
 
 

Delft University of Technology

Configuration Space Exploration for Digital Printing Systems

Denkers, Jasper; Brunner, Marvin; van Gool, Louis; Visser, Eelco

DOI
10.1007/978-3-030-92124-8_24
Publication date
2021
Document Version
Final published version
Published in
Software Engineering and Formal Methods - 19th International Conference, SEFM 2021, Proceedings

Citation (APA)
Denkers, J., Brunner, M., van Gool, L., & Visser, E. (2021). Configuration Space Exploration for Digital
Printing Systems. In R. Calinescu, & C. S. Păsăreanu (Eds.), Software Engineering and Formal Methods -
19th International Conference, SEFM 2021, Proceedings: 19th International Conference, SEFM 2021,
Virtual Event, December 6–10, 2021, Proceedings (pp. 423-442). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13085
LNCS). Springer. https://doi.org/10.1007/978-3-030-92124-8_24
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-92124-8_24
https://doi.org/10.1007/978-3-030-92124-8_24


Configuration Space Exploration
for Digital Printing Systems

Jasper Denkers1(B) , Marvin Brunner2, Louis van Gool2, and Eelco Visser1

1 Delft University of Technology, Delft, The Netherlands
{j.denkers,e.visser}@tudelft.nl

2 Canon Production Printing B.V., Venlo, The Netherlands
{marvin.brunner,louis.vangool}@cpp.canon

Abstract. Within the printing industry, much of the variety in printed
applications comes from the variety in finishing. Finishing comprises the
processing of sheets of paper after being printed, e.g. to form books.
The configuration space of finishers, i.e. all possible configurations given
the available features and hardware capabilities, are large. Current con-
trol software minimally assists operators in finding useful configurations.
Using a classical modelling and integration approach to support a vari-
ety of configuration spaces is suboptimal with respect to operatability,
development time, and maintenance burden.

In this paper, we explore the use of a modeling language for finishers
to realize optimizing decision making over configuration parameters in
a systematic way and to reduce development time by generating control
software from models.

We present CSX, a domain-specific language for high-level declarative
specification of finishers that supports specification of the configuration
parameters and the automated exploration of the configuration space of
finishers. The language serves as an interface to constraint solving, i.e.,
we use low-level SMT constraint solving to find configurations for high-
level specifications. We present a denotational semantics that expresses
a translation of CSX specifications to SMT constraints. We describe the
implementation of the CSX compiler and the CSX programming envi-
ronment (IDE), which supports well-formedness checking, inhabitance
checking, and interactive configuration space exploration. We evaluate
CSX by modelling two realistic finishers. Benchmarks show that CSX
has practical performance (<1s) for several scenarios of configuration
space exploration.

1 Introduction

Digital printing systems are flexible manufacturing systems, i.e. manufactur-
ing systems that are capable of adjusting their abilities to manufacture differ-
ent types and quantities of products, without expensive hardware changes. The
variety in printing applications stems from both printing (printing on sheets
of paper) and finishing (processing collections of printed sheets, e.g. to form a

c© The Author(s) 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 423–442, 2021.
https://doi.org/10.1007/978-3-030-92124-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_24&domain=pdf
http://orcid.org/0000-0003-3014-8324
http://orcid.org/0000-0002-7384-3370
https://doi.org/10.1007/978-3-030-92124-8_24


424 J. Denkers et al.

book). The configuration space for a digital printing system consists of all pos-
sible configurations given the system’s features and hardware constraints. For
producing a booklet of a particular size, a printed stack of sheets can be stitched,
it can be folded, and it can be trimmed. Optionally, the sheets can be rotated in
an intermediate production step such that a single trimming component can be
used for trimming in multiple dimensions. The decisions made for these manufac-
turing parameters influence important factors such as productivity (production
time increases when sheets are rotated) or efficiency (paper is wasted when input
sheets are trimmed).

Ideally, control software assists operators in exploring the configuration space.
For example, given some available paper and the intent to produce a booklet, the
software should automatically derive a viable manufacturing configuration. Such
a configuration e.g. comprises the orientation of the input sheets, the number
of stitches, and the amount of side and face trimming needed to get the desired
end result. In addition, an optimization objective can be relevant while finding a
configuration, e.g. minimizing paper waste. The control software and user inter-
faces of state of the art digital printing systems do not support such automated
configuration space exploration. Instead, operators have to provide configura-
tions for finishers manually. A configuration can be simulated; by “executing”
the finishing process in software, finishing viability can be checked without wast-
ing resources. Still, it remains a cognitively intensive task for operators to find
a valid or optimal configuration.

Finishers are produced by many vendors and integrating them with printers
is non-trivial. Such integration involves connecting the control software of the
printer and finishers and driving embedded software components. Using a clas-
sical modeling and integration approach to support the variety of finishing is
suboptimal with respect to development time and maintenance burden. Issues
with such a classical approach are the long code-build-test cycle and the large
amount of finisher vendors and models that must be supported for many years.
The translation of the mechanical specifications into control software code gives
rise to additional complexity.

Our objective is to obtain an effective, efficient, and scalable method for
modeling finishers and obtaining control software for finishers that support auto-
mated configuration space exploration. In this work, we investigate how linguis-
tic abstraction can help to model the configuration space of digital printing
systems, and how we can automatically derive environments for configuration
space exploration from such specifications.

