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Abstract

Building height information has been more used in a variety of industries in recent years. This
information can be used in sustainable urban planning, urban climate research, population
estimation, and three-dimensional (3D) building reconstruction, etc. Nowadays, building
height information is obtained mostly by photogrammetry, high-resolution photos, and aerial
Light Detection and Ranging (LiDAR) data. However, the existing technique is constrained by
issues of scale, cost, and quality.

The Ice, Cloud and land Elevation Satellite-2 (ICESat-2) was launched in 2018, using photon-
counting LiDAR technology to gather Earth’s surface elevation data globally. It represents
the highest level in space-borne laser altimeters and has been proved can estimate building
height.

In this thesis, a method is proposed to estimate the height of all buildings in the Nether-
lands. To estimate the building height, elevation data from ICESat-2 and footprints from
Basisregistratie Adressen en Gebouwen (BAG) are two used datasets. Spatial interpolation
methods and percentile methods are used to get ground and roof elevation for each footprint,
respectively. Random Forest Regression (RFR) method is used to deal with the low coverage
of ICESat-2.

The result shows that less 3% of buildings could obtain their height from ICESat-2 data. Among
these buildings, 90% of them are lower than 10 meters and half of them are between 5 - 10
meters. This caused a low performance of the prediction model with Mean Absolute Error
(MAE) of 2.1m. The building between 5 - 10 meters has the smallest MAE of 1.1267m. Small
amount of available of ICESat-2 data is the key reason, which leads to the training data of
building over 10 meters is not enough.

The results reveal it is impossible to get the height of all buildings in the Netherlands with
ICESat-2 data. But the proposed method is a feasible option for buildings between 5 and 10
meters in height.
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1. Introduction

Building height information is critical for understanding the effects of the built environment
on the environment. Sustainable urban planning, urban climate research, population esti-
mation, three-dimensional (3D) building reconstruction, etc. are all have a close relationship
with the height of the building [Li et al., 2020]. Though elevation datasets (e.g. point clouds)
are necessary, it is frequently unavailable in creating 3D city models [Biljecki et al., 2017].

Several kinds of remote sensing data, such as photogrammetry, high-resolution images, air-
borne LiDAR data, have been used to estimate the building height. Despite remote sensing
and satellite image help a lot in related scientific studies, it has several limitations. First, it is
costly and time-consuming to get [Wendel et al., 2016]. Second, even when elevation data is
accessible, they may not always be useful for generating 3D models because they are obsolete
or the resolution and quality are insufficient to construct 3D city models [Biljecki et al., 2017].
Furthermore, most of these studies are limited to local scales, with no data on the global scale
[Li et al., 2020; Frantz et al., 2021].

Currently, two new published space-borne LiDAR data sets have been considered by researchers
to extract building height information.

The ICESat-2 was launched in 2018, using photon-counting LiDAR technology to gather Earth’s
surface elevation data globally. Though ICESat-2 was designed to supervise changes in sea
ice, the photon counting concept has been used in applications areas like forestry, biomass
and building heights estimation [Dandabathula et al., 2021]. They proved that retrieving the
building heights from the surface reflected ICESat-2 geolocated photons is feasible.

The Global Ecosystem Dynamics Investigation (GEDI) instrument was also launched in 2018,
is designed to measure ecosystem structure and dynamics, also total carbon contained in
all forests. The data provided by GEDI have been widely used in weather forecasting, for-
est management, snow and glacier monitoring, and digital elevation model generation, etc.
[Dubayah et al., 2020]. Not like ICESat-2 employing photon-counting technology, it uses full
waveform technology. Liu et al. [2021] evaluate evaluates the performance for terrain and
canopy height retrievals with ICESat-2 and GEDI data, proved that they represent the top level
in space borne laser altimeters in terrain and canopy field. Kokalj and Mast [2021] investi-
gates the applications of GEDI data in archaeological feature recognition. For building height
estimation area, there is no relevant research yet.

ICESat-2 and GEDI missions, which represent the highest level in space-borne laser altimeters
in technical part [Liu et al., 2021]. Thus, as the latest datasets, it is worthwhile to investigate
the applicability of ICESat-2 and GEDI data in estimating building height. This thesis will focus
on estimating the height of all buildings in the Netherlands with ICESat-2 photon data and
evaluate its accuracy with 3D BAG as the reference. The 3D BAG is open data containing 3D
building models and building attributes of the Netherlands. It is combining two open data
sets: the building data from the BAG and the height data from the AHN.
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1. Introduction

Because of the low coverage behaviour problems, which will be explained in Section 2.1, the
machine learning method will be considered as a supplement when implementing height
estimation at a large level.

There has been some effort in the literature to scale building height estimation with machine
learning method. RFR, Multiple Linear Regression (MLR) and Support Vector Regression (SVR)
have been used in this area [Biljecki et al., 2017; Roy, 2022; Lánský, 2020].

1.1. Research objectives

The goal of this thesis project is to estimate building heights from ICESat-2 and evaluate the
accuracy of the data from 3D BAG. Because of not every building’s footprint is intersected with
ICESat-2 data, the first thing needs to do is to assess how many buildings in Netherlands (NL)
are covered. For those that are uncovered, the Machine Learning method is used to solve this
problem.

Based on this objective, the main research question is formulated as follows:

Can the height of all buildings in the Netherlands be estimated from ICESat-2 data and what accuracy
can be achieved?

In order to achieve the main research objective, the following sub-questions are defined:

1. What’s the percentage of building in NL are covered by ICESat-2 dataset? Is it enough to
estimate all buildings with the ML method in NL?

2. How to identify the ground and roof points from ICESat-2 dataset? Which method can be
used in getting ground and roof elevation for each footprint considering both efficiency
and accuracy?

3. Which ML method should be used to predict the height of buildings which are not
intersected with ICESat-2? And what attributes should be considered?

4. What’s the accuracy of estimated building height and model performance? Where are
those errors from?

1.2. Scope

This thesis will focus on estimating building height information from ICESat-2 data and extend
to the whole Netherlands area with machine learning methods. The resulted building height
will be evaluated with the height from 3D BAG dataset. Investigating which one ML method
and which features are the best or compare their performance is not included in this project.
The specific ML method and features to be used will be decided according to the previous
research.
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1.3. Outline

1.3. Outline

This thesis consists of five main chapters.

Chapter 2 presents the background of the research related to this thesis. Two types of Space-
borne LiDAR are highlighted, including their characteristics and existing research. Different
height references are also presented, as well as methods for obtaining building heights using
machine learning. The focus is on exploring the possibility of estimating building heights
from Space-borne LiDAR and scaling with ML methods.

Chapter 3 describes in detail the specific methods, including data collection, data cleaning,
identify ground and roof points and building height calculation. Three parts of the machine
learning method are also demonstrated: model generation, hyperparameter tuning, and ac-
curacy of measurement.

Chapter 4 is about the specific implementation process of the ML method, including training
data sets, feature selection and hyper parameter tuning.

Chapter 5 is about the results and the error analysis. The results and errors of the estimated
building heights are shown, as well as the performance of the ML model, and the errors that
exist and the potential causes are analyzed. Cases from the study area are also presented in
this part to explain the causes of errors.

Finally, Chapter 6 is the concluding part of this thesis. The research questions raised in Chap-
ter 1 are first answered, and then the contributions and limitations of this thesis are discussed.
At the end, recommendations for future work based on the results of this thesis are pre-
sented.
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2. Related work

2.1. Space-borne LiDAR

LiDAR is a laser-based technology for measuring distances. Space-borne LiDAR is a high-
precision earth exploration technology developed in the 1960s, using satellites as a platform
with high orbit and wide observation range, which can reach almost every corner of the world
[Sampath and Shan, 2010].

Compared with airborne laser scanning (ALS), space-borne lidar can map globally. It can
provide global coverage at a fraction of the cost (for example, $94 million for GEDI for all land
between 51.6° N and S) [Hancock et al., 2021]. However, current space-borne LiDAR has very
sparse sampling (GEDI will directly measure less than 4% of the Earth) [Hancock et al., 2021].
Preventing their use in a range of applications that require continuous coverage.

Figure 2.1 displays the orbits of two kinds of space-borne LiDARs.

ICESat-2	(92°inclination)
GEDI							(51	°	inclination)

Figure 2.1.: Orbit illustration of two space-borne LiDAR Source:Pronk et al. [2022]

2.1.1. ICESat-2 mission

The ICESat-2, was launched on September 15, 2018, coverage up to 88°N–88°S latitude (see
Figure 2.1). It is distinguished by a photon counting technology supported by the Advanced
topographic laser sltimeter system (ATLAS) instrument.
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ATLAS sensor produces three pairs of beams, each contains a strong signal beam and a weak
signal beam (energy ratio of 4:1). The distance between each beam pairs is 3.3 km in the
cross-track direction. And the distance between the strong and weak beam in a pair is 90 m
(depicted in Figure 2.2).

Figure 2.2.: Illustration of 16 beams (8 pairs of strong and weak beams)

Each point from these beams ideally has a footprint with about 17m diameter. And as time
grows and energy decrease, this value could increase to about 20m in three years [Neuen-
schwander and Pitts, 2019]. In theory, the elevation obtained by ICESat-2 point could be any
object inside this footprint.

Figure 2.3 shows the four levels of ICESat-2 dataset products, Level-1, Level-2, Level-3A and
Level-3B. The Level-3 products focus on a surface-specific field, such as land ice, oceans, sea
ice, water and vegetation.

Although ICESat-2’s major scientific aim is to supervise changes in ice, its land product is also a
vital supplement to current biomass and vegetation mapping activities [Narine et al., 2019].

For its application in the built environment area, especially in estimating building height,
Dandabathula et al. [2021] demonstrated that it is feasible to obtain building heights from
surface reflected ICESat-2 geolocated photons and then compared the results to field measure-
ments to assess accuracy. The accuracy is up to 17 cm.

Lao et al. [2021] developed and validated a methodology to extract the building height based
on the noise removal algorithm adopted by ATL03 product, random sample consensus (RANSAC)
linear fitting, and mathematical statistics. They also compare the performance of day/night
acquisition and strong/weak beam. Day acquisition/strong beam leads to errors lower than
night acquisition/weak beam. The Root Mean Square Error (RMSE) between estimated and
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Figure 2.3.: ICESat-2 data processing workflow. Source: NASA/NSIDC offical website.

reference building height is between 0.35 m and 0.45 m, when do the comparison with dif-
ferent data acquisition conditions. Their result shows that, in urban areas, there is no huge
difference between acquisition times and beam intensity of the ATL03 data when estimating
building height. Thus, in this project, ATL03 data will be used as research data.

