
Proactive-Reactive
Approach for Stable
Rescheduling of the
Train Unit Shunting
Problem
Fabian Stelmach

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Proactive-Reactive
Approach for

Stable
Rescheduling of the
Train Unit Shunting

Problem
by

Fabian Stelmach

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday August 13, 2020 at 14:00 PM.

Student number: 4291557
Project duration: 12 November, 2019 – August 1, 2020
Thesis committee: Dr. Mathijs de Weerdt, TU Delft, supervisor

Prof. Karen Aardal, TU Delft
Dr. Matthijs Spaan, TU Delft
Dr. Laurens Bliek, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis has been written as partial fulfilment of the requirements of the degree of Master of Science
in Computer Science at the Delft University of Technology. It is also the last requirement that I need to
fulfil in order to complete the study of Computer Science at the Delft University of Technology, and as
such, it marks the final stage of my academic career.

The topic of the thesis was chosen due to previous experience and academic curiosity. I have worked
on various different projects regarding the scheduling of maintenance of trains during my academic
career, in both the Bachelor as well as Masters the programme. Furthermore, I was interested in the
efficiency at the dutch railways, as traveling by train in The Netherlands has proven to be a much more
pleasant experience compared to my country of origin.

This thesis is the product of work made between November 2019 and August 2020. The project has
been executed in collaboration with the Nederlandse Spoorwegen, as part of an internship.

I would like to thank my supervisors, Mathijs de Weerdt and Laurens Bliek for their excellent guidance.
During the project, they have provided valuable support, feedback and guidance. I would not have
been able to finish this project without their cooperation.

I also wish to thank Bob Huisman for his guidance as well. His professional insights have been in-
valuable for the understanding and excecution of the project. I also wish to thank Bob Huisman for
making the internship at the Nederlandse Spoorwegen possible. The internship was helpful due to
collaboration with my collageues at the Nederlandse Spoorwegen, and for this, I wish to thank them as
well.

Finally, I would like to thank you, the reader, for spending your time on reading my work. I hope you
enjoy the rest of this thesis.

Fabian Stelmach
Delft, July 2020

iii

Abstract

This research is focused on the proactive-reactive rescheduling process of the Train Unit Shunting
Problem (TUSP) on train maintenance shunting yards. An important difference between a scheduling
process and the rescheduling process is that a reschedule must be both feasible and desirable (similar
to pre-schedule), while a schedule does not require desirability. Firstly, an abstract proactive-reactive
rescheduling framework is proposed. This framework is proposed as a base for the general problem
of proactive-reactive rescheduling. A total of four reactive rescheduling methods for the TUSP are
proposed and implemented as extensions to the Simulated Annealing local search algorithm. The
extensions are created in order to achieve reschedule desirability by either guiding the local search
process during its iterations or influencing its starting point. Using experiments based on realistic data,
it is concluded that the Simulated Annealing can be used to create reschedules that are both feasible
as well as desirable. It is shown that both proposed extensions are required for the best reschedule
quality. Finally, further analysis of the results shows that the schedule resilience to late arrival of trains
can be improved upon by increasing the amount of time between a train arrival and the time at which
its services are scheduled.

v

Contents

Preface iii

Abstract v

1 Introduction 1
1.1 Train Unit Shunting Problem: Context . 1
1.2 Train Unit Shunting Problem: Solution . 3
1.3 Scheduling under Uncertainty . 5
1.4 Research Questions . 8

2 Literature review 9
2.1 Train Unit Shunting Problem . 9
2.2 Robust Scheduling . 9
2.3 Simulated Annealing . 10

3 Proactive-Reactive Scheduling Framework 11
3.1 Proactive-Reactive Rescheduling Process . 11
3.2 Implementation of the Framework . 15

4 Train Unit Shunting Problem Schedule Desirability 19
4.1 Motivation . 19
4.2 Dissimilarity Function. 20
4.3 Implementation . 20

5 Rescheduling Algorithms 27
5.1 Simulated Annealing Local Search Approach. 27
5.2 Simulated Annealing for the TUSP . 28
5.3 Rescheduling Methods . 31

6 Experimental Setup 35
6.1 Problem Instance Model 𝐼 . 35
6.2 Disturbance Model 𝐷 . 36
6.3 Objective Function 𝑔 . 36
6.4 Pre-Schedule Generation Algorithm 𝑓 . 37
6.5 Rescheduling Algorithm 𝑓 . 38

7 Results 39
7.1 Feasibility . 39
7.2 Desirability . 41
7.3 Sum of Task Lateness Performance. 42

8 Conclusion 47
8.1 Research Questions . 47
8.2 Future Work. 48

Bibliography 51

vii

1
Introduction

The train fleet at the The Dutch Railways (Nederlandse Spoorwegen, NS) requires regular mainte-
nance. Such maintenance is performed on a shunting yard. During a 24 hour schedule horizon, dif-
ferent trains in various compositions arrive on the yard. Then, maintenance services are performed on
some of the trains.

The maintenance schedule is usually created ahead of time. Various types of disturbances can occur
during the execution of a maintenance schedule. The effect of a disturbance on the maintenance
schedule varies greatly with the actual properties of the disturbances. In general, small disturbances
can be dealt with by the maintenance staff. Larger disturbances may require significant changes to the
maintenance schedule. Dealing with such disturbances requires a proper strategy. In this paper, such
strategy is proposed.

1.1. Train Unit Shunting Problem: Context
In the Train Unit Shunting problem (TUSP), a train is a collection of at least one train unit in a specific
order. A train unit is an entity with a specified length and type.

The shunting yard consist of multiple tracks and switches. Trains can pass through or park on tracks.
A train can park on a track only if the train is shorter than the track they intend to park on. Passing
through switches is allowed, but parking is not. Trains can only move from one track to another, if there
is a path of connected tracks and switches between the two tracks, and that path is not occupied by
another train.

The shunting yard Kleine Binckhorst is visualized in Figure 1.1. In the figure, track are represented
by solid and dashed black lines. The switch IDs are represented by the red numbers, and the track
IDs are represented by the black text, encapsulated in black capsules. There are multiple resources
for performing the maintenance tasks. Internal cleaning can be performed on tracks 61 and 62, and
technical inspection can be performed on tracks 52 through 59.

The trains arrive on the shunting yard according to an arrival timetable, on tracks designated for arrivals.
The arrival timetable specifies the time the train arrives, as well as the composition of the train, in terms
of its train units.

Some arriving train units also require particular maintenance services, such as cleaning or inspection,
to be performed on the shunting yard before their departure. The services can only be performed on
tracks with a proper resource. For example, the cleaning task must be performed on tracks with a
cleaning station.

1

2 1. Introduction

Figure 1.1: Kleine Binckhorst Shunting Yard. Retrieved from http://www.sporenplan.nl/[1]

The departure of trains is specified in the departure timetable. This timetable specifies the composition
of trains and departure time. A train may depart on tracks designated for departure. Noticeably, there
is not a fixed link between the train units in the arrival timetable and the departure timetable.

The collection of the information about the tracks, switches, the connections between tracks and
switches, the length of the switches and the placement of maintenance resources is referred to as
”location”. The collection of information about the arriving and departing trains, together with their
composition, length and required services is referred to as ”scenario”.

In the following subsections, The problem decomposition and the description of a solution to the prob-
lem are first presented in section 1.2. secondly, the uncertainties on the shunting yard and method for
dealing with uncertainties are presented in section 1.3. Finally, the research questions are described
in section 1.4.

http://www.sporenplan.nl/

1.2. Train Unit Shunting Problem: Solution 3

1.2. Train Unit Shunting Problem: Solution
The solution to the TUSP can be divided into four different sub-problems: matching, task scheduling,
parking and routing. In the following subsections, each of the four sub-problems is explained. A feasible
solution to the TUSP is equivalent to a feasible solution to the four sub-problems. A solver for TUSP
is a function that takes the location and scenario as input and produces a solution, if such a solution
exists. A solution is viable if and only if it the solution of each of the four sub-problems in that solution
is feasible.

1.2.1. Matching
Matching is the sub-problem of connecting the train units from the arrival timetable to the outgoing
trains in the departure timetable. As such, matching can be visualized as a graph with a node for
each incoming and outgoing train unit. For a matching solution to be feasible, every node must have a
degree of 1. Furthermore, each edge connects an incoming train to an outgoing train of the same type.

An examplematching is displayed in Figure 1.2. In this matching, the arriving train units are represented
by blue nodes on the left, and the departing train units are represented by orange nodes on the right.
The matching is feasible, since the degree of each node is 1, and each edge connects an arriving train
and a departing train of the same type.

Arrivals
Departures

VIRM6

SLT6

VIRM6

VIRM6

VIRM6

SLT6

Figure 1.2: Example Matching

1.2.2. Task Scheduling
An arriving train unit might require somemaintenance services (tasks) to be executed before departure.
The list of required tasks for each arriving train is known ahead of time, before the arrival of the train.
For the solution to be feasible, every service must be scheduled exactly once before the departure of
the train. Furthermore, every service needs to be scheduled at a correct location, where the service

4 1. Introduction

can be executed. Tasks can only be executed on tracks with proper resources. A solution to the task
schedule sub-problem can be represented as sequence of tasks executed for each task. The sequence
is ordered by the starting time of the tasks. Each task has a location, a starting time and an ending
time. Only a single task can be executed on a single train unit at the same time. Only a single task can
be executed on a given track at the same time.

An example task schedule is displayed in Figure 1.4. The schedule is feasible, since at no point do
two task get scheduled on the same location, all the tasks are scheduled and no train unit is scheduled
for two tasks at the same time. Note that two tasks of the same type can be scheduled in parallel, but
only if they are executed on different tracks. Finally, there is usually a gap between two consecutive
tasks on a given train unit. This is due to the fact that other actions, such as routing, may need to be
performed in between the two consecutive service tasks.

Train Unit 1 Train Unit 2 Train Unit 3

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

Cleaning:
Track 1

Technical
Inspec-
tion:

Track 5

Cleaning:
Track 2

Technical
Inspec-
tion:

Track 5

Cleaning:
Track 1

Technical
Inspec-
tion:

Track 5

Figure 1.3: Example Routing

1.2.3. Parking
A train that has arrived to the shunting yard but did not depart yet always occupies some tracks at the
shunting yard. This could be problematic, since the train could be occupying a track that is on the route
of another train. The train should thus be parked on a track that, ideally, does not cause an obstruction
to other trains. An additional constraint is enforced here, namely that a train parked on a given track
might not exceed the length of the track.

1.2.4. Routing
After arriving on the shunting yard, a train might need to get transported to a service task, a parking
job or the departure. The route from the location of the train to another location is a list of tracks and
switches that are visited in order.

A feasible route must not be obstructed by other trains. Two different trains may occupy the same track,
if the total length of the trains does not exceed the length of the track, and the trains do not cross each
other. Furthermore, for every pair of tracks or switches (𝑣 , 𝑣) in a given route, if 𝑣 is directly followed
by 𝑣 , then 𝑣 must be connected to 𝑣 . In other words, the train must be able to drive to 𝑣 from 𝑣
without visiting any other tracks or switches in between.

1.3. Scheduling under Uncertainty 5

The routing is also dependant on the solution of the other four sub-problems. If a train has a service
task scheduled at a given time, then that train must be present at the service location at the time when
the task is scheduled. This is also true for train departure and parking.

Train Unit 1 Train Unit 2 Train Unit 3

08:00

08:10

08:20

08:30

08:40

08:50

09:00

Track 62
Switch 972

...
Track 63

Track 63
...

Track 57B

Track 62
...

Track 63

Track 57B
...

Track 60

Track 60
...

Track 54

Figure 1.4: Example Task Schedule

1.3. Scheduling under Uncertainty
In traditional scheduling approaches, it is often the assumption that the plan and the execution of the
plan are deterministic. The assumption is that there is little to no risk of tasks failing or being delayed
when such plan is being executed. In practice, such disturbances do occur and they need to be dealt
with. The uncertainty at the shunting yard is explained in subsection 1.3.1. The problem of dealing with
disturbances is is more formally defined in subsection 1.3.2 The existing approaches for dealing with
disturbances and the classification of such methods are explained in subsection 1.3.3.

1.3.1. Uncertainty at the Shunting Yard
The TUSP can be solved in a deterministic fashion. When such an approach is chosen, the assump-
tion is made that every operation on the shunting yard can be executed at a specific time, within a
predetermined time limit. Examples of such operations are arrivals of trains and execution of service
tasks.

In practice, this is not the case. It is possible that the trains arrive late or in an unexpected composition.
Furthermore, some service tasks may take longer to complete than expected. Figure 1.5 shows the de-
viations in train arrival times. In general, such deviations in time are called disturbances. A disturbance
is a single change in the scenario. Disturbances may not be known at the time of the initial planning
and may emerge during the execution of the schedule.

Figure 1.5 shows that trains do not always arrive at the scheduled times. While most trains arrive within
20 minutes of the scheduled arrival time, there are exceptions. In the figure, it can be seen that delays
of 60 minutes can occur. For the sake of readability, Figure 1.5 only contains the data of trains that are
up to 60 minutes late. The long tail of the curve is presented in Figure 1.6. In this figure, it can be seen
that delays of multiple hours can occur, albeit less frequently.

6 1. Introduction

Figure 1.5: Lateness of Train Arrivals Figure 1.6: Long Tail of the Lateness of Train Arrivals

1.3.2. Rescheduling: Problem Definition
The pre-schedule is a feasible schedule for the initial, undisturbed problem instance. The reschedule,
on the other hand, is a feasible schedule to the disturbed initial problem instance.

Secondly, due to the fact that the disturbances are not known ahead of time, the only parts of the pre-
schedule that may change in the reschedule are those that happen after the presence of the disturbance
is established. In other words, the actions in the past may not be changed. In general, the time at which
the presence of the disturbance is established is called 𝑡 .

Thirdly, the parts of the pre-schedule that happen after 𝑡 may change in the reschedule, but they may
only be rescheduled to a time later than 𝑡 . This is due to the fact that the disturbance is not known
before 𝑡 , and therefore, rescheduling actions to a time before 𝑡 would be equivalent to scheduling
them in the past.

Finally, the reschedule should not deviate significantly from the pre-schedule. This property is generally
referred to as stability. Note that there is not a single concrete definition of schedule stability. Stability
is not necessarily required for the feasibility of the reschedule, but it is necessary for the acceptation of
the reschedule, the desirability. The staff operating at the shunting yard requires the knowledge of the
schedule ahead of time. Changes to the schedule require the staff members to study a new schedule
in possibly short amount of time, and therefore, the number of changes should be minimized, or else
the reschedule may lack desirability.

1.3.3. Scheduling Strategies
Disturbances may render a train schedule infeasible. When a solution is found with the assumption that
the shunting yard is a deterministic system, there is usually no strategy defined for dealing with such
disturbances. In order to deal with disturbances, some changes to the schedule need to be made.

The approaches are commonly evaluated in terms of the following properties: stability, flexibility. A
scheduling approach is stable if the produced reschedule does not significantly change from the pre-
schedule. A scheduling approach is flexible if it can produce a feasible schedule in the presence of
various disturbances.

