinity. The eigenvalue time scale 1/λ1 is shown in black. Both
adjustment times are smaller than 1/λ1. For decreasing salinity the adjustment time is close to
1/λ1, but for increasing salinity, the adjustment time is significantly lower.

In Figure 4.4, the local salinity adjustment time tADJ is shown as blue and orange dots for
decreasing and increasing salinity. The decreasing salinity adjustment time appears relatively
constant in estuarine position and close to 1/λ1. The increasing salinity adjustment time varies
broadly in position. The adjustment time is much smaller near the mouth than near the intrusion
length. This can be understood by the following reasoning: In the case of increasing salinity, salt
must be transported upstream from the mouth of the river. Hence the salinity will first increase
near the mouth, before the salt moves further up the estuary.

Even though all individual terms in the eigenfunction expansions decay faster than 1/λ1, we
see that many points in the estuary have an adjustment time longer than 1/λ1. We can understand
where this occurs by looking at the coefficients Tn(t) of the eigenfunction expansion. Figure 4.5
shows the first ten coefficients Tn(t) of the solution. In the left panel the coefficients are shown for
increasing freshwater discharge. We see that the time-dependent components of T1(t) and T3(t)
have the largest amplitude. Therefore, at points where ϕ1(x) and ϕ3(x) have the same sign, the
solution decays faster than by 1/λ1. This region consists of the left- and rightmost thirds of the
domain. See Appendix Figure B.1 for a plot of typical eigenfunctions. In the middle of the domain,
ϕ1(x) and ϕ3(x) have opposing sign such that the total solution is adjusting slower than 1/λ1. This
corresponds to the result in Figure 4.4. The amplitude of these time-dependent coefficients depends
on the initial salinity and on the parameters that describe the new equilibrium. Thus it can be
concluded that the adjustment process depends on the initial condition.

In the right panel of Figure 4.5, the first ten coefficients Tn(t) are shown for decreasing fresh-
water discharge. We see that the time dependent component of T1(t) and T2(t) have the largest
amplitude. At points where ϕ1(x) and ϕ2(x) have the same sign, the solution decays faster than
by 1/λ1. This occurs in the half of the domain near the mouth of the river. In the other half of
the domain, ϕ1(x) and ϕ2(x) have opposing sign such that the total solution adjusts slower than
1/λ1. Since 1/λ2 is closer to 1/λ1 than 1/λ3 is to 1/λ1, the difference in adjustment time due to
the addition and subtracting of the terms is larger. This again provides an explanation for the
results of Figure 4.4, where the adjustment time is generally closer to 1/λ1 for decreasing salinity.
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Figure 4.3: The adjusting solution due to increased discharge is shown at different times for the
default parameters. The initial salinity profiles is shown as dashed black line. A point of the
solution reaches the black dotted line at t = tADJ . As t diverges to infinity, the salinity approaches
the steady state solution shown as black solid line.
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Figure 4.4: The salt adjustment time Tadj is shown as horizontal line for a case where water
discharge is suddenly doubled in blue and halved in orange. The blue and orange dots indicate
local salinity adjustment time tADJ . In black the expected time scale 1/λ is plotted. The first 50
eigenfunctions are used.
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Figure 4.5: The first ten eigenfunction coefficients Tn(t) are plotted for decreasing and increasing
salinity due to doubling and halving of freshwater discharge in the left and right pane respectively.
For decreasing salinity the time-dependent components of T1(t) and T3(t) are the largest, while for
increasing salinity the time-dependent components of T1(t) and T2(t) are the largest.

To study more generally how the adjustment time TADJ and 1/λ1 are related, we return to
dimensionless variables. Figure 4.6 shows how TADJ depends on the initial condition and Péclet
number Pe. The initial condition is given by a steady state solution with Pe0 = mPe (upwards
pointing triangle) or Pe0 = 1

mPe (downwards pointing triangle). The width and height of the
triangles are proportional to the difference between the longest and shortest local adjustment
time within the estuary. This measures how evenly the adjustment time is distributed in the
estuary. The color indicates the initial condition. It can be seen that adjustment times differ
for different initial conditions. The adjustment time of increasing salinity is smaller than for
decreasing salinity since for each Péclet number the downwards pointing triangles are above the
upwards pointing triangles. The upwards pointing triangles are bigger than the downwards pointing
triangles, which indicates that the local adjustment time is more evenly spread for decreasing
salinity than for decreasing salinity. This corresponds to our previous result. For small Pëclet
numbers, the adjustment time TADJ is relatively close to 1/Λ1. For larger Pëclet numbers the
adjustment time becomes smaller and the deviation becomes relatively large, in particular for
increasing salinity. That the adjustment time decreases for larger Pëclet numbers can be physically
understood by realising that for large Péclet numbers, the salinity is initially concentrated close
to the mouth of the river and the total amount of salt in the estuary is relatively small such that
not much salt needs to be transported through the boundary at the mouth of the river and it does
not have to be transported over a long distance.
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Figure 4.6: The dimensionless adjustment time TADJ for different Péclet numbers and different
initial conditions characterised by Pe0 = mPe (upwards pointing triangle) or Pe0 = 1

mPe is shown
in comparison with the time scale 1/Λ1. The width and height of the triangles are proportional to
the difference between longest and shortest adjustment time within the estuary. These results are
obtained using the first 30 eigenfunctions.
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Figure 4.7: The adjusting salinity due to increased discharge for a sea with fixed boundaries is
shown at different times. The solid and dashed black lines indicate the equilibrium and initial
salinity. The solution locally reaches the dotted line at t = tADJ . The parameters are slightly
adjusted for illustrative purposes.

4.2.2 Sea only

To study the smallest eigenvalue time scale in the sea, a sea only system with boundary conditions
s(a, t) = 0.8ssea and s(R, t) = ssea is considered. The same procedure as for the river is followed.
Figure 4.7 shows a typical solution at different times evolving from the initial condition shown as
dashed black line to the final steady state equilibrium indicated by a solid black line. The time at
which the solution reaches the black dotted line is the adjustment time tADJ .

Figure 4.8 shows the adjustment times corresponding to doubling and halving of P to the same
value. The total salt adjustment time TADJ is shown as blue and orange solid horizontal lines for
decreasing and increasing salinity respectively. They are both comparable to but slightly above
the eigenvalue time scale 1/λ1 indicated by a black solid line.

The figure also shows the local salinity adjustment time tADJ indicated by blue dots for de-
creasing salinity and orange dots for increasing salinity. Contrary to the result in the river, the
spatial variation is very similar for decreasing and increasing salinity. The adjustment time is
shortest close to the mouth at r = a and longest close to r = R, which is also different from
the river system. It is believed that this is the result of the varying ratio between surface area
and volume of a volume element in the sea. The solution contains more and larger oscillations
than in the river only system. Increasing the number of eigenfunctions increases the accuracy but
the oscillations do not disappear. Appendix D discusses the convergence of the eigenfunctions. In
particular, Figure D.3 shows a similar result obtained using a numerical scheme that is very similar
but does not contain these oscillations.

Figure 4.9 shows the first ten coefficients Tn(t) of the eigenfunction expansion for decreasing
salinity in the left pane and for increasing salinity in the right pane. We see that these coefficients
are very similar for both initial conditions. Hence the observed pattern in the salinity adjustment
time does also not differ much. The time varying amplitude of T1(t) and T2(t) are the largest and
change in the same direction. Hence the adjustment process is faster than 1/λ1 approximately
when ϕ1(r) and ϕ2(r) have same sign, which occurs approximately in the half of the domain close
to the mouth. Analogously, the adjustment is slower than 1/λ1 approximately when ϕ1(r) and
ϕ2(r) have opposing sign, which occurs approximately in the other half of the domain close to open
sea.

