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Decentralized Energy Demand
Regulation in Smart Homes

S. N. Akshay Uttama Nambi, R. Venkatesha Prasad, Senior Member, IEEE, and Antonio R. Lua

Abstract—Smart grids offer better energy management for
consumers as well as energy companies using bi-directional
communication and control. With the advent of smart homes,
energy companies can balance energy supply and demand to
a large extent using many sensors/meters deployed. They can
also nudge consumers to shift their demands to off-peak hours
for load balancing and monetary benefits. We propose a decen-
tralized demand scheduling algorithm that minimizes consumer
discomfort and electricity cost of a household. Our algorithm
utilizes only aggregated energy consumption of a household to
derive optimal appliance level demand schedules. Furthermore,
a low-complexity energy disaggregation algorithm is proposed
to derive fine-grained appliance information and consumer pref-
erences. We propose three important coefficients related to the
energy usage of consumers. We utilize them to derive optimal
day-ahead demand schedules. The decentralized algorithm is
empirically evaluated using real-world energy usage data from
open datasets, which include our own deployment. Our proposed
scheduling algorithm saves up to 30% energy cost. This paper is
one of the first to derive day-ahead schedules using real-world
data from multiple households.

Index Terms—Demand regulation, load shifting, scheduling,
decentralized, energy disaggregation, smart grid.

I. INTRODUCTION

SMART Grid (SG) takes advantage of communication and
control technologies to integrate the power infrastructure

with the information infrastructure [2], which comprises of
information and communication technology (ICT) to mea-
sure and control power infrastructures. Thus a bidirectional
communication is necessary between consumers and energy
companies (or utilities) enabling immediate feedback on power
usage, power quality, and pricing details [3]. This transforma-
tion enables both consumers and utilities to communicate with
each other to balance energy supply and demand leading to
reliable and robust operations of the SG.

With the advent of smart homes, numerous devices such
as vacuum cleaners, smart washing machines, ovens, and
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refrigerators are becoming more intelligent and can be con-
trolled remotely. In SG, utilities are allowed to dynamically
adjust the electricity prices in order to control demand. The
real-time pricing information communicated to the smart
homes can be used to control and adjust the demands, at
the customer premises. Demand regulation or demand-side
management is a key technique that can control and influ-
ence energy demand at consumer-end to reduce the overall
peak demand, reshaping demand profiles and increasing the
robustness of SG [4]. Several demand-regulation techniques
are proposed in the literature for load shifting [5], peak clip-
ping and valley filling [6]. Load shifting, in particular, involves
shifting loads from peak to off-peak hours, without signifi-
cantly influencing the average load over time. Load shifting
ensures the total energy consumed by the household does
not overload the grid by altering the demand pattern of the
household.

In this paper, demand regulation (DR) is defined as the
change in energy consumption pattern in response to change
in price of electricity. Specifically, we limit the DR to load
shifting. Each household is assumed to be equipped with an
information system that collects real-time demand measure-
ments from smart meters and also controls energy consump-
tion. Existing energy management systems (EMS)/information
systems are mainly designed to improve energy efficiency and
comfort, i.e., turning off appliances when not in use, changing
HVAC/air-condition setpoints to minimize energy consump-
tion [7], [8], etc. Recent EMS aim to reduce electricity cost
by scheduling the demand of the household based on the
electricity prices (real-time or day-ahead). These scheduling
algorithms utilize either (i) fine-grained energy consumption
information from the appliances or (ii) aggregate energy con-
sumption of the household for load shifting. In the case of
fine-grained information, energy consumption of each appli-
ance in the household is analyzed for deriving schedules for
appliances. These approaches require detailed user and appli-
ance information to schedule loads effectively. In the case
of aggregate consumption, the scheduler aims to determine
the energy that needs to be shifted from the total consump-
tion of the household at a given time period. This approach
requires consumers to figure out which appliance needs to be
turned-on/off to match the energy that needs to be shifted.