Scheduling under uncertainty can be approached in many different ways. In most classifications [5, 14]
of the scheduling approaches under uncertainty, the scheduling approaches are characterized by two
main properties: whether a pre-schedule is used and whether the schedule may be changed during its
execution. The pre-schedule is equivalent to the initial schedule that is feasible for the undisturbed sce-
nario. The schedule that is fixed for the disturbed scenario is called the reschedule. The classification
of the most common scheduling strategies is displayed in Table 1.1.

1.3. Scheduling under Uncertainty 7

Table 1.1: Scheduling Strategies

No changes during execution Changes during execution
No pre-schedule Reactive Scheduling

Pre-schedule Deterministic Scheduling Predictive-Reactive Scheduling

Pre-schedule with
Disturbance Anticipation Proactive Scheduling Proactive-Reactive Scheduling

Deterministic Scheduling In deterministic scheduling, the assumption is made that the execution
of the schedule can be fully predicted ahead of time. There is no strategy present for dealing with
disturbances. If a disturbance occurs, then the deterministic scheduling approach offers no solution for
dealing with that disturbance.

Proactive Scheduling In proactive scheduling approach, the pre-schedule is usually generated in
such a way that it can absorb disturbances that occur during the execution of the schedule. The tasks
executed in the schedule are assumed to have stochastic start and finish times and the pre-schedule is
generated such that in the expectation, the schedule can be executed successfully. This strategy does
not allow the pre-schedule to be changed during the execution time. Some disturbances can not be
handled by this scheduling approach, since the scheduling approach is not very flexible. An example
of such disturbance is the addition of a new task to be executed in the schedule. Such disturbance can
not be solved using just proactive scheduling. On the other hand, the proactive scheduling guarantees
stability with respect to the pre-schedule, since changes to the pre-schedule are not permitted.

Reactive Scheduling In reactive scheduling, there is no notion of a pre-schedule. All the decision
are made on-line, based on the state of the shunting yard. Reactive scheduling is more flexible than
proactive scheduling, and so theoretically, more disturbances can be solved using this approach. The
notion of stability does not exist, since there is no pre-schedule.

Predictive-Reactive Scheduling In the predictive-reactive scheduling, a pre-schedule is initially gen-
erated. When a disturbance occurs, the schedule is updated to accommodate for the disturbance. The
reactive rescheduling step of this strategy may change the pre-schedule freely, and therefore, stability
is not guaranteed with this approach.

Proactive-Reactive Scheduling The proactive-reactive scheduling method is an extension of the
predictive-reactive scheduling method. Initially, a deterministic pre-schedule is generated. Then, after
an occurrence of a disturbance, the pre-schedule is changed to accommodate for the disturbance.
The pre-schedule generation differs from the predictive-reactive scheduling method in that the pre-
schedule is made such that the rescheduling process performs better. There is a notion of anticipation
of disturbances within the pre-schedule.

After having defined the various categories of possible reschedulingmethods, it is clear that the proactive-
reactive scheduling method is the most promising one to create stable reschedules. The implementa-
tion of this approach will be further studies in this paper.

8 1. Introduction

1.4. Research Questions
Due to the uncertainty at the shunting yard, a solution for dealing with various disturbances is desirable.
More specifically, trains arriving later than planned can cause a TUSP schedule to become infeasible.
To deal with such disturbances, the proactive-reactive scheduling strategy may be applied. Therefore,
in this paper, the following research question is answered:

Can proactive-reactive rescheduling method be used to deal with disturbed TUSP schedules?

In order to answer the research question, a number of sub-questions is formulated. In order to be
able to apply the proactive-reactive scheduling method on TUSP, it is first necessary to specify what
the components of a proactive-reactive scheduling algorithm are and how they are relevant for the
problem. Therefore, the first proposed sub-question is:

What are the components of a proactive-reactive scheduling algorithm and how are they
relevant for the TUSP?

One of the parts of the proactive-reactive scheduling method is the reactive part. For the reactive part
of the proactive-reactive scheduling method, the simulated annealing local search TUSP solver[15]
will be used. This solver is originally designed to be a scheduling algorithm and not a rescheduling
algorithm. Therefore, an extension will be needed in order to allow the algorithm to solve rescheduling
problems in a stable manner. For this reason, the third proposed sub-question is:

Is simulated annealing local search TUSP solver suitable to to create desirable reschedules?

Finally, the rescheduling performance can additionally be improved by changing the pre-schedule gen-
eration. The proactive pre-schedule generation algorithm should generate pre-schedules such that the
rescheduling performance is increased. Most importantly, the rescheduling performance should be
optimized with respect to schedule stability. Thus, the last proposed sub-question is:

Which property of the TUSP pre-schedules must be improved in order to improve temporal
flexibility?

2
Literature review

The train unit shunting problem is well known in the literature. In order to find out to what extent the
research questions can be answered by existing literature, a literature review is conducted. In this
literature review, relevant papers regarding the proactive-reactive scheduling algorithm and the train
unit shunting problem will be presented.

In section 2.1, the solving techniques for the train unit shunting problem are discussed. In section 2.2,
the general techniques of robust scheduling and the implementations of them on the TUSP are ex-
plained. Finally, in section 2.3, the simulated annealing algorithm is explained.

2.1. Train Unit Shunting Problem
The train unit shunting problem is a well known problem in the literature. Multiple attempts have been
made to create algorithms to solve the TUSP. The TUSP consist of four sub-problems, each of which
is NP-hard [15].

The TUSP solvers can be divided into two main groups. Some solvers attempt to solve the TUSP by
decomposing the problem into multiple sub-problems and then solve those sub-problems sequentially.
Examples of works using this approach include the works by Freling et al.[4]. In this research, the
TUSP is solved using the decomposition technique.

Other solvers take a different approach. A notable example is the HIP solver developed by Van Den
Broek [15]. The approach is integrated, as the TUSP sub-problems are attempted to be solved concur-
rently, all at the same time. This solver is based on the Simulated Annealing local search technique.

2.2. Robust Scheduling
Van den Broek [16] and Kleine [8] have shown that there exist surrogate measures that correlate
strongly with the robustness of the solutions to the TUSP. Both Van den Broek [16] and Kleine [8]
measure robustness of the solutions in terms of the fraction of the schedule delayed and average tar-
diness of a train unit. Kleine [8] additionally used fraction of the tasks delayed and deviation from the
(deterministic) earliest starting time as a robustness measure.

In their analysis, both Van den Broek [16] and Kleine [8] have used proactive-reactive scheduling ap-
proach. In case of deviations in the schedule, the execution of all tasks was delayed appropriately, in
order to preserve the sequence order. This approach is called the right-shift reschedule approach.

Furthermore, Kleine [8] has proposed an adjustment to the integrated local search approach solver by

9

10 2. Literature review

Van den Broek [15] in order to generate robust pre-schedules.

Finally, Bao [2] has proposed a robust scheduling approach based on decision trees. The robustness
in this approach has been calculated by comparing the number of unique solutions generated to a set
of specific, similar problem instances of TUSP. The decision trees based approach has generated the
least unique solutions when compared to other solving techniques, making it the most robust one.

Leon et al. [9] has devised a proactive-reactive scheduling method for the job shop problem under
random machine breakdown. The rescheduling algorithm used is the right-shift reschedule approach.
This approach delays any action in the job shop until the execution can proceed, maintaining the order
of the sequence in which the jobs were planned to be executed.

The use of right-shift reschedule approach causes absolute stability of the schedule when stability is
defined in terms of the sequence of jobs executed. This it not the case when stability is defined in
terms of the job starting times instead of sequence of the jobs. Other reschedule techniques may
cause the realized schedule to differ from the pre-schedule both in terms of job starting times as well
as the sequence of the jobs executed. The single-disruption stability problem with n parallel machines
is strongly NP-hard. [11]

A bi-criterion reschedule algorithm under machine breakage in the context of one machine schedul-
ing has been proposed by Wu et al.[19] The two criteria used are: efficiency and deviation from pre-
schedule. Deviation between schedules is measured as either average absolute start time difference
from the original schedule or the sequence changes from the original schedule or both. The problem
is solved using a genetic algorithm.

2.3. Simulated Annealing
Simulated Annealing is a local search optimization technique. The general Simulated Annealing algo-
rithm works by starting the optimization process with some initial solution and then iteratively improving
the solution by exploiting the local neighborhood of the chosen solution [17].

The Simulated Annealing algorithm explores the solution space by modifying the initial solution min-
imally. The solutions which are easily reachable with a single step from a solution 𝑆 are called the
neighbors of 𝑆 [3]. The neighbors of a solution are explored in order to find the best solution. The algo-
rithm accepts a neighbor to be the new solution if the neighbor is a solution of higher quality than the
current solution. If the neighbor is of lower quality, then it is accepted as a new solution in a stochastic
manner [3]. The probability to accept a worse solution decreases over time.

The Simulated Annealing algorithm is further explained in the context of the TUSP in section 5.2.

3
Proactive-Reactive Scheduling

Framework

The concept of proactive-reactive scheduling is well known in the literature, as previously described
in subsection 1.3.3. In this rescheduling strategy, a pre-schedule is initially made using the proactive
scheduling algorithm. After an occurrence of a disturbance, the pre-schedule is modified such that it
is feasible with respect to the disturbed scenario. The pre-schedule is generated such that the sched-
ule obtained after rescheduling performs better than other pre-schedules would. The performance is
calculated with respect to an objective function.

Both the proactive as well as the reactive part of the rescheduling strategy are dependent on various
factors of a rescheduling problem. An example of such factor is the disturbance model. An implementa-
tion of a proactive-reactive rescheduling strategy depends on the disturbance model that the strategy is
applied on, and may not work with other disturbance models. The proactive-reactive rescheduling strat-
egy depends on more factors than just the disturbance model. Examples of such factors are problem
instance model, the rescheduling objective, the pre-schedule generation algorithm and the reschedul-
ing algorithm. Those factors all influence the rescheduling process. To the best of our knowledge, a
framework describing the factors and their role in the proactive-reactive rescheduling process has not
been proposed yet. This makes it difficult to reason about and compare different proactive-reactive
rescheduling strategy implementations.

In this chapter, an abstract framework describing the proactive-reactive pre-schedule rescheduling
process is described. In section 3.1, the abstract general proactive-reactive rescheduling framework is
proposed. In section 3.2 various implementations of the abstract framework are presented.

3.1. Proactive-Reactive Rescheduling Process
An implementation of a proactive-reactive strategy consists of two algorithms: a proactive schedule
generation algorithm 𝑓 and a reactive schedule repair algorithm 𝑓 . The two algorithms work on a
specific problem domain. The domain dictates the disturbance model 𝐷, the problem instance model 𝐼
and two objective functions: 𝑔 and 𝑔 . The important distinction is that the choice of implementation
of the two algorithms 𝑓 and 𝑓 can be changed freely, while the choice of 𝐷, 𝐼 and 𝑔 is dictated by
the problem domain.

In the event-driven proactive-reactive rescheduling strategy, a rescheduling problem is a problem in
which a pre-schedule 𝑆 for a problem instance 𝑖 ∈ 𝐼 is initially generated using 𝑓 . The pre-
schedule is generated to optimize the function 𝑔 . Then, the problem instance 𝑖 ∈ 𝐼 is disturbed
with a disturbance 𝑑 ∈ 𝐷. The pre-schedule 𝑆 is then modified in order to accommodate for 𝑑. The

11

12 3. Proactive-Reactive Scheduling Framework

solution to the disturbed problem instance 𝑖 is the reschedule 𝑆 . The reschedule is obtained using
rescheduling algorithm 𝑓 . The performance of the rescheduling algorithm is measured using 𝑔 .

The components of the rescheduling process are described in more detail in the following subsections.

3.1.1. Problem Instance Model 𝐼
In general, scheduling problems are problems in which there is a set of jobs to be executed. Those jobs
are mapped to a time slot, and possibly a resource, subject to some optimization. The problem instance
model 𝐼 describes the distribution over the possible problem instances 𝑖 ∈ 𝐼. The problem instance 𝑖 is
a collection of information specific to the scheduling problem. It contains information about what jobs
need to be executed in a feasible schedule and possibly problem specific constraints about those jobs.
Furthermore, the available resources are also specified in the problem instance. Even though a single
problem instance 𝑖 is used in the process, the performance of the rescheduling process is generally
computed with respect to 𝐼.

The problem instance may affect the performance of the rescheduling algorithm 𝑓 with regards to
the objective function 𝑔 . This might not be helpful with regards to choosing the problem instance,
since problem instances are usually given and need to be solved; there might not be any flexibility in
choosing the problem instances. On the other hand, the knowledge that an incoming problem instance
is difficult to reschedule may still be useful.

3.1.2. Disturbance Model 𝐷
The disturbance model 𝐷 is a distribution of all possible disturbances that can occur in a given problem
instance 𝑖. The disturbance 𝑑 ∈ 𝐷 is the description in how the disturbed problem instance 𝐼 differs
from the undisturbed problem instance 𝐼.

There are many possible disturbance models and they may be problem specific. In general, a distur-
bance affects either the jobs to be executed or the available resources. While it is out of the scope of
this thesis to create a comprehensive list of possible disturbance types, a few examples based on the
study of Vieira et al.[18] are presented. Examples of disturbances affecting the jobs are[18]: due date
change, process time change and job cancellation. Examples of jobs affecting the available resources
are[18]: machine failure material arrival delay and shortage of materials.

A disturbance model is not limited to a single instance of the disturbance types described above, it
may consist of a combination of multiple disturbance types. Furthermore, there is a lot of flexibility in
defining the disturbance model.

A pre-schedule generated in a proactive approach performs well with respect to some specific distur-
bance model, and might not perform well with other disturbance models.

3.1.3. Objective Functions 𝑔 and 𝑔
The two objective functions 𝑔 and 𝑔 are used to evaluate the quality of the schedules generated by
𝑓 and 𝑓 respectively. The reschedule 𝑆 is generated such that it optimizes 𝑓 the pre-schedule
𝑆 is generated such that 𝑆 optimizes 𝑓 .

The function 𝑔 is the objective function that the proactive approach attempts to optimize. This ob-
jective function contains information about the performance of the reactive scheduling process. More
specifically, it describes the in which aspect of the scheduling problem, the reactive process will perform
better when a pre-schedule is generated using the proactive process.

The objective function in the proactive approach may be the same as the objective function 𝑔 in the
rescheduling approach, but it is not necessary. The objective function of the proactive approach may,
for example, consist of a single objective, when the objective function of the reactive approach consists
of multiple objectives.

3.1. Proactive-Reactive Rescheduling Process 13

The objective specification for the proactive scheduling process is also common in literature. In their
survey about project scheduling under uncertainty, Herroelen et al. [6] identify three different objectives
which a pre-schedule can be optimized for. In this research, the objectives for the proactive scheduling
process closely follow those specified by Herroelen et al.

