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Two-Dimensional Frequency-Dependent Resistance and
Inductance Calculation Method for Magnetic Components

With Round Conductors
Tianming Luo 1, Mohamad Ghaffarian Niasar 1, and Peter Vaessen1,2

1Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands
2KEMA Laboratories, 6812 DE Arnhem, The Netherlands

Magnetic components are essential parts in many power electronic applications. Their characteristics deeply impact the
performances of the applications. This article proposed a 2-D calculation method for frequency-dependent winding losses and
leakage inductance of magnetic components of round conductors. The method does not have any limitations on the winding
arrangement and considers the impact of magnetic cores and air gaps. The method is compared with several analytical methods
and the 2-D finite-element method (FEM). Measurements and 3-D FEM are also used to validate the method. The results show
that the proposed method generally has more than ten times shorter computational time than 2-D FEM and comparable accuracy,
which can speed up the magnetic component design.

Index Terms— Copper losses, eddy current, impedance, leakage inductance, winding.

NOMENCLATURE

A Magnetic vector potential.
B Magnetic flux density.
E Electric field.
H Magnetic field.
J Current density.
S Poynting vector.
Sc Cross section area of conductors.
I Current carried by a conductor.
Rdc dc resistant per unit length.
Zac ac impedance per unit length.
P Power per unit length of conductors.
φ Electric potential.
ω Angular frequency.
σ Electric conductivity.
κ Variable, equal to (1 − j)/δ.
δ Skin depth, equal to (2/(ωσµ))1/2.
µ Permeability.
µ0 Vaccum permeability.
n Order in the general solutions.
Ā Average magnetic vector potential over the

cross section of conductors.
ℜ Real part of the value.
ℑ Imaginary part of the value.
M Number of conductors.
N Truncated order.
Nr Maximal reflection time considered in an enclosed

core window.
nr Reflection time considered in an enclosed core

window.
I2N+1 Identity matrix of size 2N + 1.
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αpq Matrix represents the contribution from A′′

2nq and
B ′′

2nq to A′

2np and B ′

2np.
γp Vector consisted of C0p A′

2np and B ′

2np.
βpq Vector represents the contribution from D0q .
r0 Distance between the origin and reference points.
j Imaginary unit.
Jn nth-order Bessel function of the first kind.
A′

1n, B ′

1n Coefficients before term Jn(κr) in the general
solution of A in conductors.

A′

2n, B ′

2n Coefficients before term rn in the general solu-
tion of A in the air.

A′′

2n, B ′′

2n Coefficients before term r−n in the general solu-
tion of A in the air.

C0, D0 Coefficients in the general solution of A in the
air when n = 0.

A0 Particular solution of A in conductors and is a
constant.

Xp X coordinate of conductor p’s center in the
global Cartesian coordinates.

Yp Y coordinate of conductor p’s center in the
global Cartesian coordinates.

Arp Received part in A of conductor p.
Aep Emitted part in A of conductor p.
k Image coefficient.
T Intercore reflection times.
R Reluctance in magnetic circuit.
F Magneto-motive force (MMF) in the magnetic

circuit.

I. INTRODUCTION

ONE of the main concerns for power electronics are
their efficiency and power density. Magnetic components

play an important role in both aspects. Winding loss is an
essential part of loss estimation during the design procedure.
For a resonant converter, integrated transformers are widely
adopted [1], [2], which utilize the leakage inductance as part
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of converter tanks. Therefore, accurate estimation of wind-
ing loss and inductance can facilitate magnetic component
design. Besides, the calculation method might repetitively run
thousands of times during optimization. For this reason, the
models should have both reasonable accuracy and calculation
time.