There still exists several challenges hindering the appli-
cability of load shifting in residential households. We enlist
some of the important ones here: (i) Most of the approaches
presented [5], [9], [12] require detailed user and appliance
level information to schedule loads effectively. This either
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requires the additional deployment of sensors or significant
consumer involvement. (ii) Approaches based on aggregate
energy consumption, either select a demand pattern based
on historic data or require the consumer to shift energy.
Quite often, consumers have no real knowledge of appli-
ance level energy information. (iii) Most demand scheduling
algorithms do not consider the heterogeneity of appliances
in the household, flexibility in appliance usage, and appli-
ance dependencies during scheduling. Hence the resultant
schedule is either infeasible or the user comfort is severely
hampered. (iv) Load scheduling or shifting is quite often
performed in a centralized manner where energy consump-
tion information is sent to the utilities or an aggregator to
determine the optimal schedule. This raises several issues
related to scalability and privacy. (v) Lastly, the scheduling
algorithms are generally evaluated using simulation or numer-
ical analysis, which may not reflect the ground truth very
well [12]–[15]. Furthermore, the applicability of scheduling
algorithms across different households is never considered in
the prevalent research [20], [21].

In this paper, to overcome the above limitations, we pro-
pose a decentralized demand regulation scheme. The proposed
demand scheduling algorithm utilize only the aggregated
energy consumption of a household to derive optimal appli-
ance level schedule. We derive fine-grained appliance informa-
tion and user preferences from the aggregated energy informa-
tion using a low-complexity energy disaggregation algorithm.
This approach utilizes data from a single smart meter and elim-
inates the need for additional sensor deployment. Furthermore,
the demand scheduling algorithm runs on an embedded sys-
tem such as Raspberry Pi at the consumers premises, thus
privacy-sensitive data is stored and processed locally at the
household. This approach is highly scalable and avoids sharing
of privacy-sensitive information to the utilities. The proposed
demand scheduling algorithm is evaluated on our real-world
deployment Dutch Residential Energy Dataset (DRED) in the
Netherlands [10]. Furthermore, we show the applicability of
the scheduler on another household in the USA using the open
dataset REDD [11]. The scheduler implementation is made
publicly available for the community to support additional
analysis [10].

The primary objective of this work is to develop a decen-
tralized demand regulation scheme that can, (i) determine
appliance level information and user preferences for appliance
usage, using only aggregated energy consumption from the
smart meters and (ii) propose a demand scheduling algorithm
that minimizes the user discomfort and electricity cost based
on day-ahead hourly pricing. The main contributions of this
paper are:

(i) We propose a novel decentralized demand scheduling
algorithm that minimizes user discomfort and electricity cost
of a household.

(ii) We describe three coefficients to analyze user prefer-
ences and appliance usage patterns using historic aggregated
energy consumption.

(iii) We provide a detailed empirical evaluation of the pro-
posed algorithm using real-world deployment and publicly
open datasets.

TABLE I
COMPARISON OF STATE-OF-THE-ART APPROACHES

II. RELATED WORK

Numerous DR programs [12]–[15], [20], [21] have been
proposed to motivate changes in the consumers power con-
sumption with the objective to either (i) minimize the elec-
tricity cost, (ii) maximize the social welfare, (iii) minimize
the aggregated power consumption, or (iv) any combination
of the above [20].

Table I provides a concise overview of state-of-the-art
approaches against the proposed scheme. The columns indicate
whether the scheduling algorithm is centralized or decentral-
ized if consumer preferences are considered or not, whether
the evaluation was based on simulation or data-driven if the
scheduling algorithm is at the appliance level or aggregated,
and if the scheduling algorithm can be implemented on an
embedded system such as Raspberry Pi.