The first possible objective is the schedule efficiency. In literature, this is often called quality robust-
ness[6, 8, 16]. A pre-schedule that is made specifically for maintaining schedule efficiency, will result,
after rescheduling, in a reschedule that is similar to the pre-schedule in terms of the objective value of
the scheduling problem.

The second possible objective is the schedule similarity. In literature, this is often called solution ro-
bustness [8, 16] or stability [6]. A pre-schedule that is made for maintaining schedule similarity, will be
rescheduled into a reschedule that is similar to the pre-schedule in the solution space.

The third objective is the schedule flexibility. A pre-schedule is flexible, if a feasible reschedule can be
calculated for a large range of possible disturbances. Notice the dependency on the disturbance model
used. A pre-schedule can only be flexible with regards to some specific disturbance model.

Even though only three possible objectives are specified, there is a lot of flexibility within the choice
of the objective. Firstly, a pre-schedule can be optimized for a combination of multiple objectives.
Furthermore, each of the objectives can be defined in various ways. The schedule efficiency is often
defined in terms of the schedule makespan, but it can also be defined in other terms, such as required
resources. In general, schedule efficiency, schedule similarity and flexibility are terms which require
more specific definitions that often depend on the scheduling problem.

The second objective function 𝑔 can be defined in the same terms as 𝑔 . It is often the case that
𝑔 is equal to 𝑔 , but this is not required. It is possible, for example, for 𝑔 to include less measures
than 𝑔 . In such cases, the rescheduling algorithm 𝑓 optimizes 𝑆 for multiple objectives, and the
choice in 𝑆 increases performance for a subset of those objectives.

3.1.4. Pre-schedule Generation Algorithm 𝑓
The pre-schedule generation algorithm 𝑓 is used to generate pre-schedules for problem instances 𝑖 ∈
𝐼. The pre-schedule 𝑆 is a feasible solution to the undisturbed problem instance 𝑖. The pre-schedule
contains the mapping from jobs of the problem instance to time slots and (possibly) resources. The
choice of pre-schedule generation algorithm can affect the performance of the rescheduling algorithm.

The proactive pre-schedule generation algorithm is not limited to a single solution method, but the most
prevalent one is the use of surrogate measures[8, 10, 16] that correlate to the objective function 𝑔 . A
commonly used technique to increase the rescheduling performance is to increase the amount of slack
in the generated pre-schedules. Schedules with more slack have been proven to be more resistant to
temporal disturbances than schedules with less slack.

3.1.5. Rescheduling Algorithm 𝑓
The rescheduling algorithm modifies the pre-schedule in order to accommodate for some disturbance
𝑑 ∈ 𝐷. Two important characteristic factors of a given rescheduling algorithm are: the repair method
used and the rescheduling point. Differentiation between rescheduling algorithm based on their repair
method or the rescheduling is common in literature, and therefore, the both the factors is discussed
here.

The repair method is the allowed set of rules that may be applied on 𝑆 in order to create 𝑆 that is
feasible with respect to 𝑖 .

The repair method is used in the reactive step to repair the pre-schedule after a disturbance has oc-
curred. While the repair method is used only in the reactive step, the choice of the repair method is
significant for the pre-schedule generation. A pre-schedule created in a proactive approach is targeted

14 3. Proactive-Reactive Scheduling Framework

to a specific repair method and may not necessarily work with other repair methods. A pre-schedule
generated for the right shift rescheduling method might not perform well when used with full reschedul-
ing method.

Commonly occurring examples of repair methods are: right shift rescheduling, partial rescheduling, full
rescheduling and rescheduling with instance relaxation.

• Right shift reschedule: only allowing the jobs to be delayed, but disallowing the change in the
relative order of execution of the jobs.

• Full rescheduling: allowing changes in both the time slots of the jobs as well as the relative
execution order and the mapping to the resources.

• Partial rescheduling: allowing changes similar to those of full rescheduling, but the rescheduling
point is set to after the occurrence of a disturbance. Any actions before the rescheduling point
may not change.

• Rescheduling with instance relaxation: in thismethod, the problem instance itself may be changed
(relaxed) to make the rescheduling process easier. Such changes include: increasing the re-
source capacity or dropping jobs partially or fully.

The distinction for proactive schedule generation depending on the repair method is common in reschedul-
ing literature. An example of this is the distinction between robust and flexible pre-schedules.

On one hand, a robust pre-schedule is a schedule, that after an occurrence of a disturbance, per-
forms better than ordinary schedules when rescheduled using the right shift reschedule repair method
[7, 8, 16, 18]. On the other hand, a flexible pre-schedule performs better than ordinary schedules when
rescheduled using a repair method other than simple rescheduling methods such as right shift resched-
ule [18]. The difference between a robust pre-schedule and a flexible pre-schedule is the repair method
for which the pre-schedule is designed for. This is an example of the generalization that the proactive
pre-schedule generation process is dependant on the repair method of the rescheduling algorithm.

The choice of the repair method is linked to the disturbance model 𝐷. Not all disturbance types can be
solved using every repair method. As an example: the right shift reschedule can not be used to solve
trains arriving in unexpected order. This disturbance model causes changes to the shunting yard state
that require schedule changes that the right shift reschedule is not able to provide.

While the choice of the rescheduling point is less commonly discussed in literature, it is an important
characteristic of the rescheduling algorithm. The rescheduling point is the point in time at which the
rescheduling takes place. No actions can be changed before the rescheduling point. Commonly used
values for the rescheduling point are: time of the occurrence of the disturbance and rescheduling point
ahead of time.

In the case where the rescheduling point is at the time of the occurrence of the disturbance, it is often
the assumption that the disturbance was not known until it has occurred. Some disturbances are known
ahead of time, but after the creation of a pre-schedule. In such cases, the rescheduling point may also
be before the execution of the pre-schedule.

3.2. Implementation of the Framework 15

3.2. Implementation of the Framework
The framework provides an abstract way of representing proactive-reactive rescheduling process. In
this chapter, the existing work regarding the proactive-reactive rescheduling of the TUSP explained
using the framework. To the best of our knowledge, a total of three rescheduling techniques have been
created for the TUSP. The surrogate based rescheduling methods are presented in subsection 3.2.1
and the decision based method is explained in subsection 3.2.2. Finally, in the following chapters of
this paper, an implementation of the proactive-reactive process is described. In subsection 3.2.3, this
implementation is explained in terms of the framework. This section is also summarized in Table 3.1.

3.2.1. Surrogate Measure Based Methods
In their work, Van Den Broek [16] and Kleine [8] have proposed similar, surrogate measure based
methods for dealing with disturbances.

In their work, both Van Den Broek as well as Kleine propose a method for dealing with temporal dis-
turbances of both train arrivals as well as task durations. Noticeably, both of the proposed methods
only deal with relatively small temporal disturbances. The disturbances are small in the sense that the
relative order of tasks and arrivals occurring is preserved despite the disturbances occurring. Both of
the works are focused on realistic TUSP instances on the Kleine Binckhorst shunting yard, and the
method by Van Den Broek is also applied on the Utrecht shunting yard.

Both the proposed methods focus on the efficiency of the schedule and temporal similarity in both the
proactive as well as the reactive scheduling parts.

Both Van Den Broek and Kleine have proposed to guide the pre-schedule generation using surrogate
measures. The surrogate measures correlate with the reschedule efficiency and temporal similarity.
While Kleine has extended the work of Van Den Broek by including more possible surrogate measures,
their approach to pre-schedule generation was fundamentally similar.

Finally, both the authors have worked with the right shift rescheduling algorithm. This is possibly the
primary reason why only small temporal disturbances were considered, as right shift reschedule does
not offer enough flexibility for the handling of large temporal disturbances. If, for example, a train is
so late that the relative arrival order of the trains change, then right shift rescheduling will be unable
to provide a solution for such scenario. The rescheduling point of both the approaches is equal to the
time of the occurrence of the disturbance.

3.2.2. Decision Trees Based Method
Bao [2] has devised a method for rescheduling the TUSP using decision trees. In their approach, Bao
uses small temporal differences in the train arrival times. Similarly to the surrogate measure based
methods described above, the temporal differences are small enough not to disturb the relative order
of the train arrivals. The disturbances are applied on artificial TUSP instances on an artificial shunting
yard.

The objective for both the proactive as well as the reactive part is the similarity measure. Moreover,
similarity described in the works of Bao relates only to the routing of the trains at the yard.

Both the pre-scheduling algorithm as well as the rescheduling algorithm is based on decision trees.
The decision trees classifier is used to create schedules and repair them. The classifier takes similar
decisions when creating the pre-schedule as well as when rescheduling. This results in schedule
stability.

3.2.3. Local Search Based Method
In this paper, the main focus with regards to the disturbance model is on the variability of time arrivals.
Contrary to the rest of the approaches described above, the focus is on large disturbances. The dis-
turbances are large in the sense that after an occurrence of a disturbance, the relative arrival order of

16 3. Proactive-Reactive Scheduling Framework

trains is disrupted. The method is devised to work on realistic TUSP instances on the Kleine Binckhorst
shunting yard.

On one hand, the objective function for the reactive part is defined in terms of efficiency as well as
routing, temporal and spatial similarity. On the other hand, in the proactive scheduling part, the objective
is to increase the rescheduling performance with regards to just the temporal similarity.

The proposed rescheduling algorithm is based on local search algorithm. This approach is flexible
enough to allow for rescheduling of large disturbances. No concrete implementation of pre-schedule
generation is proposed. Instead, pre-schedule characteristics that cause the lack of temporal flexibility
are described.

In this chapter, an abstract framework for the proactive-reactive rescheduling strategy has been pro-
posed. This framework describes the elements necessary to form a proper proactive-reactive reschedul-
ing strategy. This framework will be used throughout the paper to describe the elements of the reschedul-
ing strategy that will be proposed in the following chapters.

3.2. Implementation of the Framework 17

Ta
bl
e
3.
1:

Pr
oa
ct
iv
e-
re
ac
tiv
e
Sc
he
du
lin
g
M
et
ho
ds

fo
rt
he

TU
SP

A
ut
ho

r
Pr
ob

le
m

In
st
an
ce

M
od

el

D
is
tu
rb
an
ce

M
od

el

Pr
oa
ct
iv
e

Pa
rt

O
bj
ec
tiv
e

Fu
nc
tio

n

R
ea
ct
iv
e

Pa
rt

O
bj
ec
tiv
e

Fu
nc
tio

n

Pr
e-
Sc

he
du

le
G
en
er
at
io
n

A
lg
or
ith

m

R
es
ch
ed
ul
in
g

A
lg
or
ith

m

Va
n
D
en

Br
oe
k

R
ea
lis
tic

TU
SP

in
st
an
ce
s

on
Kl
ei
ne

Bi
nc
kh
or
st

an
d
U
tre
ch
t

sh
un
tin
g
ya
rd
s

Sm
al
lT
im
e
Va
ria
bi
lit
y
of

Ar
riv
al
s
an
d
Ta
sk
s

Ef
fic
ie
nc
y

Te
m
po
ra
lS
im
ila
rit
y

Ef
fic
ie
nc
y

Te
m
po
ra
l

Si
m
ila
rit
y

Lo
ca
lS
ea
rc
h
us
in
g

Su
rro

ga
te
M
ea
su
re
s

R
ig
ht
Sh

ift
R
es
ch
ed
ul
in
g

Kl
ei
ne

R
ea
lis
tic

TU
SP

in
st
an
ce
s

on
Kl
ei
ne

Bi
nc
kh
or
st

sh
un
tin
g
ya
rd

Sm
al
lT
im
e
Va
ria
bi
lit
y
of

Ar
riv
al
s
an
d
Ta
sk
s

Ef
fic
ie
nc
y

Te
m
po
ra
lS
im
ila
rit
y

Ef
fic
ie
nc
y

Te
m
po
ra
l

Si
m
ila
rit
y

Lo
ca
lS
ea
rc
h
us
in
g

Su
rro

ga
te
M
ea
su
re
s

R
ig
ht
Sh

ift
R
es
ch
ed
ul
in
g

Ba
o

Sm
al
lT
U
SP

in
st
an
ce
s

on
ar
tif
ic
ia
l

sh
un
tin
g
ya
rd

Sm
al
lT
im
e
Va
ria
bi
lit
y

of
Ar
riv
al
s

R
ou
tin
g
Si
m
ila
rit
y

R
ou
tin
g

Si
m
ila
rit
y

D
ec
is
io
n
Tr
ee
s

Pa
rti
al
R
es
ch
ed
ul
e

w
ith

D
ec
is
io
n
Tr
ee
s

St
el
m
ac
h

R
ea
lis
tic

TU
SP

in
st
an
ce
s

on
Kl
ei
ne

Bi
nc
kh
or
st

sh
un
tin
g
ya
rd

La
rg
e
Ti
m
e
Va
ria
bi
lit
y

of
Ar
riv
al
s

Te
m
po
ra
lS
im
ila
rit
y

R
ou
tin
g,
Te
m
po
ra
l

an
d
Sp

at
ia
lS
im
ila
rit
y

Ef
fic
ie
nc
y

Pa
rti
al
R
es
ch
ed
ul
in
g

w
ith

Lo
ca
lS
ea
rc
h

4
Train Unit Shunting Problem Schedule

Desirability

A suitable reschedule to the train unit shunting problem is characterized not only by its feasibility with
respect to the disturbed problem instance, but also its similarity to the pre-schedule. In this chapter,
the notion of schedule desirability will be expanded. The goal is to define a function which can be used
to determine how desirable a reschedule is, given some pre-schedule. More formally, the goal is to
define the objective function 𝑔 , as defined in subsection 3.1.3. The function 𝑔 is used to evaluate
the quality of schedules generated by the rescheduling algorithm 𝑓 . The quality is mostly optimized
for schedule desirability.

In order to define the criteria of a desirable reschedule, the effects of a rescheduling must first be
discussed. Many people with various professions are involved in the execution of the maintenance
tasks on the shunting yard. The changes in the execution of the schedule may disrupt the workflow
of the crew or incur other costs. For this reason, changes to the maintenance schedule are generally
unwanted. In this chapter, a method to calculate the desirability of a TUSP reschedule is devised. In
section 4.1, the effects of the reschedule and the criteria for schedule similarity are explained. Then,
in section 4.2, the method for calculating TUSP reschedule desirability is proposed.

4.1. Motivation
One of the important actors involved in the maintenance schedule execution is the human planner.
Human planners are involved with both the scheduling as well as the rescheduling process, even if both
of the processes are partially automated using rescheduling algorithms. The planners create solutions
to the rescheduling problems, either with their own knowledge or by using rescheduling algorithms. In
certain situations, the planners are required to make quick decisions when there is no time to consult the
algorithm. If the schedule is minimally changed by the rescheduling algorithm throughout the execution
of the schedule, then the manual rescheduling process is made easier, as the human planners might
not able to study a reschedule that significantly deviates from the pre-schedule quickly enough. The
planners thus prefer the schedule to change as little as possible.

