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ABSTRACT
There is a high interest in accelerating multiscale models using data-driven surrogate modeling techniques. Creating a
large training dataset encompassing all relevant load scenarios is essential for a good surrogate, yet the computational
cost of producing this data quickly becomes a limiting factor. Commonly, a pre-trained surrogate is used throughout
the computational domain. We introduce an alternative adaptive mixture approach that uses a fast probabilistic sur-
rogate model as a constitutive model when possible, but resorts to the true high-fidelity model when necessary. The
surrogate is thus not required to be accurate for every possible load condition, enabling a significant reduction in the
data collection time. We achieve this by creating phases in the computational domain corresponding to the differ-
ent models. These phases evolve using a phase-field model driven by the surrogate uncertainty. When the surrogate
uncertainty becomes large, the phase-field model causes a local transition from the surrogate to the high-fidelity
model, maintaining a highly accurate simulation. We discuss requirements for accuracy and numerical stability and
compare the phase-field model to a local approach that does not enforce spatial smoothness in phase mixing. Using
a Gaussian Process surrogate for an elasto-plastic material, we demonstrate the potential of this mixture of models to
accelerate multiscale simulations.

1 | Introduction

Advanced manufacturing techniques allow for the creation of materials with properties tailored to their use. Multiscale
modeling can accurately capture the behavior of these materials, yet its use is limited by the high computational cost of
simulations. The need for more computationally efficient models, combined with the progress in machine learning, has
resulted in numerous data-driven models [1–6]. Given sufficient data, these models often show an impressive ability to
capture the behavior of complex history-dependent load paths. They can therefore be used as surrogates for the repre-
sentative volume element (micromodel) in a multiscale analysis. However, obtaining the necessary training data from
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microscale simulations is very costly. Because purely data-driven methods often extrapolate poorly, the data required to
ensure fidelity tends to be large. In addition, it is often challenging to predict which loading scenarios will be relevant.
The surrogate, therefore, needs to be trained across a broad range of inputs to generalize for unseen data, many of which
may never be relevant during the target simulation.

We can broadly categorize two (non-exclusive) approaches to dealing with this problem. The first is to embed a prior in the
surrogate design, allowing the model to extrapolate constitutive responses from small datasets. Examples include lever-
aging geometry or embedding physics into the model as an inductive bias [7–10]. These models often have intermediate
quantities or additional outputs with a physical meaning that can be leveraged during the training and inference process.

The second approach is to use active learning rather than rely solely on a pre-trained surrogate. In active learning, the sur-
rogate is continuously retrained whenever it makes a poor prediction, avoiding the need for an all-encompassing dataset.
Authors in [11] propose using the uncertainty of a Gaussian Process (GP) surrogate to inform on-the-fly adaptivity. There,
several fully-solved anchor models are used throughout the simulation to update the GP, triggered by the GP uncertainty.
A similar approach, 𝐹𝐸𝐴𝑁𝑁 , stores all deformation gradients and, by comparing invariants of each new deformation to
this dataset, it detects unseen deformations [12]. In that case, the method runs new simulations, enriches the dataset,
and retrains the network. Adaptively updating the surrogate during the simulation avoids the necessity for all scenarios
to be covered in an extensive pre-training dataset. However, active learning does require the surrogate to be suitable for
retraining. Furthermore, updating the surrogate can cause instabilities or slower convergence of the macroscopic solver.

Instead of using the high-fidelity model just to update the surrogate, a mixture of several models can be applied. A com-
mon strategy is clustering, where elements are grouped by response after an initial solve of the system [13]. Alternatively, a
mixture of a pre-trained neural network (NN) and a reduced order model (ROM) can be used throughout the domain [14].
After solving an FE2 simulation with the NN surrogate at every point, a second run is performed where all points that
reached values outside the NN training region during the first run are replaced with the ROM. To minimize unnecessary
evaluations, the second run can also start with the NN at all points, and switch to the ROM only when strain values out-
side the NN training region occur. One of the challenges of these methods is avoiding the instability of the finite element
method (FEM) caused by stress jumps at boundaries between two models. One option to avoid these jumps between mod-
els is to introduce a transition zone in front of a crack based on the thick level set method [15]. From a machine learning
perspective, these hybrid approaches are analogous to a mixture-of-experts model [16], where we use domain-specific
information to choose the expert. Alternatively, this also bears a resemblance to data assimilation methods, such as using
a weighted least-squares finite element method to assimilate experimental data with numerical models [17].

In this work, we allow for adaptively using multiple constitutive models when and where necessary. Specifically, a prob-
abilistic surrogate and the original model it was trained to replace are aggregated to make predictions. The main idea is
to use the uncertainty in surrogate predictions to guide whether the surrogate or the original model should be used. For
our motivation of accelerating multiscale simulations, the fast surrogate should be used when it has a low uncertainty,
and the original model should be used otherwise. We use the idea of a weighted average transition zone and implement
it using a phase field. The phase field promotes numerical stability, as it naturally introduces a spatial transition zone
that is used to switch between the models. Phase-field models have been used to simulate the evolution of, among others,
solidification [18], grain growth [19], and fracture [20] for several decades now. In a phase field, a scalar variable𝜙 evolves
to represent, e.g., liquid-solid transitions or crack formation. Here, we use the phases for the different constitutive models.
The uncertainty coming from the probabilistic surrogate drives the phase field evolution. At the diffuse interface between
phases, we take a weighted average between model predictions to smoothly transition between the models.

Using the phase field brings the cost of solving an additional partial differential equation (PDE) every time step. In FE2

simulations, the costs associated with solving microstructures are generally so high that the cost of solving the phase field
is negligible. When a surrogate is trained on a well-curated dataset that allows it to predict the full behavior of the simu-
lation with little uncertainty, the phase field remains zero, and only the surrogate is used. In this case, this approach only
requires the additional computation of the surrogate uncertainty. The mixture of constitutive models preserves accuracy
when this condition is not met.