Because of the fast calculation speed, analytical methods
are more preferred to the finite-element method (FEM) in the
first step of design. However, they are generally limited by
their assumptions and can lead to low accuracy when the
assumptions are not satisfied. Most analytical and empirical
methods first calculate ac resistance and leakage inductance
per unit length in 1-D/2-D situations and then scale it. Dowell’s
model [3], [4], [5], [6], [7] is a classic 1-D method to calculate
ac resistance and leakage inductance. It is based on the 1-D
analysis for foil windings. It can be extended to windings with
different shape conductors by transforming them into foil con-
ductors with equal dc conductance with the help of a porosity
factor. When windings significantly deviate from the model’s
assumptions, the porosity factor cannot lead to accurate results.
For ac resistance, there are also several other approaches, like
Ferreira’s formula [8], which is based on round conductors
and several improved methods [9], [10]. Ferreira’s formula
ignores the interaction of eddy current between conductors and
overestimates the winding loss in the compact winding. Some
works, like [11], [12], and [13], use FEM to obtain factors
for empirical equations. For the leakage inductance, several
2-D methods focus on low-frequency inductance [14], [15],
[16], [17] and do not consider the impact of the eddy current
in windings. Schlesinger and Biela [18] did a good review
of these methods. Mogorovic and Dujic [19] introduced the
Rogowski factor Kw to Dowell’s model. Besides calculating
the value per unit length, Wilcox derived mutual inductance
and self-inductance formulas for a coil on magnetic cores of
circular cross section [20], [21].

This article is inspired by [22] and [23]. However, in these
references, only energy stored or consumed in the conductor
is calculated by the Poynting vector, and the existence of
magnetic cores and air gaps is not considered. The method in
this article considers the energy stored outside the conductor
and the existence of magnetic cores and air gaps, expanding
the applicable range. Because the method is based on analyt-
ical solutions it has good accuracy and shorter computation
time than FEM. The proposed 2-D method’s code is built and
shared at [24]. The article is structured as follows. Section II
introduces the construction of the 2-D method. Section III
compares the results from the proposed method with results
from other models, FEM simulations, and measurements for
specific configurations.

II. PROPOSED 2-D METHOD ESTABLISHMENT

This section introduces the basic theory of the method,
including the impedance formula, the general solution of the
magnetic vector potential, the multiconductor system, and how
to deal with core and air gaps.

A. Impedance Formula

The magnetic vector potential A is defined in such a way
that its curl is equal to the magnetic flux density B. It can also
specify the electric field E , together with the electric potential
φ, as shown in the following equation:

B = ∇ × A and E = −∇φ − jωA. (1)

In the first step of the proposed method, a round conductor
is analyzed in the frequency domain under 2-D quasimagneto-
statics, and all quantities are complex. A and E only have the
component perpendicular to the 2-D plane, and the coulomb
gauge is adopted. Integrate the E over the cross section s of
the conductor, and (2) is obtained based on J = σ E and a
constant φ over the cross section‹

J ds/σ Sc = −∇φ −

‹
jωA ds/Sc. (2)

The ac impedance per unit length Zac in this article does not
consider capacitance. If a conductor carries a certain ac current
I with ω, the relation between Zac and average magnetic
vector potential Ā over the cross section is given in (3). The
stored energy calculated by Zac involves both energy inside
and outside conductors. Because the analysis is done in 2-D,
the value of A depends on the choice of the reference point,
unless the net current is zero in the case

Zac = Rdc +
jω Ā

I
. (3)

B. General Solution of Magnetic Vector Potential

As (3) shown, Ā is required for calculating Zac. Therefore,
this section explains how to obtain Ā. The following partial
differential equation (PDE) is obtained from Maxwell equa-
tions for 2-D quasimagneto-statics in the frequency domain:

∇
2 A − jωσµA = µσ∇φ. (4)

In polar coordinates (r, ϕ), as shown in Fig. 1(a), a round
conductor of radius a is located at the origin and is surrounded
by air. There are two regions in the case. One is the conductor
of conductivity σc, and another is the air of conductivity
σ = 0. The solution for the magnetic vector potential in
the conductor is the summation of the general solution of
the Helmholtz equation and a particular solution, as (5). The
solution for the air region is the general solution of the Laplace
equation, as (6). Due to the periodical condition A(r, ϕ) =

A(r, ϕ+2π) and properties of trigonometric functions, factor n
can only be non-negative integers. Besides, the Bessel function
of the second kind does not appear in (5) because of the limited
value at the center of the conductor

Ac(r, ϕ) = A0 +

+∞∑
n=0

Jn(κr)(A′

1n cos nϕ + B ′

1n sin nϕ) (5)