The second party involved with the execution of the maintenance schedule is the maintenance crew.
The maintenance crew is responsible for executing the maintenance task such as cleaning and repair
of trains on the shunting yard. In order to fulfill their task, the maintenance crew need to be at a
certain service station at a given time. On most shunting yards, a single type of maintenance tasks can
be executed on multiple servicing stations. The maintenance crew members must travel to different
service stations, where the trains are scheduled for maintenance. The maintenance crew gets to know
their schedule several hours in advance. A schedule of a single maintenance crew member contains

19

20 4. Train Unit Shunting Problem Schedule Desirability

information about the scheduled location and starting time of each service task to be executed by that
crew member. Changes to the location or starting time of service tasks disturb this schedule and thus,
they should be avoided.

Finally, on some shunting yards, the route of serviced train units must be programmed before the
execution of the maintenance schedule. The route of a train unit is an ordered sequence of train tracks
and switches that the train unit passes through, starting at the arrival at the shunting yard and ending
on the departure. The route is programmed beforehand in order to automate the operation of switches
and to ensure safety. Changes to train unit routes are costly, since the changes need to be propagated
to the controller systems at the shunting yard. Noticeably, the changes to the route of a single train
unit are very costly and should be avoided, but changes to the execution order of movements of two
different train units are not costly, since they can be programmed easily.

4.2. Dissimilarity Function
A reschedule should be not only be feasible, but also desirable. For a reschedule to be desirable,
it must be similar to the pre-schedule. Large changes to the schedule due to disruptions should be
avoided, since they disrupt the workflow of the maintenance crew and the human planners. Further-
more, changes in schedule can be costly to implement during the execution of the maintenance sched-
ule.

In order to create similar schedules, the notion of similarity will first be defined. For calculating the
similarity between two TUSP schedules, a dissimilarity function is used. The dissimilarity function is a
function that takes as input two TUSP schedules (domain 𝑆) and outputs a non-negative, real number:

𝑑 ∶ (𝑆, 𝑆) → ℝ (4.1)

The dissimilarity function is a measure of relative difference between two TUSP schedules. The dis-
similarity function evaluates to 0 if for two schedules 𝑆 and 𝑆 , the two schedules 𝑆 and 𝑆 are similar.

𝑑(𝑆 , 𝑆) = 0 if 𝑆 and 𝑆 are similar (4.2)

The function evaluates to a a nonzero value when two dissimilar schedules 𝑆 and 𝑆 are used as input:

𝑑(𝑆 , 𝑆) > 0 if 𝑆 and 𝑆 are dissimilar (4.3)

Finally, the function can be used to compare the dissimilarity between two pairs of TUSP schedules.

𝑑(𝑆 , 𝑆) > 𝑑(𝑆 , 𝑆) if 𝑆 is more dissimilar to 𝑆 than it is to 𝑆 (4.4)

The dissimilarity function should reflect the perceived similarity of two schedules. If two schedules 𝑆
and 𝑆 are similar to each other, then the cost to execute 𝑆 when 𝑆 was originally planned should
be minimal. The schedule dissimilarity function can be used to ensure desirability of reschedules. A
desirable reschedule minimizes the schedule dissimilarity function 𝑑.

Such a function is not straight forward to implement, since the exact requirements with regards to
the reschedule changes are not known. Furthermore, the measure of dissimilarity is inherently multi-
objective, as the various actors affected by the rescheduling have varying measures for the similarity
of the reschedule. An implementation of the dissimilarity function is presented in section 4.3.

4.3. Implementation
In order to reflect the perception of schedule dissimilarity in the schedule dissimilarity function, a com-
pound dissimilarity function is proposed. The proposed function 𝑑 consists of four sub-components,
reflecting the similarity criteria described in section 4.1. The four sub-components are: task starting
time dissimilarity 𝑑 , task location dissimilarity 𝑑 , task routing dissimilarity 𝑑 and task matching dis-
similarity 𝑑 . The dissimilarity function 𝑑 is the weighted sum of the four sub-components: 𝑑 , 𝑑 , 𝑑
and 𝑑 . The four sub-components are weighted by their respective weights: 𝑤 ,𝑤 ,𝑤 ,𝑤 .

4.3. Implementation 21

𝑑 = 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑

(4.5)

The four sub-components are explained in detail in the following subsections.

4.3.1. Task Starting Time Dissimilarity 𝑑
The first sub-component of the dissimilarity function is the task starting time dissimilarity. Each mainte-
nance task on the shunting yard is performed on a given service location during some scheduled time.
The maintenance crew members prefer not to have their schedules changed, and as such, the time at
which the tasks of the crew are executed should not change. Assuming the disturbance model based
on late arrival of trains on the shunting yard, variability of the starting time of service tasks is expected
and should be minimized.

For a task 𝑡 and two schedules 𝑆 and 𝑆 , the starting time of 𝑡 in 𝑆 should be equal to the starting time
of 𝑡 in 𝑆 . Notice that the task 𝑡 can have different starting time or service location between 𝑆 and 𝑆 ,
but it is assumed that the service type and duration do not change. Furthermore, in the chosen distur-
bance model, it is assumed that no tasks are removed nor added between the pre-schedule and the
reschedule. Therefore, the two schedules contain the same tasks, with possibly changed location and
starting time. For these reasons, the dissimilarity function is defined as the sum of absolute lateness
of tasks in the two schedules. Notice that due to the fact that the absolute value of the lateness is cal-
culated, a schedule becomes more dissimilar with respect to the starting time when in the reschedule,
the task is scheduled earlier or later than in the pre-schedule. The full equation is presented below.

𝑑 (𝑆 , 𝑆) = 1
𝐸 ∑

∈
|𝑆𝑇 (𝑡) − 𝑆𝑇 (𝑡)| (4.6)

The sum of absolute task latenesses is normalized with respect to the normalization constant 𝐸, in
order to make the metric comparable over various problem instances. The normalization constant in
the case of a single late train is defined as the train delay multiplied by the number of tasks that of the
delayed train. Note that this does not include the arrival delay. With this normalization, the value of
𝑑 for a reasonable reschedule is expected to be between 0 and 1. The reason for this is that for a
schedule with single train unit with consecutive tasks without any time between them, the worst case
rescheduling performance is exactly E. This is visualized in Figure 4.1.

In this example, we see that the single train is delayed by two hours. There are no other trains on the
shunting yard. In both of the schedules, there is a single inspection task that has to be executed during
the maintenance period. In the reschedule, the inspection task is executed 2 hour later than in the pre-
schedule. Notice that the inspection task can not be delayed any less, since it can not occur before the
arrival of the train. Since there is just a single task for the delayed train and the train is delayed by two
hours, 𝐸 = 2∗1 = 2. The inspection task is also delayed by two hours, so ∑ ∈ |𝑆𝑇 (𝑡)−𝑆𝑇 (𝑡)| = 2.
Thus, 𝑑 (𝑆 , 𝑆) = 1.

Notice that the delay of the service task is not always equal to the train delay. To demonstrate this,
in Figure 4.2 an example rescheduling scenario is presented. In this scenario, there is a total of two
service tasks for the single delayed train.

In this example, there is again just a single train on the shunting yard. The train has two tasks that
need to be executed: an inspection task and a cleaning task. The train arrival is delayed by two hours,
and there are two tasks to be executed, so 𝐸 = 2 ∗ 2 = 4.

22 4. Train Unit Shunting Problem Schedule Desirability

Preschedule Reschedule

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

Arrival

Inspection

Arrival

Inspection

Figure 4.1: Worst Case Rescheduling Performance

Whereas the inspection task is delayed by two hours, the cleaning task is not delayed at all. The
cleaning task occurs at the same time in both the pre-schedule as well as in the reschedule. Therefore,
the sum of total latenesses in this situation is 2. Therefore, 𝑑 (𝑆 , 𝑆) = = . Intuitively, the
rescheduling is more successful in this example than it was in the example in Figure 4.1, since only
half of the tasks have been delayed in this example, as opposed to all the tasks in the example in
Figure 4.1.

In both the presented examples, the schedule of just a single train unit is displayed. If more train units
are present, then this calculation is applied to all the service tasks of those train units.

Notice that 𝑑 is a proper dissimilarity function. For two schedules 𝑆 , 𝑆 , 𝑑 (𝑆 , 𝑆) ≥ 0, since 𝑑 is a
sum over latenesses. Furthermore, 𝑑 (𝑆 , 𝑆) = 0 only if the service tasks are scheduled at the same
times in both 𝑆 and 𝑆 . If the service tasks are not scheduled at the same time in 𝑆 and 𝑆 , then
𝑑 (𝑆 , 𝑆) > 0. Finally, 𝑑 (𝑆 , 𝑆) becomes larger if the sum of latenesses becomes larger, so that a
larger 𝑑 is equivalent to a larger dissimilarity between the two schedules.

4.3.2. Task Location Dissimilarity
Similarly to the task starting time dissimilarity, the location of the service tasks is important for the main-
tenance crew members, since deviations in the service location can disrupt their personal schedules.
The task location may vary between the pre-schedule and the reschedule. The location of a service
task may be changed in order to repair the schedule after an occurrence of a disturbance.

For a task 𝑡 and two schedules 𝑆 and 𝑆 , there exists a difference in task location if 𝑡 is executed on
a different location in 𝑆 than it is in 𝑆 . The task location dissimilarity is defined as the normalized
count of tasks that have a different location between the schedules 𝑆 and 𝑆 . The task location dis-
similarity is normalized with respect to the number of tasks present in the schedules. The measure of
location difference for a single task is binary, either the location between two schedules changes in 𝑆
as compared to 𝑆 , or it does not. The assumption is that each task location change has the same cost
assigned to it.

Let 𝑙𝑜𝑐 (𝑡) denote the location of task 𝑡 in schedule 𝑆 , then the task location dissimilarity function is

4.3. Implementation 23

Preschedule Reschedule

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

Arrival

Inspection

Cleaning

Arrival

Inspection

Cleaning

Figure 4.2: Example Maintenance Task Reschedule

defined as follows.

𝑑 (𝑆 , 𝑆) = 1
|𝑡𝑎𝑠𝑘𝑠| |{𝑡 ∈ 𝑡𝑎𝑠𝑘𝑠|𝑙𝑜𝑐 (𝑡) ≠ 𝑙𝑜𝑐 (𝑡)}| (4.7)

The location dissimilarity function is a function 𝑑 ∶ (𝑆, 𝑆) → [0, 1], where values close to 1 represent high
dissimilarity and values close to 0 represent high similarity between the two schedules. The function is
undefined when there are no tasks to be executed, so the assumption is that |𝑡𝑎𝑠𝑘𝑠| > 0.

The dissimilarity function will be illustrated using an example in Table 4.1.

Table 4.1: Example task location dissimilarity

Cleaning 1 Cleaning 2 Cleaning 3 Inspection 1 Inspection 2
Si Track 1 Track 2 Track 2 Track 2 Track 1

Sj Track 1 Track 2 Track 1 Track 2 Track 2

In this example, a total of 5 service tasks are presented. Out of the 5 tasks, only the tasks Cleaning 3
and Inspection 2 differ in the task service location between 𝑆 and 𝑆 . There is a total of 5 tasks and 2
tasks have their location changed, and thus, 𝑑 (𝑆 , 𝑆) = .

The dissimilarity function 𝑑 is a proper dissimilarity function. As mentioned before, the function has
range of [0, 1]. The function 𝑑 evaluates to 0 if and only if the location of the service task is unchanged
between the two schedules. If any of the location is changed, then 𝑑 > 0. The value of 𝑑 is larger
when there are more task location mismatches, so 𝑑 is a measure of dissimilarity.

4.3.3. Routing Similarity
The reprogramming of a train unit route due to rescheduling can be expensive on some shunting yards.
The route of each train unit should be changed as little as possible, in order to keep the reprogramming
costs low. The reprogramming costs are incurred when a route of a train unit changes. The costs are

24 4. Train Unit Shunting Problem Schedule Desirability

dominated by the changes of routes of trains, not the total ordering of movements made by different
train units.

A route of a train unit is a a list of tracks and switches that are visited by a given train unit, ordered
according to the visit order. The route of a train unit can be changed in three distinct ways: a node
in the route can be added, removed or replaced by another node. It is assumed that a route in the
reschedule is obtained by the route of the same train in the pre-schedule by applying the three route
operations consecutively. The edit distance of the route is then the least number of operations required
to transform the route from the pre-schedule to the route from the reschedule. This edit distance is
generally known as the Levenshtein Distance[12]. The Levenshtein Distance can be calculated in
𝑂(|𝑟𝑜𝑢𝑡𝑒 | ∗ |𝑟𝑜𝑢𝑡𝑒 |) using dynamic programming algorithms[13].

Let 𝑙𝑒𝑣(𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈), 𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈)) denote the Levenshtein Distance between the route of train unit
𝑇𝑈 in schedules 𝑆 and 𝑆 . To reflect the properties of the incurred costs due to reprogramming, the
following routing dissimilarity function is proposed.

𝑑 (𝑆 , 𝑆) = 1
|𝑇𝑈| ∑

∈

𝑙𝑒𝑣(𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈), 𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈))
𝑚𝑎𝑥(|𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈)|, |𝑟𝑜𝑢𝑡𝑒 (𝑇𝑈)|) (4.8)

The routing dissimilarity measure is normalized with respect to the number of train units as well as
the train route length. In the latter normalization, the useful fact about Levenshtein Distance is used,
namely that the upper bound of the Levenshtein Distance is the length of the longest input sequence.

To illustrate this dissimilarity function, the example in Table 4.2 is used. In this example, the original
route of a single train unit is transformed into the destination route in 3 steps. The original and the
destination routes are in the first, respectively last rows of the table. The route starts at the track on
the leftmost column and ends on the track on the rightmost column. The intermediate routes used for
calculation of the edit distance are present in rows 2, 3 and 4. For the intermediate routes, the change
from the previous route is marked blue and denoted in the leftmost column. Note that the empty table
cells are used for alignment of the presented routes and should simply be ignored when reading the
route.

Table 4.2: Example Routing Dissimilarity

Source Route Track 1 Track 2 Track 3 Track 5 Track 6 Track 7
Add track 8 Track 1 Track 2 Track 3 Track 8 Track 5 Track 6 Track 7

Remove track 2 Track 1 Track 3 Track 8 Track 5 Track 6 Track 7

Replace track 5
with track 9

Track 1 Track 3 Track 8 Track 9 Track 6 Track 7

Destination Route Track 1 Track 3 Track 8 Track 9 Track 6 Track 7

The Levenshtein Distance between the source and destination routes is 3. Both the source and desti-
nation routes have length of 6. The dissimilarity function is calculated for a single train unit. Therefore,
the following holds: 𝑑 (𝑆 , 𝑆) = = .

The routing dissimilarity function is a proper dissimilarity function. Due to normalization, the range of
the function is (0, 1). The function is 0 only if all the train unit routes are the same in the two compared
schedules. The function evaluates to a value larger than 0 if there is at least one difference in the
routing of the train units. Finally, more changes in the routing lead to a larger values of 𝑑 .

4.3.4. Matching Similarity
The final dissimilarity metric is the matching dissimilarity metric. The matching changes should be
minimized in order to reduce the perceived rescheduling dissimilarity, as changes in matching result in

4.3. Implementation 25

a different train unit departure time.

