
On 3D Topological Relationships
Siyka Zlatanova

Section GIS technology, Department of Geodesy, TUDelft
Thijsseweg 11,2629 JA Delft, The Netherlands

s.zlatanova@geo.tudelft.nl

Abstract
This paper presents an integrated study on possible

topological relationship between multidimensional simple
objects in 0,1,2 and 3 D space. The formal categorisation
of spatial relationships is completed upon the 9-
intersections model. The focus is on the definition of a
unified set of conditions for eliminating relationships that
cannot be realised in reality. The negative conditions are
formulated on the basis of dimension and co-dimension of
objects, and connectivity of boundaries. The set of 25
conditions is sufficient for deriving all the possible
relationships mentioned currently in the literature and for
specifying the relationships between surface and surface
in 3D space. Drawings of example configurations verify
the obtained results in 3D space.

 1 Introduction

The topological spatial relationships gain an increasing
attention in the last decade. The topic of research has
shifted from issues related to the definition of a particular
formalism to represent topological relationships, to
implementation issues (see [2], [3], [12]). An important
implementation aspect (in terms of performance) is the
specification of the spatial relationships (within a given
framework) that exist in reality. While a lot of research is
already carried out in the clarification of the relationships
between spatial objects (points, lines and regions) in 2D
space, the investigations in 3D space are fragmented and
incomplete. This work is a contribution to the clarification
of the relationships between simple spatial objects in 3D
space and the total number of relationships that can occur
in reality.

To identify the spatial relationships between two
objects in 3D space, we use the 9-intersection model (see
[7]), which was approved by the OpenGIS consortium as
a basic framework for implementation. Suppose two
simple spatial objects A and B are defined in the same
topological spaceΛ  and their boundary, interior and

exterior are denoted by °∂°∂ − BBAAA ,,,,  and −B . The
binary relationship R(A,B) between the two objects is then
identified by composing all the possible set intersections
of the six topological primitives, i.e. °∩° BA , °∩∂ BA ,

°∩− BA , BA ∂∩° , BA ∂∩∂ , BA ∂∩− , −∩° BA

−∩∂ BA  and −− ∩ BA , and detecting empty ( ∅ ) or
non-empty ( ¬∅ ) intersections. For example, if two
objects have a common boundary, the intersection
between the boundaries is non-empty, i.e. ¬∅=∂∩∂ BA ;
if they have intersecting interiors, then the intersection

°∩° BA is not empty, i.e. ¬∅=°∩° BA . Since in
principle each pair of intersections can have either the
empty or non-empty value, different "patterns" define
different relationships. Although, the theoretical number
of all the relationships that can be derived from the 9
intersections is 29, i.e. 512 relationships, only a small
number of them can be seen in reality. The way to specify
possible relationships is based on the elimination of
impossible ones. To eliminate non-reali sable relations,
conditions, referred to as negative conditions, are
composed. Some intersections (or a combination of
intersections) between topological primitives can never
occur in reality, and all the relationships that contain these
intersections (or the combination) can be securely
excluded from further considerations.

On the basis of the 9 intersections between topological
primitives and following the "elimination-of-impossible-
relationships" approach, several authors have identified
relationships between spatial objects. Egenhofer and
Herring [6], Kufoniyi [10] investigate relationships
between spatial objects in 2D space. Egenhofer [5]
presents relationships among 3D objects in 3D space. Bric
[1] investigates the largest combinations of objects, using
the basic set of conditions introduced by van der Meij
[11]. De Hoop et al [4] report a slightly modified
approach to derive relationships between
multidimensional objects in 3D space. The studies related
to the 3D space are not convincing. Basically, the authors
agree on the number of most of the relationships with one
exception, i.e. surface and surface in 3D space. However,
sketches of possible configurations in 3D space are not
provided and the reader intuitively attempts to check
results and conditions. The negative conditions used by
the authors, however, vary significantly and complicates
their comparison. For example, Egenhofer and Herring [6]
present 23 negative conditions for relationships in 2D
space. To cover the 3D situations, 15 more conditions are
added by van der Meij [11]. Bric [1] operates with 40
conditions. Most of the conditions are related to a
particular configuration of objects (e.g. conditions for line



and line), which leads to further duplications of the effect
of some of them.