Aair(r, ϕ) = C0 + D0 ln (r/r0)

+

+∞∑
n=1

{
rn(A′

2n cos nϕ + B ′

2n sin nϕ)

+r−n(A′′

2n cos nϕ + B ′′

2n sin nϕ)

}
(6)

where A0 is the particular solution, κ = (1 − j)/δ, and r0 is
the distance to reference point. Due to Ampere’s law, D0 is
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Fig. 1. Illustration of used coordinates. (a) Section II-B. (b) Section II-C.

equal to −µ0 I 2π . Then, the boundary condition (7) at r = a
needs to be fulfilled

µc Hr_c|r=a = µ0 Hr_air|r=a

Hϕ_c|r=a = Hϕ_air|r=a

Az_c|r=a = Az_air|r=a . (7)

In this article, the non-magnetic conductor is considered,
that is, µc = µ0. The relations in (8) are obtained

A′

10 = −
D0

aκ J1(κa)

A′

1n =
2nan−1

κ Jn−1(κa)
A′

2n =
2n

an+1κ Jn+1(κa)
A′′

2n, n ≥ 1

B ′

1n =
2nan−1

κ Jn−1(κa)
B ′

2n =
2n

an+1κ Jn+1(κa)
B ′′

2n, n ≥ 1

A0 + A′

10 J0(κa)

= C0 + D0 ln (a/r0). (8)

Ā is obtained by integrating the general solution (5), and
the result is as shown in (9). As mentioned, D0 only relates
to the I . Lastly, C0 needs to be solved

Ā = C0 + D0 ln (a/r0) −
D0 J2(κa)

κa J1(κa)
. (9)

Sometimes, cases with a constant external magnetic field
are considered. Because the external magnetic field does not
change voltage drop and total current, it does not impact
impedance. The Poynting vector S can be used to calculate
the energy change inside conductors in this case. The power
per unit length P is shown in (10), where ∗ represents
conjugate

P =

˛
Sr=adϕ =

I 2

σπa2 + jω
µI 2

2π

J2(κa)

κa J1(κa)

+
jω
µ

∑
n=1

(
πna2n

(
1 +

Jn+1(κa)

Jn+1(κa)

)(
1 −

Jn+1(κ
∗a)

Jn+1(κ∗a)

)
×
(

A′

2n A′∗

2n + B ′

2n B ′∗

2n

) )
.

(10)

C. Multi-Conductor System

To solve the coefficients in (9) and (10), the idea used in
[22] and [23] is adopted. The basic idea is separating (6) into

two parts according to the relation between the value of A
and the variable r . One is composed of C0 and rn terms.
Coefficient C0 is a constant, and the absolute value of rn term
is positively proportional to r . From the physical point of view,
they cannot come from the source inside the conductor, thus
representing impacts from external sources. It is called the
received part. The second part includes D0 ln r/r0 term and
r−n term, whose absolute value is negatively proportional to
r . The first term represents the potential induced by uniformly
distributed current in the conductor. The second term is caused
by an eddy current in the conductor. This part’s sources are
inside the conductor and this part is called emitted part. Then
equations can be formed by equating the received part of one
conductor and the summation of emitted parts of the other
conductors or sources.

In Section II-B, the general solution (6) is given in one
conductor’s polar coordinates. To connect the Aair of different
conductors, it is better to convert formulas into Cartesian
coordinates. As shown in Fig. 1(b), there is a global Carte-
sian coordinates (x, y) and each conductor has a Cartesian
coordinates, like (x p, yp), whose origin is the center of the
conductor.

The received part Arp of conductor p is converted to its
Cartesian coordinates (x p, yp), as shown in the following
equation:

Apr = C0p +

+∞∑
n=1

{
A′

2npℜ((x p + j yp)
n)

+ B ′

2npℑ((x p + j yp)
n)

}
. (11)

Then, the emitted part Aeq of conductor q is received by
conductor p. Aeq is converted to the coordinates (x p, yp), like
x p = xq + Xq − X p. The results is (12), and denote 1X pq =

Xq − X p and 1Ypq = Yq − Yp

Aeq =
D0q

2
ln

(x p − 1X pq)
2
+ (yp − 1Ypq)

2

r2
0

+

+∞∑
n=1

{
A′′

2nqℜ(((x p −1X pq)− j (yp − 1Ypq))
−n)

+ B ′′

2nqℑ(((x p −1X pq)− j (yp − 1Ypq))
−n)

}
.