The matching of a schedule is a mapping from the incoming train units to the departing train units. In
order to compare the matching changes, the changes in the mapping are calculated. Let 𝑒 denote an
edge between arriving train unit to a departing train unit in the matching graph, and 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 denote
the edges of the matching graph of schedule 𝑆 . Then, 𝑑 can be expressed as follows.

𝑑 (𝑆 , 𝑆) = 1
|𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 | |{𝑒 ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 |𝑒 ∉ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 }| (4.9)

The matching dissimilarity metric is normalized with respect to the size of the set of the matching graph
edges. This size is equal to the number of unique train units present at the shunting yard during the
maintenance period.

The matching dissimilarity is a proper dissimilarity function. Due to the normalization, the range of the
function is (0, 1). The function evaluates to 0 only if the matching is the same in the two input schedules.
More deviations in the matching lead to a larger value of the dissimilarity metric.

5
Rescheduling Algorithms

After having defined the schedule dissimilarity metrics, the focus will now be shifted to constructing
reactive rescheduling policy based on those dissimilarity metrics. Using the knowledge of what makes
a reschedule desirable, the goal is to create rescheduling algorithms which produce a feasible and
desirable solution to the rescheduling problem. The dissimilarity function defined in chapter 4 can
be used as a measure for the reschedule desirability, but an approach for creating reschedules that
optimize for desirability still needs to be devised.

More formally, the main goal in this chapter is to devise a rescheduling algorithm 𝑓 , as described
in subsection 3.1.5. The rescheduling algorithm produces the reschedule 𝑆 , which is feasible to
the disturbed problem instance 𝑖 . The disturbance model which is addressed by the rescheduling
approaches in this chapter is the disturbance model in which a single train is delayed sufficiently long
that the arrival order of the trains changes. This disturbance model is complex enough to force the use
of repair methods different than right shift reschedule, as right shift reschedule is not flexible enough to
deal with the described disturbance model. The choice of repair method is partial rescheduling. This
method is flexible enough to deal with the described disturbance model. Furthermore, in contrast to
methods such as full rescheduling, it also allows for dealing with disturbances occurring during the
execution of the schedule. Finally, instance relaxation is disallowed in order to preserve schedule
quality.

In this chapter, a total of four different approaches for finding feasible and desirable reschedules will be
presented. The rescheduling policies will be based on the Local Search Simulated Annealing algorithm.
The general Simulated Annealing algorithm will first be introduced in section 5.1. Then, the specific
implementation of the Simulated Annealing scheduling approach for the TUSP, originally proposed by
Van Den Broek[15], will be explained in section 5.2. Finally, the extensions to the Simulated Annealing
approach for rescheduling purposes are proposed in section 5.3.

5.1. Simulated Annealing Local Search Approach
The reactive rescheduling strategy implemented in this paper is based on Local Search Simulated
Annealing technique. This general local search meta-heuristic optimization technique is well suited for
the rescheduling process, as local search techniques excel at exploiting the neighborhood space of
solutions to the problems that they optimize. If a solution to the rescheduling problem can be found
in close neighborhood of the pre-schedule, then the reschedule may display similarities with the pre-
schedule.

Similarly to many other local search techniques, the general Simulated Annealing [17] algorithm works
by improving upon some initial solution iteratively, in order to find a local optimum. The algorithm is

27

28 5. Rescheduling Algorithms

presented in Algorithm 1.

Algorithm 1 Simulated Annealing
1: procedure SimulatedAnnealing(𝑔 ∶ Objective function to minimize, 𝑇: Initial temperature)
2: 𝑠←𝑠 ▷ Current solution
3: for all 𝑖 ∈ {1..𝑘} do
4: 𝑠 ←neighbor(𝑠) ▷ Random neighbor
5: if 𝑔(𝑠) < 𝑓(𝑠) then ▷ Immediately accept better solution
6: 𝑠←𝑠
7: else if 𝑒𝑥𝑝(() ()) > 𝑟𝑎𝑛𝑑(0, 1) then ▷ Stochastically accept worse solution
8: 𝑠←𝑠
9: end if
10: 𝑇 ←𝑇 ⋅ 𝛼 ▷ Decrease temperature
11: end for
12: return 𝑠
13: end procedure

The algorithm is initiated by computing an initial solution for the objective function 𝑔 in line 2 of Algo-
rithm 1. Then, a total of 𝑘 iterations are performed in order to improve the solution, starting in line 3.
In line 4, a new candidate solution is computed. The candidate solution is a neighbor of the solution
𝑠. Two solutions are neighbor if they are close to each other in the solution space, that is, there is a
small change that can be applied to 𝑠 in order to reach 𝑠 . The concept of neighborhood in the
context of TUSP is explained further in subsection 5.2.3. If the candidate solution is better than the
previously found solution 𝑠, then it is accepted as the new solution, as seen in lines 5 and 6. If the
candidate solution is not better, then it is either accepted or rejected stochastically, as seen in lines 7
and 8. In line 10, we see that the temperature 𝑇 is gradually decreased by multiplying it with a constant
𝛼. The temperature decreases, since 0 < 𝛼 < 1. The temperature decreases so that the probability to
accept worse solution decreases over time.

5.2. Simulated Annealing for the TUSP
This section gives an introduction and overview of the Simulated Annealing approach for solving the
TUSP by Van Den Broek [15]. This local search approach has been extensively used and researched
at the NS, where it is usually called the Hybrid Integrated Approach (HIP). It is currently one of the
best performing algorithms for solving the commonly occurring TUSP instances at the NS for selected
shunting yards.

HIP is an implementation of the simulated annealing algorithm described in Algorithm 1. The implemen-
tation of HIP specifies the generation of initial solution, the objective function 𝑔 and the neighborhood
generation strategy, used for the selection of a random neighbor. The three implementation parts are
described in detail in the following three subsections.

5.2.1. Initial Solution Generation
The initial solution is generated using various heuristics. First, the matching sub-problem is solved
using a MIP solver for the Hopcroft-Karp matching algorithm [15]. Then, the services are assigned to
service facilities using a simple ordering heuristic, the tasks are processed in order of increasing due
time and are assigned to the earliest available service station [15]. The routing is then calculated using
shortest path algorithm [15]. Finally, the parking sub-problem is solved by randomly assigning parking
time during the train unit route [15].

The initial solution is usually of poor quality, as it is created using heuristics by solving the four TUSP
sub-problems separately. The obtained initial solution may be impossible to execute in practice due to,
for example, crossings of trains occurring in the schedule. The quality of the initial schedule is imporev

5.2. Simulated Annealing for the TUSP 29

upon using the Simulated Annealing algorithm. According to Van Den Broek: ”One of the properties of
simulated annealing is the tendency to move away quickly from the initial position in the search space,
as it often accepts a deterioration in solution quality at the start of the search. As a result, any decent
shunt plan success as initial solution.”[15].

5.2.2. Objective Function 𝑔
The objective function 𝑔 in the HIP algorithm is calculated by computing the illegal and unwanted actions
in a schedule and assigning a conflict cost or penalty cost to them. The conflict costs depict the costs
which must be solved in order to make the schedule feasible, whereas the penalty costs represent
unwanted actions that may get resolved but it is not necessary for the feasibility of the solution.

Both the penalty as well as the conflict costs are always calculated using a weight and the actual
measure regarding the cost. The conflict cost measures include the following:

• Crossings - A movement which causes two train units to occupy the same space on a given track

• NonElectrifiedUsage - Usage of tracks which are not electrified by train units that require electrified
tracks

• ArrivalDelay - A situation at the yard which prevents an incoming train to arrive on time

• DepartureDelay - Delay in the train departure

• TrackLengthViolations - A movement which causes a train to occupy a track which is too short

• CombineAtDeparture - A situation where two or more train units are combined at the track from
which they depart

The conflict costs can be calculated using the cost measures and cost weights as follows:

Conflict Costs = 𝑤 ∗ |𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠|
+ 𝑤 ∗ |𝑁𝑜𝑛𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑓𝑖𝑒𝑑𝑈𝑠𝑎𝑔𝑒𝑠|
+ 𝑤 ∗ |𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐷𝑒𝑙𝑎𝑦𝑠|
+ 𝑤 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝐷𝑒𝑙𝑎𝑦
+ 𝑤 ∗ |𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝐷𝑒𝑙𝑎𝑦𝑠|
+ 𝑤 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝐷𝑒𝑙𝑎𝑦
+ 𝑤 ∗ |𝑇𝑟𝑎𝑐𝑘𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠|
+ 𝑤 ∗ |𝑇𝑟𝑎𝑐𝑘𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠|
+ 𝑤 ∗ 𝑇𝑟𝑎𝑐𝑘𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
+ 𝑤 ∗ |𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝐴𝑡𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒|

The penalty costs consist of the following:

• EmptyShuntMoves - A shunting move with a route length of 0

• IllegalParkingTime - A parking task scheduled at a track with parking restrictions

The penalty costs can be calculated as follows:

The objective function consist of both the conflict and penalty costs. The comparison of the costs of
two schedules happens in lexicographical order, with the comparison of the conflict costs first. Thus,
the total cost is a tuple consisting of the conflict and penalty costs.

30 5. Rescheduling Algorithms

Penalty Costs = 𝑤 ∗ |𝐸𝑚𝑝𝑡𝑦𝑆ℎ𝑢𝑛𝑡𝑀𝑜𝑣𝑒𝑠|
+ 𝑤 ∗ 𝐼𝑙𝑙𝑒𝑔𝑎𝑙𝑃𝑎𝑟𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 = {𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐶𝑜𝑠𝑡𝑠, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠} (5.1)

5.2.3. Neighborhood Generation Strategy
The core of the Simulated Annealing algorithm is the random choice of neighboring solutions. The
neighbors of a solution are calculated using one of the defined neighborhoods. A neighborhood is the
collection of solutions that can be obtained from some solution 𝑠 by applying a single, small operation to
them. The neighborhoods can be categorized by the sub-problem that they operate on: matching, task
scheduling, parking and routing. The routing sub-problem is quite unique here, as all the neighborhoods
may change the routing of the trains, in contrary to the other sub-problems, which only acquire a change
by their respective neighborhoods.

Notice that there are many neighborhoods defined, but in the following paragraphs, only the unique
neighborhoods are summed up. There exist more neighborhoods, but they are a combination of two
or more neighborhoods applied consecutively.

Matching Neighborhoods There is a single neighborhood for the matching sub-problem, namely
the MatchingNeighborhood. This neighborhood consists of all solutions that are reachable from some
solution 𝑠 by exchanging the matching of two train units.

Task Scheduling The task scheduling neighborhood consists of four different neighborhoods:

1. ServiceMachineOrderNeighborhood - Swapping the order of two consecutive service tasks of a
single resource

2. ServiceMachineSwapNeighborhood - Swapping the resource of two given service tasks
3. ServiceMachineSwitchNeighborhood - Switching the resource of a given service task
4. ServiceTrainOrderNeighborhood - Swapping the order of the service tasks of a given train unit

Parking The parking neighborhood consist of a total of four neighborhoods:

1. ParkingInsertAndReturnNeighborhood - Extends a parking task at location 𝑇 to a sequence of
parking tasks at 𝑇 , 𝑇 and then again 𝑇 .

2. ParkingInsertNeighborhood - Insert a parking move
3. ParkingSwapNeighborhood - Swap parking location of two trains
4. ParkingSwitchNeighborhood - Switch the parking location of a single train to another location
5. MovementMergeNeighborhood - Remove a parking job
6. MovementSplitNeighborhood - Split a route into two and insert a parking between them

Routing Finally, the routing sub-problem is approached using two neighborhoods.

1. MovementShiftNeighborhood - Change the total order of movements
2. MovementToDepartureTimeSwitchNeighborhood - Change the time of the move to the departure

position

5.3. Rescheduling Methods 31

5.3. Rescheduling Methods
The rescheduling process is similar to the scheduling process in general. In both scheduling as well as
rescheduling process, the objective is to find a feasible schedule. During the rescheduling process, the
schedule should also be desirable, by fulfilling similarity requirements. Furthermore, the rescheduling
process creates a solution to the disturbed scenario, whereas the scheduling process creates a solu-
tion to the undisturbed scenario. In this chapter, a total of four different rescheduling methods for the
rescheduling algorithm 𝑓 will be devised.

There are multiple possible approaches for the rescheduling process. The rescheduling methods pro-
posed in this paper are based on the Simulated Annealing described in section 5.1 and section 5.2. A
total of four different methods are proposed and described. The partial rescheduling approach is pre-
sented in subsection 5.3.1 and the relative guided partial reschedule is presented in subsection 5.3.2.
The two rescheduling approaches: schedule repair and guided schedule repair are presented in sub-
section 5.3.3 and subsection 5.3.4 respectively.

5.3.1. Partial Rescheduling
The first proposed rescheduling approach relies on using the existing scheduling algorithm in order
to solve the disturbed problem instance. In the partial rescheduling approach, a new, disturbed prob-
lem instance 𝑖 is generated from the initial problem instance 𝑖 , the initial schedule 𝑠 and a given
disturbance occurrence 𝐷.

In this approach, the disturbed problem instance 𝑖 is calculated in two steps. Firstly, the state of the
shunting yard is simulated up until 𝑡 , the time of occurrence of the disturbance. Then, the disturbance
is applied by changing the planned arrival time of the late train. The disturbed problem instance 𝑖 is
the outcome of those two steps. Notice that 𝑖 is equivalent to the scenario that has to be solved at the
shunting yard after an occurrence of a disturbance.

The instance 𝑖 is computed by calculating the position of every train unit at 𝑡 in the instance 𝑖 with
the schedule 𝑠 . If the train has already arrived before 𝑡 in 𝑖 and according to 𝑠 is located at track
𝑡𝑟𝑎𝑐𝑘 , then in 𝑖 , the train arrives at 𝑡 at the location 𝑡𝑟𝑎𝑐𝑘 . If the train is scheduled to arrive after
𝑡 in 𝑖 , then it is also scheduled to arrive at the same time in 𝑖 . If a train unit is executing a movement
during 𝑡 in 𝑠 , then that movement is also present and finished in 𝑠 .

Any service task that in 𝑖 takes place before 𝑡 is not present in 𝑖 , but tasks that in 𝑖 take place after
𝑡 are still scheduled at the same time in 𝑖 . If a service task is being executed at 𝑡 in 𝑠 , then this
service task execution is continued in 𝑠 .

Due to the fact that 𝑖 is also a valid TUSP instance, it can be solved using any TUSP solver, as long as
the task and movement continuation can be guaranteed. In this case, the HIP solver is used. The local
search simulated annealing approach is responsible for finding a feasible solution for the rescheduling
problem.

Notice that the partial rescheduling approach satisfies the three feasibility requirements for a proper
rescheduling algorithm as defined in subsection 1.3.2. The solution of the partial rescheduling algorithm
is a solution to the disturbed initial problem instance. Furthermore, the simulation continues on from
𝑡 , and so no actions are planned for 𝑡 < 𝑡 , nor are actions with 𝑡 < 𝑡 changed.