The global characteristics of finishers make the use of constraint (SMT) solv-
ing a natural fit for realizing environments for configuration space exploration.
For example, trimming the paper along a certain dimension might impose a spe-
cific orientation or transformation in an earlier production step. A constraint-
based approach considers its specifications as global and will take into account
interdependent system-level constraints when finding solutions, i.e., configura-
tions. A constraint-based model of a finisher contains a representation of the
input materials at intermediate locations in the system. However, for modelling



Configuration Space Exploration for Digital Printing Systems 425

domain objects such as sheets and stacks, abstraction mechanisms such as classes
are not naturally available in SMT modelling. An SMT model of a finisher
requires low-level encoding of the properties of the materials at all locations.
Therefore, expressing finishers in SMT by hand is tedious, error prone, and is
not in terms of domain concepts. Additionally, an SMT model of a finisher is
complex to understand and difficult to maintain.

In this paper, we present CSX, a domain-specific language for the high-
level declarative specification of finishers. The language supports specification of
input materials, configuration parameters, output products, and finishing con-
straints in terms of domain concepts. The CSX IDE supports the development
and checking of specifications and the automated derivation of an environment
for configuration space exploration by operators of the finishers.

CSX provides a domain-specific interface to SMT solving by abstracting and
structuring over low-level properties. We translate specifications to the SMT
domain and use existing solvers to find solutions at the level of properties and
finishing parameters. A solution in the SMT domain corresponds to a valid
configuration. Unsatisfiability at the SMT level indicates an empty configura-
tion space, i.e., no finishing possibilities. By mapping SMT solutions back to
the specification level, we can interpret CSX specifications in multiple modes:
checking whether a configuration is valid, finding an (optimal) configuration,
and validating specifications. By caching invocations of the solver in the IDE,
response times are improved which leads to an interactive editing experience.

The approach of specifying a finisher with CSX and deriving control soft-
ware has similarities with the approach of simulation in control software. Both
approaches take representations of the products being produced at intermedi-
ate locations in the devices. However, while simulation involves an operational
and sequential application of transformations on objects, a constraint-based app-
roach considers the devices globally. CSX improves over simulation in the sense
that it derives environments that can search for (optimal) configurations in an
automated way, taking system-global interdependencies into account.

We evaluated the design and implementation of CSX by modelling two fin-
ishers: a perfect binder and a booklet maker. In the process of modelling these
devices, we have experimented with various encodings. For both cases, we bench-
mark the configuration space exploration performance for several scenarios.

Contributions. To summarize, the contributions of this paper are the following:

– We have developed CSX, a declarative language for the specification of fin-
ishers at the conceptual level of the domain. We interpret CSX specifications
for several modes of configuration space exploration: checking whether con-
figurations are valid, finding optimal configurations under objectives, and
interactively validating specifications.

– We define a denotational semantics of CSX in terms of SMT constraints that
serves as an interface to solvers that can be used to find models in order to
check inhabitance of a specification and to explore the configuration space of
the specified finisher.



426 J. Denkers et al.

– We realize a programming environment for CSX that integrates an SMT
solver as back-end and that presents solutions in terms of the specification.

– We evaluate CSX by specifying two types of finishers: a perfect binder and a
booklet maker. For these cases, we benchmark the performance for a config-
uration space exploration scenario with and without optimization.

2 Finishers in the Digital Printing Domain

In this section, we discuss the domain of digital printing systems with finish-
ers. Complete printing systems for e.g. producing books include, in addition
to printing itself, finishing capabilities. Finishing comprises the processing of
printed sheets of paper into end products. For example, a stack of printed sheets
could be stapled, folded, and trimmed to result into a booklet; stapling, folding,
and trimming are finishing operations. Finishing devices need to be integrated
with the printing system for realizing an integrated end-to-end experience for
the print system end-users (i.e. operators in print shops).

The turnaround time of integrating finishers with printers is high because of
multiple challenging aspects. First, finishers are often produced by external ven-
dors and communication is mostly documentation based and thus requires inter-
pretation, reviews, implementation, and testing. Second, obtaining good system
behavior requires mechanical, electrical and software interfaces to be matched
well between the printer and finisher. Third, total aspects such as reliability
are the result of all the mentioned interfaces to be well designed. Considerable
testing time is needed to confirm reliability.

Creating control software that is user-friendly for operators is difficult and
requires a lot of manual programming. This is because of the high variability and
many configuration parameters in print and finishing systems. A typical print
and finishing system has more than 200 accessible parameters for the operator,
that are also interdependent. Because the whole production process is a sequence
of production steps, choices that you have to make in the beginning influence
the steps later on. From the product line perspective, the control software sup-
ports tens of different finisher types, that each of them can have more than 100
commercial variations. For all variations, the parameters that are accessible for
operators can vary.

Ideally, operators can use the combination of a printer with finishers as an
end-to-end solution instead of having to configure each device separately. Addi-
tionally, optimization capabilities are also useful when considering the system
as a whole. For example, an operator would like to produce booklets with the
available resources and while minimizing paper waste or while optimizing pro-
ductivity. If the different configuration possibilities impose a tradeoff between
e.g. resource consumption and productivity, an operator should be able to make
a motivated choice with ease, i.e., without thinking about and manually trying
out many combinations of configuration parameters.