The width of the transition zone can play an important role in the stability of the mechanical and phase-field problems. A
narrow transition zone requires fewer expensive model evaluations, making it computationally desirable. However, this
might lead to undesirable stress jumps or make the solver require more Newton–Raphson iterations. To study this, we
compare the phase-field approach to a purely local approach, which does not require solving another PDE. By letting the
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uncertainty directly determine which constitutive model is used, we can essentially let the transition zone vanish and
study the impact on the stability of the mechanical problem.

The outline of this paper is as follows. In Section 2, we discuss using FEM for solving the behavior of structures undergoing
loading. We provide a detailed overview of our phase-field-based approach for mixing models in Section 3. There, we also
discuss using a GP as a surrogate constitutive model. We present the results of the different approaches in Section 4.
Finally, we conclude with an overview of our findings in Section 5.

2 | Finite Element Analysis

FEM is used to model the behavior of a structure or material under load. Specifically, the aim is to find the displacement
field u of a structure subject to boundary conditions. We obtain equilibrium in the domain by finding the displacement
field u satisfying

∇ ⋅ 𝝈 = 0. (1)

Here, 𝝈 is the stress, and ∇⋅ indicates the divergence operator. u is related to the strains 𝜺 as

𝜺 = 1
2
(
∇𝒖 + (∇𝒖)𝑇

)
, (2)

and 𝜺 can be related to 𝝈 through a constitutive relation:

𝝈 = (𝜺,𝜶). (3)

The material-dependent constitutive operator  is often nonlinear and can depend on the loading history. The internal
variables 𝜶 can account for this loading history. Due to the nonlinear nature of the constitutive model, Equation (1)
cannot be solved directly. Instead, an iterative Newton–Raphson scheme is employed. To obtain quadratic convergence,
we require not just the outcome of the constitutive relation (𝝈), but also its derivative (𝑫).

To find equilibrium, the FEM discretizes the continuous domain of the structure into a number of elements. The boundary
conditions, in the form of forces or prescribed displacements, are applied to the nodes of these elements. Within each
element, the displacement field u is approximated using simple basis functions, often polynomials. The Gauss quadrature
rule is used to evaluate the integrals arising from the discretization, with strategically placed integration points (IPs)
within each element. The constitutive relation from Equation (3) is evaluated for each integration point.

We consider quasi-static loading, where the load is applied in consecutive time steps without causing dynamic effects.
This allows for obtaining the full load path of the structure of interest. For a single simulation, we thus have to compute
the constitutive model for all quadrature points in the elements, for each Newton–Raphson iteration of all loading steps.

For certain materials, such as composites, the constitutive relation can depend on the geometry at the microscale. Finding
accurate constitutive relations for these materials is challenging, even if the constitutive relations of each constituent
are known. In multiscale simulations using FE2, a microscopic FEM problem is solved instead, where 𝜺 is imposed as
boundary conditions on a microstructure. We solve this system as in FEM since the constituents’ properties are well
described, then pass the homogenized stress 𝝈 back to the macroscale. However, solving a boundary value problem at
every macroscopic quadrature point and time step brings a considerable computational cost. This cost is so high that,
even with parallelization, FE2 is used only sparingly in practice, motivating acceleration strategies.

To make it computationally feasible to study the approach in detail, we limit ourselves to single-scale problems in this
work. We use an elasto-plastic material with a von Mises yield criterion as our high-fidelity (HF) model, which serves as
the ground truth. To quantify the acceleration of our approach, it thus makes little sense to compare the computational
time—as evaluating this elasto-plasticity model is about as fast as the surrogate we use to replace it. Instead, we mea-
sure the reduction in the number of HF model evaluations. The simplification of using an analytical constitutive model,
therefore, does not affect our upcoming conclusions about the approach.

For complex problems, the Newton–Raphson solver can fail to converge for a given load increment. Adaptive load step-
ping is then required to obtain a solution. In this work, we use an adaptive load step strategy that stays constant as long as
the solver converges. If it fails to converge, the load step is reduced by a factor 𝛾 . This is repeated until the solver converges,
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FIGURE 1 | Overview of how the mixture constitutive model interacts with the other models. The tangent stiffness 𝑫 is omitted
for clarity.

FIGURE 2 | As 𝜙 increases, the constitutive model mix gradually switches from GP to HF.

or until a minimum load step value is reached. After reaching the minimum value, increased load steps are attempted, up
to a maximum value, after which the simulation is terminated and the problem is considered unsolved. If it converges,
the load step remains constant for one step before gradually increasing back to the initial size, using a factor 1

𝛾
.

3 | Mixture of Constitutive Models

We solve the mechanical problem by combining constitutive models of distinct accuracies and computation speeds in the
macroscopic domain. The analytical elasto-plastic material model serves as the high-fidelity model (HF), and we use a
GP surrogate model (GP). Using a GP is a pragmatic choice, as it naturally provides an uncertainty. A limitation of a GP
is its inability to handle path-dependency. Other types of constitutive models and surrogates could be used, as long as
the surrogate provides an uncertainty in its prediction. The general schematic of the approach in Figure 1 shows what
information the mixture model obtains from other models. Ideally, GP is used throughout most of the domain, and HF
only for a small subset of points. Our hybrid constitutive model depends on a phase-field variable 𝜙 to determine which
constitutive model is used at each quadrature point:

mix =
⎧⎪⎨⎪⎩
GP if 𝜙 < 𝜏,

(1 − 𝜙)GP + 𝜙HF if 𝜏 < 𝜙 < 1 − 𝜏,
HF if 𝜙 > 1 − 𝜏.

(4)

At the interface between the two phases, the hybrid constitutive model is thus a weighted average of HF and GP, as
visualized in Figure 2. In practice, we take weighted averages over both 𝝈 and 𝑫. We use a small cutoff value, 𝜏, to avoid
simulating HF when the phase field is close to but not exactly zero. The upper boundary of 1 − 𝜏 is of lesser importance
since the cost of solving GP is negligible, and its uncertainty is still required when updating the mixture. We use 𝜏 = 0.01
in all numerical experiments. Algorithm 1 shows this procedure in more detail. The high-fidelity model generally tracks
internal variables 𝜶 to, for example, account for plasticity. These internal variables are only committed when moving to
the next time step. When switching from the surrogate model to the full model (when 𝜙 crosses the threshold value 𝜏),
the internal variables of the full model are unknown yet necessary. In this scenario, the history path is recomputed using
the full model to obtain the internal variables. We call this process the retracing of history. Although this increases the
number of evaluations, we only need to retrace along the converged solutions. Thus, this still requires fewer evaluations
than if the full model were used for this point from the start. We could, in principle, use larger time step sizes when
reconstructing, but here we pragmatically opt for retracing every increment missed by the full model. This also means we
have to store converged strain values at every fully-reduced IP for all time steps in the event a retracing is needed.