In [12] an optimized day-ahead pricing scheme is pro-
posed by considering the flexibility of appliance scheduling.
A cost minimization problem is formulated to reduce electric-
ity cost. However, this approach does not consider consumer
preferences and authors show only numerical analysis of the
proposed scheduling algorithm. A genetic algorithm to derive
optimal power schedule of a household is proposed in [13].
The genetic algorithm runs at the household to minimize elec-
tricity cost and to reduce the delay in the usage of appliances.
Similar to [13], Chen et al. [5] propose a task scheduling algo-
rithm that considers per-appliance delay and also long-term
average delay to minimize the electricity cost. Contrary to the
above approaches in this work, we not only consider a delay
in appliance usage but we also consider the flexibility, appli-
ance dependencies, and consumer preferences to schedule the
appliance usage. In [14] an integer linear programming tech-
nique based online load scheduling algorithm is proposed to
minimize energy cost in residential settings. In [15], a schedul-
ing technique is proposed by modeling energy consumption
and user preferences as a stochastic variable. Appliance-level
schedules derived are evaluated using simulation results.

Recent efforts consider uncertainties in manually operated
appliances [16], where robust optimization approaches for
demand side scheduling is proposed. The proposed approach
takes into account the worst case to reduce electricity payment
of all home appliances. However, the worst case electricity
needs are taken arbitrarily and only simulation results on how
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the proposed robust approach performs are described. In [17],
a multi-residential load scheduling problem is considered. The
authors propose a load scheduling algorithm by jointly con-
sidering multi-residence and multi-class appliance. While the
authors consider multiple residences, they do not completely
account for individual households household preferences. A
sparse load shifting algorithm is presented in [18] to globally
minimize the total energy consumption cost and the peak-
to-average ratio. In [19] an optimal electric load scheduling
problem is presented taking into account both energy and
user dissatisfaction costs. User dissatisfaction is modeled as
a convex function of time if the appliance either delayed or
advanced from the preferred time of its operation. While these
approaches try to minimize the time delay, the proposed algo-
rithm in this paper also considers the time periods when an
appliance is used, how long they are used and dependencies
between other appliances. This information plays a crucial
role in deriving schedules that maximize user preferences and
comfort.

The state-of-the-art techniques do not completely cap-
ture consumer preferences and appliance usage patterns.
Furthermore, these techniques cannot be readily applied to
multiple households or datasets. In this work, we extend the
state-of-the-art methods by considering smart meter data from
multiple households across different locations to validate the
scheduling decisions. We utilize only aggregated data of the
household to derive appliance level day-ahead schedule with
the help of a low-complexity energy disaggregation algorithm
and demand schedule. A Modified Combinatorial Optimization
(ModCO) algorithm is proposed to derive fine-grained appli-
ance information from the aggregated data. Finally, a decen-
tralized demand scheduler is proposed to derive day-ahead
appliance schedule that minimizes electricity cost and asso-
ciated consumer discomfort. This work is one of the first
to derive day-ahead schedules using real world data from
multiple households.

III. SYSTEM MODEL

Each household is assumed to have an information sys-
tem (i.e., Raspberry Pi or Arduino) connected with the smart
meter to balance energy demand by applying demand regula-
tion techniques. Fig. 1 shows the system model of the proposed
decentralized demand scheduling system in smart homes.

The energy utilities send the day-ahead hourly pricing to
all its consumer base. The information system at the house-
hold then derives day-ahead schedules to minimize electricity
cost. To derive day-ahead schedules, the aggregated energy
demand data from the smart meter is given to the energy
disaggregation block. Energy disaggregation block employs
a Modified Combinatorial Optimization (ModCO) algorithm
to infer per-appliance energy consumption information. This
information is also used to derive consumer preferences such
as, appliances that are currently used and its duration, usage
patterns in weekdays and weekends, etc. The appliance level
energy information along with consumer preferences are used
by the demand scheduler to derive day-ahead schedules. The
demand scheduler utilizes several coefficients to minimize

Fig. 1. System model of decentralized demand scheduling.

the electricity cost and consumer discomfort. The proposed
day-ahead schedule is then communicated to the house-
hold/occupants via the information system. This we call local
feedback, which can be used to understand the effectiveness
of the proposed schedule or how the occupants are adapt-
ing. Furthermore, the information system communicates the
proposed schedule to the energy utilities, we call this global
feedback. The global feedback allows the utility to plan the
energy purchase and also to balance energy at a larger scale
like neighborhood and township.