Configuration Space Exploration for Digital Printing Systems 427

Fig. 1. Schematic view of the perfect
binding book producing process. Only
milling, creasing, and covering are con-
figurable and therefore impact the con-
figuration space. Jogging and glueing
are automatically configured by the
device itself.

Fig. 2. A perfectly bound book viewed
from the top. Spine creases result into
a sharper fold, reduce wrinkles, and
improve the fit of the cover around the
bookblock. Courtesy creases ease open-
ing the front and back part of the cover.
Glue in the spine holds the bookblock
sheets and cover together.

2.1 Perfect Binding

As an example, we discuss a perfect binder : a finisher that produces books by
binding a stack of sheets with glue and by covering the bookblock in a cover
sheet. A perfect binder typically has two inputs: one for the stack of sheets that
form the book block and one for the cover sheets. Figure 1 shows the perfect
binding process. Figure 2 depicts the components of a perfectly bound book,
viewed from above.

After collecting a stack of sheets, jogging makes sure the stack of sheets
becomes aligned in a corner of the spine. Then, a clamp grasps the bookblock
under pressure. Next, a few millimeters of paper are milled along the spine edge
to prepare the spine for application of glue. Milling makes the paper along the
spine rough, improving adherence of the glue. Then, the spine travels through a
bath of heated glue.

Separately, cover sheets are prepared before being bound around the book-
block. The preparation consists of creasing, i.e., applying pressure on the paper
to ease folding of the paper later. Two creases are applied at the location of
the cover that end up along the edges of the spine of the book. These creases
improve the fit of the cover along the spine of the book block, supporting a
tight fold around the spine. Additionally, two courtesy creases are applied on
the cover. Courtesy creases are applied on the front and back of the resulting
book to support the folding of the cover sheet. Note that courtesy creases are
applied at the opposite side as the spine creases, as they are used for folds in
opposite directions.



428 J. Denkers et al.

Fig. 3. Components of a perfectly bound book (cover and bookblock) and the dimen-
sions as how we use them in the CSX specification.

After preparing the bookblock and cover, the covering occurs. The bookblock
with glue is positioned in the center of the cover sheet. The cover sheet is folded
around the bookblock and fixed with a clamp. After a delay for the glue to
solidify, the book is released. In practice, the resulting book could be processed
further in a cutting machine to trim along the edges of the book and cover to
result into a nice book.

Perfect binders are flexible in the books they can produce, e.g. in terms of
sheet size or book thickness. Not all flexible manufacturing steps have impact on
the configuration space. For example, jogging and glueing occur automatically
and are configured by the device itself based on measurements. Other settings
such as the milling depth and positioning of the bookblock on the cover are of
interest to the operator and therefore do impact the configuration space; e.g.
more milling might increase the overall production time.

3 CSX

The key idea of CSX is that we model objects such as sheets and stacks and that
we specify symbolic values, i.e. instances, for these objects at several intermediate
steps in the finishing process. By adding constraints and indicating configuration
parameters, a specification defines the configuration space of a device. In CSX
we also describe jobs, i.e., (partial) descriptions of the production process in
terms of the production objects and parameters. We achieve configuration space
exploration by synthesizing configurations from a configuration space for a given
job.

CSX is declarative: a specification in the language describes behavior and con-
figuration spaces of finishers. A CSX specification does not describe algorithms
to compute configurations. Specifications include relations between objects at
locations in the systems. We use the language to model devices as sequences
of components that perform actions. Components instantiate generic, reusable
actions. Actions establish a relationship between snapshots of objects in the fin-
ishers and thus, transitively, devices define a relation between all snapshots of
the products being produced. Parameters in actions represent a dimension of



Configuration Space Exploration for Digital Printing Systems 429

Fig. 4. The specification of types for the example perfect binder in CSX. Dimensions
are in 0.1mm.

Fig. 5. The specification of actions for the example perfect binder in CSX. See Fig. 3
for the dimensions used in this specification.



430 J. Denkers et al.

Fig. 6. The specification of the example perfect binder device in CSX.

configuration that is of interest to operators of the devices. Constraints restrict
instances of types and restrict the behavior of actions and devices, reducing
the configuration space. We will now introduce the language concepts in more
detail based on a specification for an example perfect binder such as described
in Sect. 2.

Defined types are records of properties that model objects at locations in a
device. In Fig. 4, we define several types for the example perfect binder. Dimen-
sions (widths, heights, lengths, distances) are modelled with integers with a
precision of 0.1mm, such that an integer value of 10 stands for a length of 1mm.
Types contain defining properties that are of a primitive type (boolean or inte-
ger) or of a defined type such that types can be nested. The nesting of types
may not contain a cycle. Types optionally contain constraints and derived prop-
erties. Constraints restrict the inhabitants of a type. In Fig. 4, the constraints
(between square brackets) e.g. restrict sheets to have positive non-zero width
and height. Derived properties are shorthands for expressions over other prop-
erties. Defining properties are required to instantiate a type. Derived properties
are not required to instantiate a type and their values can be derived from other
properties. A derived property expression may refer to the type’s properties and
to other derived properties, but derived properties may not contain cyclic refer-
ences. In Fig. 4, Stack has a derived property volume which is defined in terms
of defining properties.