2.1.2. GEDI mission

The GEDI instrument was launched on 5 December 2018, from Cape Canaveral Air Force Sta-
tion, Florida. The GEDI is a full-waveform LiDAR device that is installed on the International
Space Station (ISS). For its core use – estimating global aboveground biomass – it gives exact
measures of forest canopy height, canopy vertical structure, and surface elevation.

The GEDI measurements are made over the Earth’s surface between 51.6° N and 51.6° S (see
Figure 2.1). It includes three identical lasers. The GEDI instrument releases three laser beams
at the same time at first. Then, one of them is split into two beams which is called “cover-
age” beam, and the other two lasers remain at full power which is called “full power” beam.
Thus, there are four beams in total now. Next, each of them is dithered to create a total of
eight ground tracks, separated by 60 m along track and by 600 m across track (depicted in
Figure 2.4).

The Land Processes Distributed Active Archive Center1 distributes GEDI land data processed
to Level-1 to Level-4 (details show in Table 2.1). Each type has beens used in different appli-
cations.

1LP DAAC, is one of several discipline-specific data centers within the NASA Earth Observing System.
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Figure 2.4.: GEDI’s ground sampling pattern. Source: GEDI offical website

Liu et al. [2021] validate the accuracy of terrain and canopy height retrievals with the GEDI
L2A product (version 2) and the ICESat-2 ATL08 product (version 4). Their result shows that
these two products are reasonable to be used in terrain height estimation. And the perfor-
mance of ICESat-2 is better than GEDI. Kokalj and Mast [2021] reanalyzing GEDI data(focused
on the L2B dataset) for detection of ancient Maya buildings, demonstrates that the dataset
is currently inappropriate for the intended application of archaeological feature recognition
due to the lack of coverage and low density of GEDI points.

Table 2.1.: GEDI data product level
Level Data Products Resolution

Level-1A Raw Waveforms (not publicly available) 25m
Level-1B Geolocated Waveforms 25m
Level-2A Ground Elevation, Canopy Top Height, Relative Height Metrics 25m
Level-2B Canopy Cover Fraction (CCF), CCF profile, Leaf Area Index (LAI), LAI profile 25m
Level-3 Gridded Level 2 metrics 1km
Level-4A Footprint level above ground biomass 25m
Level-4B Gridded Above Ground Biomass Density (AGBD) 1km

The biggest limitation of GEDI data is the low coverage, less than 4% of the Earth Hancock
et al. [2021]. And the Netherlands is right on the border of the area it covers, which will
further affect the coverage rate. Therefore, the GEDI data are not used in this thesis.

2.2. Height reference

When talking about building height of 3d models, it is necessary to mention the concept of
Level of Detail (LOD). This concept is often used to describe the complexity of 3D building
models. The most widely accepted LOD concept definition contains five levels, which was
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2.2. Height reference

defined by Open Geospatial Consortium (OCG). These five levels are shown below (also see
Figure 2.5:

1. LOD0: a representation of footprints

2. LOD1: a coarse prismatic model (extrusion of LOD0)

3. LOD2: has a simplified roof shape, the parts of the model can be recognized(e.g. roof,
wall).

4. LOD3: an architecturally detailed model with windows and doors

5. LOD4: Indoor details are included based on LOD3

Figure 2.5.: The five LODs defined by the OCG CityGML 2.0 standard. Source:Biljecki et al.
[2016]

To avoid some ambiguities OCG definition creates, this classification has been further refined
to a series which contains 16 LODs by Biljecki et al.. The refined one has four LODs for each
original LOD0 to LOD3 (See Figure 2.6).

Figure 2.6.: Refined LOD models. Source:Biljecki et al. [2016]
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Among them, LOD1.2, LOD1.3 and LOD2.2 have been used in 3D BAG in Netherlands. They can
show the details of the 3d models in different levels and been used in different applications
(see Figure 4.1). LOD1 models is the simplest volumetric 3D city model with a uniform height
[Biljecki et al., 2016]. Therefore, LOD1 model can be used to generate 3d models more quickly
and easily. But at the same time, the uniform height of LOD1 models also brings some unclear
aspects for the building height. Different height references result in different top height of
LOD1 models (Figure 2.7). Theses models are all valid, but the geometric representations is
much different. Thus, the height reference used to define the top surface of LOD1 model can
have a remarkable impact on final building height.

Figure 2.7.: Different geometric representations of the same building. Source:Biljecki et al.
[2014]

Dukai et al. [2019] developed a method uses different percentiles of the points fall in each
building polygon to generate six different reference heights for each building(Figure 2.8).
This method can be used to define the height of 3d building model when estimating building
height from point data.

2.3. ML for inference of building’s height

Machine learning is a method that often is used to get building heights over large areas.
Many machine learning methods and distinct features have been used in estimating building
heights.

Biljecki et al. [2017] used supervised learning models (Random Forest) with unique features
of buildings (predictors) to estimate their heights. The attributes (features) are derived from
cadastral and statistical information, as well as the geometry of the building footprints. The
features be used are divided into three categories: cadastral data, geometric properties and
Statistical data. Cadastral data includes building use, year of construction, number of storeys
above ground, and the net internal area (sum of floor area in all units in a building). Geomet-
ric properties contain three features, they are footprint area, shape complexity, and number of
neighbouring objects. Statistical data (neighborhood characteristics) are obtained from cen-
sus data from Statistics Netherlands (CBS), contains population density, average household
size, and average income.
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Figure 2.8.: Visualization of six difference reference height. Source:Dukai et al. [2019]

After trained predictive models based on different combinations (17 combinations in total) of
predictors, Biljecki et al. [2017] found the number of storeys, building age, and net internal
area are the most useful predictors. Through the evaluation of 200,000 buildings in the city
of Rotterdam, the Netherlands, a MAE of 0.8 metres is achieved. The results demonstrate
that, when cadastral data is available, geometric qualities and neighborhood characteristics
are of little utility. And when the number of storeys was used in a predictive model, all other
features were much less important. However, the storey data is not easily available, especially
at the country-wide level.

Anh et al. [2018] applied a similar method and use the same building attributes as Biljecki
et al. [2017] in the city of Hanoi, Vietnam. Cross-validation and grid-search approaches were
employed to fine-tune and improve the model’s accuracy. However, the performance of the
predictor model is less accurate with a MAE of 7.12 metres.

Lánský [2020] implemented three machine learning methods, RFR, MLR and SVR to predict
the height for all buildings in the USA within an acceptable time. According to the unique
features of the CBDs (Central Business Districts) and Suburbs / Rural regions, two models
were generated respectively and also a combined one. The features used are classified into
two major categories: geometric features and non-geometric features. Geometric features
are obtained from footprints, includes area, compactness, complexity, number of neighbours,
number of adjacent buildings, length, width, slimness and number of vertices (see Table 2.2).
While non-geometric features are from cadastral or statistical (census) data, includes year of
construction, the building usage, the number of storeys above ground.

Lánský [2020] tested the performance of the prediction model with and without non-geometric
features. The result shows that in Central Business District (CBD) model, all three ML meth-
ods are benefited from non-geometric features. While different Machine Learning methods
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benefit differently from the addition of non-geometric features. MLR benefits the most with
a reduction of 4 .46m in MAE. RFR is the next one with an improvement of 3.55m. SVR only
improved 0.3m. For combined model and suburbs model, they have similar trends: non-
geometric features improve the performance of the RFR method, while no significant improve-
ments in MLR and SVR methods.

Milojevic-Dupont et al. [2020] focused on urban form when predicting building heights. Ta-
ble 2.2 shows the attributes (features) they summarised and used in their study. Compared
with what Biljecki et al. did in 2017, the street and street-block are given greater consid-
eration, whereas statistical factors such as population density, average income, and typical
home size are completely ignored. Also, the cadastral data, such as year of construction, are
ignored. Both of them pay attention to the geometric data. Milojevic-Dupont et al. [2020] also
proves that cross-country generalization is possible, and low buildings were predicted more
accurately than high ones.

Roy [2022] implemented three ML methods to infer the number of floors for building foot-
prints in the Netherlands. This is also related to the building height. These three ML methods
are Random Forest (RF), Gradient Boosting (GB) and SVR. She used four feature sets: cadas-
tral features, geometric features (2D and 3D) and census features. Cadastral features includ-
ing construction year, building function, net internal area and number of units. Geometric
features including 2D features (area, perimeter, number of vertices, number of neighbours
and number of adjacent buildings) and 3D features (building volume, roof surface area, wall
surface area, etc.). Census features including population per square kilometer, percent multi-
household, etc.

Three methods have been used to do the feature selection, they are the filter-based method,
the embedded method, and a method focused on multicollinearity reduction [Roy, 2022].
Her results show the 3D geometric features are useful for reducing prediction error (90.1%
for buildings with less than 5 floors). However, even if with only cadastral features, a good
level of accuracy (82.5% for buildings with less than 5 floors) can also be achieved. The worst
performance (61.7% for buildings with less than 5 floors) is based on cadastral features and
2D geometric features. Her conclusion is that 3D geometric features and cadastral features
are a good combination used in NL. But when considering the data availability globally, a
combination of 3D geometric features and 2D geometric features is more applicable.

From the previous research, I decided to use RFR in this thesis, and in the consideration of
data availability, non-geometric features will not be included in model training.
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Table 2.2.: Summary of features used in building height estimation

Features Biljecki et al. [2017] Lánský [2020] Roy [2022]

Geometric

footprint area footprint area footprint area
complexity complexity -
number of
neighbours

number of
neighbours

number of
neighbours

- compactness -

-
number of
adjacent
buildings

number of
adjacent
buildings

- length -
- width -
- slimness -
- number of vertices number of vertices
- - perimeter

Non-geometric

building use building use building type
year of construction year of construction -
number of storeys
above the ground

number of storeys
above the ground -

net internal area - -
population density - population per km2

average household size - -
average income - -

- - percent
multi-household

- - average number
of cafes in 1km
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3. Methodology

In this section, the main methodology will be described. Section 3.1 summarizes the overall
methodology. Section 3.2 describes the process of data pre-processing (cleaning). Section 3.3
and Section 3.4 focus on obtaining data from ICESat-2 and making an estimate of the building
height. The last part, Section 3.5 is about building RFR model.

3.1. Overview

As shown in Figure 3.1, the method consists of three main parts: (1) Data preparation and
noise removal, (2) Building height estimation, (3) Machine Learning method. More details
about these three parts are shown in the following sections.