Now Figure 4.10 shows the dimensionless adjustment times TADJ in comparison with 1/Λ1 for
different values of P , only for q = 0.02. Values of P close to and greater than 1 are not considered
since those conditions are not expected. Note that the partial differential then qualitatively changes
since the term 1−P vanishes or becomes positive. The initial condition is the steady state solution
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Figure 4.8: The salt adjustment time TADJ is shown as horizontal line for a case where water
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local salinity adjustment time tADJ . In black the eigenvalue time scale 1/λ1 is shown. The first
30 eigenfunctions are used.
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Figure 4.9: The first ten time varying coefficients Tn(t) are shown for a sea with fixed boundaries.
The left pane shows the result for decreasing salinity and the right pane shows the result for
increasing salinity. The computation is done using the first 30 eigenmodes.
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Figure 4.10: Dimensionless salt adjustment time TADJ is shown for different values of P with
q = 0.02. The initial condition is the steady state solution with P0 = mP for the upwards pointing
triangles and P0 = 1

mP for downwards pointing triangles. The height and width of the triangles
are proportional to the difference between the shortest and longest local adjustment time. The
calculations are performed using the first 30 eigenfunctions.

with P0 = mP for the upwards pointing triangles and P0 = 1
mP for downwards pointing triangles.

The width and height of the triangles are proportional to the difference between the maximum
and minimum τADJ of that solution. For decreasing salinity we not not observe much sensitivity
for the initial condition m. This is because the steady state solution is also not very sensitive for
changes in P . For increasing salinity we do observe high sensitivity for m. This is because mP
can become larger than 1. Then the steady state solution becomes convex instead of concave.
The size of most triangles is similar, indicating a similar distribution of local adjustment times.
For small P , the pattern suddenly changes and the difference between increasing and decreasing
adjustment times becomes larger and for decreasing salinity the sensitivity for m increases. The
increasing difference between adjustment time for increasing and decreasing salinity is confirmed
using a numerical method for m = 2. The increase in size of the markers corresponding to a large
spread in local adjustment times is likely the result of larger oscillations due to slower convergence
of the eigenfunctions. For most P and m, the eigenvalue time scale gives a good indication of the
adjustment time.
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4.3 Time Scale of the Coupled Sea-River System

Finally, the effect of coupling the sea to the river on the time scale is investigated. Figure 4.11
shows the adjustment times tADJ (solid lines) and TADJ (dashed lines) for doubling (left pane)
and halving (right pane) river discharge for varying sea dispersion κ. The eigenvalue time scale
is indicated by a horizontal dotted line for both the river and the sea. This is similar to Figures
4.4 and 4.8. These results are obtained using the second order numerical model as described in
Section 3.2 with 2000 grid points in the river domain and 6000 grid points in the sea domain and
a time step of 1000 s. See Section D.2 for some more details about these numerical parameters.

For decreasing salinity we see that when the sea time scale is much smaller than the river time
scale (purple, red), the salt adjustment time in the river and sea are very similar and close to the
eigenvalue time scale of the river. Within the river, the local salinity adjustment time tADJ is
distributed as in the river only system. This is to be expected since for these relatively large sea
dispersion, the sea is not a limiting factor. Within the sea the salinity adjustment time is therefore
also fairly constant. For some smaller sea dispersion (green, orange) where the eigenvalue time
scale of the sea is still below the time scale of the river, the salt adjustment times TADJ in the
river are longer than the river eigenvalue time scale, i.e. the sea slows down the adjustment in
the river. Now tADJ is shortest near the intrusion length, where the sea has only little influence.
Near the mouth of the river this adjustment time increases. Within the sea, the pattern of tADJ

is similar to the sea only situation. The adjustment time is only much longer, because the salinity
can only reach equilibrium after equilibrium has been reached upstream in the river. When the
sea dispersion coefficient is even smaller (blue) and the eigenvalue time scale of the sea is above
the time scale of the river, the adjustment is even slower. Because the sea adjust slowly, there will
for a long time still be a large dispersive transport into the river which slows down the adjustment
of the river. We conclude that the slower the salinity in the sea decreases, the slower the salinity
in the river decreases. Furthermore, the slower the sea is relative to the river, the more the sea
slows down the adjustment.

For increasing salinity, salt must be transported upstream from the open sea to the mouth of
the river and further. When the sea dispersion coefficient is large (purple, red) and the time scale
of the sea is small compared with the time scale of the river, we observe that the salt adjustment
time TADJ of the river is close to the eigenvalue time scale. In the sea, the adjustment time is
equal to the local adjustment time at the mouth of the river. Because of the large dispersion, the
sea is mixed very fast and equally, such that the local adjustment time tADJ is almost constant
within the sea. Within the river, the result is similar to the river only situation because the sea can
almost instantly transport salt from the open sea to the mouth of the river. The adjustment time
is longest near the intrusion length because it takes longer to transport salt further in the estuary.
For somewhat smaller sea dispersion coefficients (green, orange) we observe that the adjustment
time is increased because the transport of salt from the open ocean to the mouth of the river now
happens less quickly. Interestingly, the salinity adjustment time tADJ is now minimal near the
mouth of the river. In the river the pattern has not changed compared with the case of larger sea
dispersion coefficients, but within the sea, the salinity is adjusted quicker near the mouth of the
river than near the open ocean resembling the sea only situation. When the dispersion coefficient
is even larger (blue) and the eigenvalue time scale of the sea is longer than the eigenvalue time
scale of the river, the sea is still adjusted before the river since all salt had to be transported
through the sea. The pattern of tADJ remains similar but shows a remarkable jump around the
mouth of the river. This may be caused by inaccuracy of the numerical method related to the
transport coupling condition for these numerical parameters given that k = 50κ. We conclude that
the slower the salinity in the sea increases, the slower the salinity in the river increases because
salt has to be transported through the sea. The longer the time scale of sea is relative to the river,
the more the adjustment in the river is slowed down.
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Figure 4.11: The salinity adjustment times TADJ (dashed lines) and tADJ (solid lines) are shown for
different values sea dispersion κ. The left pane shows the result for decreasing salinity (increasing
discharge) and the right pane for increasing salinity (decreasing discharge). Dotted lines indicate
the 1/λ1 time scales in the river and in the sea.
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Chapter 5

Case Study: Rotterdam Waterway

The obtained results about adjustment times is now applied to the Rotterdam Waterway, part of
the Dutch Rhine-Meuse delta. Modeled results will be compared with real world data. At the
Rotterdam Waterway water from both the Rhine (Switzerland, Germany, Netherlands) and the
Meuse (France, Belgium, Netherlands) stream into the North Sea. In summer 2018, the freshwater
discharge approximately halved in a period of approximately ten days. We will compare the salinity
adjustment time with the adjustment time of the freshwater discharge, to determine if and how
the adjustment time scales of the estuary and sea relate to the observed salinity adjustment time.
The data we use are collected by Rijkswaterstaat.1 They have measured water conductivity at
both the Lekhaven (LEK) and the Van Brienenoordbrug (BRN) in ten minute intervals. Figure 5.1
shows these locations on a map. They are approximately 30 and 40 km upstream from the mouth
of the river. We assume temperature effects are negligible and salinity is linearly proportional with
conductivity such that s/ssea = σ/σsea where σ (Sm−1) is the conductivity, ssea = 30 kgm−3 and
σsea = 4 (Sm−1).2

To estimate the size of the radial sea, a model from Rijkswaterstaat is used.3 Figure 5.2 shows
the salinity in the coastal sea as determined by their model during high and low water on June 8
2023. These figures show that the transition region is the sea is indeed quite large and therefore
may have an effect on the adjustment time.