This paper aims at providing a systematised and
integrated method for deriving relationships between
multidimensional spatial objects. For the purpose, first a
unified set of negative conditions is defined and second
the possible relationships between objects of any
dimension in 0,1,2 and 3D space are derived.

 2 Negative conditions

The types of objects considered here correspond to
simple geometric objects as they are defined in OpenGIS
(http://www.opengis.org) specifications. The 0, 1,2 and
3D objects are referred to as points, li nes, surfaces and
bodies with corresponding notations P, L, S and B. Thus
the notation R(L,S) means that the binary relationship
concerns line and surface as the line is the first object.
The relationship R(S,L) is the converse relationship,
which is referred to by the vice versa part of the
condition.

For simplicity, all the intersections wil l be represented
in a vector form and the empty and non-empty set will be
denoted by 0 and 1. Thus, each relationship (being a
sequence of 0 and 1) corresponds to a binary number,
which can be transformed to a decimal number (see [9],
[10]). For example, the relationship between objects with
non-intersecting boundaries and interiors can be
represented as 000011111, which is the decimal number
31. This number will be denoted as a decimal code R031
(the ‘disjunct’ relationship). It is apparent that different
ordering of the intersections wil l result in a different
decimal code. In this text, we will use the order shown in
Table 1.

The value of intersections (empty, non-empty)
between interior, boundary and exterior depends on three
parameters: the dimension of the objects, the dimension of
the space (related to the co-dimension of the object) and
the type of boundary (connected or disconnected) (see [5]
[8]). The three parameters, however, cannot be used to
define straightforward negative conditions because each
configuration of objects has different parameters. Still
many of the negative conditions are derived on the basis
of one or another parameter that is used here to introduce
grouping of conditions. To avoid multiple expression of
the same conditions, the negative conditions that can be
found among the ones given by Egenhofer and Herring
1992 are represented by the same verbal expression.
These conditions, denoted by EH (in brackets) are
explicitl y mentioned. All the negative conditions are
shown in Table 1. The following text presents the
negative conditions C (in italic) distributed in 12 groups
(in bold) for objects with non-empty boundary. The
conditions for relationships specific for objects with
empty boundaries are given in the group 13.

1. Any objects: R(L,L) in IR ; R(L,L), R(S,S), R(L,S)
and R(S,L) in IR 2; R(L,L), R(S,S), R(B,B), R(L,S),
R(L,B), R(S,B), R(S,L), R(B,L), R(B,S) in IR 3.

C1. The exteriors of two objects always intersect (EH1).
C2. If A’s boundary intersects with B’s exterior then A’s
interior intersects with B’s exterior too and vice versa
(EH3).
C3. A’s boundary intersects with at least one part of B
and vice versa (EH5).

After the first three negative conditions, the number of
possible binary relationships is reduced to 104 for spatial
objects with equal dimensions and to 160 for spatial
objects with different dimensions.

2. Objects with equal dimensions: R(L,L) in  IR;
R(S,S) and R(L,L) in IR 2; R(L,L), R(S,S) and R(B,B) in
IR 3.
C4. If both interiors are disjoint then A’s interior
intersects with B’s exterior and vice versa (EH2).
C5. If A’s interior intersects with B’s boundary, then it
must also intersect with B’s exterior and vice versa
(EH4).

C5a can be applied also for relationships when the first
object A has the higher dimension. However, this is not
necessary because the condition C6 (also valid for such
objects) eliminates these combinations (compare C5a and
C6 in Table 1), i.e. C6 is more restrictive than C5a.