Figure 3.1.: Flowchart of methodology
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3.2. Data cleaning

Data obtained directly from ICESat-2 needs to be cleaned, and some preliminary processing
is needed to facilitate subsequent use. There are two major ways to clean the data: one is
to use the confidence property of ICESat-2 data set itself, and the other is to use a boxplot to
determine outliers and then remove them. The box plot filter method is only used for ground
elevation calculation.

3.2.1. Confidence filter

For data cleaning, the ATL03 product has its own noise recognition algorithm, every photon
has an attribute confidence before release (Table 3.1). By creating histograms of the number
of photons versus the height and computing the signal-to-noise ratio of each histogram bin,
the ATL03 product’s noise reduction algorithm identifies each photon as either a likely signal
photon or a background photon [Neumann et al., 2019].

As a result, it produces a confidence elevation ranging from -1 to 4 to show whether the
photon is classed as noise, background, low, medium, or high confidence. Therefore, based
on confidence level, the first step of data cleaning will be carried out.

Table 3.1.: Meaning of confidence number

Confidence Description

-1, 0 noise
1 background
2 low
3 medium
4 high

3.2.2. Box plot filter

In this step, the data will be further cleaned. I assume that the distribution of ICESat-2 points
follows the normal distribution, so further filtering is performed using box plot. There are five
important numbers in box plot: "minimum", first quartile (Q1), median, third quartile

(Q3), and "maximum". For the normal distribution, 0.7% of the data is an outlier. In box plot,
the data outside the upper and lower edges is an outlier (green points in Figure 3.2).

3.3. Identify the ground and roof

To get the height of a building which has it’s own footprint (from BAG), it is necessary to
clearly understand the intersection situation of the footprint and ICESat-2 points. For a foot-
print with several ICESat-2 points, it is also important to think about how to define its ground
points and the roof points. The difference between these two categories of points will be used
to calculate the building height. In this section, ground and roof elevation values need to be
obtained for each footprint.
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Figure 3.2.: Comparison of boxplot and normal distribution (Source: Galarnyk [2020])

3.3.1. Intersection analysis of ICESat-2 points and building footprint

In order to calculate the height of each building, needs to know the coverage rate of all build-
ing footprints. Geopandas library is used to handle the intersections. For each building foot-
print, the number of ICESat-2 points that are inside it and their z-values need to be known.
This is to calculate the elevation of the ground and the elevation of the roof of each building
in the next step.

After pre-experiments, the following cases were found to exist:

• The first, most ideal type (Figure 3.3 a), perfectly contains ground data points and roof
data points, which are distributed to form two distinct categories. In this case, the
building height is the difference between the two categories.

• The second type, containing noise (Figure 3.3 b). It may be trees or other objects in the
range. In this case, the access to ground elevation or roof elevation will be affected to
some extent, and there are more challenges, such as how to distinguish between roof
height and tree top height. It’s hard to say which points are belong to roof.

• The third kind, missing data. Because of some unknown reason, the points dropped
within the footprint cannot represent the height of the ground (Figure 3.3 c) or the roof
(Figure 3.3 d), or in the worst case, neither. They just missing the elevation information.

17



3. Methodology

Figure 3.3 e and Figure 3.3 f illustrates that sometimes there are not enough points in
the footprint to determine the ground and roof elevations of this building. There is no
way to get the building height from just one or two points.

(a) Ideal type (b) Contain noise

(c) Missing roof points (d) Missing ground points

(e) Only has two points (f) Only has one point

Figure 3.3.: Distribution of points in the footprint

3.3.2. Identify ground

From the cases mentioned above, for some footprints (Figure 3.3a, Figure 3.3b and Figure 3.3c),
it is possible to obtain ground points from the ICESat-2 points intersected with them. However,
for other footprints (Figure 3.3d, Figure 3.3e and Figure 3.3f), it is impossible to obtain ground
points from the ICESat-2 points intersected with them. Therefore, it is limited to consider only
the points that fall within the footprint to identify the ground.

In reality, there is another situation that can be used to explain what happens in Figure 3.3d.
Figure 3.4 shows a situation where there is no way to obtain the ground points of a house in
a townhouse complex, such as building b, building c, building d.
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Figure 3.4.: Townhouse

Therefore, when determining the ground, a large range of ICESat-2 data should be considered,
not just the ones falling within the footprint. The method of considering only the points
within the footprint for determining the ground elevation has great limitations, especially
in places with many townhouses like in the Netherlands. There is a need to define another
ground determination method that also applies to these footprints without ground points.
Since the distribution of ground points is spatially continuous, the first consideration is to
use spatial interpolation.

To implement the spatial interpolation method, all ground points (black points in Figure 3.5)
inside the dataset are used as known values. Then create a bounding box of the target area
with QGIS and rasterize the ICESat-2 points in this area. Through the use of the rules estab-
lished from these known points, the ground point value of each grid cell can be estimated
for the entire extent of the boundary (red point in Figure 3.5). The ground elevation of each
footprint is then determined by finding the nearest ground point to the center point (centroid,
yellow point in Figure 3.5) of the footprint.

Figure 3.5.: Illustration of spatial interpolation

Three key points need to be considered here:

• How to define the ground points throughout the target area?

• Which spatial interpolation method to use?
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• How to determine the size of the interpolation grid?

With the goal of obtaining as much valid ground data as possible, two different methods will
be used to define the ground points, which is illustrated in Figure 3.6. The one on the left is
the one that was finally chosen (see Section 5.2.1).

Figure 3.6.: Two definitions of ground points

• The left one in Figure 3.6 is to mark all the points that fall in the footprint as building
points and the rest of the points as ground points.

• The right one in Figure 3.6 employs the buffer zone approach, which labels as ground
points only the spots within 3 meters of each footprint. This approach can minimize the
number of ground points, however for attached buildings, there will be points that fall
within both the buffer and the footprint that will be classified as ground points. This is
a disadvantage of this strategy.

When coming to interpolation implementation, five specific methods are used in this project,
which are Nearest Neighbor (NN), Natural Neighbour (NNI), Laplace, Linear Interpolation in
TIN (TINL), IDW. Four grid sizes (25m, 50m, 100m, 150m), four interpolation methods and two
ground points definition are used creating 40 different combinations in total.

Using the different combination, ground elevation are obtained for each footprint. This value
is compared with the reference value (h maaiveld (height of ground level in Dutch) from
BAG). The absolute error between the two will be used to measure the accuracy of this com-
bination. And the one with the smallest error will be finally chosen.

3.3.3. Identify roof

Compared to the ground, the roof points are a little more straightforward to classify. Roof
points always comprise points that fall in the footprint. But from Figure 3.3, it is known that
not all the points falling in the footprint represent the roof. Among all these points, the ones
with a larger z value are more likely to be roof points. Considering this distribution pattern,
a percentile approach will be used to determine the elevation of the roof.

In order to make the calculated roof elevation more accurate, it is necessary to find out and
exclude those footprints that don’t have points higher than the calculated ground elevation.
Because it is impossible to get roof elevation for them. Moreover, the minimum floor height
should also under consideration, a building with 1m high is unmeaningful in real world.
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Thus, the value used to filter out footprints which only have no meaningful roof points is the
calculated ground elevation plus the minimum floor height.

From the bouwbesluit (The Dutch Building Decree), this value is determined to be 3 meters.
For each footprint, if the elevation of all the points falling within it is less than its ground
elevation plus 3 meters, this footprint is ignored in roof calculation. Because no useful points
could be obtained from the ICESat-2 data to represent its roof height. The comparison of either
ignore these footprints or not in roof calculation is shown in Section B.3.

This approach reduces the number of footprints that ultimately have an effective height, but
is a necessary step. One of the possible consequences is that out of all footprints in a mu-
nicipality area, only a tiny number of footprints can have a building height got from ICESat-2
satellite data, considering the intersection with ICESat-2 and a reasonable roof height. This may
affect the amount of data available for the latter machine learning methods and thus lead to
unacceptable model results.

The two attributes from BAG are used as standard roof elevation, h dak 50p and h dak 70p.
They show the roof is calculated as the median and 70th percentile of all elevation points
on the corresponding roof part, respectively. The calculated roof elevation will be compared
with these two values to evaluate the accuracy.

3.4. Calculate building height

Finally, the building height will be determined by the difference between the roof elevation
and the ground elevation Equation 3.1.

Building Height = Elev r − Elev g (3.1)

3.5. Machine learning method

3.5.1. Model generation

Once the building heights are obtained from ICESat-2, the Random Forest Regression (RFR) will
be used to estimate the footprint heights that are not intersected with the ICESat-2 data. The
geometric features from Lánský [2020] are used, because it covers all geometric features. The
description and computation of these features are shown in Figure 3.7. Also plus perimeter
and construction year (from BAG) two features. Thus, there are eleven features in total.

These features will be further selected based on the method mentioned in Section 4.4.

Next, a correlation matrix is used to measure the correlation among features [Pham-Gia and
Choulakian, 2014]. The value of the correlation matrix is between -1 and 1. A high correlation
between two features means these two have a strong positive correlation. The closer the value
to zero, the weaker the correlation between the two. A negative number shows a negative
correlation between the two.
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Figure 3.7.: Geometric features. Source:Lánský [2020]

After correlation analysis, the Variance Inflation Factor (VIF) is calculated. This is to measure
the level of multicollinearity in the multiple linear regression model [Forthofer et al., 2007].
The value of VIF is greater than 1. The closer the value of VIF is to 1, the less severe the mul-
ticollinearity is, and vice versa. The values above 5 or 10 indicate high collinearity [Garvin,
2013].

3.5.2. Model tuning

There are several hyperparameters of RFR algorithm available in the scikit-learn library.
By adjusting these hyperparameters, the accuracy of the model can be influenced. Improper
selection of hyperparameters can lead to underfitting or overfitting problems. Therefore,
in order to obtain a more accurate model, it is necessary to perform tests and select the most
suitable hyperparameters. There are two ways to choose hyperparameters, one is to fine-tune
them by experience, and the other is to run the model with different parameters, and pick the
best performing ones. These two methods will be used in combination with hyperparameter
tuning in RFR.

Before going to the details of tuning method, two functions from scikit-learn library need
to be explained in first. Because they will be used in tuning.

The first one is Grid Search Cross validation (GridSearchCV)1, a method of tuning parameters by
using exhaustive enumeration [Ranjan et al., 2019]. The name GridSearchCV can actually be split
into two parts, GridSearch and Cross validation (CV), i.e., grid search and cross-validation.
The grid search is actually to search for the parameters. Cross-validation is to prevent over-
fitting caused by overly complex models. The concept of cross-validation is to divide the
training data set into K sets (Figure 3.8). One of the sets is taken in turn as the validation set,
and the rest is the training set to train the model and test the accuracy of the model on the
validation set. The average accuracy of K experiments is the average accuracy of the model.