Even though the partial rescheduling approach can be used to generate feasible reschedules, those
reschedules may not be desirable at all. This is due to the fact that this approach does not consider
schedule similarity at all. Therefore, the generated reschedules may not be similar to the pre-schedule
and thus be undesirable.

32 5. Rescheduling Algorithms

5.3.2. Guided Partial Rescheduling
The second rescheduling approach, guided partial rescheduling, is an extension to the partial reschedul-
ing approach described in subsection 5.3.1. The partial reschedule approach does not consider sched-
ule similarity, and thus also schedule desirability, at all. Both 𝑔 as well as 𝑔 are missing.

The proposed extension is largely based on the dissimilarity measures defined in section 4.3. The
idea is to extend the objective function 𝑔 with the dissimilarity measures. In the partial rescheduling
approach, the simulated annealing algorithm is responsible for creating a feasible schedule. In order to
create the reschedules not only feasible but also desirable, the algorithm is guided during its execution
to focus more on similar schedules. In order to achieve this, the dissimilarity costs are first defined in
Equation 5.2.

Dissimilarity Costs = 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑

(5.2)

The dissimilarity functions are summed together using weights, similarly to conflict and penalty costs.
The dissimilarity is calculated between the pre-schedule and the candidate schedule. The sum of the
conflict and penalty costs is minimized during every iteration of the algorithm. Therefore, the algorithm
will be guided to search for both feasible as well as similar, desirable solutions.

While there are many different ways to include the dissimilarity costs into the objective function of the
HIP algorithm, in this approach it has been decided to add the dissimilarity costs to the conflict costs
of the original objective function of the simulated annealing algorithm. Thus, the following holds.

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 = {𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐶𝑜𝑠𝑡𝑠 + 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑠, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠} (5.3)

The advantage of summing the conflict costs with dissimilarity costs is the fact that the dissimilarity costs
are optimized for during every iteration step of the algorithm. The disadvantage is that the conflict costs
are worth relatively less, since both the conflict costs and dissimilarity costs are being optimized for. In
short, the guided partial reschedule approach optimizes more for schedule desirability as opposed to
schedule feasibility, when compared to the partial reschedule approach.

Guided partial reschedule is inherently closely related to the partial reschedule approach. Similarly
to partial rescheduling approach, the guided partial rescheduling approach satisfies the three feasibil-
ity requirements of a rescheduling algorithm subsection 1.3.2. Unlike partial rescheduling approach,
the guided partial rescheduling approach also attempts to satisfy the desirability requirement by the
extension of 𝑔 .

5.3.3. Schedule Repair
The previous two approaches have focused on both schedule feasibility and desirability. In the schedule
repair approach, the main focus will, again, be the schedule desirability. Whereas the guided partial
reschedule subsection 5.3.2 achieved similarity by modifying the objective function of the simulated
annealing algorithm, the schedule repair approach will achieve the same property by modifying the
initial solution generation step of the simulated annealing algorithm.

The initial solution of the HIP algorithm is created using various heuristics, as described in subsec-
tion 5.2.1. The quality of the initial solution is generally poor, and the simulated annealing is used to
create a better quality solution. In the case of rescheduling, a solution with reasonable quality is al-
ready present, namely the pre-schedule 𝑠 . The pre-schedule can be used as the initial solution for
a disturbed scenario. Then, simulated annealing can be used to solve any conflicts that result from the

5.3. Rescheduling Methods 33

fact that the pre-schedule is a solution to the undisturbed scenario and not the disturbed one.

The schedule repair approach is not an extension of either the guided partial reschedule or the partial
reschedule approach. Special care must be taken to ensure that the approach satisfies reschedule
feasibility requirements as described in subsection 1.3.2. This is done in two steps: firstly by modifying
the neighborhood search algorithm of HIP and secondly by modifying the problem instance and the
initial solution.

The random neighborhood search of HIP generates a neighboring solution from a source solution
by modifying an action of the source solution. In general, the neighborhood search may modify any
action in the source schedule. This should not be allowed when dealing with rescheduling, and so, two
modifications aremade. Firstly, no action with starting time 𝑡 < 𝑡 may be changed by the neighborhood
search. Secondly, the actions created or modified by the neighborhood search may not be placed at
𝑡 < 𝑡 .

The second step is the modification of the problem instance and the initial solution to reflect the dis-
turbed scenario. The disturbance is applied to the problem instance by delaying the train arrival. This
causes a problem, since updating just the problem instance but not the initial solution causes the initial
solution to be infeasible. Usually, such infeasibility would be solved using the simulated annealing al-
gorithm. This is not possible in the case, due to the nature of the infeasibility caused by the disturbance.
The infeasibility is caused by the fact that two trains (one of which is the delayed train) are scheduled
to arrive in some specific order, but in the initial solution schedule, they arrive in the opposite order.
This is a situation which does not occur when the solution is generated using heuristics nor does it
occur after applying changes by neighborhood search. The neighborhoods of HIP do not include one
which would be able to resolve the aforementioned issue. Therefore, the issue is addressed before the
algorithm is used. Namely, the arrival order of the late train and the train that arrives after the late train
in the pre-schedule is reversed in the initial solution schedule.

The two steps of modifying the HIP neighbor search and modification of the problem instance and the
initial solution cause the schedule repair to become a proper scheduling approach, due to the fact that
it satisfies the rescheduling algorithm requirements as described by subsection 1.3.2.

The schedule repair approach may be suitable to find not only feasible solutions, but also desirable
solutions. This is due to the fact that the algorithm begins its search with a very desirable solution,
namely the pre-schedule. During the search, the desirability of the solution may degrade, since no
notion of desirability exists during the run-time of the schedule repair approach.

5.3.4. Guided Schedule Repair
The schedule repair approach begins its search with a very desirable solution, namely the pre-schedule.
During the run-time of the simulated annealing algorithm, the desirability of the solution may deteriorate.
To address this issue, the notion of stability can be introduced to the run-time of the algorithm.

The proposed guided schedule repair approach is an extension to the schedule repair approach. Simi-
larly to the guided partial rescheduling approach, the guided schedule repair approach relies on guiding
the simulated annealing algorithm during its runtime to focus on schedules similar to the pre-schedule.
The proposed method to achieve this is to extend the objective function of the HIP algorithm to in-
clude the dissimilarity costs. The dissimilarity cost is defined the same way as it was for guided partial
rescheduling, namely:

Dissimilarity Costs = 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑
+ 𝑤 ∗ 𝑑

(5.4)

34 5. Rescheduling Algorithms

The objective function is extended to the following form:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 = {𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐶𝑜𝑠𝑡𝑠 + 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑠, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠} (5.5)

Similarly to the guided partial rescheduling method, this approach is chosen such that the algorithm
optimizes for schedule desirability, possibly at the cost of schedule feasibility.

Since the guided schedule repair is an extension of the schedule repair approach and so it also satis-
fies the requirements of a proper rescheduling algorithm as defined by subsection 1.3.2. The guided
schedule repair optimizes for schedule feasibility by starting with a desirable initial solution as well as
minimizing dissimilarity during the run-time of the algorithm.

The four proposed rescheduling algorithms differ mostly in how the desirability of the schedule is
achieved. The four algorithms are examples of the rescheduling function 𝑓 of the abstract reschedul-
ing framework. The differences in achieving schedule desirability is achieved through different defini-
tions of 𝑔 as well as the implementation of the initial solution of the simulated annealing algorithm.
The approaches are summarized with that property in mind in Table 5.1.

Table 5.1: Summary of the Rescheduling Approaches

Partial
Rescheduling

Guided Partial
Rescheduling

Schedule
Repair

Guided Schedule
Repair

Desirability optimization
during run-time

- Yes - Yes

Desirable initial solution - - Yes Yes

In short, four different rescheduling algorithms have been proposed. The performance of the algo-
rithms is not yet known. The four algorithms represent four different approaches possible for achieving
schedule desirability. It is yet to be determined whether any of the proposed algorithms performs well
enough to create desirable schedules. It is also not known whether the complex approaches for ob-
taining reschedule desirability are necessary at all, or if the partial rescheduling algorithm is able to
produce desirable reschedules. Therefore, the performance of the proposed algorithms will be further
investigated. In chapter 6, the experimental setup for the performance analysis will be explained, and
in chapter 7, the results will be presented.

6
Experimental Setup

In chapter 5 a total of four rescheduling approaches have been devised. Furthermore, the objective
function to evaluate the desirability of a reschedule has been proposed in chapter 4. The reschedul-
ing performance of the proposed solutions can and should be measured. The performance of the
rescheduling algorithm is multi-objective, as a proper reschedule should be both feasible as well as de-
sirable. The reschedule is feasible if no illegal actions are planned in the reschedule, or in other words,
if the conflict costs defined in subsection 5.2.2 of the reschedule are 0. A reschedule is desirable if it is
similar to the pre-schedule, following the definitions in chapter 4.

In this chapter, the experimental setup for measuring the rescheduling algorithm performance will be
proposed. In order to perform the rescheduling experiments, various components are needed. Follow-
ing the definitions of the proactive-reactive scheduling framework from chapter 3, the following compo-
nents need to be defined:

• Problem Instance Model 𝐼
• Disturbance Model 𝐷
• Objective Function 𝑔
• Pre-schedule Generation Algorithm 𝑓
• Rescheduling Algorithm 𝑓

The implementation of the five components will be explained in order. First, the problem instance model
will be proposed in section 6.1. Then, the implementation of the disturbance model will be explained in
section 6.2. Thirdly, the objective function 𝑔 used to evaluate the rescheduling performance will be
explained in section 6.3. Fourthly, the pre-schedule generation will be presented in section 6.4. Finally,
the rescheduling algorithm experiment will be presented in section 6.5.

6.1. Problem Instance Model 𝐼
The problem instances are generated using the tool called the Instance Generator, developed by NS.
The tool is able to generate problem instances that closely resemble real problem instances. A proper
schedule is generated in which trains arrive at a certain time. The trains require service tasks to be
executed on them before they depart at the time of departure. The instances generated by the tool can
be considered to be realistic, according to the experts at NS.

The problem instances are generated for the Kleine Binckhorst shunting yard. This shunting yard is the
one that is most commonly used for testing of scheduling and rescheduling algorithms for the TUSP at
NS. The nominal capacity of this yard is 16 train units. This is the capacity for which the HIP algorithm
can solve over 95% of instances generated by the instance generator. The percentage of instances

35

36 6. Experimental Setup

that can be solved using HIP decreases with the number of train units. In other words, a larger number
of train units cause the problem instances to become more difficult. At 18 train units, around 50% of
problem instances can be solved, and at 19 train units, less than 10% of the problem instances are
solvable.

Ideally, the rescheduling performance should be tested on instances with the number of train units
varying from 0 to 20 (at 20 train units almost no instances can be solved). Due to a large run-time
of the algorithm, this is not feasible. Therefore, a choice is made to include two different values of
train units. The decision to measure the rescheduling performance on instances with 16 and 18 train
units has been made. The choice of 16 train units is made due to 16 being the nominal capacity of
the shunting yard and 18 is the largest number of train units where a large number of instances is still
solvable.

A total of 25 problem instances with 16 train units are generated. Similarly, a total of 25 problem
instances with 18 train units are generated as well. All the measurements of rescheduling performance
are calculated on these 50 problem instances.

6.2. Disturbance Model 𝐷
The disturbance model assumed in this paper is based on a single late train. The train is delayed so
much that the arrival order of trains is changed. The train is delayed just so that the order changes, no
more delay is implemented than needed. The implementation of the disturbance model is described in
Algorithm 2.

Algorithm 2 Train Order Disturbance Generation
1: procedure GenerateTrainOrderDisturbance(𝑇 ∶ Arriving train, 𝑇 ∶ First train arriving after 𝑇)
2: 𝑎 ← arrival time of 𝑇
3: 𝑎 ← arrival time of 𝑇
4: return 𝐷𝑒𝑙𝑎𝑦(𝑇 , 𝑎 − 𝑎 + 𝑐) ▷ Delay train 𝑇 to arrive 𝑐 minutes after 𝑇
5: end procedure

In order to generate disturbances according to the disturbance model, for every arriving train 𝑇 except
the last one, a single disturbance is created. In this disturbance, the train 𝑇 arrives 𝑐 minutes after train
𝑇 , where 𝑇 is the first train that arrived after 𝑇 in the original problem instance.

An important exception to the rule described above is the case where there is no time between the
arrival of 𝑇 and 𝑇 for the arrival of 𝑇 . This occurs when the time difference between the arrivals
of 𝑇 and 𝑇 is less than 5 minutes. In such cases, scheduling 𝑇 to arrive between 𝑇 and 𝑇 is
meaningless, since such situations are not solvable by HIP, as they do not occur in real life scenarios.
In such cases, 𝑇 is delayed to arrive after 𝑇 .

Note that a disturbance is generated for each arriving train in the schedule, with the exception of the
last one. Therefore, a total of around 12 disturbances is generated for each problem instance with 16
train units. This is due to the fact that a disturbance is generated for each incoming train and not a train
unit. A total of 16 disturbances is generated for problem instances with 18 train units.

6.3. Objective Function 𝑔𝑟𝑒
The objective function for the rescheduling algorithm is multi-objective. A proper reschedule must be
both feasible and desirable. To achieve this, the total costs as defined in subsection 5.2.2 are used as
the objective function, so the following holds:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 = {𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐶𝑜𝑠𝑡𝑠 + 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑠, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡𝑠} (6.1)

Once again, the reschedule is feasible only if the conflict costs are 0 and it is desirable if the dissim-

6.4. Pre-Schedule Generation Algorithm 𝑓 37

ilarity costs are low. The penalty costs are used in lexicographical manner, in order to solve ties for
reschedules with the same value for the sum of conflict and dissimilarity costs. Notice that to calculate
the conflict, dissimilarity and penalty costs, many weights regarding the severity of violations need to
be specified. For the conflict and penalty costs, the weights specified by the experts at NS for the HIP
solver are used. The conflict weights are presented in Table 6.1 and the penalty weights are presented
in Table 6.2.

Table 6.1: Conflict Weights

𝑤 = 10
𝑤 = 10
𝑤 = 15
𝑤 = 0.002
𝑤 = 25
𝑤 = 0.005
𝑤 = 12
𝑤 = 0.01
𝑤 = 0.0002
𝑤 = 15

Table 6.2: Penalty Weights

𝑤 = 0.02
𝑤 = 0.01

The dissimilarity weights are introduced in this paper and thus it is not possible to rely on previous
work by the NS experts to determine the weights for those. The main focus is put on ensuring the
temporal similarity, so the weight for the service time dissimilarity is chosen to be larger than the other
weights, namely 10. The weights for the other three dissimilarity measures have been chosen to be
1. The weights have been chosen experimentally, no formal parameter selection strategy has been
used. The weights are generally quite low compared to the conflict weights. The expectation is that
the algorithm will focus foremost on the feasibility of the solution first. The values are again presented
in the Table 6.3.