Figure 5.3 shows the measured conductivity and water discharge averaged per day for the
year 2018. We observe two equilibrium states. At first the water discharge and salinity are
approximately constant. Then in a few days time, freshwater discharge is approximately halved.
After a few more days, the salinity also appears to stabilise around a new, higher average. We will
study if the salinity adjustment time is determined by the forcing time scale (freshwater discharge)

1Waterdata, Rijkswaterstaat, https://rijkswaterstaatdata.nl/waterdata/
2This approximation is based on Figures 1 and 5 from Tyler et al. (2017) and data from https://waterinfo.

rws.nl/#!/thema/zouten/ by Rijkswaterstaat.
3Maasmond Viewer, Rijkswaterstaat, https://waterberichtgeving.rws.nl/klanten/regio-rijnmond/

maasmond-viewer

Figure 5.1: The measurement stations at the Lekhaven (purple, x = 30 km) and the Van Brieneno-
ordbrug (blue, x = 40 km) in Rotterdam. The black line indicates the x-axis beginning at the
green point where x = 0. 10 km intervals are indicated by dots.
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Figure 5.2: The salinity in the coastal region around the Rotterdam Waterway on June 8 is
determined by Rijkswaterstaat using a complex numerical model. During both high tide (top
pane) and low tide (bottom pane), there is a large transition region in the sea where salinity is not
constant. During low tide the gradient in this region is larger.
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Figure 5.3: Water discharge and conductivity averaged per day at Lobith, where the Rhine enters
the Netherlands, and at the Van Brienenoordbrug. Horizontal lines indicate averages over the
corresponding period. Water conductivity is measured at a depth of 7.00 m at the Lekhaven and
6.50 m at the Van Brienenoordbrug.

or if the salinity is out of balance during this transition.
First we need to approximate all model parameters. R is determined from the simulation by

Rijkswaterstaat in Figure 5.2 by measuring the distance between the mouth of the river and the
point where the salinity reaches ssea = 30 kgm−3 on average during high and low tide. This is
approximately 7 km. The depth of the sea is estimated to be 20 m. The cross sectional area of
the river is estimated at 7500 m2, based on a width of 500 m and depth of 15 m.4 The salinity
at x = 0 is estimated to be constant around 26 kgm−3. The dispersion coefficients and intrusion
length are determined using two methods by manually fitting the steady state solution to the
average salinity and flow rate before and after the change of equilibrium. The first method tries
to find the best fit corresponding to the data. The other method recognises that the intrusion
length must be chosen much longer to justify the approximation that there is no net transport of
salt at the intrusion length. Figure 5.4 shows the fit for the parameters tabulated in Table 5.1.

4Width and depth are based on information from Rijkswaterstaat about the Rotterdam Waterway, see https:

//www.rijkswaterstaat.nl/water/vaarwegenoverzicht/nieuwe-waterweg. Upstream, the river becomes shallower
and less wide, see https://www.rijkswaterstaat.nl/water/vaarwegenoverzicht/nieuwe-maas, but this is ne-
glected.
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Figure 5.4: The steady state solution in the initial equilibrium state is shown on the left. On the
right, the final equilibrium salinity is shown. The solution is manually fitted using two methods
to the available data at the Lekhaven (LEK) and Van Brienenoordbrug (BRN).

Table 5.1: The estimated parameters for the initial and final equilibria using the method that tries
to fit the data as good as possible, and a method that imposes a much longer intrusion length.
Parameter Initial (best fit) Final (best fit) Initial (long intrusion) Final (long intrusion)
L 45 km 45 km 100 km 100 km
A 7500 m2 7500 m2 7500 m2 7500 m2

R 7 km 7 km 7 km 7 km
D 20 m 20 m 20 m 20 m
Q 617 m3 s−1 272 m3 s−1 617 m3 s−1 272 m3 s−1

k 900 m2 s−1 1800 m2 s−1 800 m2 s−1 700 m2 s−1

κ 180 m2 s−1 130 m2 s−1 250 m2 s−1 250 m2 s−1

In the initial situation, the results are very similar. In the final equilibrium however the results
differ significantly for a long and short intrusion length. The short intrusion length better fits
the data but then there is a significant transport of salt through the upstream boundary because
the gradient is large. The fact that the river is not rectangular but the cross section decreases
especially after the Van Brienenoordbrug and that it consists of multiple branches, may play a role
in the difference between model and observation. We will continue using both fits.

Since the river discharge does not change instantaneously but has a time scale itself, the nu-
merical method is extended to allow for water discharge and dispersion coefficients to vary in time.
This is done by recalculating the matrix K, see Appendix C, every time step. The parameters are
considered to change linearly from the initial to final values as tabulated in Table 5.1. The first
order method is used with 1000 spatial steps in both the sea and river with a time step of 6000 s.
Running the simulation with the estimated parameters gives a result as shown in Figure 5.5. The
top panel shows how water discharge changes in time, and how it is modeled using a linear and step
approximation. The middle panel shows how salinity at the Lekhaven changes in time as measured
and modeled. For both parameter sets, the step approximation does not model the adjustment as
good as the linearly changing parameter approximation. From this we conclude that the time scale
of the forcing is important. This is to be expected from the adjustment times corresponding to the
parameters. With the best fit parameters we find eigenvalue time scales of 0.3 days in the sea, and
0.8 days in the river which is much faster than the time it takes for the discharge to adjust. With
the long intrusion length parameters, we find eigenvalue time scales of 0.3 days in the sea, and 10
days in the river. This is of the same order as the adjustment of the water discharge. Thus the
linear parameter adjustment approximation gives a result that much better resembles the shape
of the measured salinity. In the calculation of the eigenvalue time scale, the order of the terms
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Figure 5.5: The top panels shows the measured water discharge and the approximation used in two
numerical models. Salinity results at the Lekhaven and Van Brienenoordrug are shown together
with the measurements in the two other panels.

(Q/A)2/(4k) and k(π/L)2 is similar such that the eigenvalue time scale strongly correlates with the
somewhat arbitrarily chosen intrusion length. The bottom panel shows the measured and modeled
salinity at the van Brienenoordbrug. The result is similar to that in the Lekhaven, but now the
long intrusion length approximation converges to a value above the observed salinity. Again the
linearly adjusting model gives the best qualitative approximation of the adjustment process.
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Chapter 6

Discussion

In steady state, the model can accurately describe a typical salinity profile as described by Hansen
and Rattray (1965) despite the dispersion coefficient being constant in both the domain of the
river and of the sea. This is the result of the radial flow in the sea. However, as demonstrated
in the case study, the model cannot always accurately describe observed steady state salinity.
The intrusion length should be large relative to dispersion (Péclet number much larger than 0)
to justify the approximation that there is no net transport of salt at the intrusion length. At the
intrusion length we have s = 0 such that there is no advective transport. Hence for there to be
no net transport in steady state, there should also be no dispersive transport, corresponding to
no gradient which only occurs in the limit of intrusion length to infinity. Nevertheless, we have
chosen to impose a finite intrusion length, as this allows for discrete eigenvalues. This introduces
a small leakage of salt at the intrusion length, which is only negligible when the intrusion length is
large enough. In order to better describe salinity as observed in the Rotterdam Waterway, another
dispersion relation may be better suited as Dijkstra, Schuttelaars, and W. Kranenburg (2022) show
that there are different physical processes dominant in different parts of the estuary. Including
gravitational circulation will make the model nonlinear, which makes the analytical method of
eigenfunction expansion inapplicable. The model could also be extended to include a vertical
dimension to describe the vertical distribution of salt. It would also be interesting to improve the
model by letting the river cross section A be a function of x, as this might also provide a solution
to make the steady-state solution better fit data in for example the Rotterdam Waterway.