(12)

Expand both (11) and (12) using binomial expansion and
Maclaurin expansion. The coefficients of the x P

p yQ
p term for

both the received part Arp and the emitted part Aeq are known.
The relation between factor A′

2nq and factor A′′

2nq is known
from (8). Therefore, a set of equations for a system with
M conductors is formed. The infinite series expansions are
truncated to N th order to facilitate calculation. The matrix
equations like (13) are formedI2N+1 · · · α1M

...
. . .

...

αM1 · · · I2N+1


 γ1

...

γM

 =


∑

q ̸=1 β1q
...∑

q ̸=M βMq

. (13)

The first matrix is composed of M × M sub-matrices. Each
sub-matrix’s size is (2N +1) × (2N +1), and all the diagonal
sub-matrices are identity matrices. Matrix αpq represents the
contribution from A′′

2nq and B ′′

2nq to A′

2np and B ′

2np, and p ̸= q .
Vector γp is a vector representing unknown coefficients C0p,
A′

1np, and B ′

1np. Vector βpq is the contribution from coefficients
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Fig. 2. (a)–(c) Application of the method of images for magnetic cores.
(d) Illustration of wave reflection at magnetic cores.

D0q . Both vectors γp and βpq have 2N + 1 size. The details
of the matrix are shown in the Appendix.

By solving (13), coefficients γp of conductor p is obtained.
Then, the impedance and loss of conductor p can be calculated
from (3) and (10).

D. Impact of Cores

Magnetic cores are commonly used in magnetic compo-
nents, and their impacts should be considered. This section
introduces how to incorporate the impact of cores into the
matrix (13).

1) Method of Images: The method of images is a clas-
sic method to deal with specific boundary conditions [25].
As shown in Fig. 2, the boundary is replaced by an image
current, whose current is k I , and coefficient k is defined in
(14). In this progress, the impacts of the finite thickness and
height of the core are ignored

k =
µr − 1
µr + 1

. (14)

The matrix (13) involving both real and image conductors
can be formed. However, it dramatically increases the size
of linear equations and slows down the calculation speed,
which is roughly proportional to (M(2N + 1))3. Therefore,
a reflection method is proposed based on the method of image.

2) Reflection Method: Compared to adding image conduc-
tors, the boundary is considered by the wave reflection idea.
The emitted part Ae encounters the boundary and reflects back,
like Fig. 2(d). The reflection can be regarded as Ae from the
image conductor, which has the same γ as the real conductor
and the mirrored coordinates. In this way, the size of linear
equations remains the same.

For example, assume a magnetic boundary that is perpen-
dicular to the x-axis at Xm in global Cartesian coordinates.
When q conductor produces the emitted part, the point (xq , yq)

receives a reflection, whose value is equal to the value point
(2Xm − 2Xq − xq , yq) received multiplying k. Then, convert
to received conductor p’s coordinates, received value equal to
the value at point (1Xxpq − x p, yp − 1Ypq), where 1Xxpq =

2Xm − Xq − X p. The reflected emitted part from q is (15).
Horizontal boundaries can be solved in the same way
Axrefq

k

=
D0q

2
ln
( (x p − 1Xxpq)

2
+ (yp − 1Ypq)

2

r2
0

)

Fig. 3. (a) Magnetic circuit of a gaped core and (b) equivalent magnetic
circuit with anti-MMF.

+

+∞∑
n=1

{
A′′

2nqℜ((−(x p − 1Xxpq) − j (yp − 1Ypq))
−n)

+B ′′

2nqℑ((−(x p − 1Xxpq) − j (yp − 1Ypq))
−n)

}
.

(15)

For conductors inside the core window, there are two
vertical and two horizontal magnetic boundaries enclosing the
conductors. Therefore, multi-time reflected parts should be
taken into account, which follows the same procedure as for
one boundary. After the preceding process, the impact of cores
is included asI2N+1 +

∑
knrαref11 · · · α1M +

∑
knrαref1M

...
. . .