In this work, we distinguish the appliances in smart homes
as non-schedulable and schedulable. The former represents
appliances that require fixed energy requirement and are not
subjected to scheduling decisions. These appliances include
television, refrigerators, modems, etc. Schedulable appliances
allow appliance usage to be shifted in time and has a direct
relation to consumer preferences and behavior. These appli-
ances include dishwashers, washing machines and clothes
dryers. The distinction between the loads can be automatically
done by analyzing the appliance usage patterns.

Energy disaggregation: Hitherto, several energy disaggre-
gation algorithms such as Combinatorial Optimization (CO)
and Factorial Hidden Markov Model (FHMM) [22]–[24]
have been proposed to derive appliance level information.
We first describe the traditional CO algorithm and then
propose our Modified Combinatorial Optimization (ModCO)
algorithm.

Combinatorial Optimization (CO): The goal of an energy
disaggregation algorithm is to provide estimates of actual
energy consumed by each appliance from the aggregate energy
consumption data. Let ŷ(n)

t be the estimated energy consumed
and y(n)

t be the actual energy demand of each appliance n at
time t. yt represent the aggregate energy reading of the house-
hold. The ground truth state of an appliance is represented
by x(n)

t ∈ Z ≥ 0 and x̂(n)
t represents the appliance state esti-

mated by the disaggregation algorithm. CO finds the optimal
combination of appliance states, which minimizes the differ-
ence between the sum of predicted appliance power and the
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observed aggregate power. It is given by,

x̂(n)
t = arg min

x̂(n)
t

∣
∣
∣
∣
yt −

N
∑

n=1

ŷ(n)
t

∣
∣
∣
∣

(1)

where N is the set of all appliances in the household and t is
the current time period. The predicted energy consumption
of an appliance ŷ(n)

t is then mapped to the closest appli-
ance state x(n)

t . This approach requires an appliance model,
which includes power consumption details for each state of
the appliance. This is further used during inference to predict
the current state of the appliance. The computational com-
plexity of disaggregation for T time periods is O(TSN), where
S is the number of appliance states and N is the set of all
appliances.

CO algorithm has several drawbacks. Firstly, this opti-
mization problem resembles subset sum problem and is
NP-complete. Furthermore, the computation complexity in
CO increases exponentially with the number of appliances.
Secondly, this algorithm does not differentiate between appli-
ances with similar power consumption and appliances with
similar states. Third, this algorithm assumes all the appliances
in the household are being monitored and assigns some por-
tion of energy to appliances even if they are not currently used,
resulting in low disaggregation accuracy.

Modified CO (ModCO) algorithm: This improves the tra-
ditional CO in four aspects, (i) ensures the effect of small
fluctuations in aggregate power is minimal; (ii) preserves
consistency in consecutive state estimations – using prior-
ity combinations; (iii) eliminates the need for appliance level
modeling by employing a crowd-sourced power consumption
database, and (iv) reduces the computational complexity asso-
ciated with determining the state combinations. We employ
a crowd-sourced generic appliance model from the power
consumption database. For example, the power consumption
database [25] provides crowd-sourced information on max-
imum and idle power for a wide range of loads indexed
by type, manufacturer, and model number. This information
can be obtained a priori using the datasheets of appliances
or crowd-sourced data, thus eliminating appliance energy
modeling.