The eigenvalue time scales have been shown to give a good indication of adjustment times
in both a river only and sea only system with fixed boundaries for many parameter values. For
increasing salinity with a large Péclet number, the eigenvalue time scale significantly overestimates
the adjustment time of total salinity in the river. This is because most of the salt is concentrated
near the mouth of the river. In the limit of infinite intrusion length, the scaling of 1/λ1 in the river
corresponds to the time scale result by C. Kranenburg (1986) when the dispersion and geometry are
chosen the same. See Appendix E for more details. In the sea, the salt adjustment time differs most
from the eigenvalue time scale when P is smaller than approximately 0.01. The decreasing salt
adjustment time is much less sensitive to the initial condition than the increasing salt adjustment
time. We have also found that the adjustment time differs for increasing and decreasing salinity as
found by for example by Hetland and Geyer (2004). It is however difficult to compare their results
directly with ours, since they have increased river discharge to another value than they decrease
river discharge to.

The eigenfunctions and the time-dependent coefficients in the eigenfunction expansion have
provided a new method to determine how the salinity adjustment time varies within the estuary.
When the salinity increases, the adjustment time is shortest near the mouth of the river, and the
adjustment time is longest near intrusion length. MacCready (2007) presented a time scale related
to changes in intrusion length and the result in Figure 4.4 shows an adjustment time near the
intrusion length of the same order as the result by MacCready. Further investigation as presented
in Appendix E shows that this similarity does not generally occur for all Péclet numbers and the
results scale differently.

The presented coupled numerical solutions show how the adjacent sea affects the time scale
of salinity adjustments in the estuary. This provides a simple method to estimate if the effects
of the sea are significant given the parameters describing the geometry of and mixing in the sea
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and the river. When the eigenvalue time scale of the sea is of similar order as or longer than the
eigenvalue time scale of the river, the sea may significantly contribute to the adjustment time and
must therefore not be neglected. On the other hand, if the time scale of the sea is much, say ten
times, shorter than the time scale of the river, the sea could be left out of the further time scale
analysis.

Further research should investigate the effect of tides on the adjustment time scale. It may
be possible that the effect of a slow sea is limited when tides are strong because salt transport
by a tidal flow could bypass the slowly mixing coastal sea. This would justify the approach of
Hetland and Geyer (2004), who added a mechanism to their numerical model to prevent the sea
from slowing down adjustment too much.

29



Chapter 7

Conclusion

The salinity profile in an estuary gradually adjusts when conditions change, for example in times
of drought. In order to determine if, when and to what extent the adjacent coastal sea affects
the time scale of this process, a model is developed and solved using a combination of numerical
and analytical methods. The model consists of a rectangular river with uniform flow due to
freshwater discharge and a cylindrical sea where the water flows radially away from the mouth of
the river where the two systems are coupled. The system is vertically well-mixed. Next to advective
transport due to river discharge, there is dispersive transport due to tidal mixing of water.

Using the method of eigenfunction expansion, a time scale determined by the smallest eigenvalue
is found for the uncoupled river and sea. This time scale accurately predicts the adjustment time
of total salt in these systems. Within these systems, the local salinity may adjust faster or slower
depending on position. For example in case of increasing salinity, the adjustment time is longer at
points further upstream because salt is imported at the mouth of the river and is only transported
upstream after downstream salinity has increased. This can be understood via the eigenfunctions.
It is also found that the adjustment process depends on the initial salinity distribution.

When the systems are coupled, a numerical method is used to find the solution. It is found
that the addition of the sea increases the adjustment time, but the effect may be either negligible
or significant depending on the relative time scales. For increasing salinity, the adjustment of the
river is slowed down when the time scale of the sea is similar to or longer than the the time scale
of the river. This is because the transport of salt from the open ocean to the mouth of the river
happens at the time scale of the slow sea. Only when the time scale of the sea is much (i.e. ten
times) shorter than the time scale of the river, the sea can transport salt fast enough from the
open ocean to the river such that the adjustment time of the river is not affected much.

For decreasing salinity, similar behaviour is found. When the time scale of the sea is much
shorter than the time scale of the river, the adjustment time of the river is not affected much.
However when the time scale of the sea is similar to or longer than the time scale of the river, the
adjustment time of the river is increased significantly because the sea keeps transporting salt to
the river via mixing. The longer the time scale of the sea, the longer the adjustment time of the
river.

Analysis of a sudden decrease in freshwater discharge in the Rotterdam Waterway, which is
part of the Dutch Rhine-Meuse delta, shows that the time scale of the salinity response is of
similar order as the eigenvalue time scale and the adjustment time of the discharge. Therefore the
adjustment time of the discharge is important and it is difficult to verify if the eigenvalue time
scale is accurate. The salt adjustment time is not limited by the sea, which has a much shorter
time scale.

Further research should consider a more general dispersion relation or an extra vertical dimen-
sion to better describe estuaries that are not well-mixed. Using numerical methods there are many
other possibilities to extend the model. The effect of tides on the presence and dynamics of the
fresh water bulge in the sea is of specific interest.
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Appendix A

Deriving the PDE from the Salt
Balance

River

Consider a small volume element at position x in the river with cross section A and length ∆x.
Then as discussed previously, averaging over width, depth and tides gives

d

dt

∫ x+∆x

x

As0(ξ)dξ = Q (s0(x+∆x)− s0(x)) +A (TD(x)− TD(x+∆x)) , (A.1)

where Qs0(x) is the advective transport rate through the boundary of the volume element, and
TD(x) the dispersive transport. We now assume that TD(x) = −k(s0)x(x)

d

dt

∫ x+∆x

x

As0(ξ)dξ = Q (s0(x+∆x)− s0(x)) + (−kA(s0)x(x) + kA(s0)x(x+∆x)) . (A.2)

Now using a taylor expansion around x for the integrand we obtain s0(ξ) = s0(x) + (s0)x(x)(ξ −
x) +O(ξ − x)2 such that

d

dt

∫ x+∆x

x

As0(ξ)dξ =
d

dt

∫ x+∆x

x

A
(
s0(x) + (s0)x(x)(ξ − x) +O(ξ − x)2

)
dξ

=
∂

∂t

[
As0(x)ξ +

A

2
(s0)x(x)(ξ − x)2 +O(ξ − x)3

]x+∆x

x

=
∂

∂t

(
As0(x)∆x+O(∆x)2

)
.

(A.3)

Substituting this into the previous equation and dividing by ∆x gives

∂

∂t
(As0(x) +O(∆x)) = Q

s0(x+∆x)− s0(x)

∆x
+ kA

(s0)x(x+∆x)− (s0)x(x)

∆x
. (A.4)

Now taking the limit of ∆x→ 0 yields

A
∂s0
∂t

= Q
∂s0
∂x

+ kA
∂2s0
∂x2

. (A.5)

Sea

Consider now a small volume element at position r in the sea with cross section A(r) = πrD and
length ∆r. Then as discussed previously, averaging over width, depth and tides gives

d

dt

∫ r+∆r

r

πξDs0(ξ)dξ = Q (s0(r +∆r)− s0(r)) + (A(r)TD(r)−A(r +∆r)TD(r +∆r)) , (A.6)
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where the first part denotes advective transport, and the second braced part the dispersive trans-
port. Assuming TD = −κ(s0)r(r) gives

d

dt

∫ r+∆r

r

πξDs0(ξ)dξ = Q (s0(r +∆r)− s0(r)) + (πD(r +∆r)(s0)r(r +∆r)− πDr(s0)r(r)) .