4 of 19 International Journal for Numerical Methods in Engineering, 2025
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ALGORITHM 1 | Mixture of constitutive models.

Input: 𝜺, 𝜙
Output: 𝝈,𝑫
Initialize: Internal variables 𝜶
if 𝜙<𝜏 then

Use only the GP model: 𝝈,𝑫 = GP(𝜺)
else

Retrace 𝜶 to the current timestep if it is outdated
if 𝜙>1 − 𝜏 then

Use only the high-fidelity model: 𝝈,𝑫 = HF(𝜺,𝜶)
else

𝝈GP,𝑫GP = GP(𝜺)
𝝈HF,𝑫HF = HF(𝜺,𝜶)
𝝈 = 𝜙𝝈HF + (1 − 𝜙)𝝈GP
𝑫 = 𝜙𝑫HF + (1 − 𝜙)𝑫GP

end if
end if

3.1 | Phase-Field Approach

The main purpose of the phase field is to control how the surrogate uncertainty influences the mixture. Specifically, it
allows us to create a controllable interface width and determine the minimum uncertainty required to initiate the switch.
While monolithic schemes exist [21], staggered schemes are more common [22] and are adopted here. The variational
form used in our numerical implementation is as follows:

𝐹 (𝜙, 𝑣) = −∫Ω
[ 𝑣] 𝑑Ω

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
driving force

+ 𝑏∫Ω
𝑣 𝑑Ω

⏟⏞⏞⏟⏞⏞⏟
opposing force

+ ∫Ω

[
𝜖2∇𝜙 ⋅ ∇𝑣

]
𝑑Ω

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
interface energy

+ ∫Ω
[𝜔𝜙(1 − 𝜙)(1 − 2𝜙)𝑣] 𝑑Ω

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
double-well

(5)

Here, 𝑣 represents the test function. The first term is the driving force , causing𝜙 to increase as the uncertainty increases.
Because we use a staggered approach, the driving force does not necessarily have to be continuous with respect to the
strains to maintain stability. The second term is a constant opposing force, acting as a threshold that the driving force
needs to overcome. The third term represents the interface energy, penalizing sharp gradients in the phase-field variable.
By influencing the interface width, this term may affect the stability of the problem. The fourth term is the derivative of
the double-well potential, ensuring the phase-field variable favors values near 0 or 1. The phase-field formulation does
not depend on its previous state, as we do not require our phase field to be smooth in time. This avoids issues related to
path dependency, where a different loading step size would lead to different behavior.

3.2 | Staggered Updating Scheme

We solve the phase-field and mechanical problem in a decoupled, staggered manner. In Figure 3, a schematic overview
of the staggered updating scheme is shown. Although either field can be updated first [22], we choose to first update
the phase field based on the last known surrogate model uncertainty. The phase field is then fixed while solving the
mechanical problem.

Solving each problem once per time step is desirable, but it has two drawbacks. First, the uncertainty from the previous
converged step might not be a good indicator of the performance at the current step. Second, this can introduce a load step
size dependency, where taking different step sizes leads to different solutions. To overcome these issues, we iterate several
times over this staggered scheme before moving on to the next step. We consider this approach to be converged when the
norm of the change in 𝒖 is below a threshold value 𝜖𝑢

𝑖𝑡
. In certain scenarios, such as for the first few time steps when 𝜙 = 0

for all points, the phase field will not change, even when 𝒖 changes. We then know that 𝒖 will not change in the next
iteration and can consider the current solution converged based on 𝜙, avoiding redundant iterations. By employing these
iterations over the staggered approach, we are adding additional solves of the mechanical problem in which we generally
need to perform costly HF evaluations. However, by using the result of each iteration as the initial prediction for the
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FIGURE 3 | The staggered updating approach used in this work. A prescribed displacement Δ𝑢∗ is selected using an adaptive
time-step function, before updating the phase field based on . Then the mechanical problem is solved. The phase-field and mechanical
problem are updated iteratively until convergence, or 𝑘max is reached.

subsequent iterations, these should converge using fewer Newton–Raphson iterations than they would if starting from
𝒖𝑡−1.

Instead of relying on the uncertainty coming from the mixed model (which entails expensive high-fidelity simulations),
one might instead be inclined to obtain the uncertainty from a preliminary surrogate-only solution. One would first solve
the mechanical problem using only the surrogate model, update the phase field based on the resulting uncertainty, and
then solve the mechanical problem again with the mixture model. However, we find empirically that this approach is not
viable: Firstly, it heavily depends on reasonable surrogate performance and can fail to converge for inaccurate predictions;
secondly, it reintroduces load step size dependency. Due to these reliability concerns, we do not present results using this
approach.

3.3 | Gaussian Processes as Surrogate Constitutive Models

Bayesian surrogate models provide powerful tools for approximating complex functions. While several surrogate mod-
els provide uncertainty estimates (neural network ensembles, dropout networks [23], bootstrapping approaches) and are
therefore suitable for our approach, we focus on GP regression. This is a pragmatic choice to demonstrate our framework
for mixing constitutive models. In more realistic applications, GPs might be insufficient as they are unable to handle
path-dependency, and scale poorly with the number of training points. Other surrogates that provide a measure of uncer-
tainty could be used instead. In Section A, we provide a general description of GPs for regression that serves as background
to this section. Here, we describe how we use GPs specifically as constitutive models.