Table 6.3: Dissimilarity Weights

𝑤 = 10
𝑤 = 1
𝑤 = 1
𝑤 = 1

6.4. Pre-Schedule Generation Algorithm 𝑓𝑝𝑟𝑒
The next component needed for the reschedule experiments is the pre-schedule generation algorithm.
The pre-schedule generation algorithm is HIP, and thus, the pre-schedules are generated from problem
instances using the HIP solver. The solver is set up to solve for feasibility with a time limit of 10 minutes.
If a unique solution is found within this time limit, then this solution is saved as a pre-schedule for the
given scenario. On the other hand, if a solution is not found or a duplicate solution is found, then the
pre-schedule is discarded.

For each of the 50 scenarios, a total of 20 unique pre-schedules are generated. The solver might be
used on a scenario more than 20 times. This is done due to the fact that the solver is probabilistic and

38 6. Experimental Setup

so it might fail to find a pre-schedule or find a pre-schedule multiple times. In the case that after 100
runs no 20 unique pre-schedules are found, the scenario is discarded. The procedure is also presented
in Algorithm 3.

Algorithm 3 Pre-schedule Generation
1: procedure GeneratePreSchedules(𝑖 ∶ Problem Instance 𝑛 ∶ Integer)
2: 𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← ∅ ▷ The generated pre-schedules
3: 𝑖 ← 0
4: while 𝑖 < 𝑛 +𝑚 and |𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠| < 𝑛 do
5: 𝑆 ← 𝐻𝐼𝑃(𝑖) ▷ HIP is the SA solver
6: if 𝑆 is feasible then
7: 𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ← 𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠 ∪ 𝑆
8: end if
9: 𝑖 ← 𝑖 + 1
10: end while
11: if |𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠| < 𝑛 then
12: reject s
13: end if
14: return 𝑃𝑟𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑠
15: end procedure

6.5. Rescheduling Algorithm 𝑓𝑟𝑒
The four rescheduling algorithms devised in section 5.3 will be tested. The four algorithms will be tested
on all the generated problem instances, disturbances and pre-schedules. The general run-time of the
test is presented in Algorithm 4.

Algorithm 4 Rescheduling Algorithm Run-time
1: procedure Solve(𝑓 : Rescheduling Algorithm)
2: for each 𝐼 do ▷ Problem Instances
3: for each 𝑆 of 𝐼 do ▷ Pre-schedules
4: for each 𝑑 of 𝐼 do ▷ Disturbances
5: 𝐼 ← 𝑑𝑖𝑠𝑡𝑢𝑟𝑏(𝐼, 𝑑) ▷ Disturbed Instance
6: for 𝑖 ∈ {1..20} do
7: 𝑆 ← 𝑓 (𝐼 , 𝑆)
8: end for
9: end for
10: end for
11: end for
12: end procedure

It can be seen that each of the four algorithms is ran multiple times on the various problem instances,
pre-schedules and disturbances. This can be seen in lines 2 through 4. Then, on line 5, the disturbed
problem instance is calculated. Each disturbed instance is solved using the rescheduling algorithm 20
times, as seen in lines 6 and 7. This is done due to the fact that the rescheduling algorithms proposed
earlier are all probabilistic and so they might fail to find a solution, or find a solution of poor quality if
just a single run is executed. For this reason, the calculation is done 20 times.

Notice that due to the quadruple for loop construction in Algorithm 4, every algorithm is ran more than
300 000 times. Every iteration is allowed to run for 30 seconds. This causes a very long run-time. This
is addressed by performing the computations in parallel. The experiments have been ran in parallel,
24 at a given time, using a single computer with a 24-thread processor.

7
Results

In chapter 6, the experimental set-up for the performance analysis of the four rescheduling algorithms
defined in chapter 5 has been described. The four rescheduling algorithms approach the achievement
of schedule desirability differently. The performance analysis is executed in order to determine whether
any of the four rescheduling algorithms is adequate to produce desirable reschedules and whether the
proposed extensions indeed increase the desirability of the found solutions.

A large amount of data can be produced using the experimental setup used described in chapter 6.
The four proposed rescheduling algorithms have been ran over 300 000 times each. In this chapter,
the results of those experiments are presented in a concise way.

Firstly, the performance of the proposed rescheduling strategies with regards to schedule feasibility is
presented in section 7.1. Then, the performance with regards to schedule desirability is presented in
section 7.2. Finally, the performance with respect to the service task lateness is further investigated in
section 7.3.

7.1. Feasibility
The first criterium to look for at the experiments is the feasibility of the solutions. The goal is to determine
whether the rescheduling algorithms are producing feasible reschedules. If a reschedule is not feasible,
then regardless of whether it is desirable, it can not be implemented in practice.

Due to the fact that each of the unique experiment set-ups is repeated 20 times, a total of two differ-
ent measures for feasibility are proposed. In the first measure, the feasibility is measured for all the
experimental samples. This includes the 20 repetitions for each experiments. The feasibility is thus cal-
culated by dividing the number of feasible solutions found by the total number of solutions attempted.
On the other hand, the feasibility score can also be aggregated, due to the 20 repetitions for each
experiments. This is calculated by first calculating the feasibility of each experiment without the 20
repetition redundancy. Such experiment is assumed to be feasible if at least one of the 20 repetitions
produces a feasible solution. This approach is reasonable, due to the fact that in practice, the algorithm
may be ran multiple times as well. The results are presented in Table 7.1.

39

40 7. Results

Table 7.1: Performance of the Rescheduling Algorithms: Feasibility

Partial
Reschedule

Guided
Partial
Reschedule

Schedule
Repair

Guided
Schedule
Repair

Feasibility 16 TU 74.4% 66.6% 94.5% 93.9%

18 TU 32.4% 29.5% 77.6% 77.5%

Aggregated
Feasibility

16 TU 100% 100% 100% 100%

18 TU 56.7% 48.3% 96.4% 96.3%

7.1.1. Discussion
The performance of the rescheduling algorithms with regard to schedule feasibility show that in general,
all four of the algorithms can be used to find feasible reschedules. It can be noted that the schedule re-
pair and the guided schedule repair algorithms outperform or perform equally as the partial reschedule
and guided partial reschedule algorithms, in all the feasibility categories for all the train unit configu-
rations. The use of the pre-schedule as the initial solution greatly increases the performance of the
rescheduling algorithms with regards to feasibility.

On the other hand, guiding the algorithms by integrating dissimilarity costs into their objective function
does not increase the algorithm performance with regards to feasibility. This change has very little effect
between the schedule repair and guided schedule repair algorithms, but it decreases the performance
of the guided partial reschedule as compared to partial reschedule.

As expected, the difficulty of computing the reschedules for problem instances with 18 train units is more
difficult than it is with 16 train units. The feasibility performance for 16 train units for the schedule repair
and guided schedule repair methods is unexpectedly high. More than 93% of reschedules generated
by either of the two methods in 30 seconds are feasible. Without any modifications, around 80%
of schedules generated by HIP are feasible. Thus, the rescheduling performance is better than the
scheduling performance. This could be due to the fact that starting with a high quality initial solution aids
the process a lot, but this can not be concluded with certainty. This is because a rescheduling process
in general is not equivalent to a scheduling process, as the rescheduling process only schedules a
subset of tasks that a scheduling process needs to schedule.

Finally, it can be seen that all the algorithms can be used to generate reschedules in the case of 16
train units, when the rescheduling process is ran 20 times. In such case, all the algorithms produce at
least one feasible solution to the rescheduling problem. This changed in the case of 18 train units. In
such case, the partial reschedule and guided partial reschedule methods produce a feasible reschedule
within 20 iterations in just 56.7% respectively 48.3% of the cases. This is considerably worse than the
schedule repair and guided schedule repair methods.

7.2. Desirability 41

7.2. Desirability
The second performance characteristic of the rescheduling algorithms is the desirability of the output
schedule. All the metrics presented in this section are aggregated with respect to the redundancy of 20
repetitions of each of the experiments. From the 20 experiment repetitions, only the reschedule with
the lowest dissimilarity costs (as defined in section 6.3) is used for the metric measurement. Notice
that a reschedule may only be selected if it is also feasible, unfeasible solutions are discarded. If an
experiment has no feasible solutions, it is discarded and not counted towards the statistics.

The desirability of the schedules is measured in similarity terms defined in section 4.3. The sum of task
latenesses is measured in hours. In the ideal rescheduling solution, this sum is 0. Larger values of this
metric decrease the desirability of a reschedule. The other three metrics: task location deviation, rout-
ing and matching are presented as percentages. Values close to 0% are a characteristic of desirable
reschedules, whereas values close to 100% characterize undesirable reschedules.

Table 7.2: Performance of the Rescheduling Algorithms: Desirability

Partial
Reschedule

Guided
Partial
Reschedule

Schedule
Repair

Guided
Schedule
Repair

Sum of
Task Lateness

16 TU 8:32 hours 2:09 hours 3:05 hours 1:42 hours

18 TU 9:47 hours 2:32 hours 3:31 hours 1:48 hours

Task Location
Deviation

16 TU 58.2% 30.2% 2.39% 2.44%

18 TU 60.2% 29.5% 2.73% 2.30%

Routing 16 TU 95.3% 83.1% 4.19% 6.98%

18 TU 94.6% 85.2% 5.67% 7.17%

Matching 16 TU 38.3% 17.1% 1.37% 0.46%

18 TU 49.2% 21.9% 3.84% 0.65%

7.2.1. Discussion
The performance of the rescheduling algorithms from the desirability perspective shows that the partial
reschedule as well as guided partial reschedule methods produce reschedules that are insufficiently
similar to be considered as desirable. In both the cases of 16 as well as 18 train units, these two
rescheduling algorithms produce reschedules that are not similar to the respective pre-schedules with
regards to task location deviation, routing and matching. In the best case, at least 29.5% of the service
tasks are relocated, 83.1% of the route is changed and the matching of 17.1% train units is changed.
These performance metrics are worse for the partial reschedule and guided partial reschedule methods
than they are for the schedule repair and guided schedule repair methods.

The schedule repair and guided schedule repair methods perform significantly better with respect to
the task location deviation, routing and matching. The performance metrics show that the reschedules
produced with the rescheduling methods based on schedule repair perform better than their respective
counterparts based on partial rescheduling. It can not be concluded without further experimentation
whether the reschedules produced by these two methods are indeed regarded as desirable. It can,
however, be concluded that the choice of the initial solution greatly increases the rescheduling perfor-
mance with regards to desirability.

The sum of task latenesses metric shows a different performance than the other three metrics. It is
the only metric where the guided partial reschedule outperforms the schedule repair. The guidance of
the local search algorithm towards more similar solutions aids the performance of the algorithms with

42 7. Results

regard to the sum of task lateness metric.

Another difference of the sum of task lateness metric is the fact that it is not a percentage and so it
is not trivial to determine whether the results are any close to the lower bound or not. In the case of
the three other metrics, the lower bound is 0%. It is not the case that the sum of task lateness has a
lower bound of 0. In order to determine whether the sum of task lateness of the guided schedule repair
method of 1:42 hours for 16 train units or 1:48 hours for 18 train units is close to the lower bound, more
investigation is performed in section 7.3.

7.3. Sum of Task Lateness Performance
The rescheduling algorithm may change the starting time of any service task that occurs after the
rescheduling time. Ideally, none of the service tasks should be incur lateness, however, it can be
concluded from the results in section 7.2 that services do incur lateness after rescheduling. The results
of the task lateness performance are not trivial to analyze, as it is not clear what the theoretical best
performance is. In order to determine whether the results obtained in section 7.2 are close to theoretical
optimum, the lower bound for task lateness will be derived in this section. The analysis in this section
is based on the guided schedule repair method using both 16 as well as 18 train units.

7.3.1. Source of the Delay
In order to correctly analyze the performance with respect to the sum of task lateness, the source of
the task lateness will first be analyzed. The sources of the delay can be categorized by the train unit
they belong to. This can be either a train unit that arrived late, or a train unit that did not arrive late.
This distinction is useful for further analysis. Most importantly, the number of services of the delayed
train unit is much smaller than the number of services of non-delayed train units.

Figure 7.1: Sources of Task Lateness

The composition is calculated by computing the ratio of the sum of the lateness of the services of
the delayed train and the sum of total lateness. The result is displayed in Figure 7.1. On average,

7.3. Sum of Task Lateness Performance 43

the services of the delayed train contribute for 91.2% of the total task lateness. Furthermore, the plot
shows that for most of the samples, the task lateness of the services of the delayed train contribute for
a large part of the total task lateness. Therefore, the task lateness of the services of the delayed train
unit approximates the total task lateness of the reschedule scenario. For this reason, an adjustment
to the prediction model is proposed. Instead of attempting to predict the total task lateness of a given
reschedule scenario, the task lateness of the services of the late train can be predicted.

It can be concluded that most of the task lateness, in general, is caused by the services of the delayed
train. For this reason, further investigation will be performed into why the services of delayed trains are
being delayed.

7.3.2. Lower Bound for the Task Lateness of a Delayed Train
It has been concluded that most of the task lateness of most of the instances are caused by the services
of the delayed train. In this subsection, the reason for those task latenesses will be investigated. This
will be done hand in hand with deriving a lower bound for the task lateness of the delayed train.

The lower bound of a task lateness will be derived using Figure 7.2. In this figure, two different pre-
schedules are displayed. In the first pre-schedule, the slack 𝑠 between the arrival and the inspection
task is much smaller than the arrival delay due to a disturbance 𝐷. Since the inspection task must be
performed after the arrival, the optimal reschedule has a task lateness for the inspection task of at least
𝐷 − 𝑠 .

On the other hand, in pre-schedule 2, the slack 𝑠 between the arrival and the inspection service task is
equal to the arrival delay due to the disturbance. The optimal reschedule for pre-schedule 2 incurs no
task lateness for the inspection service task, since the slack 𝑠 is sufficiently large to negate the effects
of the arrival delay 𝐷.

Pre-schedule 1 Reschedule 1 Pre-schedule 2 Reschedule 2

8:00

9:00

10:00

11:00

12:00

Arrival

Inspection
Arrival

Inspection

𝑠
𝐷

Arrival

Inspection

Arrival

Inspection

𝑠
𝐷

Figure 7.2: Task Delay Lower Bound

This example can be used to derive a lower bound for a task lateness. The minimal task lateness for
a service task of a delayed train is defined in Equation 7.1.

lateness lower bound = {𝐷 − 𝑠 if 𝐷 − 𝑠 ≥ 0
0 otherwise

. (7.1)

Notice that this lower bound is not as tight in the case where the late train has more than one service
task. This is displayed in Figure 7.3.

In this figure, it can be seen that the the cleaning task has a slack 𝑠 to the arrival time and 𝑠 > 𝐷.
According to the lower bound equation in Equation 7.1, the lower bound for the cleaning task lateness
should be 0. This is, however, not the case, as the cleaning task incurs a delay due to the fact that the

44 7. Results

Pre-schedule Reschedule

8:00

9:00

10:00

11:00

12:00

13:00

14:00

Arrival

Inspection

Cleaning

Arrival

Inspection

Cleaning

𝑠
𝐷

Figure 7.3: Task Delay Lower Bound with Two Service Tasks

inspection task is delayed. This shows that the lower bound is not as tight for the second task of a train
unit as it is for its first task. Notice that in none of the problem instances does a train unit occur with
more than 2 tasks.