(A.7)
Now using a taylor expansion around r for the integrand we obtain πξDs0(ξ) = πrDs0(r) +
(πDs0(r) + πrD(s0)r(r)) (ξ − r) +O(ξ − r)2 such that

d

dt

∫ r+∆r

r

A(ξ)s0(ξ)dξ =
d

dt

∫ r+∆r

r

(
πrDs0(r) + (πDs0(r) + πrD(s0)r(r)) (ξ − r) +O(ξ − r)2

)
dξ

=
∂

∂t

[
πrDs0(r)ξ +

1

2
(πDs0(r) + πrD(s0)r(r)) (ξ − r)2 +O(ξ − r)3

]r+∆r

r

=
∂

∂t

(
πr∆rDs0(r) +O(∆r)2

)
.

(A.8)
Substituting this into the previous equation and dividing by ∆r gives

∂

∂t
(πrDs0(r) +O(∆r)) = −Qs0(r +∆r)− s0(r)

∆r
+κπD

(r +∆r(s0)r(r +∆r)− r(s0)r(r)

∆r
. (A.9)

Now taking the limit of ∆r → 0 yields

πrD
∂s0
∂t

= −Q∂s0
∂r

+ κπD
∂

∂r

(
r
∂s0
∂r

)
. (A.10)

We finally arrive at
∂s0
∂t

= κ
∂2s0
∂r2

+
1

r

(
κ− Q

πD

)
∂s0
∂r

. (A.11)
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Appendix B

Eigenfunction Expansion

In this chapter the details of eigenfunction expansion as introduced in chapter 3 are presented.

River

We now consider
s(x, t) = v(x, t) + ψ(x, t),

with ψ chosen such that the boundary conditions for v become homogeneous

ψ(x, t) = f(t)
(
1− x

L

)
.

Then the equation for v is:

∂v

∂t
= k

∂2v

∂x2
+
Q

A

∂v

∂x
+

[
−∂ψ
∂t

+ k
∂2ψ

∂x2
+
Q

A

∂ψ

∂x

]
, (B.1)

which we rewrite as

vt = kvxx +
Q

A
vx +H(x, t), (B.2)

where the Dirichlet boundary conditions for v are homogeneous and the initial condition is v(x, 0) =
h(x)− ψ(x, 0).

Related Eigenvalue Problem

The Eigenvalue Problem related to this PDE is:

kϕxx +
Q

A
ϕx = −λϕ. (B.3)

It has the following solution

ϕn(x) = e−
Q

2kAx sin
(nπx
L

)
, n ≥ 1, (B.4)

with

λn =
(Q/A)2

4k
+ k

(nπ
L

)2
, n ≥ 1. (B.5)

Figure B.1 shows the first five eigenfunctions ϕn and their correlation. Note that the set of
eigenfunctions is not orthogonal. The greater |Pe|, the more the eigenfunctions correlate. These
eigenfunctions already give some information about the solution that will be obtained. For example,
when Pe ≫ 1 the amplitude of these eigenfunctions is centered close to x = L. There the deviation
from a straight line solution (diffusion only) is greatest and salt will not intrude much into the
estuary because the flow is ’strong’.
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Figure B.1: The first five normalised eigenfunctions with Pe = 1 are displayed on the left. On the
right the correlation is plotted.

Eigenfunction Expansion

Now that we have the eigenfunctions we can expand v into eigenfunctions:

v(x, t) =
∞∑

n=1

Tn(t)ϕn(x). (B.6)

Substituting this into the PDE for v and using kϕxx + Q
Aϕx = −λϕ we obtain

∞∑
n=1

dTn(t)

dt
ϕn(x) =

∞∑
n=1

−λnTn(t)ϕn(x) +H(x, t). (B.7)

Multiplying by ϕk(x) for any k and integrating from 0 to L, and only considering the first N
eigenmodes gives∫ L

0

N∑
n=1

dTn(t)

dt
ϕn(x)ϕk(x)dx =

∫ L

0

N∑
n=1

−λnTn(t)ϕn(x)ϕk(x)dx+

∫ L

0

H(x, t)ϕk(x)dx (B.8)

N∑
n=1

(
dTn(t)

dt
+ λnTn(t)

)∫ L

0

ϕn(x)ϕk(x)dx =

∫ L

0

H(x, t)ϕk(x)dx. (B.9)

Or in matrix notation:
∫ L

0
ϕ1(x)ϕ1(x)dx

∫ L

0
ϕ1(x)ϕ2(x)dx · · ·

∫ L

0
ϕ1(x)ϕN (x)dx∫ L

0
ϕ2(x)ϕ1(x)dx

∫ L

0
ϕ2(x)ϕ2(x)dx · · ·

∫ L

0
ϕ2(x)ϕN (x)dx

...
...

. . .
...∫ L

0
ϕN (x)ϕ1(x)dx

∫ L

0
ϕN (x)ϕ2(x)dx · · ·

∫ L

0
ϕN (x)ϕN (x)dx


︸ ︷︷ ︸

G


dT1(t)

dt + λ1T1(t)
dT2(t)

dt + λ2T2(t)
...

dTN (t)
dt + λNTN (t)

 =


∫ L

0
H(x, t)ϕ1(x)dx∫ L

0
H(x, t)ϕ2(x)dx

...∫ L

0
H(x, t)ϕN (x)dx


(B.10)

such that 
dT1(t)

dt + λ1T1(t)
dT2(t)

dt + λ2T2(t)
...

dTN (t)
dt + λNTN (t)

 = G−1


∫ L

0
H(x, t)ϕ1(x)dx∫ L

0
H(x, t)ϕ2(x)dx

...∫ L

0
H(x, t)ϕN (x)dx

 (B.11)
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So we have

dTn(t)

dt
+ λnTn(t) =

N∑
j=1

[
G−1

]
n,j

∫ L

0

H(x, t)ϕj(x)dx

=⇒ eλnt
dTn(t)

dt
+ eλntλnTn(t) = eλnt

N∑
j=1

[
G−1

]
n,j

∫ L

0

H(x, t)ϕj(x)dx

=⇒ d

dt

[
eλntTn(t)

]
= eλnt

N∑
j=1

[
G−1

]
n,j

∫ L

0

H(x, t)ϕj(x)dx

=⇒ eλntTn(t)− Tn(0) =

∫ t

0

eλn t̄
N∑
j=1

[
G−1

]
n,j

∫ L

0

H(x, t̄)ϕj(x)dxdt̄

=⇒ Tn(t) = e−λntTn(0) + e−λnt

∫ t

0

eλn t̄
N∑
j=1

[
G−1

]
n,j

∫ L

0

H(x, t̄)ϕj(x)dxdt̄,

(B.12)

where Tn(0) is found similarly by multiplying equation B.6 at t = 0 by ϕk(x) and integrating from
0 to L to obtain

Tn(0) =

N∑
j=1

[
G−1

]
n,j

∫ L

0

(h(x)− ψ(x, 0))ϕj(x)dx. (B.13)

We will now write this out as it is somewhat illustrative:

Tn(t) =e
−λnt

N∑
j=1

[
G−1

]
n,j

∫ L

0

h(x)ϕj(x)dx

− f(t)

N∑
j=1

[
G−1

]
n,j

∫ L

0

(
1− x

L

)
ϕj(x)dx

+

∫ t

0

f(t̄)eλn(t̄−t)dt̄

λn N∑
j=1

[
G−1

]
n,j

∫ L

0

(
1− x

L

)
ϕj(x)dx−

N∑
j=1

[
G−1

]
n,j

∫ L

0

Q

AL
ϕj(x)dx

 ,

(B.14)
where we have used partial integration in this step to remove the time derivative.