We create a separate GP for each stress component. Since our experiments are 2-dimensional, we thus have separate
GPs for 𝜎𝑥, 𝜎𝑦, and 𝜎𝑥𝑦, each taking the full strain tensor as input. The GPs use a radial basis function kernel, and their
hyperparameters are individually tuned. Rather than predicting 𝜎 directly, we predict a correction term to a linear elastic
model:

𝜎𝑖 = [𝑫𝑒𝜺]𝑖 + GP𝑖(𝜺), (6)

where 𝑫𝑒 is the elasticity tensor. For predictions away from the data, the output thus reverts back to a linear elastic
model, rather than to the zero prior. The scalar driving force for the phase field is computed as the maximum variance of
the components:

 = max
𝑖

(
√
𝑣𝑎𝑟[GP𝑖(𝜺)]). (7)

Since this GP formulation only depends on 𝜺, it cannot capture unloading after plasticity has occurred. If unloading is to
occur in the simulation, it is likely that the GP could make inaccurate predictions. For this reason, we focus on scenarios
where the global load prescribed by the boundary conditions increases monotonically throughout the simulation.

As in related work, we assume that the surrogate variance correlates with the true error. If a surrogate is confidently
wrong, the result can be inaccurate, as it would be if only the surrogate were used. Anomaly detection could be used to
identify such scenarios, but this would come at a large computational cost.

4 | Results

We start by showing the behavior of our mixture of models on a simple dogbone structure loaded with a prescribed dis-
placement in tension. In this dogbone experiment, we focus on the influence of performing several staggered iterations.

6 of 19 International Journal for Numerical Methods in Engineering, 2025
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FIGURE 4 | Full-field stress and equivalent plastic strain 𝜀𝑝𝑒𝑞 plots of the dogbone experiment at the maximum prescribed displace-
ment. The full and hybrid model with 𝑘max = 3 are shown, as well as the difference between them.

Then, moving to a more complex notched plate, we study the influence of the different phase-field parameters. We addi-
tionally compare the phase-field method to an alternative local approach. Finally, we investigate the potential of our
approach to reduce the number of high-fidelity simulations on a plate with holes where a complex phase field is required.

4.1 | Numerical Setup

As discussed earlier, for computational feasibility, we do not perform FE2 in this study, but instead use an analytical
constitutive model as HF. For this reason, we do not compare the computational time of our approach to the full FE2

model, but instead focus on the reduction in the number of high-fidelity model evaluations. We use an elasto-plastic
material with von Mises plasticity in a plane-stress condition, a Young’s modulus of 3130 [MPa], a Poisson’s ratio of

0.37[−], and yield criterion 𝜎𝑦 = 64.80 − 33.60 ⋅ 𝑒
𝜀
𝑝
𝑒𝑞

−0.003407 , where 𝜀𝑝𝑒𝑞 is the equivalent plastic strain (corresponding to the
internal variable 𝜶 used earlier). These material properties and yield criterion are adopted from [24]. In all experiments,
we use quadratic triangular elements (T6) for the mechanical problem and linear triangular elements (T3) for the phase
field. For the dogbone structure, a constant displacement increment of 0.001 is sufficient to obtain convergence. In the
remaining problems, the adaptive time step handling as described in Section 2 is used, with 𝛾 = 0.5.

We study the influence of the phase field with three different GP surrogates, GP10, GP30, and GP100, trained on different
datasets with 10, 30, and 100 load curves, respectively. Each load curve consists of 20 monotonically increasing steps in
a random strain direction, up to a strain norm of 10%. We choose 10% for pragmatic reasons, assuming we have no prior
information about the strains that will occur during the simulation. Just because certain GPs have more data does not
guarantee that their predictions during the simulation are always more accurate, since the loading directions of their data
are random. Still, it can be reasonably expected that the GPs with more data improve accuracy and reduce reliance on the
full model.

The framework is implemented using the FEniCSx finite element library [25] with the dolfinx_materials [26] package to
define arbitrary constitutive models. PETSc [27] solvers are used to solve the mechanical and phase-field problem. The
phase field is solved using a constrained solver with bounds [0, 1]. All code is available on GitHub at https://github.com/
SLIMM-Lab/phase-field-mixture.

4.2 | Time Step Consistency

We start with a simple dogbone structure to study the influence of the staggered approach of Figure 3 on the time-step
dependency. The dogbone structure is fixed on its left edge, and loaded by incrementally applying a prescribed displace-
ment to the right edge, up to an elongation of 2%. Figure 4 shows the full-field responses for the stresses and equivalent
plastic strain. The stresses mainly occur in the x-direction and concentrate at the center of the dogbone, where the struc-
ture is narrower than at its ends, with ensuing strain localization.
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FIGURE 5 | Evolution of the phase field for the dogbone experiment. The phase field gradually grows until time step 17, after
which it stays constant due to strain localization. The asymmetrical pattern occurs as a result of the asymmetrical shear stresses.

FIGURE 6 | The load-displacement curves for the dogbone experiment. While using only the surrogate model results in poor per-
formance, the hybrid approach shows a large agreement with the baseline full model, with a slightly lower error for 𝑘max = 3 compared
to 𝑘max = 1.

For the phase-field mixture we use the GP10 surrogate with hyperparameters 𝜖 = 10−2, 𝜔 = 10−3, and 𝑏 = 1. Figure 4
shows that the hybrid approach closely follows the full model. On the left side of Figure 5, we plot the phase-field variable
for various time steps using 𝑘max = 1 (i.e., a single solve of each PDE per load increment, see Figure 3). At the start, when𝜙
is zero everywhere, only the GP surrogate is used. Starting from time step seven, the uncertainty in the high-strain region
at the center of the dogbone drives the phase field locally up to one. The phase field can switch from 𝜙 = 0 to 𝜙 = 1 in a
single load step when the uncertainty increases quickly. This is necessary to prevent large errors when the GP suddenly
becomes uncertain.

In Figure 6, we present the load-displacement curves for this problem. Using only the GP surrogate results in a poor
prediction that does not capture the nonlinear behavior of the material, showing that the surrogate is inadequate for
predicting the structural response by itself. The inability to capture non-linearity results from the very limited dataset
used for GP10. Still, by switching away from the surrogate at the right time, the hybrid approach closely follows the full
model path.