3. Objects with different dimensions: R(S,L),
R(L,S) in IR 2; R(B,L), R(L,B), R(B,S), and R(S,B) in
IR3.
C6. The closure of higher-dimensional object A always
intersects with the exterior of B (old: EH 16,17;
new:C6c,C6d).

If the two objects have different dimensions, their
boundaries never coincide, i.e. BA ∂≠∂ . This implies that
both the boundary and the interior of the object of the
higher dimension intersect with the exterior of the object
of the lower dimension.

4. Objects with different dimensions and one of the
objects with zero co-dimension: R(L,S) and R(S,L) in
IR2 ; R(L,B), R(S,B), R(B,L) and R(B,S) in IR3.
C7. The interior of A always intersects with at least one of
the three topological primitives of B and vice versa (new).

If both interiors are disjoint, then the interior of the
object with the lowest dimension (e.g. A) can be a subset
of either the boundary or the exterior, or both, of the
opposite object (e.g. B). This means if the interior of A
does not intersect with the boundary of B, it must intersect
with its exterior. The condition is true for all the
relationships between objects of the same dimension, i.e.
R(L,L), R(S,S) and R(B,B), as well . However, the more
restrictive condition C4, is applied in these cases.

5. At least one of the objects has zero co-dimension:
R(L,L) in IR ; R(S,S), R(L,S) and R(S,L) in IR 2; R(L,B)
R(S,B), R(B,L), R(B,S), R(B,B) in IR 3.



Table 1: Negative conditions for eliminating
impossible relationships in 0,1,2 and 3D space
(see text for specification of operands A and B)
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C1 – – – – 0 – – – –
C2a – – – – – – – 1 0
C2b – – – – – 1 0 – –
C3a 0 – 0 – – – – 0 –
C3b 0 – - 0 – 0 – – –
C4a – 0 – – – – – – 0
C4b – 0 – – – – 0 – –
C5a – – – 1 – – – – 0
C5b – – 1 – – – 0 – –
C6a – – – – – – – – 0
C6b – – – – – – – 0 –
C6c – – – – – 0 – – –
C6d – – – – – – 0 – –
C7a – 0 – 0 – – – – 0
C7b – 0 0 – – – 0 – –
C8a – 0 1 – – – – – –
C8b – 0 – 1 – – – – –
C9a – 1 – 0 – – – – 1
C9b – 1 0 – – – 1 – –
C10a 1 – – 1 – 1 – – –
C10b 1 – 1 – – – – 1 –
C11a 0 – 1 – – – – 1 –
C11b 0 – – 1 – 1 – – –
C12 0 – – – – 0 – 0 –
C13 – 0 – – – 0 – 0 –
C14a – – – – – – – 0 1
C14b – – – – – 0 1 – –
C15a – – – – – 0 1 – 0
C15b – – – – – – 0 0 1
C16a – – 0 1 – – – 0 –
C16b – – 1 0 – 0 – – –
C17a – – 0 0 – 1 – 0 –
C17b – – 0 0 – 0 – 1 –
C18a – 1 1 1 – 0 – 0 –
C18b 1 – 1 1 – 0 – 0 –
C19a 1 1 1 1 – – – 0 –
C19b 1 1 1 1 – 0 – – –
C20a – 0 – 1 – – 0 – –
C20b – 0 1 – – – – – 0
C21a 1 0 0 – – – 0 – –
C21b 1 0 – 0 – – – – 0
C22a 1 – 0 – – 1 – 0
C22b 1 – – 0 – 0 – 1 –
C23a 1 – – – – – – – –
C23b – – 1 – – – – – –
C23c – – – – – – – 1 –
C23d – – – 1 – – – – –
C23e – – – – – 1 – – –
C24a – 1 – 1 – – – – –
C24b – 1 – – – – – – 1
C24c – – – 1 – – – – 1
C24d – 1 1 – – – – – –
C24e – 1 – – – – 1 – –
C24f – – 1 – – – 1 – –
C25a – 0 – – – – 0 – –
C25b – 0 – – – – – – 0

C8. If both interiors are disjoint, then A’s boundary
cannot intersect with B’s interior (EH6).
C9. If A’s interior intersects with B’s interior and
exterior, then it must intersect with B’s boundary too and
vice versa (EH7).