Sea

We will now analogously consider the problem in the sea-domain and write

s(r, t) = v(r, t) + ψ(r, t), (B.15)

with ψ (we use the same notation as previously to indicate a different function that has the same
role) chosen such that the boundary conditions become homogeneous:

ψ(r, t) =
1− f(t)

R− a
r +

Rf(t)− a

R− a
. (B.16)

Then the equation for v becomes:

∂v

∂t
= κ

∂2v

∂r2
+

1

r

(
κ− Q

πD

)
∂v

∂r
+

[
−∂ψ
∂t

+ κ
∂2ψ

∂r2
+

1

r

(
κ− Q

πD

)
∂ψ

∂r

]
, (B.17)

which we rewrite as

vt = κvrr +
1

r

(
κ− Q

πD

)
vr +H(r, t), (B.18)

where the Dirichlet boundary conditions for v are homogeneous and the initial condition is v(r, 0) =
h(r)− ψ(r, 0).
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Figure B.2: The first five normalised eigenfunctions with P = 0.01, q = 0.05 are displayed on the
left. On the right their correlation is shown.

Related Eigenvalue Problem

The Eigenvalue Problem related to this PDE is

κϕrr +
1

r

(
κ− Q

πD

)
ϕr = −λϕ. (B.19)

This equation is a little more peculiar. One could use the method of Frobenius to find a series
solution. One could also recognize the following standard form:

ϕn(r) = (r)
Q

2κπD J Q
2κπD

(√
λn
κ
r

)
+ dn (r)

Q
2κπD Y Q

2κπD

(√
λn
κ
r

)
, (B.20)

where J Q
2κπD

and Y Q
2κπD

are Bessel functions of fractional order Q
2κπD of the first and second kind

respectively. In order to find the eigenvalues λn and the constants dn such that the homogeneous
Dirichlet boundary conditions are satisfied, a numerical root finder may be used. The eigenfunc-
tions appear to be rather well-behaving with λ1 < λ2 < · · · with n− 1 zero-crossings. Figure B.2
shows the first five eigenfunctions ϕn. Note that the set of eigenfunctions is not orthogonal.

Eigenfunction Expansion

Now that we have the eigenfunctions we expand v in its eigenfunctions:

v(r, t) =

∞∑
n=1

Tn(t)ϕn(r). (B.21)

Substituting this into the PDE for v and using κϕrr +
1
r

(
κ− Q

πD

)
ϕr = −λϕ we obtain

∞∑
n=1

dTn(t)

dt
ϕn(r) =

∞∑
n=1

−λnTn(t)ϕn(r) +H(r, t). (B.22)

Multiplying by ϕk(r) and integrating from a to R, and only considering the first N eigenmodes
gives∫ R

a

N∑
n=1

dTn(t)

dt
ϕn(r)ϕk(r)dr =

∫ R

a

N∑
n=1

−λnTn(t)ϕn(r)ϕk(r)dr +
∫
0

aRH(r, t)ϕk(r)dr, (B.23)

N∑
n=1

(
dTn(t)

dt
+ λnTn(t)

)∫ R

a

ϕn(r)ϕk(r)dr =

∫ R

a

H(r, t)ϕk(r)dr. (B.24)
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Or in matrix form (since it holds for every k):
∫ R

a
ϕ1(r)ϕ1(r)dr

∫ R

a
ϕ1(r)ϕ2(r)dr · · ·

∫ R

a
ϕ1(r)ϕN (r)dr∫ R

a
ϕ2(r)ϕ1(r)dr

∫ R

a
ϕ2(r)ϕ2(r)dr · · ·

∫ R

a
ϕ2(r)ϕN (r)dr

...
...

. . .
...∫ R

a
ϕN (r)ϕ1(r)dr

∫ R

a
ϕN (r)ϕ2(r)dr · · ·

∫ R

a
ϕN (r)ϕN (r)dr


︸ ︷︷ ︸

G


dT1(t)

dt + λ1T1(t)
dT2(t)

dt + λ2T2(t)
...

dTN (t)
dt + λNTN (t)

 =


∫ R

a
H(r, t)ϕ1(r)dr∫ R

a
H(r, t)ϕ2(r)dr

...∫ R

a
H(r, t)ϕN (r)dr

 .

(B.25)
Such that 

dT1(t)
dt + λ1T1(t)

dT2(t)
dt + λ2T2(t)

...
dTN (t)

dt + λNTN (t)

 = G−1


∫ R

a
H(r, t)ϕ1(r)dr∫ R

a
H(r, t)ϕ2(r)dr

...∫ R

a
H(r, t)ϕN (r)dr

 . (B.26)

So we have

dTn(t)

dt
+ λnTn(t) =

N∑
j=1

[
G−1

]
n,j

∫ R

a

H(r, t)ϕj(r)dr

=⇒ eλnt
dTn(t)

dt
+ eλntλnTn(t) = eλnt

N∑
j=1

[
G−1

]
n,j

∫ R

a

H(r, t)ϕj(r)dr

=⇒ d

dt

[
eλntTn(t)

]
= eλnt

N∑
j=1

[
G−1

]
n,j

∫ R

a

H(r, t)ϕj(r)dr

=⇒ eλntTn(t)− Tn(0) =

∫ t

0

eλn t̄
N∑
j=1

[
G−1

]
n,j

∫ R

a

H(r, t̄)ϕj(r)drdt̄

=⇒ Tn(t) = e−λntTn(0) + e−λnt

∫ t

0

eλn t̄
N∑
j=1

[
G−1

]
n,j

∫ R

a

H(r, t̄)ϕj(r)drdt̄,

(B.27)

where Tn(0) is found similarly by multiplying equation B.21 at t = 0 by ϕk(r) and integrating from
a to R to obtain

Tn(0) =

N∑
j=1

[
G−1

]
n,j

∫ R

a

(h(r)− ψ(r, 0))ϕj(r) dr . (B.28)

Writing this out using Fubini’s theorem yields

Tn(t) =e
−λnt

(
N∑
j=1

[
G−1

]
n,j

∫ R

a

h(r)ϕj(r)dr −
N∑
j=1

[
G−1

]
n,j

∫ R

a

r − a

R− a
ϕj(r)dr

− 1

λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr

)

− f(t)

N∑
j=1

[
G−1

]
n,j

∫ R

a

R− r

R− a
ϕj(r)dr

+

∫ t

0

f(t̄)eλn(t̄−t)dt̄

−
N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr + λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

R− r

R− a
ϕj(r)dr


+

1

λn

N∑
j=1

[
G−1

]
n,j

∫ R

a

1

r

(
κ− Q

πD

)
1

R− a
ϕj(r)dr,

(B.29)
where we have used partial integration in this step to remove the time derivative f ′(t).
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Appendix C

Numerical Scheme

In this chapter, a numerical method is described using first order estimates for sx and sr. The
final results in Section 4.3 are obtained using second order forward estimates. That second order
method can be described analogously.

We divide the x and r domains in n and m equidistant grid points respectively as shown in
Figure C.1. The distances are ∆x = L/(n + 1) and ∆r = (R − a)/(m + 1). The salinity at the
interface will be denoted by ŝ and will later be eliminated from the equations by using the coupling
conditions.