Figure 7 shows the mean absolute error of this hybrid model over the domain compared to using the high-fidelity model
everywhere. The errors are computed for two fixed increment sizes Δ𝑢. When 𝑘max = 1, there is a clear difference in errors
when using different increments. This difference can be explained by the phase field using uncertainty from the previous
time step to determine the mixture of constitutive models. When using a different increment size, the phase field thus
updates on different information, creating a time-step dependency. In contrast, we observe that using 𝑘max = 3 results in
the same response for both loading increment sizes at the points where both are evaluated. Performing multiple iterations
of the staggered approach per loading increment thus avoids the time-step dependency.
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FIGURE 7 | The full-field stress error when using 𝑘max = 1 or 𝑘max = 3 for different load step increments.

FIGURE 8 | Number of integration points (IPs) that use the GP surrogate (𝜙 < 𝜏), a mixture of both models (𝜏 < 𝜙 < 1 − 𝜏), or the
high-fidelity model only (𝜙 > 1 − 𝜏). The mesh contains 4410 IPs in total.

FIGURE 9 | Comparison of the cumulative number of HF evaluations. Retraced history computations are counted in the time
step in which they are retraced. The significant difference between 𝑘max = 1 and 𝑘max = 3 comes mainly from the additional staggered
iterations, requiring more Newton–Raphson steps.

With multiple iterations, the phase field is updated using information from the current load increment rather than from
the previous iteration. In Figure 8, the evolution of 𝜙 throughout the simulation is plotted. It is clear from this plot that
𝑘max = 1 lags roughly one step behind 𝑘max = 3. This can also be observed by comparing the left and right sides of Figure 5.

The downside of performing several iterations of the staggered approach is that it requires more Newton-Raphson
iterations of the mechanical problem, causing more high-fidelity constitutive model evaluations. Figure 9 shows the
cumulative number of high-fidelity evaluations, where we observe that 𝑘max = 3 uses more evaluations than 𝑘max = 1.
The reduction in high-fidelity evaluations compared to running the full model is relatively small in this example, as
we intentionally use a GP trained on a very limited dataset to show the behavior of the phase field. Since it avoids the
time-step-dependent behavior and improves the model’s accuracy, we argue that performing several iterations is worth-
while for guaranteeing model robustness.

We further investigate the influence of the number of staggered iterations by running the model for more values of 𝑘max.
Figure 10 shows the results by plotting the error and number of staggered iterations used throughout the simulation.

International Journal for Numerical Methods in Engineering, 2025 9 of 19
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FIGURE 10 | The influence of 𝑘max on the simulation. In this example, the model always converges within three iterations.

FIGURE 11 | Overview of the notched plate example.

Using two iterations already shows a significant difference in the error compared to using only one. Even with 𝑘max = 4,
the model always converges within three iterations for this experiment. However, it is possible for the problem to oscillate
between iterations, never meeting the tolerances, so 𝑘max should be set. We set 𝑘max = 3 for the remainder of this work.

4.3 | Phase-Field Parameters

In this section, we explore the influence of the phase-field parameters in more detail. To highlight their influence, we
create an experimental setup with a more complex phase-field evolution pattern.

4.3.1 | Experimental Setup

A plate with two notches diagonally opposite each other is loaded by incrementally displacing the right boundary by
a prescribed amount. This setup is visualized in Figure 11, and we plot full-order simulation results in the left plots
of Figure 12. It can be observed that stress concentrations occur at the tips of the notches, and a plastic strain band
develops between these tips. The full-field errors of the hybrid approach with base settings show close agreement with
the full-field model. Note how in this case the error with GP10 is lower than with GP100, but this comes at the cost
of running more high-fidelity simulations. We vary the element size over the domain to capture the strain localization
accurately. Even though the global loading increases monotonically, we observe local unloading in some integration points
close to the notch tips. As our GP surrogates cannot capture unloading, switching to the high-fidelity model at these
points becomes essential. This is, however, not guaranteed by our method, particularly when using a high opposing force
(through parameter 𝑏) that allows the GP to be used despite high uncertainty. Still, we empirically find that the limited
local unloading has minimal impact on the results and does not affect our conclusions.

Several quantities are used to compare the influence of the hyperparameters. To evaluate the accuracy of the model, we
compare force-displacement curves. Since we now use an adaptive stepper, the points of the force-displacement curve
do not coincide if a certain step fails to converge, so we cannot directly compute their differences. Instead, this error is
computed by first linearly interpolating each F-u curve to the fixed displacement points that the solution follows if it
always converges. To compute the error, we sum the absolute force differences between the approximate model and the
true model. In addition, we plot the average number of integration points (IPs) where the high-fidelity model is used
(i.e., where 𝜙 > 𝜏). This indicates how much the high-fidelity phase has grown during the simulation. As an indication
of the stability, we compare the required number of Newton–Raphson iterations of the mechanical problem, obtained by
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FIGURE 12 | Full-field stress and equivalent plastic strain 𝜀𝑝𝑒𝑞 plots of the notched plate experiment at the maximum prescribed
displacement. The full model results are plotted on the left. For the hybrid approaches, we plot the results for GP10 and GP100. The
differences are so small that we only plot the errors. Hyperparameters 𝑏 = 1, 𝜖 = 10−2, and 𝜔 = 10−3 are used.

FIGURE 13 | Evolution of the phase field during the simulation for various 𝑏 values. Default values 𝜖 = 10−2 and 𝜔 = 10−3 are
used. The simulation with GP30, 𝑏 = 10, failed to converge.

summing over all adaptive time steps (converged or unconverged), for all staggered approach loops. For the number of
high-fidelity evaluations, we track each time the high-fidelity model is evaluated, including the retracing of load paths to
obtain the internal variables (as described in Section 3.2).