In the traditional CO, at each time interval, the algorithm
tries to find the set of appliances, which are closest to the
current aggregated energy consumption. This may result in
a different set of appliances being used in each consecutive
interval. Hence, it is necessary to preserve the consistency
in selecting appliances during consecutive state estimations.
We define priority combination – that is the set of appliances
which are assumed to be currently running. This informa-
tion can be retrieved from the last iteration of the algorithm.
In each interval, ModCO first evaluates the priority combi-
nation to check whether the sum of all appliances in the
priority combination matches the current aggregated value. If
the difference between the sum of priority combination and
the aggregated energy is within a threshold δ, then the current
priority combination is retained as the predicted set.

Our algorithm evaluates the following expression to deter-
mine whether the current priority combination of appliances

is still valid or not, [|yt − ∑K
n=1 ŷ(n)

t | ≤ δ], where yt rep-
resent the aggregate energy data of the household, ŷt is the
estimated energy consumed by each appliance, K is the set of
appliances present in the priority combination and δ is the vari-
ation threshold. The variation threshold parameter minimizes
the effect of small fluctuations in aggregate power. However,
when the difference between current priority combination and
aggregate consumption is greater than δ, we find the new state
combination of appliances that match the aggregated energy
consumption [23].

IV. DAY-AHEAD DEMAND SCHEDULING ALGORITHM

We now describe an algorithm that generates day-ahead
demand schedule for a household, which minimizes electricity
cost and consumer discomfort. Discomfort refers to the incon-
venience experienced by the consumers during load shifting.
The derived schedule is communicated to the occupants via
information system to execute it the next day. Our algorithm
is agnostic to time granularity, i.e., it can be applied for an
entire day, during peak time periods, hourly, etc.

We formulate a cost minimization problem at the consumer-
end by effectively scheduling loads based on day-ahead hourly
pricing. Appliance usage patterns and consumer preferences
are derived from the disaggregated energy data. The hypoth-
esis considered here is that the proposed day-ahead schedule
should resemble the historic energy consumption pattern of
the consumer and it has minimal discomfort since the con-
sumers have executed them previously. However, consumer
preferences may change over time. Hence, our algorithm cre-
ates schedule not only based on historical demand patterns of
consumers, but also by determining several coefficients that
define consumer preferences and appliance usage patterns.

Fig. 2 shows an overview of the schedule generation algo-
rithm. Our algorithm has five modules viz., schedule creation,
pattern abstraction, schedule filtering, schedule selection and
schedule enhancement.

A. Schedule Creation

The first step is to find all possible demand schedules of
consumers from their historic demand data. These schedules
represent the energy usage behavior of consumers in the past.
We then group these schedules at different granularities, i.e.,
either weekdays or weekends, the day of the week, etc. The
past schedules generated are feasible and have minimal impact
on the daily routines of the consumers since they have already
executed them at some point in the past.

A feasible schedule could be chosen from the past schedules
that coincides with the type of day in consideration. For exam-
ple, a schedule for Saturday may choose only schedules of
past Saturdays or weekends. In such a way, the final proposed
schedule retains a greater resemblance to what the consumer
typically does on that day. It may be possible that some of
these schedules do not match user preferences either due to
the huge variation in demand profile on that day or due to the
arrival of guests in the household, etc. Hence it is necessary
to determine representative schedules that accurately depict
consumer preferences from the past schedules.
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Fig. 2. Overview of schedule generation algorithm.

B. Pattern Abstraction

We propose three energy usage coefficients to analyze
appliance usage patterns and consumer preferences.

(i) Flexibility coefficient: represents the average usage dura-
tion of an appliance in each hour of the day. This indicates
the time periods when an appliance was used previously and
how much time it was used. Fig. 3 shows flexibility coeffi-
cients heatmap of appliances during weekdays and weekends
of a household from REDD dataset [11]. It can be seen that,
appliance usage is high in mornings (7-10AM) and evenings
(6-8PM) on weekdays. However, during the weekends the
appliance usage is spread across the day. Flexibility coeffi-
cient indicates a preferable time period of appliance usage by
the users.