...

α1M +
∑

knrαrefM1 · · · I2N+1 +
∑

knrαrefM M


×

 γ1
...

γM

 =


∑

j ̸=1 β1 j +
∑

knrβref1 j
...∑

j ̸=M βM j +
∑

knrβrefM j

. (16)

The impact of core thickness can also be considered accord-
ing to [26], as shown in Fig. 2(d). If using a perpendicular
domain with a thickness w, the emitted part after T times
intercore reflection, the value is equal to the value at point
(2(Xm − Xq ± T w) − xq , yq) multiply kT

2 (−k1)
T −1(1 − k2

1).
k1 is the reflection coefficient at the first boundary, and k2 is
the coefficient at the second boundary. According to [15], the
thickness is not a critical parameter in leakage inductance cal-
culation when the thickness is above a particular value, 1 mm
for µr = 2000. Because the cores used in the next section
satisfy this thickness requirement, the intercore reflection is
not considered in the latter part.

E. Impact of Air Gaps

Air gaps are widely used in inductors, and the fringe flux
can cause huge proximity effect loss in the nearby conductors.
Therefore, it is necessary to consider the impact of fringe flux
on winding loss. In [27] and [28], the impact of the air gap
is analyzed based on solving PDE and boundary conditions.
However, it is complex and difficult to be incorporated into the
method. Another way to consider fringe flux impact is adding
an anti-MMF source and having a core without gap, used in
[10], [29], and [30]. The anti-MMF source is assumed to be
not influenced by the frequency and the location of conductors.

Through analyzing the magnetic circuit in Fig. 3, the
relation between the MMF of all conductors F and the MMF
of counter source Fa can be obtained based on equating the
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Fig. 4. Illustration of winding configurations. (a) and (b) Equal layer heights
with different distances between conductors and (c) different layer heights.
(d) Notation of a winding inside the core window and (e) outside the core
window.

flux through Rfringe in two circuits

Fa = −
F/Rm

1/Rm + 1/Rgap + 1/Rfringe
(17)

where Rm is the reluctance of core, Rgap is the reluctance of
air gap, Rfringe is the reluctance of path for fringe flux, Rmgap
is the reluctance of the magnetic material filling the air gap,
and Rmgap ≪ Rm.

This counter source can be a surface current source or a
point current source. The surface current source’s magnetic
vector potential is represented by (18). Then, βgap representing
the emitted part of the counter source is added to the matrix
equations. Coefficient C0a is calculated based on each con-
ductor’s coefficients. If Fa is real value, the image part of C0a
represents the losses caused by fringe flux. Assuming that the
contribution from each conductor to fringe flux is proportional
to its carrying current, the image part of C0a is correspondingly
allocated to each conductor.ˆ

g
Aadl =

ˆ
g

C0a + D0a ln (r/r0)dl. (18)

III. SIMULATION AND MEASUREMENT

In this section, Zac from the proposed method, FEM and
several analytical methods are compared. For the FEM simula-
tions, COMSOL software is used. The boundary layer feature
in COMSOL is used to guarantee the accuracy of simulations.
The proposed method follows the process shown in Fig. 5.

Fig. 5. Flowchart of the proposed calculation method.

Fig. 6. (a) Resistance, (b) leakage inductance per unit length, and (c) com-
putation time of Case 1 at 100 kHz with varying truncated order or reflection
time.

Truncated order N is set as 3, and the maximal considered
reflection time Nr inside the core window is set as 2. Three
different configurations are computed, and transformers and
inductors based on two of three windings are built and
measured. In the calculation, each turn in the same winding
is assigned the same current. The winding current follows the
turn ratio in transformers. Results are compared with scaled
estimations.

The geometries of three different configurations are shown
in Fig. 4. Black parts are possible air gaps, and conductors
with the same color are of the same winding. Details about
the configurations are given in Table I. The semicolon in the
row “Number of turns” of Table I separates the information
of two windings.

A. Proposed Method Setting Choice

In this section, the selection of N and Nr is discussed.
Fig. 6(a) and (b) shows the resistance and leakage inductance

Authorized licensed use limited to: TU Delft Library. Downloaded on January 30,2024 at 09:07:13 UTC from IEEE Xplore.  Restrictions apply. 