4.3.2 | Phase-Field Opposing Force

We study the influence of the phase-field hyperparameter 𝑏 on the mechanical problem. The parameter 𝑏 determines the
magnitude of the constant opposing force, as shown in Equation (5). The larger 𝑏 is, the larger the uncertainty  needs to
be to drive the phase field up from zero towards one. Since the uncertainty of different surrogate models can behave very
differently, the choice of 𝑏 should be calibrated based on the behavior of the variance of the surrogate. Furthermore, it is
challenging to directly compare different surrogates for the same 𝑏 value. For example, the GPs we use in this work all
have different hyperparameters that influence their maximum variance and how quickly the uncertainty increases away
from training points. While this maximum variance could in principle be used to scale  , making 𝑏 an adimensional
threshold, other surrogate methods often do not have an upper bound to their uncertainty. Therefore, we let 𝑏 simply be
the unscaled uncertainty.

We vary 𝑏while fixing the other phase field parameters from Equation (5) to 𝜖 = 10−2 and𝜔 = 10−3. In Figure 13, we show
how the phase field evolves throughout the simulation for the different GPs for different values of 𝑏. We observe that the
uncertainty of GPs with more data grows more slowly and that the larger the value of 𝑏, the fewer IPs use the high-fidelity
model. We visualize the influence of 𝑏 on the error, the phase-field evolution, the required number of Newton–Raphson
iterations, and the number of high-fidelity evaluations in Figure 14. The gray line in the plots refers to the values obtained
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FIGURE 14 | Influence of the opposing force 𝑏 on the mechanical problem. Note: that the x-axis is linear from zero to one, and
then scales logarithmically.

FIGURE 15 | Influence of the double-well term 𝜔 on the phase-field values. A higher 𝜔 leads to more elements having a 𝜙 value of
either below 𝜏 or above 1 − 𝜏. We use GP100, 𝜖 = 10−2, and 𝑏 = 1.

when running the full model, with the high-fidelity constitutive model used in all IPs. Missing data points and the crosses
in the bottom plot indicate that the setting failed to converge (black crosses indicate a failure of the mechanical problem,
red crosses indicate a failure of the phase field). The error of the GP10 model increases consistently as we increase 𝑏. This
indicates that we are using the insufficiently trained GP model even when it is highly uncertain. As expected, the GP mod-
els with more training data result in fewer 𝜙 > 𝜏 elements. As we increase 𝑏, the required number of Newton–Raphson
iterations of the mechanical problem generally increases, with several instances of GP10 and GP30 failing to reach the
end of the simulation. This creates a trade-off where a higher 𝑏 requires fewer high-fidelity evaluations but can increase
the error and lead to instabilities.

4.3.3 | Phase-Field Double-Well

In Figure 15, we show the evolution of the phase-field values throughout a simulation for 𝜔 = 0 and 𝜔 = 10. We observe
that this double-well term of the phase field pushes values away from 𝜙 = 0.5 and towards 𝜙 = 0 and 𝜙 = 1. Increasing 𝜔
thus has the potential to increase the number of IPs with𝜙 < 𝜏, avoiding the high-fidelity model evaluation. Having fewer
elements at the interface reduces the number of high-fidelity evaluations, leading to a larger acceleration. However, by
setting the parameter 𝜔 too high, solving the phase field itself can become challenging. The difference for the 𝜙 = 1 − 𝜏
boundary is smaller, indicating that there are fewer points with 𝜙 values close to that boundary.

The influence of𝜔 on the result of the simulation for different GPs is shown in Figure 16. For GP10, the phase field reaches
the part of the domain with larger mesh elements. The combination of GP10 being inaccurate and 𝜔 being high makes
convergence more difficult. Values below 𝜔 < 10−1 appear to have little effect on any of the quantities. For larger values
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FIGURE 16 | Influence of the double-well term 𝜔 on the mechanical problem.

FIGURE 17 | Stability of the phase-field and mechanical problem concerning the element size and phase-field variable 𝜖 on the
notched plate problem. All problems are evaluated on an 𝜖 ∈ [10−5, 10−1] interval, but only converged points are shown. We have used
𝜔 = 10−3 and the GP10 model for all simulations.

of 𝜔, slightly fewer HF evaluations are required, yet the phase field also becomes unstable, failing to converge for some
cases, or requiring significantly more Newton–Raphson iterations. As the impact of this double-well term appears small,
we conservatively set 𝜔 = 10−3 for the remainder of this work.

4.3.4 | Phase-Field Interface Width

The phase-field parameter 𝜖 influences the width of the interface between the phases and, therefore, the width of the
transition region between the constitutive models (the interface width is equal to approximately 4𝜖). To study the influence
of the interface more carefully, we perform tests with a constant element size throughout the domain. In Figure 17,
the influence of 𝜖 on the required number of Newton–Raphson iterations is shown for different element sizes. A few
corresponding full-field plots of the phase-field value for different mesh sizes are shown in Figure 18. We can observe two
main trends in these figures. Firstly, finding solutions for small 𝜖 values requires smaller mesh sizes. A minimal interface
width is thus required to solve the phase field (but the wider the interface, the more high-fidelity models are evaluated in
each iteration). As we decrease 𝜖 such that the mesh element size is smaller than 4𝜖, the interface width stays one element
until the phase field fails to converge. Secondly, the number of Newton–Raphson iterations of the mechanical problem
decreases slightly as we increase 𝜖. When the phase field fails for some steps, but the overall simulation still converges with
adaptive steps, it causes the spikes observed for element size 0.004. The general trend indicates that having a transition
region spanning multiple elements improves the numerical stability of the mechanical problem.

The mesh used for the other notched plate experiments in this work has a variable mesh element size to capture strain
localization with fine elements (0.005) while having coarse elements (up to 0.04) in the rest of the domain, as shown in
Figures 11 and 12. When using such a variable mesh, a separate mesh with a different characteristic element size could
be implemented for the phase field as in [28]. This brings additional challenges and is not considered here.
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FIGURE 18 | The phase-field variable at the final time step of the notched plate problem for various element sizes and values of
the phase-field interface parameter 𝜖. (a) Element size: 0.004. 𝜖 = 0.00003, (b) Element size: 0.004. 𝜖 = 0.0001, (c) Element size: 0.004.
𝜖 = 0.03, (d) Element size: 0.008. 𝜖 = 0.0001, (e) Element size: 0.008. 𝜖 = 0.03, (f) Element size: 0.012. 𝜖 = 0.0001, (g) Element size:
0.012. 𝜖 = 0.03, (h) Element size: 0.016. 𝜖 = 0.0001, and (i) Element size: 0.016. 𝜖 = 0.03.