Actions define a relation between locations. In Fig. 5, we define several actions
for the example perfect binder. The body of an action definition contains param-
eters and constraints that indicate the relations between its parameters.

Devices are sequences of components connected through locations. Compo-
nents instantiate actions and can restrict or specify behavior further by adding
constraints. Thus, action behavior is defined separately from specific instanti-
ations in components. Therefore, actions are generic and potentially reusable
between different device specifications. Limitations of a particular instance of



Configuration Space Exploration for Digital Printing Systems 431

an action in a device can be specified by adding constraints to the component.
In Fig. 6 we define a perfect binder device by instantiating several actions in
components and by connecting them through the locations.

3.1 Configurations and Jobs

A configuration for a device is a value assignment to all locations and parameters.
A valid configuration is a configuration that conforms to the constraints of the
types of the locations, the actions, the components, and the device itself. In
practice, an operator is only interested in the values for the input and output
locations, and not in the intermediate locations.

A job is an expression of intent for which a configuration needs to be found.
Whereas configurations are a complete specification of locations and parameters,
we could see jobs as a partial configuration. For example, a job could define the
input and the output of the finisher. The remaining parts of the configuration,
i.e. the finishing parameters, need to be derived in order to instruct the finisher
to realize the intent of the job. Different usage scenarios of a device lead to
different jobs and approaches to configuration.

3.2 Exploration and Validation

The CSX language supports configuration space exploration, which includes
leveraging exploration at the specification level for validation. Given the specifi-
cation of a device, the language supports describing scenarios for testing devices
by asserting expectations on configuration spaces.

The following test scenario validates that the correct cover dimensions are
chosen for a particular input bookblock and desired output perfectly bound
book:

scenario device ExamplePerfectBinder

config bookIn = Stack(2125,2970,50)

config out = PerfectBoundBook(Stack(2100,2970,50), Sheet(2100,2970), Sheet(2100,2970)) {

[coverIn.width == 2100 + 2100 + 50]

[coverIn.height == 2970]

[toMill.millingDepth == 25]

}

The body of the scenario contains expectations (between square brackets) on
its configuration space. In particular, it validates the cover dimensions that must
be chosen. Since the configuration space could contain multiple configurations,
expectations should only validate common properties of the configuration space
and not on individual configurations.

Scenarios can optionally specify an objective. Objectives indicate a dimension
for optimization of a property of the system, typically expressed using derived
properties. Potentially relevant objectives are e.g. maximizing throughput, min-
imizing energy consumption, or minimizing resource waste. Alternatively, sce-
narios with optimization can characterize the device. For example, based on the



432 J. Denkers et al.

following scenario a scenario can be found for the largest book that the perfect
binder can produce:

scenario device ExamplePerfectBinder

maximize out.book.volume

4 Denotational Semantics

Because of the declarative characteristic of CSX, a translation to SMT con-
straints is natural. In this section, we define the denotational semantics of CSX
that expresses a translation of CSX specifications to SMT constraints. Figure 7
contains the denotational semantics of CSX with the denotation expressed in
MiniZinc [9,13] definitions. Because we use MiniZinc in the implementation of
CSX (Sect. 5), we also use it as syntax for the denotation. The MiniZinc grammar
can be found online1.

The intuition behind the translation is that the properties of locations and
the parameters of components are mapped to constraint variables. Additionally,
all CSX-defined constraints translate to corresponding constraints in MiniZinc.
The translation is from the perspective of a device, making use of type and
actions definitions of the CSX specification of which the device is part.

The translation starts with the Device rule, generating MiniZinc definitions
for members of the device: locations, components, and device-level constraints.
The translation is defined under the context of a namespace N , starting with the
empty namespace. The naming scheme for constraint variables follow their cor-
responding hierarchical position in the CSX specification. Since the translation
is for a single device, we do not have to prefix the namespace with the device
name.

A location translates into variables for its properties and into constraints to
restrict its inhabitants (Location). Locations are always of a user-defined type.
Each property of the type translates to variables. If the property is of primitive
type, the translation is a variable of this primitive type (DefProp-PrimType)).
If the property is of a user-defined type, the translation is the translation of its
nested properties in the namespace of the property (DefProp-DefType).

The Comp rule defines the translation for a component, i.e. an action instan-
tiation. The action’s parameters translate into variables in the namespace of
the component (Param). Both the action and the component can define con-
straints (EA

i and EC
i , respectively). These constraints are mapped to corre-

sponding MiniZinc constraints. Since the action’s constraints are defined on the
action’s location parameters, and the action gets instantiated with specific loca-
tion arguments, renaming is required. The translation defines R: a mapping from
the location’s parameter names to the component’s location argument names.
We only use the renaming for translating references to locations from constraints
defined in the action definition.
1 https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-

grammar.

https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar
https://www.minizinc.org/doc-2.5.5/en/spec.html?highlight=grammar#spec-grammar


Configuration Space Exploration for Digital Printing Systems 433

Fig. 7. Denotational semantics of CSX, expressed in MiniZinc. We have omitted the
rules for literals and arithmetic for brevity; they map one-to-one. ++ is namespace
concatenation. + is identifier concatenation.