The principle of GridSearchCV is like finding the maximum value in an array. What GridSearchCV
does is: in the specified parameter range, the parameters are adjusted sequentially in steps,
and the model is trained using the adjusted parameters to find the parameter with the highest
accuracy on the validation set from all the parameters. This is actually a training and compar-
ison process. Since it is required to iterate through all possible combinations of parameters, it

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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3.5. Machine learning method

Figure 3.8.: Visualization of cross-validation Source: scikit-learn website

is guaranteed to find the parameter with the highest precision within the specified range of
parameters. But it is very time-consuming in the face of large data sets and multiple parame-
ters.

To alleviate GridSearchCV’s time-consuming drawbacks, Randomized Search Cross validation
(RandomizedSearchCV)2 are proposed (Bergstra and Bengio [2012]). It is similar to the GridSearchCV,
but instead of trying all possible combinations, it trains the model by a fixed number of pa-
rameter settings is sampled from the specified distributions (Figure 3.9).

Figure 3.9.: Grid and random layout of parameters Source:Bergstra and Bengio [2012]

On the base of two methods mentioned above, the basic idea of RFR tuning used in this thesis
is:

1. Determine the approximate selection range of each parameter to form a parameter dic-
tionary. These approximate ranges can be obtained from previous studies

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.

html

23

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html


3. Methodology

2. Use RandomizedSearchCV to train the model with the parameters in the parameter dictio-
nary. The best set of parameters in the random layout can be obtained.

3. Use the best parameter set obtained in the previous step as a criterion, take the sur-
rounding values to form a new parameter selection range and a corresponding param-
eter dictionary.

4. Use sklearn’s GridSearchCV, to train the model with the parameters in the new parameter
dictionary to obtain the final best parameters

3.5.3. Model accuracy evaluation

Three error metrics are used to measure the accuracy of the prediction model. They are MAE,
RMSE, R Squared (R2 score) and Mean Absolute Percentage Error (MAPE).

MAE and RMSE are used to measure whether the correct value was predicted. R2 score is used
to measure whether sufficient information has been fitted to.

MAE is the average difference between the predicted value and the true value [Sammut and
Webb, 2010]. It is used to assess closeness between the prediction results and the real data set
(Equation 3.2). The smaller the value the better the result.

1
n

n

∑
i=1

|yi − y̌i| (3.2)

RMSE is the square root of the ratio of the square of the deviation of the observed value from
the true value to the number of observations (Equation 3.3) [Chai and Draxler, 2014]. The
consistency of the scale is ensured. RMSE is very sensitive to extreme errors in a set of data.
The RMSE is used to measure the deviation between the observed value and the true value.√

1
n

n

∑
i=1

|yi − y̌i| (3.3)

R2 score determines how well the prediction model fits the real data (Equation 3.4). The nu-
merator represents the sum of the squared differences between the real and predicted values.
The denominator represents the sum of the squared differences between the real and mean
values, similar to the variance. In normal situation, the result of R2 score takes the range of
(0,1) The closer to 1 means that the independent variable can explain the variance change of
the dependent variable. The smaller the value means that the effect is worse. If R2 score is 0,
it means that the model fit is poor, and cannot predict the dependent variable. If the result is
1, it means the model is error free. If the result is a negative number, the model is performed
poorly, even impossible to know how bad it is [Chicco et al., 2021].

1 − ∑i(y̌i − yi)
2

∑i(ȳi − yi)2 (3.4)

MAPE is a measure used to forecast error (Equation 3.5), and works best if there are no ex-
tremes to the data (and no zeros) [Swamidass, 2000]. It’s range is [0,+∞), a MAPE of 0%
indicates a perfect model, and a MAPE greater than 100% indicates an inferior model.
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4. Implementation

4.1. Datasets

The data sets required for this project come from two major sources, one is ICESat-2 ATL03
product (Version 5), the other is BAG dataset.

The ICESat-2 data provides point data, and the z-values of these points reflect the correspond-
ing object elevation (like the ground and roof). ICESat-2 ATL03 product (Version 5) is the latest
version, downloaded from EARTH DATA SEARCH and then convert into geopackage format
from .h5 format with Julia and SpaceLiDAR.jl package [Pronk, 2022].

The BAG dataset will be used as ground truth to evaluate the calculated results, which is
downloaded from 3D BAG. For BAG datasets, they have many layers and attributes. Such as
”LOD12”, ”LOD13” which reflects the details of the different levels. The required properties
from different layers will be combined to form a new geodataframe object (Figure 4.1). All
relevant data distributed within the boundaries of the municipality will be collected. In the
end, all these data are converted to EPSG: 7415 georeference with Geopandas, making sure
they have a uniform georeference.

Figure 4.1.: Layers in one footprint
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4. Implementation

Considering the trajectory of the ICESat-2 satellite data, the topographic features of the Nether-
lands, and different municipal classes, Maastricht, Rijswijk and a northern village called
Zuidbroek will be selected as experimental subjects. The location of these three cities in the
Netherlands is shown in Figure 4.2. The topographic data is from Actueel Hoogtebestand
Nederland (AHN) 1.

Figure 4.2.: Location of three datasets (in black edge)

Maastricht shares borders with Germany and Belgium. It’s a university city on the southern
tip of the Netherlands. Unlike most flat cities in the Netherlands, there is a hill to the south
of the city that causes its topography to undulate. Rijswijk is in the Western Netherlands, be-
tween The Hague and Delft. It is on an flat coastal plain next to the North Sea. Zuidbroek is a
small village in the province of Groningen. The three datasets correspond to cities, towns and
villages and are in the south, west and north of the Netherlands, respectively. The purpose of
this is to test whether the ICESat-2 data cover the whole of the Netherlands and to see whether
the data performance is influenced by geographical or municipal influences.

Since ICESat-2 started publishing data in 13th October, 2018, all data within this time-frame are
considered as of 1st April, 2022 data collection deadline.

However, within these three municipalities mentioned above, not all dates are covered, and
the temporal distribution of the valid ICESat-2 data obtained is shown in Figure 4.3. It can be
seen that in some time periods, such as 2021-02, Maastricht gets amounts of point data, while
in other months, such as 2018-12 and 2020-06, there is almost no data. This type of situation
also occurs within the other two datasets.

1https://www.ahn.nl/ahn-viewer
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Figure 4.3.: Time distribution of ICESat-2 data in three datasets

Figure 4.4 provides an overview of spatial distribution of ICESat-2 points in three datasets.
Clearly shows ICESat-2 points are not fully cover each dataset. Thus, the distribution of ICESat-2
is very random in time and space, at least within these three data sets.

The basic information of these three datasets, such as number of footprints, number of ICESat-2
data and area, is shown in the Table 4.1.

Table 4.1.: Basic information of Datasets

Municipality No. ICESat-2 points No. footprints Area (km2)

Maastricht 1,219,131 59,338 60.12
Rijswijk 597,636 17,684 14.49

Zuidbroek 146,693 2,825 17.28

4.2. Software

Python, Julia and QGIS are the three major tools used in this thesis project.

• Julia has the SpaceLiDAR library, which is easy and convenient to be used to download
the ICESat-2 dataset and convert them into geopackage format.

• Python has several useful libraries that can be used in this thesis. Such as geopandas,
shapely, scikit-learn, etc. These libraries are used to read and process the ICESat-2
data, such as filter the noise, classify the photons and calculate the building height for
each footprint. Also used in generating prediction model.
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Figure 4.4.: Spatial distribution of ICESat-2 data in three datasets

• QGIS is used as a visual support tool during the entire process, visualize the ICESat-2
data and 3D BAG data (footprint of buildings).

4.3. Training dataset

The datasets used in training are from two parts. One is the building height information
calculated by my method, another is the geometric features of footprints mentioned in Sec-
tion 3.5.1, like area, length, etc.

There are only 2238 footprint samples from the training datasets containing all data from three
datasets. The number of samples for each dataset in Maastricht, Rijswijk and Zuidbroek is
1640, 525 and 73, respectively. The comparison of the amount of valid footprint data and
the amount of origin footprint data is shown in Table 4.2. It can be seen that less than three
percent of the footprints in all three datasets have building heights obtained from the ICESat-2
satellite data compared to the original footprint data.

4.4. Feature selections

Feature selection is to select a suitable, relatively small subset of features from many features
to be used as input to the ultimate model. Attributes that are useful for the current learning
task are called ”relevant features” and attributes that are not useful are called ”irrelevant
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Table 4.2.: The amount of final valid footprints

Municipality No.
footprints

No.
intersected
footprints

No. intersected
footprints
after filter

No.
final valid
footprints

Final valid
footprint

percentage
Masstricht 59,338 2,902 2,428 1,640 2.76%
Rijswijk 17,684 1,382 723 525 2.97%
Zuidbroek 2,725 140 107 73 2.68%

features” [Blum and Langley, 1997]. Selecting a subset of relevant features from a given set of
features is called ”feature selection”. After feature selection, although the number of features
is reduced, the model effect does not decrease significantly or even performs better [Blum
and Langley, 1997].

Feature selection has three principal functions [Miche et al., 2007]. The first is to reduce the
number of features, reduce dimensionality, make the model more generalizable, and reduce
over-fitting. The second is to enhance people’s understanding of the model, and fewer fea-
tures are good for model interpretation. The third is that fewer features require fewer re-
sources, which is beneficial for model training and inference, high modeling efficiency, and
low maintenance cost.

The most common classification of feature selection methods are three major categories: Filter
methods, Wrapper methods and Embedded methods [Jović et al., 2015].

In this section, three models based on each of the above three feature selection methods will be
built. And these three models are evaluated and analyzed by correlation and multicollinearity
among the keep features.

4.4.1. Filter method

The filtering method first requires selecting the scoring method. Then calculating the scores of
all features, ranking the features, and finally filtering to get the selected features based on the
threshold or the required number of features. This feature selection method does not involve
subsequent model construction and is usually considered as an unbiased feature selection
method Sánchez-Maroño et al. [2007].