FIGURE 19 | The influence of the phase-field interface parameter 𝜖 on the mechanical and phase-field problem.

Figure 19 shows the influence of 𝜖 for the various GP surrogates on the domain with a variable mesh size. As 𝜖 decreases,
the interface becomes narrower, leading to fewer elements where 𝜙 > 𝜏. For 𝜖 = 10−1 the error increases, especially for
GP100. This is because when there is a region with only a few points with high uncertainty, a large 𝜖 can cause the phase
field to not fully switch, hindering accuracy. The difference in accuracy is generally small, and the number of high-fidelity
evaluations reduces for smaller 𝜖 values. Still, as observed earlier, when 𝜖 is small, the mechanical and phase-field prob-
lems become less stable and require more NR iterations or do not converge. Therefore, the default value we have used so
far of 𝜖 = 10−2 appears to be a sensible choice.
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4.4 | Local Mixture

To avoid being limited by the convergence of the phase field for small 𝜖 values, we compare the phase field to a simple
approach where no phase-field model is solved. In previous demonstrations, phase-field spatial smoothing, a non-local
effect, was necessary for convergence. To better study the influence of the transition zone without being limited by having
to solve the phase-field PDE, we consider an alternative case with no spatial smoothing. Here, we directly use the driving
force to evolve the mixture. We refer to this as the local approach since the mixture of models in each IP is independent
of the uncertainty in other IPs. In addition to removing the transition zone, another benefit is that we no longer need to
solve the phase field, reducing the complexity of the method. We still use a similar formulation to the phase field, with 𝑏
opposing the uncertainty. We consider two variations of the local approach. The first version linearly shifts between the
models:

𝜙 =  − 𝑏, 𝜙 ∈ [0, 1]. (8)

In contrast to the phase field, this local shift does not necessarily lead to a spatial transition zone. When two points close in
space have very different  values, the spatial transition can still be sharp. However, the linear shift ensures that a small
change in strain does not cause a completely different constitutive model to be used—the stress remains continuous
with respect to the strain. Alternatively, we can use a step function, directly switching between the models when the
uncertainty reaches the threshold:

𝜙 =

{
0 if  < 𝑏,

1 if  ≥ 𝑏. (9)

Note that both versions require the high-fidelity model when  ≥ 𝑏. Similar to the phase-field approach, this method
suffers from time-step dependency because the mixture uses the uncertainty of the previous step. Therefore, we also
perform several iterations of the staggered approach, with 𝑘max = 3.

In Figure 20, we show how 𝑏 influences the results for these two local approaches compared to the phase-field approach.
Across all simulations, the errors are nearly identical between the models. Because the local methods do not have an
interface, they always have fewer IPs that require high-fidelity model evaluations for a given uncertainty. The number of
Newton–Raphson iterations is similar when 𝑏 is low. However, for larger 𝑏 values, the local approaches require signifi-
cantly more iterations with GP30 and GP100. In addition, the local approaches start failing for these models as 𝑏 increases.
Removing the interface can thus be beneficial in reducing the number of high-fidelity evaluations for specific settings, yet
generally makes the model less stable and less robust.

FIGURE 20 | Comparison of the opposing force parameter b for the various approaches. For the phase field we set 𝜖 = 10−2 and
𝜔 = 10−3. Note that the x-axis is linear from zero to one, and then scales logarithmically. All simulations that fail to converge fail due
to the mechanical problem. (a) GP 10, (b) GP 30, and (c) GP 100.
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4.5 | Surrogate Data

So far, we have shown the influence of the various parameters on the behavior of the mixture of models. We now study
how the training dataset size affects the reduction in high-fidelity samples in more detail. To investigate whether this
framework can handle complex phase fields, we consider a plate with holes to create numerous local regions with high
stresses that challenge the GP surrogates and induce a switch. We constrain the left side of the domain and incrementally
prescribe a displacement to the right side of the domain. We use 𝜖 = 10−2, 𝜔 = 10−3, and 𝑏 = 1 for the phase field, and do
not consider the local approach here.

Figure 21 shows the number of high-fidelity evaluations during the simulation as we vary the amount of training data in
the GP surrogate. For three of these cases, we plot the full-field phase field at the end of the simulation in Figure 22. These
figures show the number of high-fidelity evaluations quickly decreasing as the GP is trained with more training data. Still,
at a certain point, the downward trend appears to converge, and the number of high-fidelity evaluations is not further
reduced. This is because the GP fails to capture localization with strains outside its training data range, which go up to
a strain norm of 10%, a choice that must be made prior to running the simulation. This shows the difficulty of creating
an appropriate dataset in advance. Different techniques for generating datasets are appropriate for different surrogates.
Generally, the dataset should be generated by sampling the input (strain) space such that it covers the expected inputs
that occur in the simulation of interest. For path-dependent materials, the input space should also include the internal
variables, which is commonly achieved by sampling random, non-monotonic load paths. A high-quality dataset leads to
a high-quality surrogate, increasing the efficiency of the approach. However, adequately covering the input space a priori
is difficult, which is why our proposed method is advantageous.

FIGURE 21 | GP training dataset size influence on the number of high-fidelity evaluations. The plot shows the average of 5 runs
with different datasets. The full model is used as a reference. For very small datasets, our approach can use more evaluations than the
full model due to the staggered iterations (𝑘max = 3).

FIGURE 22 | Phase-field variable𝜙 at the maximum prescribed displacement for surrogates with varying amounts of training data.
(a) GP10, (b) GP30, and (c) GP100.
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5 | Conclusion

This work introduces an approach for mixing constitutive models in finite element analysis and tests its performance
by combining a physics-based constitutive model with a data-driven surrogate counterpart. The method dynamically
determines where to use each model based on the surrogate uncertainty, creating a spatially varying mixture that preserves
accuracy while reducing computational cost. This is achieved by solving a phase field based on the surrogate model uncer-
tainty that determines which constitutive model is used. Then, given the mixture of constitutive models, the mechanical
problem of interest is solved. Solving the problem in a staggered way introduces time-step dependence, which can be
resolved by performing multiple staggered iterations per load step. Running several iterations brings additional costs but
is necessary for the robustness of the method.