434 J. Denkers et al.

The expressions that are used to define constraints, except references and
projection, map mostly one-to-one to their MiniZinc counterparts. For references
and projection, we consider several cases. A reference to property or parameter
(DefProp-Ref/Param-Ref) translates to a name for x in the context. For
example, a reference of x in namespace [a, b] will result in the denotation into
a reference to name a b x. For projection (Proj), we recursively translate the
base expressions into a name and concatenate the projected name.

For a location reference, we consider two cases. Location references from
outside actions translate similarly as regular references (Location-Ref). Loca-
tion references within actions refer to location parameters, while the actions are
instantiated with location arguments from a device. Therefore, for such location
references, we replace the location parameter name by the argument name for
which it is instantiated (ActionLocation-Ref).

Types, actions, and devices can have derived properties. These only translate
into constraints if they are referenced, i.e. by replacing the reference with the
body of the derived property and by propagating the namespace and location
renaming (DerProp-Ref). For the definition of derived properties, no transla-
tion takes place. The definition of derived properties are ignored by . . . in the
specification.

Solutions found for the MiniZinc denotations are related to valid configura-
tions for CSX specifications, and we can translate such solutions back to CSX
Specifications.The correspondence between location properties and component
parameters in CSX and MiniZinc is defined by the naming scheme used in the
denotation, and mapping them back is thus straightforward.

5 Implementation

In this section we describe how we obtain a usable integrated development envi-
ronment (IDE) for CSX by integrating an implementation of the language with
configuration space exploration and interactive validation. The IDE contains
components for parsing, syntax highlighting, code completion, name binding
and type checking, and interactive reporting of static semantics violations. The
CSX validation constructs are interpreted interactively and invalid assertions are
marked on the specification.

We have implemented the CSX language using Spoofax [7], a language work-
bench [5] that provides infrastructure for designing, implementing, and deploying
DSLs by means of declarative specification of language aspects using meta-DSLs.
We define the syntax of CSX in SDF3 [11], a meta-language for multi-purpose
syntax definition. From the CSX syntax definition, SDF3 automatically derives
a parser, pretty printer, syntax highlighting, and syntactic code completion. The
parser yields abstract syntax trees (ASTs) on which we first apply desugaring.
Desugaring e.g. involves propagating the properties of a scenario to the tests
within that scenario. The desugared ASTs are input to the static analysis and
further transformations. We specify desugaring and other transformations using
the Stratego [2] meta-language. Based on the language specification, Spoofax
automatically generates an IDE for the language.



Configuration Space Exploration for Digital Printing Systems 435

We define the CSX static semantics in NaBL2 [1,10]. NaBL2 is a meta-
language for specifying static semantics for languages from which name bind-
ing and type checking is automatically derived. Static semantic violations are
reported interactively in the IDE. For CSX, this could be invalid composition
of components in a device or incorrect type checking of constraint expressions.
Interactive reporting of errors assists users of the language during specification
writing.

In addition to the automated derivation of name binding and type checking,
we implement analysis for other well-formedness conditions. If well-formedness
checking succeeds, the result is a desugared AST that is annotated with name
binding and typing information. The name binding information is used to check
non-cyclic references of defining properties and derived properties, i.e., by fol-
lowing references of properties and checking whether those do not contain cycles.

To realize configuration space exploration, we implement a translation of
CSX specifications to SMT constraints for which we can use existing solving
techniques. In particular, we translate CSX to the MiniZinc constraint modelling
language [9,13]. MiniZinc is solver-independent, which enables us to use multiple
solvers as a backend for CSX. In particular, we use solvers with the theories of
linear arithmetic and optimization modulo theories.

We implement the translation from CSX to MiniZinc as an AST-to-AST
transformation using Stratego. In addition to the syntax definition of CSX, we
have also defined the syntax of MiniZinc in Spoofax with SDF32. The syntax
definitions of both languages generate an AST schema on which we define the
Stratego transformation. After transforming a parsed CSX AST to a MiniZinc
AST, the MiniZinc pretty printer generates concrete MiniZinc syntax from the
AST.

The translation uses information from name binding and type analysis. This
is necessary for references and projection expressions. By using name binding and
typing information, the distinction between references to properties, parameters,
locations, and action locations can be made to generate the correct reference on
the MiniZinc level.

We integrate solving of constraint models by calling MiniZinc from Stratego
through integration with Java. Stratego provides an API for integrating trans-
formations with custom Java code. We implement such a custom transformation
and use a Java program to call the MiniZinc command-line interface. The Java
program is called with as input the generated MiniZinc model. The Java program
parses the textual solving result that is returned by MiniZinc and returns it as
a list of variable binding. In the Stratego code, for the interpretation of config-
urations, we evaluate expressions and lookup values for references by following
the same naming schema as in the translation semantics. After replacing the
referenced properties and parameters by their values on the constraint level, the
evaluation of expressions remains regular expression evaluation. As a result, we
have a configuration space exploration pipeline from interpreting specifications

2 https://github.com/metaborgcube/metaborg-minizinc.

https://github.com/metaborgcube/metaborg-minizinc


436 J. Denkers et al.

using constraint solving with the solution mapped back to the specification level
as a configuration.