The scoring methods are as follows:

Variance filtering

The variance metric is the simplest type of scoring method. The features are filtered by the
variance of the features themselves Li et al. [2018]. Variance indicates the degree of dispersion
of the data. If all the values of a feature are the same or close to each other, it means that
its data distribution is more concentrated and not enough dispersion. In other words, this
feature does not discriminate between the target variables. For example, a feature with a
small variance means that the sample is essentially undifferentiated on that feature. One
possibility is that most of the values in this feature are the same, or even that the entire feature
takes the same values. Then, the feature is of little use for sample distinction. Therefore, the
features with zero variance are to be filtered as a priority.
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Correlation filtering

Correlation represents the relationship between features and features, and between features
and target variables. A feature is correlated if a change in the feature value causes a change in
the predicted value. The strength of the correlation represents the extent of this relationship.
The goal of feature selection is to select features with strong correlation.

There are three commonly used methods to judge the correlation between features and labels
in scikit-learn: chi-square test, F-test, and Mutual information and Mutual information
and maximal information coefficient (MIC).

Chi-square test is a correlation filter for discrete labels (i.e., classification problems). It is not
relevant to the regression model used in this thesis.

F-test, also known as ANOVA, is a filtering method used to capture the linear relationship
between each feature and the label. It can do either regression or classification.

MIC is a filtering method used to capture arbitrary relationships (both linear and nonlinear)
between each feature and label. Similar to the F-test, it can do both regression and classi-
fication. MIC between two random variables is a non-negative value, which measures the
dependency between the variables. This estimator takes values between [0, 1], where a value
of 0 indicates that the two variables are independent and a value of 1 indicates that the two
variables are perfectly correlated [Battiti, 1994]. In here, I’ll use MIC to measure the correlation,
because it can capture both linear and nonlinear relation.

Table 4.3.: The variance, MIC and VIF of selected features

Features Variance MIC VIF
area 43618.3421 0.0530 22.8521
perimeter 3341.6861 0.0781 124.0321
construction year 789.0000 0.2205 585.5995
length 348.2614 0.0741 31.6741
width 274.9515 0.0540 26.5574
complexity 194.0018 0.1028 358.4244
vertices 68.4588 0.0053 10.3204
neighbour 41.0000 0.0938 4.3174
slimness 0.7478 0.0581 15.6651
adjacent buildings 0.5596 0.0000 -
compactness 0.0107 0.0601 286.8304

The result of the filter method is shown in Table 4.3. The variance values of all 11 features
are not 0. There is only one feature’s MIC value is 0, which is ”adjacent buildings”. Indicating
that this feature and the building height are two independent variables from each other. Thus,
based on the filter method, 10 features except ”adjacent buildings” will be kept. VIF is used
to measure the level of multicollinearity. Only one of ten is smaller than 5, indicating they are
highly correlated with each other. The correlation matrix (see Figure 4.5) also shows a high
correlation between ”complexity”, ”length” and ”width” these three features.
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Figure 4.5.: Correlation matrix of filter method

4.4.2. Embedded method

The embedding method is a way to let the algorithm decide itself which features to use, which
is means feature selection and algorithm training are performed simultaneously [Chandrashekar
and Sahin, 2014]. When using the embedding method, certain machine learning algorithms
and models are first trained to obtain the weight coefficients of each feature. These weight co-
efficients often represent some contribution or some importance of the features to the model.

When decided the machine learning algorithms as RFR the weight coefficients here are actu-
ally the feature importances attribute, which can list the contribution of each feature to the
forest. The features are then selected based on the weight coefficients from the largest to the
smallest. The threshold of feature importance can be determined with the help of the learning
curve, and any feature whose importance is lower than this threshold will be removed.

Figure 4.6.: Learning curve to find best threshold

From the learning curve (Figure 4.6), when the threshold is 0.09, the model has the best per-
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formance. When set threshold as 0.09, there are 5 features retained (blue background in Ta-
ble 4.4). Only one of five VIF values is smaller than 5, same as the result of the filter method.
The correlation matrix (Figure 4.7) shows the ”length” has the strongest correlation with ”bh”
(building height) among selected 5 features.

Table 4.4.: Feature importances and VIF of selected features

Features Feature importances VIF

slimness 0.1992 7.3361

compactness 0.1893 116.2070

length 0.1437 9.3979

area 0.0995 4.8126

construction year 0.0920 150.5292

complexity 0.0693 -

width 0.0654 -

neighbour 0.0605 -

perimeter 0.0511 -

vertices 0.0150 -

adjacent buildings 0.0150 -

Figure 4.7.: Correlation matrix of embedded method

4.4.3. Wrapper method

The wrapper method is very similar to the embedded method and is also a method in which
feature selection and algorithm training are performed simultaneously. It also relies on the
algorithm’s own properties, such as coef properties or feature importances properties, to
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perform feature selection. The difference, however, is that an objective function is used as a
black box to help select features, rather than entering a threshold value.

The wrapper method trains the evaluator on the initial set of features and obtains the impor-
tance of each feature either through the coef attribute or through the feature importances

attribute. Then, the least important features are pruned from the current set of features. The
process is repeated recursively on the pruned set until the desired number of features to be
selected is finally reached. Unlike the filter and embedded methods, which solve all problems
in one training, the wrapper method has to be trained several times using a subset of features,
and therefore it requires the highest computational cost [Chandrashekar and Sahin, 2014].

Figure 4.8.: Learning curve to find best number of retained features

From the learning curve plot (see Figure 4.8), it can be seen that the best amount of features
to be retained is 4 (blue background in Table 4.5). The result of VIF is much better than the
previous two methods. Two of them are smaller than 5, and the other two are closer to 5.
The correlation matrix (Figure 4.9) shows the strongest correlation is between ”length” and
”area”. And ”length” also has the strongest correlation with ”bh” (building height) among
the selected 4 features.

Table 4.5.: Feature importances of and VIF selected features

Features Feature importances VIF

slimness 0.1992 6.3519

compactness 0.1893 4.3945

length 0.1437 6.6754

area 0.0995 4.4167

4.5. Hyperparameter Tuning

In this section, the adjustment of hyperparameters was implemented. First, the general trend
of the change of hyperparameter is displayed. Next, using the method mentioned in Sec-
tion 3.5.2, hyperparameters are determined for each model.

In scikit-learn, the RandomForestRegressor2 method has a lot of parameters. In this thesis,
I mainly focused on six of them to do the hyperparameter tuning (See Table 4.6).

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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Figure 4.9.: Correlation matrix of wrapper method

Table 4.6.: Six hyperparameters for the RFR in the scikit-learn library

Hyperparameter Type Default Description
n estimators int 100 The number of trees in the forest.
max depth int None The maximum depth of the tree.

min sample split int or float 2 The minimum number of samples
required to split an internal node.

min sample leaf int or float 1 The minimum number of samples
required to be at a leaf node.

max features int or float auto The number of features to consider
when looking for the best split.

bootstrap bool True Whether bootstrap samples are used
when building trees.

4.5.1. General trend of change in hyperparameter

Figure 4.10 shows how the validation curve of the model (with all 11 features) changes as the
parameters are varied. The validation curve is used to show how the model may go from un-
derfit to fit to overfit as the hyperparameter settings are changed for the same model. The hor-
izontal axis of the validation curve is some hyperparameter, such as max depth, min sample leaf,
etc. in some tree-integrated learning algorithms. The vertical axis represents the score, and
the scoring method is chosen according to different model types (e.g.classification, regres-
sion). In here, I choose R2 score to represent.

Figure 4.10a shows with the increase of n estimators, the R2 score for both training and
cross-validation sets is first grows rapidly and then stays steady at around 40 without further
change. Which means increase the number of estimators generally leads to better predictions.
However, considering the complexity of the model also grows, this value should be set at
the inflection point where the trend turns from upward to flat. This ensures that the model
achieves a high level of performance while not being overly complex.

The increase of max depth causes a decrease of R2 score in cross-validation sets while a in-
crease of that in training sets (Figure 4.10b). And the score of the training sets is always higher
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than that of the cross-validation sets. This phenomenon indicates the model is overfitted as
max depth increases. Therefore, a smaller value of max depth is more appropriate.

The change of R2 score with the increase of min sample leaf and min sample split is similar
(see Figure 4.10c and Figure 4.10d). The score of the training sets is first decrease and then
stays steady. For the score of the cross-validation sets, it is increases first, then keeps steady.
As the min sample leaf and min sample split increases, the score of training and cross-
validation sets is getting closer.

(a) n estimators (b) max depth

(c) min samples split (d) min samples leaf

Figure 4.10.: Validation curves of four hyperparameters for RFR

4.5.2. Tested and selected hyperparameter

After understanding the general trend of the influence of the variation of hyperparameters
on the model, the method mentioned in Section 3.5.2 is used to select hyperparameters for
the three models obtained by the three feature selection methods and also the base model
(maintain all features).

The tested details are shown in the two tables below. Table 4.7 shows the result of RandomizedSearchCV
tuning method. Compared with the model selected by filter method, the two selected by em-
bedded and wrapper method are more similar to each other. This is because the latter two
keep very similar features. The features retained by the embedded method have only one
more ”construction year” feature than the wrapper method.
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The final selected hyperparameter is shown in Table 4.8. The test range of hyperparameter
used in the test in GridSearchCV method is based on the result of RandomizedSearchCV.

Table 4.7.: Overview of tested and selected hyperparameter (RandomizedSearchCV)

Hyperparameter Value tested Value selected

Start End Num Filter
method

Embeded
method

Wrapper
method

n estimators 1 200 11 100 200 200
max depth 1 200 11 20 180 None
min sample split 2 200 11 81 2 2
min sample leaf 1 200 11 80 1 1
max features(F) 1 10 11 7 - -
max features(E) 1 5 5 - 3 -
max features(W) 1 4 4 - - 4
bootstrap True / False True True True

Table 4.8.: Overview of tested and selected hyperparameter (GridSearchCV)

Hyperparameter Value tested Value selectedStart End Num

Filter
method

n estimators 90 110 11 92
max depth 10 30 11 22
min sample split 70 90 11 86
min sample leaf 70 90 11 78
max features 6 7 2 7
bootstrap True / False True

Embeded
method

n estimators 195 230 10 198
max depth 170 190 11 188
min sample split 2 5 4 2
min sample leaf 1 3 3 1
max features 3 5 3 4
bootstrap True / False True

Wrapper
method

n estimators 195 230 10 202
max depth None None
min sample split 2 4 3 2
min sample leaf 1 3 3 1
max features 3 4 2 4
bootstrap True / False True

38



5. Results

This chapter shows the results, experiments and analysis. Section 5.1 shows the result of
data pre-processing. Section 5.2 shows the experiments in defining ground points and roof
elevation percentile choosing. Section 5.3 contains the statistical analysis and cases study of
error analysis. Section 5.4 is the model performance analysis.