6. At least one of the objects has a disconnected
boundary: R(L,L), R(S,L), R(S,L), R(B,L), R(L,S),
R(L,S), R(L,B).
C10. Line object A’s boundary always intersects with at
most two parts of B and vice versa (EH14).

7. Objects with connected boundaries and at least
one of the objects has a zero co-dimension: R(S,S) in
IR2; R(S,B) and R(B,S), R(B,B) in IR 3.
C11. If A’s boundary intersects with B’s interior and
exterior, then it must intersect with B’s boundary too
(new).

Since the co-dimension of B is 0, the connected
boundary of A can intersect with B's exterior and interior
if and only if it intersects with B's boundary.

8. Objects with equal dimensions and zero co-
dimensions: R(L,L) in IR; R(S,S) in IR 2 and R(B,B) in
IR3.
C12. If both boundaries do not coincide, then at least one
boundary must intersect with the opposite exterior (EH8).
C13. If both interiors do not coincide, then at least one
boundary must intersect with the opposite exterior (EH9).
C14. If A's interior intersect with B's exterior, then A's
boundary must also intersect with B's exterior (EH11).

9. Objects with equal dimensions and non-zero co-
dimensions: R(L,L) in IR 2   and  R(S,S) in IR3.
C15. If A’s interior is a subset of B’s interior, then A’s
exterior intersects with both B’s boundary and B’s
interior and vice versa (EH 13b).

The condition is true for every two objects of the same
dimension, however when the co-dimension is zero the
stricter condition C14 is applied. The non-zero co-
dimension allows the intersection of the interior and the
opposite exterior without crossing the boundary, therefore
C14 cannot be used for the relationships R(L,L) in IR 2   and
R(S,S) in IR3.
C16. If A’s interior intersects with B’s boundary but A’s
boundary do not intersect with B’s interior, then A’s
boundary must intersect with B’s exterior and vice versa
(new).

If A's interior intersects with B's boundary without
crossing A's boundary, then B's interior is a subset of
either A's interior or A's exterior (due to the greater than
zero co-dimension).  In both cases, the exterior of B
intersects with A's boundary. The condition is true for
relationships between objects of the same dimension and
zero co-dimensions. In this case, B's interior is only a
subset of A's interior, which can be achieved by applying
C12.

10. Objects with equal dimensions, connected
boundaries and non-zero co-dimensions: R(S,S) in IR3.



C17. If A’s interior does not intersect with B’s boundary
and A’s boundary does not intersect with B’s interior,
then both boundaries either intersect or not with both
exteriors (new).
C18. If A’s interior and boundary intersects respectively
with B’s boundary and interior, then at least one
boundary intersects with the exterior of the other object
(new).
C19. If A’s closure intersects with B’s closure, then it
must intersect with B’s exterior too, and vice versa (new).

11. Objects with different dimensions, non-zero co-
dimensions and one of them with a disconnected
boundary: R(S, L) and R(L, S) in IR 3.
C20. If A’s interior intersects with B’s boundary but not
B’s interior, then B’s interior must intersect with A’s
exterior (new).

As can be reali sed, the condition is true for all the
relationships between objects with different dimensions
too; however, when the co-dimension is zero, the more
restrictive condition C8 is applied.
C21. If the boundary of B intersects with the boundary of
A but the interior of B does not intersect with both the
interior and boundary of B, then the interior must
intersect with the exterior of A (new)

The condition is also true for all the relationships
between objects with different dimensions; however,
when the co-dimension is zero, the more restrictive
condition C7 is applied.