Furthermore, notice that the lower bound does not take into account any pauses or time needed for
routing between the arrivals and the tasks. It also does not take into account possible situations where
other tasks occupy all possible resources.

Using the knowledge of the service task lower bound, it is now possible to investigate the results ob-
tained in section 7.2 more closely.

7.3. Sum of Task Lateness Performance 45

7.3.3. Desirability of the Reschedules with respect to Task Lateness
The lower bound for the task lateness has been derived and it has been concluded that most of the
task lateness occurs due to services of the delayed train. This knowledge can be used to determine
whether the performance of the rescheduling algorithms with respect to task lateness is reasonable.

Firstly, it is considered what fraction of the total lateness can be explained by the service task lateness
lower bound. This analysis is performed only on the results from the guided schedule repair reschedul-
ing algorithm. On average, more than 60% of the total lateness occurs due to the effects of the lower
bound. This is displayed in Figure 7.4.

Figure 7.4: Total lateness explained by the lower bound

Since a large percentage of the total lateness can be explained by the theoretical lower bound, it can
be concluded that the guided schedule repair performs well with respect to the sum of task lateness
performance metric. The results of 1:42 hours task lateness for experiments with 16 train units are thus
largely explained by the quite loose theoretical lower bound.

Lastly, a measurement is performed to determine whether larger values of the arrival to service task
slack indeed cause the lateness of tasks to decrease. In order to do this, a correlation study is per-
formed. Due to the fact that the theoretical lower bound is looser for the second task of a train unit than
it is for its first service task, the correlation study is performed separately on the first service tasks and
second service tasks. The correlation is measured between the slack of a service task and the actual
lateness incurred in the reschedule. Note that for this correlation study, normalized values for the slack
and the lateness have been used. The results can be found in Figure 7.5

46 7. Results

Figure 7.5: Correlation between slack and the lateness incurred due to rescheduling

The two measures show a strong correlation with Spearman’s rank correlation coefficient of 𝜌 = −0.768
in the case of the first service task of a train unit and 𝜌 = −0.794 in the case of the second service
task of a train unit. Thus, we can conclude that in order to reduce the total lateness incurred due to
rescheduling, a viable strategy would be to increase the slack between the arrival and the starting time
of the service tasks.

This is a powerful finding, since it can be used to create pre-schedules that are more flexible with
regards to the total lateness incurred due to rescheduling.

8
Conclusion

The train maintenance of the train fleet of the Nederlandse Spoorwegen occurs at certain shunting
yards. The maintenance schedule is created beforehand in order to guarantee the feasibility of the
maintenance plan. The execution of the maintenance schedule is not an entirely deterministic process
and the occurrence of certain disturbances can cause the maintenance schedule to become infea-
sible. In this research, a reactive method do deal with unforeseen disturbances has been devised.
This method is based on simulated annealing local search approach. This method is a member of
the broader category of proactive-reactive scheduling approaches, which has also been defined and
described. Finally, the properties of the pre-schedules that reduce temporal flexibility have been ana-
lyzed.

8.1. Research Questions
Can proactive-reactive rescheduling method be used to deal with disturbed TUSP schedules?

In this research, a total of four reactive rescheduling strategies based on simulated annealing local
search algorithm have been proposed. The guided schedule repair method has displayed superior
performance from the four proposed rescheduling strategies. It has been demonstrated that using this
strategy, it is possible to deal with disturbances of varying severity. The resulting reschedules are fea-
sible and similar to the pre-schedule. Furthermore, it has been shown that the slack between the train
unit arrival and the starting time of its service task is negatively correlated with the temporal flexibility
of the rescheduling process. This insight can be used to devise proactive rescheduling methods.

What are the components of a proactive-reactive scheduling algorithm and how are they
relevant for the TUSP?

In general, the proactive-reactive scheduling strategy has been demonstrated to contain five compo-
nents:

1. Problem Instance Model 𝐼

2. Disturbance Model 𝐷

3. Objective Functions 𝑔 and 𝑔

4. Pre-schedule generation algorithm 𝑓

47

48 8. Conclusion

5. Rescheduling algorithm 𝑓

In the general case of the proactive-reactive scheduling algorithm, a schedule 𝑆 for the problem
instance 𝑖 ∈ 𝐼 is initially created using 𝑓 . The pre-schedule is created such that it optimizes the
objective function 𝑔 . Then, the problem instance 𝑖 is created by disturbing 𝑖 with a disturbance
𝑑 ∈ 𝐷. Finally, the rescheduling algorithm is used to create a reschedule for the disturbed instance 𝑖 ,
using the objective function 𝑔 .

Is simulated annealing local search TUSP solver suitable to create desirable reschedules?

A total of four different approaches based on the simulated local search TUSP solver have been pro-
posed: partial rescheduling, guided partial rescheduling, schedule repair and guided schedule repair.
The four approaches differ from each other in how they address the optimization of similarity of the
reschedule with respect to the pre-schedule. The guided schedule repair performs the best out of the
four proposed methods. This method addresses the optimization of similarity measures by using the
pre-schedule as initial guess and then guiding the local search by including the similarity metrics in the
objective function. The resulting schedules are both feasible and similar.

It can not be concluded that the reschedules generated using the proposed algorithm are desirable, due
to the fact that it has not yet been determined whether the reschedules obtained using the proposed
strategies are indeed regarded as similar to the pre-schedules. In this research, a specific similarity
measure has been proposed for comparison between the pre-schedule and reschedule, but further re-
search is needed to verify whether reschedules created according to this measure are indeed regarded
as desirable.

While it can not be concluded that the reschedules are desirable, it can be concluded that the simulated
annealing TUSP solver is suitable for finding desirable reschedules, as long as the desirability of a
reschedule can be expressed as an objective function.

Which property of the TUSP pre-schedules must be improved in order to improve temporal
flexibility?

A certain property of the pre-schedules has been identified, that influences the temporal flexibility of
those pre-schedules. The slack between the arrival of a train unit and the starting time of the execution
of its service task has been proven to have a strong negative correlation with the task lateness in-
curred due to rescheduling. This property can be used as a base for the proactive schedule generation
algorithm.

8.2. Future Work
Both the rescheduling methods devised in this research as well as the presented abstract framework
can serve as base research for extension by further research. Four main areas for extension by further
research are identified: the quality of the disturbance model, the abstract framework, the significance
of desirability of a schedule and the implementation of proactive rescheduling algorithms. Those four
topics are described in the following sections.

8.2.1. Abstract Framework Extension
The abstract framework defined in this research is defined as an abstract one. It is not limited to the
train unit shunting problem. In this research, however, the main focus has been the TUSP. For this
reason, the implementations of the framework have only been described in the context of the TUSP.
Further research could extend the scope in which the implementations of the framework have been
defined.

8.2. Future Work 49

8.2.2. Disturbance Model
In this research, the disturbance model has been limited to a single train arriving late. This could be
extended in two main ways. Firstly, the type of the disturbance can be altered. The rescheduling
algorithm can be extended to handle other types of disturbances, such as unexpected train arrivals.
Further research could be used to analyze how flexible the rescheduling approaches are for dealing
with other types of disturbances.

Secondly, the disturbance model can be extended by allowing more than a single disturbance to oc-
cur. It is possible that a breakdown on the railways causes more than a single train to arrive late.
Further research could be performed in order to determine a suitable method for dealing with multiple
disturbances. A possible way to do so is the consecutive use of the proposed rescheduling algorithm
for each disturbance that occurs in order. Further research could be performed to determine whether
this approach is viable and if the rescheduling performance degrades with the repetitive use of the
rescheduling algorithm. Furthermore, when dealing with multiple disturbances, it is possible to obtain
multiple reschedules. Further research could be performed to determine how the desirability should be
calculated, with respect to the pre-schedule or the last known reschedule.

8.2.3. Desirability in Practice
A dissimilarity function has been used as a measure for desirability of a reschedule. A reschedule with
a low dissimilarity value is assumed to be desirable, but this claim should be tested in practice. Fur-
thermore, more research can be done in order to determine what exactly makes reschedules desirable
and how those properties can be expressed as an objective function.

8.2.4. Proactive Scheduling Algorithm
In this research, a certain property of the pre-schedules has been identified, that strongly correlates with
the temporal flexibility of the pre-schedules. This property is the slack between the arrival of a train unit
and the starting time of the execution of the service task. It has been shown that the correlation exists,
but no attempt has yet been made to implement a pre-schedule generation algorithm that optimizes
for this property. Further research is needed to determine how this property can be optimized in a
pre-schedule generation algorithm.

Bibliography

[1] Sporenplanonline. URL http://sporenplan.nl/.

[2] Shiwei Bao. A robust solution to train shunting using decision trees. Master’s thesis, Delft Univer-
sity of Technology, 9 2018.

[3] Dimitris Bertsimas, John Tsitsiklis, et al. Simulated annealing. Statistical science, 8(1):10–15,
1993.

[4] Richard Freling, Ramon M. Lentink, Leo G. Kroon, and Dennis Huisman. Shunting of passenger
train units in a railway station. Transportation Science, 39(2):261–272, 2005. ISSN 00411655,
15265447. URL http://www.jstor.org/stable/25769246.

[5] Willy Herroelen and Roel Leus. Robust and reactive project scheduling: A review and classifi-
cation of procedures. Katholieke Universiteit Leuven, Open Access publications from Katholieke
Universiteit Leuven, 42, 04 2004. doi: 10.1080/00207540310001638055.

[6] Willy Herroelen and Roel Leus. Project scheduling under uncertainty: Survey and research poten-
tials. European Journal of Operational Research, 165(2):289 – 306, 2005. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2004.04.002. URL http://www.sciencedirect.com/
science/article/pii/S0377221704002401. Project Management and Scheduling.

[7] Mikkel T. Jensen. Improving robustness and flexibility of tardiness and total flow-time job shops
using robustness measures. Applied Soft Computing, 1(1):35 – 52, 2001. ISSN 1568-4946. doi:
https://doi.org/10.1016/S1568-4946(01)00005-9. URL http://www.sciencedirect.
com/science/article/pii/S1568494601000059.

[8] Esmee Kleine. Generating robust solutions for the train unit shunting problem under uncertainty:
A local search based approach. Master’s thesis, Eindhoven University of Technology, 9 2019.

[9] V. Jorge Leon, S. Wu, and Robert Storer. Robustness measures and robust scheduling for job
shops. Iie Transactions, 26:32–43, 09 1994. doi: 10.1080/07408179408966626.

[10] V. JORGE LEON, S. DAVID WU, and ROBERT H. STORER. Robustness measures and
robust scheduling for job shops. IIE Transactions, 26(5):32–43, 1994. doi: 10.1080/
07408179408966626. URL https://doi.org/10.1080/07408179408966626.

[11] Roel Leus and Willy Herroelen. The complexity of machine scheduling for stability with a sin-
gle disrupted job. Operations Research Letters, 33(2):151 – 156, 2005. ISSN 0167-6377.
doi: https://doi.org/10.1016/j.orl.2004.04.008. URL http://www.sciencedirect.
com/science/article/pii/S0167637704000641.

[12] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707, 1966.

[13] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, USA, 2008. ISBN 0521865719.

[14] I. Sabuncuoglu and S. Goren. Hedging production schedules against uncertainty in manufacturing
environment with a review of robustness and stability research. International Journal of Computer
Integrated Manufacturing, 22(2):138–157, January 2009. doi: 10.1080/09511920802209033.
URL https://doi.org/10.1080/09511920802209033.

51

http://sporenplan.nl/
http://www.jstor.org/stable/25769246
http://www.sciencedirect.com/science/article/pii/S0377221704002401
http://www.sciencedirect.com/science/article/pii/S0377221704002401
http://www.sciencedirect.com/science/article/pii/S1568494601000059
http://www.sciencedirect.com/science/article/pii/S1568494601000059
https://doi.org/10.1080/07408179408966626
http://www.sciencedirect.com/science/article/pii/S0167637704000641
http://www.sciencedirect.com/science/article/pii/S0167637704000641
https://doi.org/10.1080/09511920802209033

52 Bibliography

[15] Roel van den Broek. Train shunting and service scheduling: an integrated local search approach.
2016.

[16] Roel van den Broek, Han Hoogeveen, and Marjan van den Akker. How to Measure the Ro-
bustness of Shunting Plans. In Ralf Borndörfer and Sabine Storandt, editors, 18th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018), volume 65 of OpenAccess Series in Informatics (OASIcs), pages 3:1–3:13, Dagstuhl, Ger-
many, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-096-5. doi:
10.4230/OASIcs.ATMOS.2018.3. URL http://drops.dagstuhl.de/opus/volltexte/
2018/9708.

[17] Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated annealing. In Simulated An-
nealing: Theory and Applications, pages 7–15. Springer Netherlands, 1987. doi: 10.1007/
978-94-015-7744-1_2. URL https://doi.org/10.1007/978-94-015-7744-1_2.

[18] Guilherme E. Vieira, Jeffrey W. Herrmann, and Edward Lin. Journal of Scheduling, 6(1):
39–62, 2003. doi: 10.1023/a:1022235519958. URL https://doi.org/10.1023/a:
1022235519958.

[19] S.David Wu, Robert H. Storer, and Chang Pei-Chann. One-machine rescheduling heuris-
tics with efficiency and stability as criteria. Computers & Operations Research, 20(1):1 – 14,
1993. ISSN 0305-0548. doi: https://doi.org/10.1016/0305-0548(93)90091-V. URL
http://www.sciencedirect.com/science/article/pii/030505489390091V.

http://drops.dagstuhl.de/opus/volltexte/2018/9708
http://drops.dagstuhl.de/opus/volltexte/2018/9708
https://doi.org/10.1007/978-94-015-7744-1_2
https://doi.org/10.1023/a:1022235519958
https://doi.org/10.1023/a:1022235519958
http://www.sciencedirect.com/science/article/pii/030505489390091V

	Preface
	Abstract
	Introduction
	Train Unit Shunting Problem: Context
	Train Unit Shunting Problem: Solution
	Scheduling under Uncertainty
	Research Questions

	Literature review
	Train Unit Shunting Problem
	Robust Scheduling
	Simulated Annealing

	Proactive-Reactive Scheduling Framework
	Proactive-Reactive Rescheduling Process
	Implementation of the Framework

	Train Unit Shunting Problem Schedule Desirability
	Motivation
	Dissimilarity Function
	Implementation

	Rescheduling Algorithms
	Simulated Annealing Local Search Approach
	Simulated Annealing for the TUSP
	Rescheduling Methods

	Experimental Setup
	Problem Instance Model I
	Disturbance Model D
	Objective Function gre
	Pre-Schedule Generation Algorithm fpre
	Rescheduling Algorithm fre

	Results
	Feasibility
	Desirability
	Sum of Task Lateness Performance

	Conclusion
	Research Questions
	Future Work

	Bibliography