5.1. Data pre-processing

5.1.1. Data cleaning

The ICESat-2 data was first cleaned using it’s provided confidence property. The distribution
of points with different confidence levels is shown in Section B.1.

Based on the attribute confidence provided in ICESat-2 data, these points are classified in to
”c4”, ”c3”, ”c2” and ”other”. ”c4”, ”c3” and ”c2” represent the point with a confidence value
of 4, 3 or 2. ”other” means the point with a confidence value of 1 or 0 or -1.

(a) Maastricht (b) Rijswijk

(c) Zuidbroek

Figure 5.1.: The number of points with different confidence levels in three datasets
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From Figure 5.1, it can be seen in Maastricht and Rijswijk, ”other” category account for more
than half of the total ICESat-2 data. And in Zuidbroek, this number is about 40%. While in
Zuidbroek, half of the total number of ICESat-2 points with the confidence level of 4. Rijswijk
data set has the least points with the confidence level of 4.

In this cleaning step, all points in ”other” category are removed.

(a) Maastricht, reasonable range from BAG [40.67, 164.21]

(b) Rijswijk, reasonable range from BAG [-5.94, 83.93]

(c) Zuidbroek, reasonable range from BAG [-1.90, 25.43]

Figure 5.2.: Boxplot of data cleaning steps (from left to right: original data, after confidence filter,
after boxplot filter), black line is the minimum value of h maaiveld, red line is the maximum
value of h dak max

The next cleaning step is performed with the help of a box plot. After removing the outliers be
identified by the box plot, the ultimate result of the data cleaning step is obtained. Figure 5.2
shows the box plot of original ICESat-2 data, and the data after each filtering step. The black
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line is the minimum value of h maaiveld, the red line is the maximum value of h dak max.
The range between these two lines is the reasonable elevation range, also the aim of data
cleaning.

This box plot can be used to explain why the box plot filtering method is only used for ground
elevation calculation, not for roof elevation calculation. From BAG data, it can be known the
range of h maaiveld and h dak max for three datasets. From the Figure 5.2, it can be seen after
box plot filtering, that the maximum value of Maastricht is about 90m, while the maximum
value from BAG is 164.2121m. This illustrates part of the roof point is missing after boxplot
filtering. The minimum value is about 20m after boxplot filtering, smaller than the minimum
value from BAG. This shows the ground points are not missing.

The situation is the same in Rijswijk and Zuidbroek. In Rijswijk, the maximum value after
boxplot filtering is about 7m, much smaller than the maximum value from BAG which is
83.9725m. The minimum value is about -6m after boxplot filtering, smaller than the minimum
value from BAG which is -5.4930m.

In Zuidbroek, the maximum value after boxplot filtering is about 4m, smaller than 25.4345m,
which is the maximum value from BAG. The minimum value is about -4m after boxplot filter-
ing, smaller than -1.8960m, which is the minimum value from BAG.

This comparison shows the data after box plot filtering is suitable for ground elevation, but
not for the roof elevation. Because a lot of roof data is lost.

A scatter plot of z values of ICESat-2 data in three datasets is provided in Figure 5.3 to show
the points kept and removed by the cleaning process. Figure 5.3b is to scale the y-axis to a
range of -10m to 100m, demonstrating the range where all the red points (the final result of
data cleaning) are located. The comparison with Figure 5.3a shows that more than half of
the noise points were removed from the original ICESat-2 data. In short, 764,194 ICESat-2 points
are removed from the Maastricht dataset, 486,545 and 65,507 for Rijswijk and Zuidbroek,
respectively. Which is 62.68%, 81.41%, 44.66% of the total ICESat-2 points, respectively.

(a) Original size
(b) zoom in

Figure 5.3.: Scatter plot of ICESat-2 data kept and removed by the cleaning steps (Yellow: raw
data, Green: after confidence filter, Red: after boxplot filter)
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5.1.2. Intersection statistics

After filtering out the background noise, the intersection analysis of ICESat-2 point data and
footprint data was performed. Only the ICESat-2 point locates inside the footprint is considered
as the point belongs to that footprint. Figure 5.4 shows the intersection result, red footprint
means it has at least one ICESat-2 point after cleaning, blue footprint means it is not intersected
with ICESat-2 point. It can be observed that not all the footprints are intersected by the satellite
data because of the sparsity of ICESat-2 data.

(a) Maastricht (4.09% intersected footprint) (b) Rijswijk (4.09% intersected footprint)

(c) Zuidbroek (3.93% intersected footprint)

Figure 5.4.: The intersection of ICESat-2 and footprint (Red means this footprint is intersected with
ICESat-2 data)
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Table 5.1 summarizes the intersection of these three datasets before and after all cleaning
steps. It can be seen that after filtering, about only four percent of the footprints of all three
datasets are intersected with ICESat-2 point data.

Table 5.1.: Intersection before and after all filter steps

Municipality
No. Icesat-2

points No. footprints
No. intersected

footprints

Intersection

percentage

Before After Before After Before After

Masstricht 1,219,131 454,937 59,338 2,902 2,428 4.89% 4.09%

Rijswijk 597,636 111,019 17,684 1,382 723 7.81% 4.09%

Zuidbroek 146,693 81,186 2,725 140 107 5.14% 3.93%

Then, for those footprints that are intersected with the ICESat-2 data, the number of intersected
ICESat-2 points of each footprint was counted. The number of points intersecting the footprint
is grouped into five groups of boxes, (0,5], (5,10], (10,20], (20,100], (100,3000], and the number
of each box is counted afterwards. The bar chart (Figure 5.5) shows in both Rijswijk and
Zuidbroek, the most intersecting footprints have less than 5 ICESat-2 points. In Rijswijk, this
number is 61% (441 out of 723), and 58% (62 put of 107) in Zuidbroek, 40% (961 out of 2428).
In Maastricht, the situation is a little better compared with others, around 39% intersecting
footprints have more than 10 ICESat-2 points.

(a) Maastricht (b) Rijswijk

(c) Zuidbroek

Figure 5.5.: The number of points falling in each intersected footprint
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In summary, based on the analysis of the intersection, it can be concluded that about 4% of
the footprints intersected with the ICESat-2 data, and nearly half of the intersecting footprints
only have less than 5 ICESat-2 points.

5.2. Building Height

To calculate building’s height, need to first obtain their roof elevation and also the ground el-
evation of their footprints. In this section, different methods are used to classify and calculate
ground and roof elevation. And their results will be compared.

5.2.1. Ground Elevation

(a) Maastricht (method1) (b) Maastricht (method2)

(c) Rijswijk (method1) (d) Rijswijk (method2)

(e) Zuidbroek (method1) (f) Zuidbroek (method2)

Figure 5.6.: Hexagonal bin plot of ground points (color bar represents elevation(m))
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In Section 3.3.2, two methods of defining ground points are proposed. Figure 5.6 displays
the ground points of these two methods in the three datasets. The horizontal axis indicates
latitude, the vertical axis indicates longitude, and the different colors represent the elevation
of the ground, which is the z-value of the ICESat-2 data. From Figure 5.6, it can be seen that
when method-1 is used, more ground points are obtained and are more evenly distributed
over the entire area range compared to method-2. This is significant in Zuidbroek data set.

Considering that the entire region needs to be spatially interpolated in the next step, enough
ground points should be obtained as much as possible. That means method-1 is more suitable
for the need for spatial interpolation.

(a) Maastricht

(b) Maastricht with IDW (error larger than 2m)

(c) Rijswijk (d) Zuidbroek

Figure 5.7.: The distribution of ground elevation errors with IDW (grid size 100m)

In the experiments, I used five interpolation methods ( NN, NNI, Laplace, TINL, IDW) and
four grid sizes (25, 50, 100, 150) to generate different combinations to calculate the ground
elevation. Their results are compared with reference roof elevation from BAG. To characterize
the distribution of errors from different combinations, all errors are grouped according to [0,
0.5), [0.5, 1.0), [1.5, 2.0), [1.5, 2.0) and larger than 2m, and bar graphs are drawn. So that
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the distribution of errors can be observed and thus the most reasonable combination can be
selected. These plots are shown in Section B.2. Consider the whole picture, IDW and 100m
grid size are selected (Figure 5.7).

In Rijswijk and Zuidbroek, the optimal combination of grid size and interpolation method is
100m and IDW (Figure 5.7). It can be seen that among these five methods of spatial interpo-
lation, IDW has the best results in both Rijswijk and Zuidbroek. In Rijswijk, there are close to
350 footprints with errors less than 0.5m, and the number of footprints with errors less than
1m is 600, together accounting for 83% of the total. In Zuidbroek, the number of footprints
with error less than 0.5m is over 90, accounting for 85% of the total.

In the Maastricht area, the error distribution differs from Rijswijk and Zuidbroek. In all in-
terpolation methods, most buildings have an error larger than 2m (Figure 5.7a). In terms of
IDW method, there are 1083 out of 2428 buildings (about 43%) own errors larger than 2m (Fig-
ure 5.7b). Of these 1083 buildings, 687 of them have errors in (2.0, 3.0]m, 267 of them have
errors between (3.0, 4.0]m, 73 of them have errors between (4.0, 5.0]m, and 56 of them larger
than 5m. The largest error is 14.8163m. Figure 5.8 shows the location of those footprints has
an error larger than 2m (in green color).

Figure 5.8.: The location of building with error higher than 2m in Maastricht (in green color)

In summary, in the consideration of time cost and accuracy, IDW interpolation method and
100m grid size is the best combination to get ground elevation.

5.2.2. Roof Elevation

In the experiments, I used 50, 60, 70, 80, 85, 90, and 95 seven numbers as a percentile to
calculate roof elevation. Their results are compared with reference roof elevation from BAG.
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The plots are shown in Section B.3. Considering the entire picture, the 50 percentile is selected
because of the relatively better performance. It has more data with smaller error.

The error distribution of the roof calculation is presented in Figure 5.9. The errors are grouped
into 6 categories, [0, 1.0), [1.0, 2.0), [2.0, 3.0), [3.0, 4.0), [4.0, 5.0) and larger than 5m. The bar
shows the number of footprint in each category. In each subplot, the left one shows the
error distribution with the h dak 50p from BAG and the right one is the comparison with
the h dak 70p. The number of footprints and maximum error is shown in the x-axis label
position.