12. Objects with equal dimensions, non-zero co-
dimension and disconnected boundaries: R(L,L) in IR 2

and IR 3.
C22. If A's boundary is a subset of B's boundary, then the
two boundaries coincide and vice versa (EH15a2,
EH15b2).

 13. At least one of the objects has empty boundary:
R(P,P), R(P,L), R(P,S), R(P,B), R(L,P), R(S,P), R(B,P).
C23. If A's boundary is the empty set, all the intersections
between A's boundary and B's topological primitives will
be the empty set and vice versa (new).
C24. A's interior intersects only with one part of B and
vice-versa (EH20, EH23cd).
C25. If A's interior does not intersect with B's interior,
then A's exterior must intersect with B's interior and vice
versa.

The set of 25 negative conditions presented here is the
minimal set reported currently in the literature.

 3 Possible relationships

The negative conditions defined above are applied to
identify topological binary relationships between simple
spatial objects regardless of the space in which they are
embedded. A program in J (http://www.jsoftware.com/)
computes the resulting possible relationships.

Line and line relationships in IR: Lines are spatial
objects with disconnected boundaries and connected
interiors. Embedded in IR, their co-dimensions are zero.
Therefore the following 19 conditions (counting all the
parts of the conditions) have to be applied: C1, C2a, C2b,
C3a, C3b, C4a, C4b, C5a, C5b C8a, C8b, C9a, C9b, C10a,
C10b, C12, C13, C14a and C14b. Since the two objects
have equal dimension both parts of all the conditions have
to be used. The number of identified possible
relationships is eight and they are given the names:
disjoint, contains, inside, equal, meet, covers, coveredBy,
overlap. Drawings with the interacting objects can be
found in [5].
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 Figure 1: Surface and line in IR 3 : 31
relationships (19 in IR  2, face drawn as

reactangle)

Line and line relationships in IR 2 and IR 3: The
negative conditions applicable for R(L,L) in IR 2 and IR 3

are 17: C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b, C10a,
C10b, C15a, C15b C16a, C16b, C22a and C22b. Lines
embedded in  IR 2 or IR 3 have disconnected boundaries and
connected interiors but the co-dimensions are non-zero.
Therefore, the negative conditions that have to be used are
the conditions for all objects, for objects of the same
dimension, for objects with disconnected boundaries, for
objects of the same dimension and non-zero co-
dimension, and conditions for line and line relationships
in IR 2 and IR3. The number of all the relationships is 33.
Drawing of all the relationships are given in [6]



B

A

R031

B

A

R063

R191

R220

A

B

R252

R253

B

R255

B

A

R285

B

A

R287

B

R316

B

R317

B

A

R319

B

A

R412

B

A

R444

B

R445

A

B

R447

A

R415

B

A

R508

B

R509

A

A

B

A

A

B

A

B

A

A

A

B

l ine node of  inte rsect ionface of  intersectionbod y

Figure 2: Body and line in IR 3 : 19 relationships

Surface and line in IR 2: The configuration surfaces and
line falls in the groups of objects with different
dimensions, at least one non-zero co-dimension and one
disconnected boundary, i.e. the negative conditions for
R(S, L) are 9: C1, C2b, C3b, C6a, C6b, C7b, C8b, C9b and
C10a. The conditions leave 19 possible relationships. The
examples of geometric representations are shown in
 Figure 1 (the cases when the surface is represented as a
rectangle are valid for 2D space).
Surface and line in IR 3: Surface and line embedded in IR
3 have the same properties as surface and line in IR 2, but
the co-dimensions are non-zero. The non-zero co-
dimension permits 12 more configurations than in IR 3, i.e.
the total number of all the possible relationships is 31 (see
 Figure 1). The conditions used for the relationship R(S,L)
are 8: C1, C2b, C3b, C6a, C6b, C10a C20a and C21a.