The configuration space exploration pipeline serves two purposes in the IDE:
test evaluation and inhabitance checking. For test evaluation, the configuration
space of the device that is selected in the scenario is translated to MiniZinc and
passed as an input to the pipeline. Additional constraints are added to reduce
the configuration space, e.g. to configure the input or output location values, or
parameters as specified in the scenario. If the scenario contains an objective, the
objective is also mapped to MiniZinc and provided as input to the pipeline. The
configuration that is returned by the pipeline is used to evaluate test expecta-
tions. This evaluation is done by a basic interpreter that evaluates expressions
which should result into true. The expressions can contain references to param-
eters and location properties, and based on the name binding information the
references are mapped to the corresponding value from the configuration. For
failed test expectations we report an error which is marked with red underlining
on the original specification using origin tracking [4].

The evaluation of tests and reporting of results is triggered in the IDE on file
changes, resulting into an interactive experience. Additionally, the experience is
improved by providing information while hovering over references to locations,
properties, and parameters in test expectations. The same interpretation app-
roach as for test expectations is used to evaluate the expression being hovered
over and the value is presented in a popup, giving the user insight in the config-
uration that is found.

Similar to the treatment of scenarios, inhabitance checks are triggered on
file changes. The pipeline is triggered for each type, action, and device using the
translations semantics. For inhabitance checking of a type, we translate a random
instance of that type to SMT. For an action, we instantiate it with instances for
all its parameters. Instead of finding a configuration for it, for inhabitance check-
ing we only check satisfiability on the constraint level. If the pipeline concludes
in satisfiability, we report an error on the corresponding construct to indicate
that the construct is not inhabited.

To prevent unnecessary checking of inhabitance and evaluation of tests, we
use simple caching of analysis results with ASTs of the subjects as the caching
key. If a type definition AST has not changed, it does not have to be checked
again for inhabitance. If a scenario has not changed, it does not have to be
evaluated again.

While we have described the realization of a programming environment for
CSX specifications, the eventual goal of CSX is to deploy control software to
finishers. Figure 8 gives an overview of how configuration space exploration with
CSX would with fit in a realistic setting. The configuration space exploration
component would be integrated with a software component, implemented using a
general-purpose language, that provides a UI and that instructs low-level embed-
ded software components.



Configuration Space Exploration for Digital Printing Systems 437

Fig. 8. An architecture for applying CSX in control software. GPL stands for general
purpose programming language, such as C# or Java.

6 Evaluation

We evaluate CSX by modelling two realistic cases, a perfect binder and a booklet
maker, and by benchmarking the configuration space exploration for a scenario
with and without optimization. The perfect binder case corresponds to the exam-
ple of Sect. 3. In the scenario without optimization, CSX derives the required
input cover given an input bookblock and a desired output. In the scenario with
optimization, CSX finds a configuration for the smallest size book the finisher
can produce. The bookletmaker case concerns a finisher that performs rotat-
ing, stitching, folding, and trimming in order to produce a booklet from a stack
of sheets. In the scenario without optimization, CSX finds the action parame-
ters given an input and output. In the scenario with optimization, CSX finds a
configuration that minimizes paper waste given only the desired output. Both
specifications are based on realistic cases present at Canon Production Print-
ing B.V.

By writing scenarios in the language, we can interactively validate the speci-
fication within the IDE. Initially loading a specification can take a few seconds:
a specification typically consists of multiple type definitions, action definitions,
a device definition, and several scenarios. For the type, action, and device defi-
nitions, inhabitance checking is triggered, which for each check leads to an invo-
cation of the SMT solver. Additionally, for each scenario the solver is invoked.
The caching of invocations of the solver decreases response times after a change,
making the IDE usable in an interactive way. For example, inhabitance for a
type will not be re-checked if only a test scenario changes.

We set up a benchmark which makes use of Spoofax core, i.e. the core of
Spoofax which enables integration of language components with Java, such that
we can only execute the relevant part of the pipeline in the benchmark. For
benchmarking, we use the JMH framework3. We executed the benchmarks on
a server with two 32-core processors with a base frequency of 2.3 GHz and 256

3 https://openjdk.java.net/projects/code-tools/jmh/.

https://openjdk.java.net/projects/code-tools/jmh/


438 J. Denkers et al.

Fig. 9. The benchmarking results on a perfect binder and a booklet maker for a scenario
of finding a configuration and for finding an optimal configuration.

GB RAM, running Ubuntu 20.04, using OpenJDK version 1.8.0 275-b01. From
experimentation it appeared that the ORTools solver4 had best performance,
and therefore we use this solver in the benchmarks. We use MiniZinc version
2.5.5 and ORTools version 9.0. We measure 10 iterations and average the result.
In the benchmarks, we separately measure the translation time and solving time.
We leave out parsing, name binding and type checking time, as they are minimal
compared to translation and solving time.

Figure 9 shows the benchmarking results. For each scenario, solving time is
in the order of 100’s ms. We consider sub-second performance as practical and
therefore conclude that CSX’s performance for the two cases we consider has
practical performance for finding (optimal) configurations.