(ii) Sensitivity coefficient: indicates the preferred time delay
in the usage of an appliance by consumers. Some appliances
can tolerate longer delays compared to others. For exam-
ple, the coffee machine might allow shorter delays than the
washing machine as the user always prepares coffee within a
specific (and shorter) time period.

(iii) Dependency coefficient: indicates the appliance depen-
dencies, associations and usage sequence. In general, the
occupants have a daily routine making it possible to use an
appliance in a sequence. For example, TV is always associated
with a home theater.

C. Schedule Filtering

Schedule filtering employs the energy usage coefficients
described previously to filter and select schedules that most
accurately represent consumer preferences. We select the sub-
set of schedules that adhere to the derived usage patterns and
discard schedules that occurred only a few times or that are
not representative of a typical day. Fig. 4 shows the differ-
ence between a representative and non-representative schedule

based on per-appliance usage time. It can be seen that, a rep-
resentative schedule has most of the appliances adhering to
the appliance usage time periods (flexibility) of a typical day.
Moreover, in a non-representative schedule, only a few appli-
ances adhere to the average usage duration. In this paper, the
filtering of schedules is done in combination with all the three
energy usage coefficients.

The schedule filtering is based on individual appliances and
to derive a representative schedule for a household, a mini-
mum number of appliances need to adhere to the requirements
derived. This setting is adjustable by the consumer or the util-
ity or after negotiation. It represents the harshness in schedule
filtering and can be used to identify the discomfort. For exam-
ple, a requirement of low number of appliances to adhere
to the coefficients may result in the selection of a schedule
not matching the user preferences, leading to high consumer
discomfort. The bounds on the coefficient values are derived
based on consumer preferences. Finally, the filtered schedules
are the representative schedules for that household.

D. Schedule Selection

From the set of representative schedules derived, we find the
schedule that minimizes the electricity cost. Day-ahead hourly
pricing information from the utilities1 is obtained to identify
the schedule that results in minimal electricity cost.

The scheduler selects the schedule with least electricity cost
by solving the following cost minimization problem,

minimize
N

∑

i=1

24
∑

t=1

Ct D(i)
t ,

subject to 0 ≤ Dt ≤ Dmax,∀t, (2)

where N is the total number of representative schedules, Ct is
the hourly electricity cost and Dt is the hourly energy demand
of a representative schedule i. Dmax represents the maximum
hourly energy demand of the household.

E. Schedule Enhancement

Finally, we try to enhance the cost-optimal schedule derived
previously. Enhancements are typically appliance load shifting
based on the flexibility and sensitivity coefficients, to fur-
ther reduce the cost and discomfort associated. Hence the
optimization problem in (2) can be re-written as,

minimize
24
∑

t=1

Ct Dt

subject to 0 ≤ Dt ≤ Dmax,∀t,

laf ≤ f
(

da
t

) ≤ ua
f , s

(

da
t

) ∈ (

las , ua
s

)

,∀a ∈ A, (3)

where Ct is the hourly cost, Dt is the cost-optimal energy
demand, da

t is the appliance energy demand, f a and sa are
the flexibility and sensitivity coefficients for each appliance,
a ∈ A the set of appliances, and laf , ua

f , las , ua
s are the corre-

sponding lower and upper bounds of flexibility and sensitivity
coefficients.

1Day-ahead hourly prices: http://www.powersmartpricing.org/pricing-table/.
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Fig. 3. Usage patterns of appliances in REDD.

Fig. 4. Appliance time usage duration in REDD.