River

The PDE contains a first and second order spatial derivative. Since we wish to approximate the first
derivative at the interface, we will use forward differences for the first derivative. From expanding
s(x+∆x) around x we find

s(x) = s(x), (C.1)

s(x+∆x) = s(x) + ∆x
∂s

∂x

∣∣∣∣
x

+O(∆x)2. (C.2)

Subtracting C.1 from C.2 and dividing by ∆x yields

∂s

∂x

∣∣∣∣
x

=
s(x+∆x)− s(x)

∆x
+O(∆x). (C.3)

To approximate the second derivative we expand s(x+∆x) and s(x−∆x) around x:

s(x−∆x) = s(x)−∆x
∂s

∂x

∣∣∣∣
x

+
(∆x)2

2

∂2s

∂x2

∣∣∣∣
x

− (∆x)3

6

∂3s

∂x3

∣∣∣∣
x

+O(∆x)4, (C.4)

s(x) = s(x), (C.5)

s(x+∆x) = s(x) + ∆x
∂s

∂x

∣∣∣∣
x

+
(∆x)2

2

∂2s

∂x2

∣∣∣∣
x

+
(∆x)3

6

∂3s

∂x3

∣∣∣∣
x

+O(∆x)4. (C.6)

Adding C.4 and C.6, subtracting C.5 twice and dividing by (∆x)2 yields

∂2s

∂x2

∣∣∣∣
x

=
s(x−∆x)− 2s(x) + s(x+∆x)

(∆x)2
+O(∆x)2. (C.7)

 

s = 0 s = sseax0 x1 xn−2 xn−1 xn xn+1 xn+m−2 xn+m−1










∂s
∂t

= k
∂2s
∂x2 + Q

A
∂s
∂x

∂si

∂x
≈ si−1 − si

Δx

∂2si

∂x2 ≈ si−1 − 2si + si+1
(Δx)2










i = 0 :
∂s0
∂x

≈ 0 − s0
Δx

∂2s0
∂x2 ≈ 0 − 2s0 + s1

(Δx)2










i = n − 1 :
∂sn−1

∂x
≈ sn−2 − sn−1

Δx

∂2sn−1
∂x2 ≈ sn−2 − 2sn−1 + ̂s

(Δx)2

̂s










i = n :
∂sn

∂r
≈ sn − ̂s

Δr

∂2sn

∂r2 ≈ sn+1 − 2sn + ̂s
(Δr)2










i = n + m − 1 :
∂sn+m−1

∂r
≈ 1 − sn+m−1

Δr

∂2sn+m−1
∂r2 ≈ 1 − 2sn+m−1 + sn+m−2

(Δr)2










∂s
∂t

= κ
∂2s
∂r2 + 1

r (κ − Q
πD ) ∂s

∂r

∂si

∂r
≈ si−1 − si

Δr

∂2si

∂r2 ≈ si−1 − 2si + si+1
(Δr)2

(n − 1)ΔxnΔx 2Δx ΔxL x = 0
r = a a + Δr a + 2Δr a + (m − 1)Δr a + mΔr R← x r →

⋯ ⋯

Figure C.1: The domains 0 < x < L and a < r < R are discretised in n and m equidistant points.
The boundary salinity at x = 0 is denoted ŝ and will be eliminated from the numerical scheme.

39



Note that the time variable was left out of the notation as all values are at the same time. We now
indicate si = s(xi) for xi the equidistant grid points. Then the approximations of the derivatives
are

∂si
∂x

≈ si−1 − si
∆x

, (C.8)

∂2si
∂x2

≈ si−1 − 2si + si+1

∆x
. (C.9)

We pay special attention to the boundary cases i = 0 and i = n− 1:

∂s0
∂x

≈ 0− s0
∆x

(C.10)

∂2s0
∂x2

≈ 0− 2s0 + s1
(∆x)2

(C.11)

∂sn−1

∂x
≈ sn−2 − sn−1

∆x
(C.12)

∂2sn−1

∂x2
≈ sn−2 − 2sn−1 + ŝ

(∆x)2
(C.13)

Sea

In the sea we use forward differences to estimate the first derivative for the same reason.

∂si
∂r

≈ si+1 − si
∆r

(C.14)

∂2si
∂r2

≈ si+1 − 2si + si−1

∆r
(C.15)

We pay special attention to the boundary cases i = n and i = n+m− 1:

∂sn
∂r

≈ sn+1 − sn
∆r

(C.16)

∂2sn
∂r2

≈ ŝ− 2sn + sn+1

(∆r)2
(C.17)

∂sn+m−1

∂r
≈ 1− sn+m−1

∆r
(C.18)

∂2sn+m−1

∂r2
≈ sn+m−2 − 2sn+m−1 + 1

(∆r)2
(C.19)

Coupling

The first coupling conditions is already embedded into the scheme by ŝ. The second coupling
condition was simplified to:

−ksx(0) = κsr(a). (C.20)

Approximating sx(0) and sr(a), we find

−k sn−1 − ŝ

∆x
= κ

sn − ŝ

∆r
, (C.21)

which we write as
ŝ = αsn + βsn−1, (C.22)

with

α =
κ∆x

k∆r + κ∆x
, β =

k∆r

k∆r + κ∆x
.
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Matrix Notation

Let us denote

sj =



s0(tj)
...

sn−1(tj)
sn(tj)

...
sn+m−1(tj)


, (C.23)

where t is now also discretised. We can then write

∂sj

∂t
= Ksj + b, (C.24)

where

K =



−2k
(∆x)2 − Q/A

∆x
k

(∆x)2 0
k

(∆x)2 + Q/A
∆x

−2k
(∆x)2 − Q/A

∆x
k

(∆x)2

. . .
. . .

. . .
k

(∆x)2 + Q/A
∆x

−2k+kβ
(∆x)2 − Q/A

∆x
kα

(∆x)2 0

0 κβ
(∆r)2

−2κ+κα
(∆r)2 − κ−Q/πD

∆r(∆r+a))
κ

(∆r)2 + κ−Q/πD
∆r(∆r+a))

. . .
. . .

. . .
κ

(∆r)2
−2κ
(∆r)2 − κ−Q/πD

∆r((m−1)∆r+a))
κ

(∆r)2 + κ−Q/πD
∆r((m−1)∆r+a))

0 κ
(∆r)2

−2κ
(∆r)2 − κ−Q/πD

∆r(m∆r+a))


,

and

b =



0
...
0
0
...

κ
(∆r)2 + κ−Q/πD

∆r((m−1)∆r+a))


. (C.25)

We now use the trapezoidal rule or Crank-Nicolson method of time integration to calculate the
solution at later time steps

sj+1 = sj +
∆t

2

(
Ksj + b+Ksj+1 + b

)
, (C.26)

or in explicit form

sj+1 =

[
I − ∆t

2
K

]−1 [
I +

∆t

2
K

]
sj +∆t

[
I − ∆t

2
K

]−1

b. (C.27)

Calculating the inverse matrix is done numerically.
The trapezoidal method follows from expanding s(t) and s(t + ∆t) around t + ∆t/2, leaving

out position x in notation for simplicity:

s(t+∆t/2) = s(t) +
∆t

2

∂s

∂t

∣∣∣∣
t

+O(∆t)2, (C.28)

s(t+∆t/2) = s(t+∆t)− ∆t

2

∂s

∂t

∣∣∣∣
t+∆t

+O(∆t)2. (C.29)

Equating C.28 and C.29 and rearranging terms yields

s(t+∆t) = s(t) +
∆t

2

(
∂s

∂t

∣∣∣∣
t

+
∂s

∂t

∣∣∣∣
t+∆t

)
, (C.30)

which takes the form of C.26 when the time derivatives are expressed in spatial derivatives by the
partial differential equation and then approximated as described before.
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Appendix D

Accuracy and Convergence

The purpose of this chapter is to provide some background information and results that have lead
to the choices of numerical parameters such as the number of eigenfunctions and time steps.

D.1 Eigenfunction Expansion

First we wish to check how well we can approximate the initial condition as a sum of eigenfunctions∑N
n=1 anϕn(x). Furthermore we want to see how well the solution converges to the final equilibrium

solution. We now consider the river only problem with fixed boundary conditions. Figure D.1 shows
the difference between the eigenfunction solution and the initial condition and equilibrium at t = 0
s and t = 107 s respectively for N = 10, 20, 30, 50 eigenfunctions. We observe that the use of the
first 30 eigenfunctions is sufficiently accurate by this metric for the purpose of most calculations.