For specifying these devices in CSX, we have chosen a model of objects
(sheets, stacks) with a certain level of detail. The bookletmaker and perfect
binding cases translated in the SMT level into 32 and 29 variables and 56 and 58
constraints, respectively. Although we achieve useful configuration space explo-
ration for these scenarios, it could be that in practice more detail has to be added
to the model, which could also influence solving performance. By deploying CSX
at Canon Production Printing B.V., we aim to further evaluate whether CSX is
adequate in modeling and integrating the full product line of finishers available
and evaluate its usability for domain experts.

7 Related Work

We discuss related work that uses constraint solving in the backend of high-level
specification or domain-specific languages for realizing static analyses, validation,
verification, consistency checking or synthesis.

Keshishzadeh et al. use SMT solving for validation of domain-specific prop-
erties to achieve fault detection early in the software development cycle. In
particular, they develop a DSL with industrial application in a case on colli-
sion prevention for medical imaging equipment [8]. The approach includes delta
4 https://developers.google.com/optimization.

https://developers.google.com/optimization


Configuration Space Exploration for Digital Printing Systems 439

debugging, i.e., an approach to trace causes of property violations and report
them back to the specification in a systematic way. The work is related to CSX
because it also uses SMT solving in the backend of a domain-specific language.

Voelter et al. use SMT solving with the Z3 solver for advanced error checking
and verification in the KernelF language [16], a reusable functional language for
the development of DSLs. Voelter et al. apply SMT solving successfully in a
DSL on a case study for the domain of payroll calculations [17], i.e. for statically
checking completeness and overlap of domain-specific switch-like expressions.
Similarly to CSX, in this work SMT solving is used in the backed of a domain-
specific language for realizing static analyses. While the application of SMT was
successful in the domain-specific case, the authors report difficulties in applying
SMT solving generically in KernelF. The authors plan to develop a successor to
KernelF that is realized with SMT solving completely.

Constraint solving in feature models solves a different problem than CSX.
Feature models describe systems as compatible compositions of features or soft-
ware components; finding/checking feature compositions occurs “statically” from
which a software artifact can be derived. CSX specifications express physical
properties of finishers; finding configurations occurs “dynamically” (at run time)
to find instances of the manufacturing process. This goes all the way down to the
“semantic” level, e.g. by using sheet dimensions and the location of fold edges
instead of only an abstract feature that enumerates the kinds of folds a device
can do. Feature modelling is useful in the finishing context e.g. to derive which
devices are necessary for a production route for booklets. In CSX, we assume
the production route is known.

Relational model finders are related to CSX in the sense that they map
high-level specifications to constraints and map solutions back to the specifica-
tion level. Alloy [6] is a specification language that applies finite model finding
to check formal specifications of software. Alloy is backed by KodKod [15], a
relational model finder for problems expressed using first order logic, relational
algebra, and transitive closures. In contrast to CSX, KodKod does not offer sup-
port for reasoning over data nor for optimization objectives. In CSX, the nature
of specifications is not relational: manufacturing paths are fixed and we consider
snapshots of the product being manufactured at different steps in the process.

AlleAlle [12] adds support for first-class data attributes and optimization to
relational model finding. Similar to KodKod, Stoel et al. consider AlleAlle as
an intermediate language. AlleAlle and CSX are related in the sense that both
approaches take the data of problems into account and use SMT solving for
model finding. While AlleAlle is an intermediate language generally targeting
relational problems, CSX is a more domain-specific language in which relations
are not a first class concept. Similar to CSX, for AlleAlle it is unclear yet how
to map reasons for unsatisfiability that are found in the constraint level back to
the specification level.

Rosette [14] is a solver-aided programming language that supports verifica-
tion, debugging, and synthesis. Rosette extends the Racket language with sup-
port for symbolic values that stand for e.g. an arbitrary integer value. Such values



440 J. Denkers et al.

translate to a constraint variable in the runtime. Rosette realizes verification and
synthesis in the runtime by integrating its symbolic virtual machine with SMT
solvers. Whereas in Rosette selected variables are replaced by symbolic values, in
CSX all variables in the specification translate to constraint variables. Rosette is
a general language tailored to program verification and synthesis whereas CSX
is focused on a particular domain, i.e. manufacturing systems, although we have
only experimented with CSX in the digital printing domain.

Muli [3] is a constraint-logic object oriented language that integrates con-
straint solving with object oriented programming in the Java programming lan-
guage. Muli extends Java’s syntax with the free keyword for indicating symbolic
values that translate to constraint variables in the runtime. Fragments of pro-
grams that are considered as search regions are executed non-deterministically,
searching for concrete values for the constraint variables. The Muli runtime is
based on a symbolic Java virtual machine that integrates constraint solvers.
Muli only supports primitive types as constraint variables. Support for arrays
and objects as constraint variables is listed as future work. CSX does support
search on non-primitive types such as user-defined record types. Similar to how
support for arrays is desired for Muli, support for lists is desired for CSX, but
that is future work. Muli differs from CSX in the sense that Muli preserves the
Java syntax and, by doing so, serves as a general purpose programming language,
whereas CSX introduces a new domain-specific language. In contrast to Muli,
CSX supports optimization.