Body and line in IR 3: Configurations between body
and line can exist only in IR 3, i.e. one of the co-
dimensions is always zero. The two objects have different
dimensions and one of them has disconnected boundaries.
These properties require 9 negative conditions for R(B,L):
C1, C2b, C3b, C6a, C6b, C7b, C8b, C9b and C10a; and 9
conditions for the vice-versa relationship R(L,B): C1, C2a,
C3a, C6c, C6d, C7a, C8a, C9a and C10b. The comparison
with the configuration surface and line in IR 2 shows that
the negative conditions are identical and, consequently,
the number of possible relationships is 19. Examples of
possible geometric configurations are shown in Figure 2.
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Figure 3: Surface and surface in IR   3: 38
relationships

Surface and surface in IR 2: The configuration surface
and surface in IR 2 has the following properties: connected
boundaries, equal dimensions and zero co-dimensions.
This implies that 19 negative condition has to be selected:
C1, C2a, C2b, C3a, C3b, C4a, C4b, C5a, C5b, C8a, C8b, C9a,
C9b, C11a, C11b, C12, C13, C14a and C14b. The
conditions are similar to the ones applied to the
relationship between line and line in IR. The only
difference is C10, which is replaced with C11. Therefore
the number of relationships is the same, i.e. 8, but one
relationship, i.e. R511 is new. Drawings of the possible
configurations are given in [5]. Visually, the relationship
R511 is the same as R255, i.e. both objects overlap each
other. However, the intersections between the boundaries
of topological primitives for both relationships are
different.
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Figure 4: Examples of closed surfaces

Surface and surface in IR 3: The possible relationships
between surface and surface are determined by the
following properties: equal dimensions, connected
boundaries and non-zero co-dimensions. The conditions
to be applied are 18, i.e. C1, C2a, C2b, C3a, C3b, C4a, C4b,
C5a , C5b, C15a, C15b, 16a, 16b, C17, C18a, C18b, C19a

and C19b. The number of obtained relationships is 38 (see
Figure 3).

Bric [1] is the only author reporting relationships
between surfaces in IR 3, but the obtained relationships are
different. Relationships R117, R159, R277 and R405 are



not elected as possible ones and 12 new relationships are
reported, which (in our judgement) require self-
intersecting surfaces. The 12 new relationships are R279,
R285, R317, R343, R407, R412, R433, R445, R471,
R501, R503 and R509. Relationships R279 and R285
could not be interpreted with any geometric configuration
between simple surfaces; relationships R317, R343, R407,
R413, R433, R445 and R471 can be realised only by a
closed surface (see Figure 4).
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Figure 5: Body and surface in IR   3 : 19
relationships

Body and surface in IR 3: The configuration body and
surface in IR 3 has similar characteristics to surface and
line in IR 2, i.e. one of the objects has a co-dimension zero.
However, the line has disconnected boundaries.
Therefore, the condition C10, which refers to
disconnected boundaries, must be replaced with C11.
Thus the set of possible relationships R(B,S) can be
obtained by 9 conditions: C1, C2b, C3b, C6a, C6b, C7b,
C8b, C9b and C11b. The conditions C1, C2a, C3a, C6c, C6d,
C7a, C8a, C9a and C11a determine all the converse
relationships, i.e. R(S,B). The number of the relationships
is 19 (see Figure 5). The comparison between surface and
line in IR 2 (see
 Figure 1), and body and surface in IR 3 (see Figure 5)
shows difference only in one relationship, i.e. R255,
which is replaced by R511.

Body and body in IR 3: The properties of this
configuration are equal to the properties surface and
surface in 2D space, i.e. equal dimensions, connected
boundaries, and zero co-dimensions. Therefore the same
19 negative conditions must be applied, i.e. C1, C2a, C2b,
C3a, C3b, C4a, C4b, C5a, C5b, C8a, C8b, C9a, C9b, C11a,
C11b, C12, C13, C14a and C14b. The number of possible
relationships is again 8. Examples of possible geometric
configurations can be found in [5].