We propose an iterative method to solve (3) where each
appliance usage is either retained at the same time period (if
cost is lower) or shifted within the flexibility and sensitiv-
ity range derived using energy data. As mentioned previously,
the former indicates the average usage time period of an
appliance in an hour and the latter indicates the time delay
the appliance can tolerate. The iterative method generates a
sequence of improving approximate solutions that adhere to
these coefficients. Furthermore, the scheduler needs to ensure,
(i) an appliance usage event should not be subdivided into
smaller events to avoid expensive hours and (ii) an appliance
event duration should not be altered, i.e., neither stretching
nor shrinking of an event is allowed. Our algorithm ensures
the above conditions are met and shifts the appliance usage
accordingly.

Since the iterative method is applied only on the cost-
optimal schedule, the computational complexity associated in
load shifting is minimal. Fig. 5 shows the demand shifting
of schedulable loads for cost-optimal and enhanced schedule.
It can be seen that from the cost-optimal schedule appliance
usage are shifted to obtain the enhanced schedule. The shifting
of appliance usage is based on the electricity price and con-
sumer preferences derived using the energy usage coefficients.
The comparison of cost-optimal and the enhanced schedule

with day-ahead electricity price is shown in Fig. 6. The pro-
posed scheduler can also be used with other pricing schemes
such as hourly or real-time pricing. The first four steps of
the proposed algorithm (schedule creation, pattern abstraction,
schedule filtering and schedule selection) remain the same.
However, the schedule enhancements (described in Eq. (3))
needs to be modified, specifically, the number of time slot
and cost per time slot will be changed.

Furthermore, the proposed scheduler can incorporate renew-
able energy sources such as solar and the wind to balance the
energy demand and supply. In this case, Dt in (2) and (3)
can be replaced with D̂t, where D̂t=Dt - DRES. Here, Dt

is the demand required by the household, DRES is the
demand generated from renewables such as solar and the
wind, and D̂t is the energy demand borrowed/requested from
the grid.

V. EXPERIMENTAL EVALUATION

We provide a performance evaluation of the proposed sched-
uler across multiple datasets to support wide adoption and also
to validate our work. We first describe the datasets employed
for empirical evaluation. We then provide detailed results on
energy disaggregation and efficacy of the scheduler.
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Fig. 5. Cost-optimal and enhanced schedule in REDD.

Fig. 6. Comparison of cost-optimal and enhanced schedule in REDD.

Fig. 7. Comparison of CO, ModCO and FHMM algorithms.

A. Datasets

The energy disaggregation and demand scheduler were
evaluated using our deployment Dutch Residential Energy
Dataset (DRED) in the Netherlands [10]. Furthermore,
the proposed models were also evaluated with a publicly
available energy dataset called REDD (Reference Energy
Disaggregation Dataset) [11].

(i) DRED: Our deployment consists of several sensors mea-
suring power, occupancy and activities of occupants. The
sensors were carefully installed to avoid any inconvenience
to the occupants. We collected data at both aggregated and
appliance level using smart meters such as plugwise sensors2

2Plugwise energy monitoring: https://www.plugwise.com/smile-p1.

at 1 Hz sampling frequency for over 6 months. The dataset is
made public and more details about the deployment can be
found in [10].

(ii) REDD: It is one of the first publicly available dataset
with both appliance and aggregated energy consumption data.
The dataset includes data from 6 households in the USA. Each
household has more than 15 appliances and the data was col-
lected at 1 Hz sampling frequency. In our evaluation, we use
House-1 data and more details can be found in [11].

B. Results

Modified CO: We now compare the results of ModCO
with traditional CO and FHMM. We employ Fraction of total
energy assigned correctly (FTE) metric to evaluate the disag-
gregation accuracy. It measures the fraction of energy correctly
assigned to an appliance and is one of the common accuracy
metrics for disaggregation algorithms [11], [24]. FTE is the
overlap between the actual fraction of energy consumed by
each appliance (yt) and the fraction of energy assigned to each
appliance (ŷt). It is defined as,

FTE =
∑

a

min

⎛

⎜
⎝

∑

a
y(a)

t

∑

a,t
y(a)

t

,

∑

a
ŷ(a)

t

∑

a,t
ŷ(a)

t

⎞

⎟
⎠ (4)
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Fig. 8. Optimal schedule for a day in our DRED dataset.

where a ∈ A = {1, . . . , |A|} and |A| is the total number of
appliances. Also t ∈ {1, . . . , T} and T is the total time period
considered.