8400211 IEEE TRANSACTIONS ON MAGNETICS, VOL. 60, NO. 1, JANUARY 2024

TABLE I
DETAIL INFORMATION ABOUT WINDING CONFIGURATIONS

per unit length with varying N and certain Nr = 2, or varying
Nr and certain N = 3. When N is larger than 3, the values
converge, and therefore the order is set as 3. Compared
to different N , different Nr show more influence on the
result inside the core window. When Nr is larger than 4, the
difference is negligible. However, as (c) shows, the higher Nr,
the longer the computation time is, therefore, Nr is set to 2.
From our experience, it can satisfy the requirements of general
cases.

B. AC Resistance

Winding ac resistance is one of the most important loss
sources for magnetic components. In this section, the esti-
mated resistance per unit length from 2-D FEM, the proposed
method, the other two 2-D methods [10], [30], and two 1-D
methods [4], [11] are compared.

First, the two windings in each case carry the current
keeping total MMF zero, which represents the transformer
mode. Air gaps are not applied. For cases (1) and (2), windings
have equal height but do not fully fill the core window height,
roughly 15% less. Therefore, 1-D methods are used. For case
(3), the windings have considerable height difference, and 1-D
methods are not compared.

Fig. 7 shows the results for all three cases. In (a) and
(b), all methods provide less than 10% error results when
a/δ ≤ 1 compared to 2-D FEM. The three 2-D methods have
less error than the two 1-D methods. However, Mühlethaler’s
approach has significant errors when the frequency is high.
For case (2), which has a larger distance between turns,
the three 2-D approaches still have more accurate results.
Dowell’s method overestimates significantly at high frequency,
and another 1-D method underestimates less than 10%. In case
(3), the proposed method shows a more stable result than the
other 2-D methods. Based on the results for the cases without
air gap, the three 2-D methods show similar results when
a/δ ≤ 1. The proposed method gives less than 3% error in all
situations and is more stable than the other two 2-D methods.

Then, the two windings in each case carry the same current,
that is, connect in series, and air gaps are applied, which

Fig. 7. Resistances per unit length and relative error compared to 2-D
FEM in the transformer mode without air gap. (a) and (b) Case (1). (c) and
(d) Case (2). (e) and (f) Case (3).

represents the inductor mode. Only three 2-D methods are
compared with 2-D FEM because 1-D methods cannot deal
with air gaps. Due to the possible considerable difference
between the situation inside and outside the core window, the
ac resistance is calculated under both situations. It needs to be
mentioned that to keep the sample level fringe flux, the air gap
outside the core window FEM is replaced by a magnetic core
with a surface current density. In cases (1) and (2), there are
two gaps on different core legs. Therefore, the ac resistance
per unit length is estimated in two situations, that is, winding
inside and outside core windows. Fig. 8 shows the results for
all cases in inductor mode. All methods provide less than 10%
error results when a/δ ≤ 1. The proposed method obviously
shows more stable and accurate results compared to the other
two 2-D methods, and the relative differences compared to
FEM are quite small, less than 1%.

C. Leakage Inductance

The leakage inductance per unit length is calculated for all
cases in transformer mode. The FEM, proposed method, two
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Fig. 8. Resistances per unit length and relative error compared to 2-D FEM
in the inductor mode with air gap. (a) and (b) Case (1). (c) and (d) Case (2).
(e) and (f) Case (3).

frequency-related methods [3], [19] and two static methods
[15], [17] are used. Besides, considering the possible differ-
ence between the inside and outside core window [18], the
leakage inductance per unit length is also calculated for both
situations.

Fig. 9 shows the results of case (1). First, the leakage
inductance for low frequencies has close results except for
Dowell’s model. It implies that the Rogowski factor Kw can
improve the accuracy of Dowell’s model when the windings
have equal heights and compact alignments of conductors.
Two static methods deviate from FEM results for increasing
frequencies. The proposed method has less than 3% error in
the whole frequency range and is closer than the other two
methods considering eddy current.