Point and point: Since the points are objects with
empty boundaries and equal dimensions, the conditions
that have to be applied are 10: C1, C23a, C23b, C23c,

C23d, C23e, C24b, C24e, C25a and C25b. These conditions
eliminate 510 relationships and leave only two, i.e. equal
and disjoint

Point and any other object X: R(P,X), R(X,P). The
relationships between a point and any other object are
only three, i.e. a point can be disjoint, lay on the boundary
or the interior of the object. These configurations can be
obtained by applying 11 conditions for R(P,X): C1, C6c,
C6d, C7a, C23a, C23b, C23c, C24a, C24b, C24c and C25a;
and 11 conditions for R(X,P): C1, C6a, C6b, C7b, C23a,
C23d, C23e, C24d, C24e, C24f and C25b.

The comparison between conditions used by different
authors (complete lists are given in [1],[6]), shows a
significant reduction in the number needed for each
configuration of objects. For example, Bric 1993 has
obtained the relationships between surface and line
applying 14 conditions, between body and line applying
15 conditions, and body and surface applying 16
conditions. Egenhofer and Herring 1992 have reported 20
conditions for line and line, 19 conditions (one less than
above) for line and surface but have obtained one
relationship more, i.e. R511, which is impossible for
simple lines and surfaces.

 4 Conclusions

This paper presents a unified set of conditions for
deriving the possible relationships between
multidimensional simple spatial objects in 1,2 and 3D
space. The conditions are systemised on the basis of
dimension, co-dimension and connectivity of boundaries.
Thus most of the conditions (15 of 23, see [6]) derived for
2D space are propagated in 3D space and the overal
number of conditions is reduced. All the relationships
derived are verified with drawings. This proves that all
the conditions are “suff iciently” restrictive, i.e. there is
not a configuration left that cannot be represented by an
appropriate drawing. Indeed, the question “Are the
conditions too restrictive?” is also valid. Too restrictive
conditions wil l eliminate relationships that are possible
and, practicall y, there is not a way to detect this effect. As
was shown above (e.g. R159 for surface and surface in
3D), relationships between complex objects might be
influenced. Additional analysis of the intersections
between exteriors contribute to the negative answer
(see[13]).

Applying these negative conditions, the total number
of relationships that can be identified by the 9-intersection
and hence has to be considered for implementation, is
reduced to 69. Note that the number of relationships
concerns simple spatial object, e.g. surfaces with holes or
bodies with tunnels might have different relationships.

Analysing the derived topological relationships,
several conclusions can be drawn that can be of favour at
the implementation level:



The topological relationships are related to the types of
objects, i.e. some of the relationships never occur between
particular types. For example, R509 is possible only
between body and line and body and surface. This implies
that certain relationships (respectively the intersections
between the topological primitives) may not be checked,
if the dimension of the objects is known in advance.

The relationships are related to the geometric
partitioning performed for a particular application. This is
to say that some relationships may not be needed because
the geometric partitioning of the object is not appropriate.
For example R455 performed for body and surface may
never be needed for urban applications.

 The study clearly shows ineff iciency and insuff iciency
of the verbal identification of relationships. Some of the
names establi shed for relationships in 2D space are not
applicable for relationships between 3D objects. The
relationships between surfaces in 3D space are one typical
example. Some of the names refer to formally different
relationships, e.g. overlap stands for R511 (e.g. surface
and surface in 2D) and R255 (e.g. surface and line in 3D).
Most of the relationships are not associated with
appropriate names and even it is diff icult to specify the
type of interaction. Many examples can be found among
the relationships between body and surface or body and
line. In this respect a unified coding of the relationships
(similar to the coding used here) might be an alternative.

Having specified the conditions for multidimensional
simple objects, the next step has to be toward an extension
for identifying conditions for surfaces with holes and
bodies with tunnels.
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