8 Conclusions

We have presented CSX, a language and method for high-level declarative spec-
ification of finishers and their configuration spaces. We have developed a trans-
lation of CSX to SMT constraints which enables us to use constraint solving to
find (optimal) configurations for finishers. We have presented an implementation
of the CSX programming environment, including support for well-formedness
checking, inhabitance checking, and interactive configuration space exploration.
Our benchmarks show that, on two realistic cases, CSX has practical sub-
second performance in finding configurations for scenarios with and without
optimization.

Future work. Our focus has been on finding a domain abstraction for configura-
tion space exploration applied in the digital printing domain for finishers. While
we have designed the language in collaboration with control software engineers,
we plan to further evaluate CSX by deploying it at Canon Production Print-
ing B.V. By doing so, we can further evaluate the adequacy of CSX in covering
the full product line of finishers. Additionally, we plan to evaluate the language
in terms of usability for control software engineers and in terms of validatability
by mechanical engineers.

To improve the usability of the environments for configuration space explo-
ration for operators, it would be useful to characterize the reduced configuration
spaces for given jobs. In particular, when multi-objective optimization is relevant



Configuration Space Exploration for Digital Printing Systems 441

for objectives such as maximizing throughput and minimizing waste, it would
be useful if CSX could indicate the tradeoff between these objectives.

Acknowledgment. We thank the reviewers for their feedback. This research was
partially supported by a grant from the Top Consortia for Knowledge and Innovation
(TKIs) of the Dutch Ministry of Economic Affairs and by Canon Production Printing.
We thank Bas Hermus for providing a 3D drawing of perfect binding. This work is
related to the European patent application EP3855304 A1 which is published on 28
July 2021.

References

1. van Antwerpen, H., Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A con-
straint language for static semantic analysis based on scope graphs. In: Erwig, M.,
Rompf, T. (eds.) Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
20–22 January 2016, pp. 49–60. ACM (2016). https://doi.org/10.1145/2847538.
2847543

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 01.7. A
language and toolset for program transformation. Sci. Comput. Program. 72(1–2),
52–70 (2008). https://doi.org/10.1016/j.scico.2007.11.003

3. Dageförde, J.C., Kuchen, H.: A compiler and virtual machine for constraint-
logic object-oriented programming with muli. J. Comput. Lang. 53, 63–78 (2019).
https://doi.org/10.1016/j.cola.2019.05.001

4. van Deursen, A., Klint, P., Tip, F.: Origin tracking. J. Symb. Comput. 15(5/6),
523–545 (1993)

5. Erdweg, S., et al.: Evaluating and comparing language workbenches: existing
results and benchmarks for the future. Comput. Lang. Syst. Struct. 44, 24–47
(2015). https://doi.org/10.1016/j.cl.2015.08.007

6. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

7. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, pp. 444–463.
ACM, Reno/Tahoe (2010). https://doi.org/10.1145/1869459.1869497

8. Keshishzadeh, S., Mooij, A.J., Mousavi, M.R.: Early fault detection in DSLs using
SMT solving and automated debugging. In: Hierons, R.M., Merayo, M.G., Bravetti,
M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 182–196. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40561-7 13

9. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

10. Neron, P., Tolmach, A., Visser, E., Wachsmuth, G.: A theory of name resolution.
In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 205–231. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8 9

11. de Souza Amorim, L.E., Visser, E.: Multi-purpose syntax definition with SDF3. In:
de Boer, F., Cerone, A. (eds.) SEFM 2020. LNCS, vol. 12310, pp. 1–23. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58768-0 1

https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1016/j.cola.2019.05.001
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1007/978-3-642-40561-7_13
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-030-58768-0_1


442 J. Denkers et al.

12. Stoel, J., van der Storm, T., Vinju, J.J.: AlleAlle: bounded relational model finding
with unbounded data. In: Masuhara, H., 0001, T.P. (eds.) Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2019, Athens, Greece, 23–24
October 2019, pp. 46–61. ACM (2019). https://doi.org/10.1145/3359591.3359726

13. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc challenge
2008–2013. AI Mag. 35(2), 55–60 (2014)

14. Torlak, E., Bod́ık, R.: Growing solver-aided languages with rosette. In: Hosking,
A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on New Ideas in Pro-
gramming and Reflections on Software, Onward! 2013, part of SPLASH 2013, Indi-
anapolis, IN, USA, 26–31 October 2013, pp. 135–152. ACM (2013). https://doi.
org/10.1145/2509578.2509586

15. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

16. Voelter, M.: The design, evolution, and use of KernelF. In: Rensink, A., Sánchez
Cuadrado, J. (eds.) ICMT 2018. LNCS, vol. 10888, pp. 3–55. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93317-7 1

17. Voelter, M., Koščejev, S., Riedel, M., Deitsch, A., Hinkelmann, A.: A domain-
specific language for payroll calculations: an experience report from DATEV.
In: Domain-Specific Languages in Practice, pp. 93–130. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-73758-0 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3359591.3359726
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-319-93317-7_1
https://doi.org/10.1007/978-3-030-73758-0_4
http://creativecommons.org/licenses/by/4.0/

	Configuration Space Exploration for Digital Printing Systems
	1 Introduction
	2 Finishers in the Digital Printing Domain
	2.1 Perfect Binding

	3 CSX
	3.1 Configurations and Jobs
	3.2 Exploration and Validation

	4 Denotational Semantics
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusions
	References