(a) Maastricht

(b) Rijswijk

(c) Zuidbroek

Figure 5.9.: The distribution of roof elevation errors

In Zuidbroek data set (Figure 5.9c), it can be seen there are no footprints with errors greater
than 5m and also no footprints with errors in (3.0, 4.0] meters. And the error distribution of
the 50th percentile has more footprints in category (0.0 - 1.0] than the error distribution of the
70th percentile, 48 and 45 respectively. The maximum error is of the 50th percentile is 4.27m
and 4.23m for the 70th percentile. Compared with the error distribution of the 70th percentile,
the 50th percentile has more footprints with less error in general.

In Rijswijk (Figure 5.9b), the situation is similar. Though the result of the 70th percentile has

47



5. Results

more footprints with errors in (0.0, 1.0] meters compared with the 50th percentile, the result
of the 50th percentile perform better in general. The maximum error is of the 50th percentile
is 56.51m and 56.46m for the 70th percentile.

In Maastricht (Figure 5.9a), the error distribution is the same as in Rijswijk. The maximum
error is of the 50th percentile is 156.66 and 156.99m for the 70th percentile.

Table 5.2 shows the percentage of footprint with valid roof elevation in the whole intersected
footprints. The value is about 70 percent for each data set, reducing the data in roof elevation
calculation by 30%.

Table 5.2.: Percentage of footprint with valid roof points

intersected
footprint in total

footprint with
valid roof

valided
percentage

maximum
error(50p)

maximum
error(70p)

Maastricht 2428 1640 67.55% 156.66m 156.99m
Rijswijk 723 525 72.61% 56.51m 56.46m

Zuidbroek 107 73 68.22% 4.27m 4.23m

5.2.3. Building Height

From previous experiments, the ground and roof elevation is defined by the method with
least error. That is IDW with 100m grid size and 50th percentile. Therefore, the building
height is the difference between these two values.

Then all the buildings are divided into seven levels (Figure 5.10) according to the calculated
height: buildings of 0-40 meters are divided into different levels every five meters, and above
40 meters are divided into one level.

Figure 5.10.: Distribution of building height of three data sets

From Figure 5.10, there are 2238 buildings in total (results for all three data sets), 1200 of them
have a height between 5 - 10m, more than 50%. And about 40% of these buildings have height
in the range of 0 - 5m, which means buildings lower than ten meters tall accounted for 90%
of the total building. Buildings over ten meters occupied only 10% of the total building.
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5.3. Error Analysis

In this section, the error analysis will be performed by both data statistics and case studies.
Section 5.3.1 shows the statistical information of calculated ground elevation, roof elevation,
and building height in three data sets. Section 5.3.2 is the cases study. The top 10 maximum
errors in each data set are chosen to do a more detailed analysis, which is 30 cases in total.
Each case has a detailed analysis of the causes of error. Finally, I grouped the causes of errors
into five categories which are listed in the Section 5.3.2.

(a) Maastricht

(b) Rijswijk

(c) Zuidbroek

Figure 5.11.: The density plot of BAG data and calculated data
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5.3.1. Error statistics

In terms of region

Figure 5.11 shows the density plot of BAG data (ground truth) and the calculated data of
ground elevation, roof elevation, and building height for these three data sets.

In terms of ground elevation calculation, the calculated values are overall larger than the
reference value in all three data sets. In Maastricht (Figure 5.11a), the peak of reference value
appears around 45m, while in the calculated result, the peak appears around 50m. This means
in reference data, most of the ground elevation is around 45m, but this number is 50m in the
calculated result. In Rijswijk (Figure 5.11b), most of the ground elevation is below 1m, while
in the calculated result it’s nearly 2m. And there is no ground elevation higher than 2m
from reference data, however, some values are higher than 2m in the calculated result. In
Zuidbroek (Figure 5.11c), three values from the calculated result are lower than -1m, while
all values are higher than -1m in the reference data set. There are two peaks in the reference
data set, the calculated data set has the same peaks at almost the same elevation values. But
the peaks in the calculated data set are higher, which means it has more building in peaks.

In terms of roof elevation calculation, the performance of Rijswijk and Zuidbroek is better
than Maastricht. In Maastricht, the calculated value is much larger than the reference value,
especially since there are some abnormal values larger than 150m. In the reference data set,
the highest value is only around 100m. This may be because the data used for the calculation
contains outliers. In Rijswijk, the histograms of reference and calculated value overlap each
other very well. It even has good overlap performance, even around larger elevation values
(around 60m and 80m). In Zuidbroek, an offset can be observed, that is, the calculated data
move a little to the right overall. This is more obvious at the left (2.5m) and right (10m and
15m) ends. Among the outcome of three data sets, the Rijswijk (see Figure 5.11b) has the best
performance.

In terms of building height calculation, because the building height is determined by the
difference between the roof elevation and the ground elevation, so the error from the ground
and roof can affect the building height directly. This is well explained that the Maastricht
data set has the largest error. This error could be inherited from the roof calculation, leading
to the calculated result being much higher than the reference data. The outcome in Rijswijk is
relatively good compared with the other two. There is also an offset in Zuidbroek, which can
be observed in 5m, 9m, and 15m. The result of the calculated value in Zuidbroek is overall a
little larger than the reference data.

In general, the performance of the Rijswijk data set is the best one among these data sets. The
performance of Maastricht is the worst one because of extra large outliers.

Figure 5.12 shows the geographical distribution of the outliers in Maastricht. The outliers
being set are those with z values greater than 165m. Because from BAG, it can be known the
biggest h dak max is 164.2121m. They are concentrated in the northeastern region of Maas-
tricht near the border. Most of the area covered by them is wooded, and a small part is resi-
dential. There are 2254 outliers in total. 2247 of them have the same timestamp 2019-04-29T05:37:59,
7 of them have 2020-11-08T15:15:12 as their timestamp. However, not all points from these
two timestamps are identified as outliers. The confidence attribute of these outliers is all 2.
1143 of them are from a strong beam, 1111 of them are from a weak beam, almost half and
half.
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Figure 5.12.: Outliers in Maastricht (red points)

In terms of building height groups

Figure 5.13 shows the absolute error (mean, minimum, maximum) between the calculated
roof, ground elevation, and the reference value for buildings within seven heights classes.

In terms of building height difference: It can be seen the group with the smallest mean abso-
lute error is the group with a building height of 5-10 meters (1.8415m). The building height
group of more than 40m owns the largest mean absolute error (92.3899m) also the largest
maximum absolute error (155.4244m). The second-largest mean absolute error (21.3900m)
is owned by the 35-40m group. And the 35-40m group also has the largest minimum error
(8.1787m). Although the 0-5m height group has a quite small value in minimum absolute
error (0.0041m), it has the second-largest error in maximum absolute error (55.7198m) at the
same time compared to other heights groups.

Thus, a conclusion can be derived from this: the 5-10m building height group has the largest
amount of buildings and the smallest mean absolute error (1.8415m). Then, as the building
height increase, the number of buildings in each group decreases while the mean absolute
error rises. When building height is lower than 5m (0-5m group), it has the second smallest
mean absolute error (2.4752m) also the second-largest maximum absolute error (55.7198m).
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Figure 5.13.: Absolute difference of calculated and reference value among different building
height levels

5.3.2. Case study

The difference between the roof elevation and the ground elevation determines the building
height, thus the error analysis of the building height will be based on these two sections.

The ground elevation is estimated using the interpolation approach, which uses all points
outside the footprints. The roof elevation is determined using the percentile approach from
the points inside each footprint. Thus, compared with ground elevation calculation, the ele-
vation of ICESat-2 points has a more remarkable and directly influence in roof elevation calcu-
lation.

In this case study part, I will focus on the first ten footprints with the largest error in roof
calculation in each dataset. Scatter plot is used to show the distribution of elevation of points
in each footprint. Each scatter plot not only shows the elevation information of ICESat-2 data
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inside each footprint, but also the reference roof elevation (black lines) and calculated roof
elevation (red lines) in each footprint.

The title of each scatter plot shows the gid of this footprint, and also the amount of valid roof
data located inside this footprint. The reference elevation and calculated elevation of ground
and roof are shown in the x label position. The g means ground, r means roof. The r in the
brackets means reference, c means calculated.

After getting the scatter plot, QGIS with Luchtfoto 2021 Ortho HR 1 and Google Earth is used
to check why there is an large error.

After examining the top ten largest roof errors for each data set, I grouped the causes of the
errors into the following categories: More details are given in the following specific cases.

1) Not enough valid data. Two cases exist in this category. One is that the overall number
of valid points is tiny, maybe only one or two, which is not enough to calculate the roof
elevation accurately. The other is that although the number of valid points is large, most
of them do not capture the roof elevation information accurately, resulting in errors.
Normally, making the calculated value lower.

2) Irregular roof shape. Usually, this is the case where a footprint actually comprises sev-
eral parts of the roof and the elevations of these roofs are not the same. The non-uniform
roof heights introduce errors into the calculations, making the calculated value either
higher or lower.

3) Influence from surrounding objects. In most cases, those footprints which are easily
be influenced by surrounding objects are not the building in the traditional sense. For
example, a self-built carport in the backyard, a detached garage next to a residence, and
underground parking lots. These buildings also have their own footprint in the BAG.
These buildings are lower than other buildings around them and are often in areas with
high building density. Therefore, the roof elevation is easily affected by the surrounding
buildings or trees because of shading. Even though the ICESat-2 points are located inside
its footprint, it may contain the elevation information of other objects. This makes the
calculated value either high or lower.

4) Effect of significant outliers. This situation is only found in the Maastricht dataset. In
some footprint, there are significant outliers (elevation is above 200m), causing the error.

Cases in Maastricht

Figure 5.15 shows the top 10 footprints with maximum errors in Maastricht.

Reason 4 is one cause of all these 10 cases. Except reason 4, reason 1 also cause the error
in first, second, third, fourth, sixth, ninth and tenth. It can be inferred from the scatter plot
(Figure 5.15) that even if there are no extra outliers, the seven footprints mentioned above still
don’t have enough valid roof points be used in calculation. If the outliers are excluded, there
will be no valid roof points in the first, sixth, eighth, ninth and tenth one, only one valid roof
point in the second, third, fourth, seventh one. Thus, the amount of valid points is obviously
not enough for roof calculation.

But for the fifth one, it can be observed that it has enough valid roof points even if there
are no outliers. This indicates that if the outliers are removed, the error of roof elevation

1https://data.overheid.nl/en/dataset/16186-luchtfoto-2021-hr-rgb-open-data
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calculation in Maastricht will become smaller. Meanwhile, the amount of valid footprints is
also decrease.

For the third one, reason 2 irregular roof shape is also a factor needs to be considered. From
Figure 5.14 can be seen that there are actually three parts in this footprint (gid = 25975275).
And each part has a different roof elevation.