Fig. 10 shows the results of case (2). For the low-frequency
range, the error from other methods in case (2) is much larger
than in case (1) because of the large distance between turns.
Two static methods could reduce the error by considering each
turn as a winding. The proposed method still has less than a
3% error and follows the FEM curve.

Fig. 9. Leakage inductance per unit length and relative error compared to 2-D
FEM of the case (1). (a) and (b) Inside the core window. (c) and (d) Outside
the core window.

Fig. 10. Leakage inductance per unit length and relative error compared
to 2-D FEM of the case (2). (a) and (b) Inside the core window. (c) and
(d) Outside the core window.

Fig. 11 shows the results of case (3). In the low-frequency
range, the static methods have roughly 3% error because turns
align compactly. However, Dowell’s model and Mogorovic’s
improvement cannot handle windings with different heights
because both of them assumed equal height windings. The
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Fig. 11. Leakage inductance per unit length and relative error compared
to 2-D FEM of the case (3). (a) and (b) Inside the core window. (c) and
(d) Outside the core window.

TABLE II
COMPUTATION TIME OF THREE CASES WITH 41 FREQUENCY POINTS

proposed method has a similar performance as in the previous
two cases.

Except for the accuracy, the computation time is
another important feature. Table II compares computa-
tion time for three cases with 41 frequency points
from FEM and the proposed method. For all situa-
tions, the proposed method is more than 50 times faster
than FEM.

D. Measurement and 3-D FEM

In the preceding part, comparisons are based on 2-D FEM.
To further validate the method in real situations, 3-D FEM and
measurement are done.

Three-dimensional FEMs for case (1) and case (2) in both
transformer and inductor modes were simulated. To guarantee
the accuracy of computation, the boundary layer mesh is used,
and the smallest size of an element is smaller than one-third
of skin depth based on analysis in [31]. Two corresponding
samples were built, as shown in Fig. 12, and their details are
listed in Table III. Using different connections, two samples
can become transformers or inductors. The measurements are
done by the impedance analyzer Agilent 4294A.

Fig. 12. Picture and 3-D FEM mesh of test samples, right is the case (1)
and left is the case (2).

TABLE III
BASIC INFORMATION FOR SAMPLES

Fig. 13. Equivalent circuit of inductors.

The short circuit method was used to measure transformers’
leakage inductance and winding losses. The core losses are
assumed negligible. The resonant frequency is in the region
a/δ > 15, far from the interested region a/δ < 5, and the
measured ac resistance does not need correction. However,
core loss is considerable for inductors. Due to the potential
error from inaccurate complex permeability, an auxiliary trans-
former based on [32] is used to estimate core loss. Besides, the
impact of parasitic capacitance C p is compensated based on
an equivalent circuit of inductors, as shown in Fig. 13. After
compensation, the summation of winding resistance Rw and
core resistance Rc is obtained.

Estimated 2-D values need scaling before comparing with
3-D FEM and measurement. Generally, the value is scaled by
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Fig. 14. Resistance and relative error of estimations in transformer mode.
(a) and (b) Case (1). (c) and (d) Case (2).

Fig. 15. Resistance and relative error of estimations in inductor mode. (a) and
(b) Case (1). (c) and (d) Case (2).

the mean turn length (MTL) lm . However, the values inside
and outside the core window can be significantly different.
Then the scaling can use a double 2-D method [10], [18],
[33]. Based on 2-D FEM results, transformers’ resistances use
normal MTL, leakage inductances and inductors’ resistances
use the double 2-D method. The relevant parameters for
scaling are listed in Table III.

Fig. 16. Leakage inductance and relative error of estimations in inductor
mode. (a) and (b) Case (1). (c) and (d) Case (2).

Fig. 14 shows the resistance of transformers. In both cases,
the scaled results are close to the results from measurement
and 3-D FEM. The error stays below 10% for the whole
frequency range. Compared to another 2-D approach, the
proposed method does not perform much better. However,
it can estimate the leakage inductance at the same time.