For computational feasibility, the results have been obtained for single-scale problems, where an analytical constitutive
model acts as the high-fidelity model. A Gaussian Process surrogate is used, as it naturally provides an estimate of its
uncertainty. Because this surrogate cannot capture history-dependent effects, the experiments consider only monotonic
loading scenarios. However, our approach is model-agnostic and does not depend on the specific surrogate or high-fidelity
model, but on the accuracy of the surrogate uncertainty, and therefore the conclusions hold for more general multiscale
models and history-dependent surrogates. Future work should compare the approach for other material behaviors and
loading scenarios, such as cyclic loading.

The use of a phase field was motivated by the hypothesis that the spatial smoothness would improve the numeri-
cal stability of the mechanical problem. To test this, we studied the effect of decreasing the size of the interface. As
there is a limit to the minimum interface width for the phase field itself, we compared the phase-field approach to an
alternative local approach with no spatial smoothing. There, we used the surrogate model if its uncertainty is below
a threshold, and the high-fidelity model otherwise, creating a sharp transition between the models. We demonstrated
on a notched plate problem that while the local approach can work and reduce the high-fidelity evaluations further,
it is less robust than using a phase field. For this reason, the spatial smoothness introduced by the phase field is
beneficial.

The results demonstrate that the mixing approach significantly reduces the number of high-fidelity model evaluations
compared to the full model. The quality of the surrogate model directly impacts performance—better-trained surro-
gate models with more data allow for increased computational savings. If a surrogate model can be curated such that
it accurately captures the behavior during the full simulation, then the uncertainty remains low, and no additional
high-fidelity model evaluations are required. This framework then adds the extra cost of computing the surrogate uncer-
tainty. However, creating an all-encompassing surrogate model is very challenging, and it is generally difficult to know
in advance whether the surrogate model is sufficient. Therefore, this mixture of models uses the surrogate where pos-
sible while still enabling an accurate simulation. If the surrogate is poorly trained and can only capture a small part of
the behavior, the additional Newton–Raphson iterations to obtain a consistent solution can result in more high-fidelity
model evaluations than simply using the high-fidelity model without this approach. It is, however, unlikely that this
would be the case in practice. This work thus provides a framework for accelerating multiscale simulations where
micromodel evaluations are computationally expensive. The approach works independently of the specific surrogate
model and can, therefore, be combined with the latest advances in developing surrogate models to enable multiscale
simulations.
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Appendix A

Gaussian Process Regression

A comprehensive treatment of GPs can be found in [29]. A Gaussian Process is a collection of random variables, any finite number of
which follow a joint Gaussian distribution. GPs are specified by a mean 𝑚(x) and a covariance function 𝑘(x, x′), written as:

𝑓 (x) ∼ GP(𝑚(x), 𝑘(x, x′)). (A1)

For simplicity, it is common to assume a zero mean function,𝑚(x) = 0. The covariance function𝑘(x, x′) specifies the correlation between
outputs at different inputs, often capturing how similar inputs should yield similar outputs. In this work, we use a squared exponential
(radial basis) kernel function:

𝑘(x, x′) = 𝜎2
𝑓

exp
(
− ||x − x′||2

2𝓁2

)
, (A2)

where 𝜎2
𝑓

is the signal variance, and 𝓁 is the characteristic length scale.

Given a training dataset  = {(x𝑖, 𝑦𝑖)|𝑖 = 1,… , 𝑛} with inputs X = [x1,… , x𝑛]𝑇 and outputs y = [𝑦1,… , 𝑦𝑛]𝑇 , we aim to predict the
output 𝑓 (x∗) at a new test point x∗. Assuming noisy observations 𝑦𝑖 = 𝑓 (x𝑖) + 𝜖𝑖 where 𝜖𝑖 ∼  (0, 𝜎2

𝑛
), the joint distribution of the

training outputs and the test output becomes:[
y

𝑓 (x∗)

]
∼ 

(
0,

[
𝐾(X,X) + 𝜎2

𝑛
I 𝐾(X, x∗)

𝐾(x∗,X) 𝐾(x∗, x∗)

])
, (A3)

where𝐾(X,X) denotes the 𝑛 × 𝑛matrix of covariances evaluated at all pairs of training points,𝐾(X, x∗) is the 𝑛 × 1 vector of covariances
between training points and the test point, and𝐾(x∗, x∗) is the covariance of the test point with itself. The posterior distribution of 𝑓 (x∗)
given the observations becomes:

𝑝(𝑓 (x∗)|X, y, x∗) =  (𝜇∗, 𝜎2
∗) (A4)

𝜇∗ = 𝐾(x∗,X)[𝐾(X,X) + 𝜎2
𝑛
I]−1y (A5)

𝜎2
∗ = 𝐾(x∗, x∗) −𝐾(x∗,X)[𝐾(X,X) + 𝜎2

𝑛
I]−1𝐾(X, x∗) (A6)

The predictive mean 𝜇∗ serves as our point estimate, while the predictive variance 𝜎2
∗ quantifies our uncertainty about the estimate.

This uncertainty naturally increases as we move away from the training data.

There are several methods for optimizing the hyperparameters of a GP. We use the maximum likelihood estimation approach, which
finds the hyperparameters that maximize the marginal likelihood of the observed data. The hyperparameters 𝜽 (i.e., 𝜽 = {𝜎𝑓 ,𝓁, 𝜎𝑛})
are optimized by maximizing the log marginal likelihood:

log 𝑝(y|X,𝜽) = −1
2

y𝑇 [𝐾(X,X) + 𝜎2
𝑛
I]−1y − 1

2
log |𝐾(X,X) + 𝜎2

𝑛
I| − 𝑛

2
log(2𝜋) (A7)

We perform this optimization using the L-BFGS-B algorithm, starting from 20 different initial configurations to avoid local optima.
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