Fig. 7 show the FTE values for all appliances in DRED
and REDD datasets. It can be seen that, the proposed ModCO
performs significantly better than CO for both the datasets.
Furthermore, it performs better than FHMM in DRED and
has similar performance in REDD. Note that, unlike CO
and FHMM, ModCO does not have any training phase and
has significantly lesser computational complexity. For both
the datasets, ModCO has energy disaggregation accuracy of
over 85%. In general, only a few appliances constitute the
majority of power consumed in a household. Hence, it is
necessary to derive accurate information of these top energy
consuming appliances. When only top-k appliances are con-
sidered for energy disaggregation, the disaggregation accuracy
increases to 92% and 89% for DRED and REDD datasets
respectively.

Demand scheduling: We implemented our algorithm
described in Section IV on a Raspberry Pi to determine day-
ahead appliance schedule. Fig. 8 shows the results from each
step of the scheduler in DRED dataset. From all possible
schedules, Fig. 8(i) shows the filtered representative sched-
ules with schedulable and non-schedulable loads. The grey
color indicates the non-schedulable loads such as refrigerator,
modem, etc., and the red color shows the schedulable loads
washing machine, dishwasher, etc. Fig. 8(ii), (iii) shows the
appliance usage pattern in weekdays and weekends derived
from disaggregated data.

Fig. 8(iv) shows the cost effective schedule obtained based
on the day-ahead pricing using (2). The cost-effective schedule
shows the schedule executed previously by the household. The
scheduler algorithm adapts the cost-effective schedule itera-
tively to further minimize user discomfort based on the energy
usage coefficients proposed. Fig. 8(v) shows the derived
enhanced schedule using flexibility and sensitivity coefficients.

Finally, Fig. 8(vi) shows the enhanced and cost-optimal
schedule along with the day-ahead price. On this particular
day in DRED, around 70% of the schedulable load was shifted
to achieve minimum cost and discomfort. Fig. 6 shows the
comparison of enhanced and cost-optimal schedules for a
household in REDD dataset. On the average monthly elec-
tricity cost reduction of 25% and 30% can be seen in DRED
and REDD households using the proposed scheduler. The
proposed scheduler can be adapted to incorporate renewable
energy sources and battery storage. Furthermore, since all the
data is stored and processed locally the proposed decentralized
demand scheduler is highly scalable. Moreover, the informa-
tion system at each household can negotiate in a distributed
fashion to further minimize the total aggregate load on the
grid.

VI. CONCLUSION

In this paper, we presented a decentralized algorithm to
derive optimal day-ahead schedules using consumer prefer-
ences and appliance usage patterns. The derived day-ahead
schedules minimize the electricity cost and also associated
consumer discomfort at the same time based on day-ahead
hourly electricity price. The proposed algorithm was empir-
ically evaluated across multiple datasets such as DRED and
REDD. Cost savings of up to 25% and 30% can be achieved
in DRED and REDD for monthly electricity consumption.
Indeed this is the first time actual energy consumption datasets
are used to evaluate load shifting at the consumer premises.
Furthermore, we implemented our algorithm on a low-cost
embedded system, i.e., Raspberry Pi at the household. This
approach is highly scalable and avoids sharing of privacy-
sensitive information with the utilities. The proposed algorithm
can also be applied to other variations of electricity pricing
such as real-time pricing, critical-peak pricing and time-of-use
pricing. We can extend this easily to incorporate renewable
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energy sources, such as solar and the wind, balancing the
energy demand, generation and supply.
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