Figure D.2 shows a similar result for the sea only problem with fixed boundary conditions. The
errors are of the same order and the use of the first 30 eigenfunctions is likely sufficient. However,
as shown in Figure 4.8, the adjustment time calculations show oscillations. Everywhere except
for near the boundary of the domain, these oscillations become smaller as more eigenfunctions are
used. However, due to computational limitations caused by the expensive inverting of the matrix
G, we cannot practically use much more than 100 eigenfunctions at best. To investigate whether
the solution obtained by only 30 eigenfunctions is close to the actual solution, we also approximate
it numerically. The result is shown in Figure D.3. The numerical solution is indeed similar to the
eigenfunction solution but without oscillations. Further computations for example in Figure 4.10
are therefore still done with the quicker eigenfunction method.
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Figure D.1: For the river only problem with fixed boundary conditions, the difference between the
initial condition and its approximation in eigenfunctions and the difference between the equilibrium
solution and the approximation using eigenfunctions at t = 107 s are shown in solid orange and
dashed green lines respectively for N = 10, 20, 30, 50 eigenfunctions. Note that the scales on the
vertical axes differ. As more eigenfunctions are used, the error decreases.

1000 2000 3000 4000 5000 6000 7000
r (m)

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020
N = 10

t = 0 s
t = 107 s

1000 2000 3000 4000 5000 6000 7000
r (m)

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008
N = 20

1000 2000 3000 4000 5000 6000 7000
r (m)

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004
N = 30

1000 2000 3000 4000 5000 6000 7000
r (m)

0.00005

0.00000

0.00005

0.00010

0.00015

N = 50

Figure D.2: For the sea only problem with fixed boundary conditions, the difference between the
initial condition and its approximation in eigenfunctions and the difference between the equilibrium
solution and the approximation using eigenfunctions at t = 107 s are shown in solid orange and
dashed green lines respectively for N = 10, 20, 30, 50 eigenfunctions. Note that the scales on the
vertical axes differ. As more eigenfunctions are used, the error decreases.
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Figure D.3: For the sea only problem with fixed boundary conditions, the adjustments times tADJ

and TADJ for increasing and decreasing salinity due to doubling and halving of freshwater discharge
is shown. The calculations are done using 30 eigenfunctions (blue and orange) and using a first
order finite difference scheme with m = 6000 spatial steps and ∆t = 200 s (green and red). The
results are similar.

D.2 Numerical Scheme

In this section we will briefly consider the effect of using the previously described numerical scheme
with first or second order forward differences and choosing different spatial steps ∆x and ∆r and a
different time step ∆t. Figure D.4 shows the difference between the numerical solution at t = 106

s and the analytical equilibrium solution for different numerical parameters using the first order
differences. The solution at t = 107 s is not noticeably different, such that we infer that equilibrium
is (almost) reached. For all three different values of ∆t, no difference is visible. Decreasing ∆x
and ∆r does result in a much better result, as expected.

It was found by trial and error that it is more important that ∆r is small than ∆x, hence we
have chosen to have more grid points in the sea than in the river. This is likely the result of this
specific parameter set where κ < k and the gradient and curvature are larger in the domain of the
sea. The solid lines in figure D.5 show the error at t = 107 s for varying ∆r and ∆x and constant
∆t. In dashed lines, the result is shown for the scheme with second order upwind differences.
This scheme was also considered since it is of second order and could therefore possibly increase
accuracy. Remember that a forward scheme is required at the coupling boundary. It appears that
this second order scheme does indeed perform much better. The second order method takes more
time because the K matrix has fewer zero entries, which particularly increases the time needed to
invert the matrices.
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Figure D.4: The difference between the numerical solution at t = 106 s and the equilibrium solution
of the coupled solution is shown for different numerical parameters. Step sizes smaller than 1000
s do not show any noticeable difference, while increasing spatial resolution does significantly lower
the error.

40000 30000 20000 10000 0
x&r (m)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

[s
(

)
s(

10
7 s

)]/
s s

ea

t = 1000s, 1st order
t = 1000s, 2nd order
x = 90m, r =  4.6m
x = 45m, r =  2.3m
x = 22m, r =  1.1m

Figure D.5: The difference between the numerical solution at t = 107 s and the equilibrium solution
of the coupled solution is shown for different numerical parameters and schemes. ∆t is now fixed.
∆x, ∆r and the numerical scheme are varied. It appears that decreasing ∆r and ∆x improves
the result. The second order upwind differences scheme has a much smaller error in all considered
cases. Interestingly, the error is largest at the mouth of the river for each calculation.
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Appendix E

Literature Comparison

In this chapter we briefly elaborate on some of the claims in the discussion. In particular we will
demonstrate how the time scales found by C. Kranenburg (1986) and MacCready (2007) compare
with our results.

Kranenburg 1986

Kranenburg uses a perturbation method on an estuary with varying cross section and a general
dispersion. By studying the point where the difference between the salinity and steady state salinity
is maximal, he finds a time scale ts given by

ts =

∫ L

0

A

∣∣∣∣ ∂s̃∂Q
∣∣∣∣ dx, (E.1)

where s̃ is the quasi-steady solution depending on discharge Q. When we assume infinite intrusion
length L, such that the boundary conditions as given by Kranenburg are satisfied, we have

s̃(x) = e−
Q
kAx. (E.2)

One can then derive

ts =
k

(Q/A)2
. (E.3)

For the same dispersion but with finite intrusion length, the time scale presented in our study is
given by

tADJ =
1

λ1

=
1

(Q/A)2

4k + k
(
π
L

)2 . (E.4)

As L→ ∞, the scaling becomes the same for (Q/A)2 and k.

MacCready 2007

MacCready analytically developed a time scale via a very different approach. He assumes dispersion
is dominated by a term proportional to either sx or (sx)

3. He linearises the equations to obtain an
ODE for the intrusion length. In the tidal stirring dominated case with dispersion proportional to
sx, which is what we have modeled as well, he finds a time scale tMC = 1

2L/u0 where L/u0 is the
time it takes for a particle to flow through the entire estuary.

The result of figure 4.4 warrants further investigation since 1
2L/u0 ≈ 3.4 · 105 s, which is rea-

sonably close to the result observed of above 2.5 · 105 s near the intrusion length, that may be
distorted due to convergence of the eigenfunctions. Figure E.1 shows a similar result in dimension-
less parameters for variable Péclet number. The time scale of MacCready is made dimensionless
by dividing by the dispersion time τMC = k

L2 tMC = 1
2Pe and shown in the figure. It appears than

the local adjustment time τADJ is not close to τMC in general. This is not a surprise when we
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Figure E.1: The local dimensionless adjustment time τADJ is shown as function of position ξ for
different Péclet numbers. The left pane shows results for increasing salinity due to halving of Pe
and the right pane shows results for decreasing salinity due to halving of Pe. The intrusion length
time scale τMC from MacCready (2007) is shown as horizontal line. The result is obtained using
30 eigenfunctions.

compare the assumptions in both methods. MacCready estimates salinity to decrease linearly from
the ocean salinity at the mouth of the estuary to 0 at the intrusion length, which corresponds to
small Péclet numbers. Our model may have a significant non realistic loss of salt through the up
estuary boundary resulting in underestimation of τADJ

This result also shows that the positional variation in τADJ depends on the Péclet number. For
larger Pe the distribution more resembles a straight line intersecting τ = 0 at ξ = 0 for increasing
salinity since salt enters from the mouth at ξ = 0 and intersecting τ = 0 at ξ = 1 for decreasing
salinity since then salt is first flushed away from near the intrusion length.
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