Fig. 15 shows the resistance for samples in the inductor
mode. Compared to the transformer mode, scaled resistances
and 3-D FEM have obviously larger differences from measure-
ments. In both cases, 3-D FEM results match 2-D estimations
better than measurement. The maximal error is close to
20% in case (1) and approximates 10% in case (2). Several
aspects contribute to the difference between measurement
and estimation. The first one is the resonant compensation.
When the testing frequency is near the resonant frequency,
the impedance is very sensitive to the frequency. For this
case, the accuracy of the circuit and resonant frequency are
important. For case (1), the measured resonant frequency is
at 493.8 kHz and the point a/δ = 4 is at 270 kHz, which
is close to the resonant frequency. The second aspect is the
inequality between the 3-D and double 2-D methods. The
difference between the 3-D FEM and scaled results implies
that some error comes from this inequality. Next is the core
loss prediction. When the core losses are comparable to
winding losses, the error in the core loss estimation can lead
to considerable differences in winding resistance. Besides,
factors like imperfect geometric parameters and impedance
phase measurement errors can also lead to winding resistance
errors.

Fig. 16 shows the leakage inductance of transformers.
Based on the performance in 2-D comparison, estimation from
Morgorovic’s method is compared with the proposed method.
In general, the relative differences between measurements
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and estimations stay below 10% for both cases. The scaled
estimations from 2-D FEM are more close to the results from
3-D FEM than to the measurements.

IV. CONCLUSION

This article proposes a 2-D method for winding losses and
leakage inductance based on magnetic vector potential. The
method considers the possible existence of cores and air gaps
and does not have limitations on winding arrangements. For
2-D models, the proposed method has less than 5% error
for all settings compared to 2-D FEM and ten times faster
computational time. Besides, it is more stable than other esti-
mation methods for various winding arrangements. The scaled
estimated values show good accuracy compared to 3-D FEM
and a bit higher error compared to actual measurements. The
proposed 2-D method can speed up the magnetic component
design.

APPENDIX
DETAIL OF MATRIX

In this Appendix, the sub-matrices γp, βpq , and αpq used
in the model construction are given. In each matrix, symbol n
varies with column and m varies with row from 1 to N

γp =



C0p

N

A′

2np
...

N

B ′

2np
...


(19)

βpq =



Dq/2 ln
1X2

pq+1Y 2
pq

r2
0

−
Dq

m ℜ((1X pq − j1Ypq)
−m)

... m = 1, 2, . . . N
−

Dq

m ℑ((1X pq − j1Ypq)
−m)

... m = 1, 2, . . . , N


(20)

αpq =

 0 ℜpqn0(1×N )
ℑpqn0(1×N )

0(N×1) ℜpqnm (N×N )
ℑpqnm (N×N )

0(N×1) −1nrℑpqnm (N×N )
−1nr+1

ℜpqnm (N×N )


(21)

ℜpqnm = λqnmℜ

(
−1n

(1X pq − j1Ypq)n+m

)
ℑpqnm = λqnmℑ

(
−1n

(1X pq − j1Ypq)n+m

)
λqnm = −

a2n
q Jn+1(κaq)

Jn−1(κaq)

(n + m − 1)!

(n − 1)!m!
. (22)

When constructing the matrix from reflection, ℜpqnm and
ℑpqnm in (22) have different forms. Besides, nr is the times
of reflection the submatrix presents. For the case involving
odd x reflection and even y reflection, that is, reflected at
vertical boundary for odd times and horizontal boundary for

even times, parameters ℜpqnm and ℑpqnm should be (23), and
1Xxpq = 2Xm − Xq − X p.

ℜpqnm = λqnmℜ

(
1

(1Xxpq + j1Ypq)n+m

)
ℑpqnm = λqnmℑ

(
1

(1Xxpq + j1Ypq)n+m

)
. (23)

For the case involving even x reflection and odd y reflection,
two parameters should be (24), and 1Yypq = 2Ym − Yq − Yp.

ℜpqnm = λqnmℜ

(
−1n

(1X pq + j1Yypq)n+m

)
ℑpqnm = λqnmℑ

(
−1n

(1X pq + j1Yypq)n+m

)
. (24)

For the case involving odd x reflection and odd y reflection,
two parameters should be in the following equation:

ℜpqnm = λqnmℜ

(
1

(1X pqx − j1Yypq)n+m

)
ℑpqnm = λqnmℑ

(
1

(1X pqx − j1Yypq)n+m

)
. (25)
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