Same situation is also exists in the fifth and the ninth one. From Figure 5.14, it can be known
two parts with different elevation compose the fifth one with gid 25975346. And four parts
compose the ninth one with gid 7013976.

Reason 3 is another cause of the eighth one. From Figure 5.16, it can be inferred this footprint
belongs to a garage, and there is a tree that shades about a quarter of the footprint area.
Thus, the only one point within this footprint which has the elevation of 8m, could probably
actually reflects the tree height.

Figure 5.14.: Case study buildings (top ten footprint with maximum errors) in Maastricht
(part 1)
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Figure 5.15.: Top ten footprint with maximum errors in Maastricht (Black line: reference
value, red line: calculated value)
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Figure 5.16.: Case study buildings (top ten footprint with maximum errors) in Maastricht
(part 2)

Cases in Rijswijk

The scatter plot of Rijswijk is displayed in Figure 5.17. Next, the sources of the Rijswijk’s top
ten roof errors are analyzed.

The error of the first one in Figure 5.17 is caused by the reason 1. Though there are 536
ICESat-2 points inside it, most of them are obtained the elevation of ground. Thus, there are
not enough valid roof points, leading to the calculated value is much lower than the reference
value.

The fifth one is also caused by the reason 1. In this one footprint, the ground points make
up the majority of the points, with only a few capturing the roof elevation information. This
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results in a smaller roof elevation than the reference value using the 50th percentile calcula-
tion.

The second one (from left to right) in Figure 5.17 is caused by the reason 3. Actually, from
check Google Map, this footprint is actually representing the top of an underground park-
ing lot (The yellow polygon in Figure 5.18). The purple polygon represents the residential
building around it. From Google Map, the garage door is demonstrated (the third figure in
Figure 5.18). The reason for calculating value is higher than referenced is the points inside
the footprint are ”contaminated” by the surrounded tall building.

The third one is caused by reason 1. From Figure 5.18, it looks like there is an offset of the
footprint (red line). But this is actually due to projection. The location of the footprint does
match the actual. So the root cause is still not capturing enough effective roof points.

The fourth, sixth, eighth, ninth and tenth are all caused by the reason 1. Among them, fourth
and eighth actually represent self-built buildings in the backyard, such as a carport. Sixth,
ninth, and tenth represent garages. These buildings are usually lower than the surrounding
buildings and are therefore vulnerable to overshadowing by the surrounding buildings. Thus
it leads to the possibility that ICESat-2 falling within them may also capture elevations that are
not belong to them.

The seventh is caused by reason 2. This building is Rijswijk Schouwburg, a performing arts
theater. It can be seen that it has a complicated, designed roof shape, contains several parts
and each part has a different height. The red line represents ICESat-2 data. The ICESat-2 data
were mainly swept from the highest part, which caused the roof elevation obtained by the
calculation to be much larger than the reference value.
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Figure 5.17.: Top ten footprint with maximum errors in Rijswijk (Black line: reference value,
red line: calculated value)
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Figure 5.18.: Case study buildings (top ten footprint with maximum errors) in Rijswijk
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Cases in Zuidbroek

Figure 5.19 shows the top ten footprints, with maximum errors in Zuidbroek. When comes
to find the reason there is an enormous error, things in Zuidbroek is simplicity than Rijswijk.
The biggest two reasons are reason 1 and reason 6.

The largest error of roof elevation in Zuidbroek is occurs in the footprint with a gid of
11986197. From the first scatter plot in Figure 5.19, it can be clearly seen that there are only
two points inside this footprint. One’s elevation is more than 8m, the other’s is about 0m.
This results in a roof height of 8.6248m calculated according to the 50th percentile method,
but in reality the 50p reference elevation from the BAG is only 4.3521m. This directly produces
an error of over four meters. Thus, this enormous error is caused by reason 1.

Reason 1 causes error in the third, fifth, eighth and tenth. In the third one, the reference value
is 9.1893m, while the highest point got from ICESat-2 is only around 8m. Things are the same
in the fifth. In the eighth one, the reference value is 10.2984m while the calculated value is
8.0882m. Though there is one point with around 10m elevation, it’s not enough.

Reason 6 causes error in the second, fourth, sixth and ninth footprint. It can be seen from
Figure 5.20 that these four buildings have irregular roof shape. This introduces some compu-
tational errors.

For the seventh, the cause should be reason 3. This building is a self-built garage. And a
tall tree stands close to it, which may cause the calculated value is higher than the reference
value.
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Figure 5.19.: Top ten footprint with maximum errors in Zuidbroek (Black line: reference value,
red line: calculated value)
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Figure 5.20.: Case study buildings (top ten footprint with maximum errors) in Zuidbroek

5.4. Model performance

The model is built using the features obtained in Section 4.4 and the adjusted hyperparam-
eters in Section 4.5.2. And its performance is evaluated using the three evaluation methods
mentioned in Section 3.5.3.

Table 5.3 shows the features in four models. Base model is with all 11 features, the other three
models are generated with corresponding selection method.

5.4.1. Model accuracy

From Table 5.4, it can be seen the performance of the prediction model is poor. The maximum
error is between 53 - 55m, and the R2 score is small (0.03 - 0.05). The wrapper model has the
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Table 5.3.: Feature of each model

Features
Model Base model Filter model Embedded model Wrapper model

area ✓ ✓ ✓ ✓
perimeter ✓ ✓ - -

construction year ✓ ✓ ✓ -
length ✓ ✓ ✓ ✓
width ✓ ✓ - -

complexity ✓ ✓ - -
vertices ✓ ✓ - -

neighbour ✓ ✓ - -
slimness ✓ ✓ ✓ ✓

adjacent buildings ✓ - - -
compactness ✓ ✓ ✓ ✓

lowest R2 score, 0.0297. The embedded model has the highest R2 score, 0.0488. The difference
between the results of other metrics is not much.

However, the poor performance could mainly be caused by the significant outliers from the
Maastricht data set, which is explained in Section 5.3. Thus, it is interesting to see the perfor-
mance of the three models without the outliers.

Table 5.4.: Model evaluation results

MAE(m) MAPE(%) RMSE(m) R2 Max. error(m)
Base model 2.6200 45.6707 4.3610 0.0389 53.8345
Filter model 2.6041 45.1088 4.3538 0.0420 53.9006
Embedded model 2.6042 45.3805 4.3383 0.0488 54.3326
Wrapper model 2.6511 45.7930 4.3816 0.0297 54.8660

Remove outliers manually

After removing the outliers in the Maastricht data set manually, there are 2236 samples, re-
duced by 2 samples compared with the dataset before manual cleaning. Then, I repeated the
previous step to generate new RFR models.

Table 5.5.: Model evaluation results after remove outliers

MAE(m) MAPE(%) RMSE(m) R2 Max. error(m)
Base model 2.1305 36.6886 3.3989 0.1638 27.0906
Filter method 2.1561 36.9020 3.3967 0.1649 26.9635
Embedded method 2.2042 37.5127 3.4544 0.1363 26.9455
Wrapper method 2.2240 38.3844 3.4554 0.1358 26.9333

The accuracy of new models is shown in Table 5.5. The most obvious change is that the
maximum error has been significantly reduced, from around 53 - 55m to around 27m for all

63



5. Results

four models. MAPE, RMSE and MAE are all had different degrees of decline. R2 score of all
models are changed from 0.03 - 0.05 to 0.13 - 0.17. Based on R2 score, the base model and
filter model performed better than the embedded model and wrapper model.

Considering these metrics together, the results of the first two models (base model and filter
model) and the last two models (embedded model and wrapper model) are close to each
other. And the first two perform better than the last two. This explains to some extent that
the model with more features (11 and 10) outperforms the model with fewer features (4 and
4) when the total number of features is 11.

Among the four methods, all models get the similar benefit from manual cleaning. The most
beneficial one is the ”max error” metric, which is reduced by almost half for each model.
The MAPE of each model also gets a significant change, decreasing by almost 10%. However,
although the performance of the model improves after removing outliers, it still cannot be
called a useful and reasonable model.

Figure 5.21 shows the density plot of the true and predicted values of three models. The
predicted value is shown with the orange line and the true value in the blue line.

By comparing the plots before and after manual cleaning, a pattern can be found that all
models have in common:

After cleaning, the maximum true value is reduced from around 70m to 40m. However, the
range of predicted values does not change, which is still between around 5 - 15m. Thus, re-
moving outliers in the Maastricht data set doesn’t help improving the performance of predict
model in predicting the height of tall buildings (more than 15m). Also, there is always a gap
between the left end of the predicted value and the true value. This means the height of the
building under five meters cannot be predicted well by all four models, whether cleaning
outliers or not.

The reason for a dramatic decline between 10 - 15m can be found in Section 5.2.3. Figure 5.10
shows 90% data is between 0-10m. Therefore, there is not enough data to train the model.
Lack of corresponding data in model generation results in poor performance in predicting
building heights larger than 10m.

Moreover, from Figure 5.21, it seems the model cannot predict the building height lower than
5m. Although there is enough corresponding data (40%) in the data set.

64



5.4. Model performance

(a) Base model (b) Base model after manual cleaning

(c) Filter model (d) Filter model after manual cleaning

(e) Embedded model (f) Embedded model after manual cleaning

(g) Wrapper model (h) Wrapper model after manual cleaning

Figure 5.21.: The density plot of reference and predict value 65



5. Results

Figure 5.22 displays building height and the difference between the predicted value and the
true value in the test data set. There are 448 data in this test data set, which is 20% of the
entire data set used in model generation. The distribution of buildings in different height
groups is the same as in the dataset used for model generation Figure 5.10. About 90% of
the buildings are between 0-10 meters in height and only 10% of the buildings are above 10
meters Figure 5.22a. And in the test data set, there are no buildings with heights greater than
forty meters.

In Figure 5.22b, the blue bar indicates the mean absolute error between true and calculated
building heights of different groups. And the orange, green and red bar means median,
maximum and minimum error of the difference between the true and predicted values, re-
spectively. The error distribution pattern is the same as the pattern shown in Figure 5.13. It
can be seen the building in 5-10m group has the smallest mean error (1.1267m). The 0-5m
group is the next one with a mean error of 2.4243m. Then, the error gradually increases with
the increase in building height. The same pattern of variation was observed for other metrics
(median, maximum, and minimum error).

(a) Building height distribution (b) Error distribution

Figure 5.22.: Building height and error distribution in test data set

5.4.2. Feature contributions

Figure 5.23 shows the importance of features of each model before and after manual clean-
ing.

By comparing the two bar charts, it can be seen that removing outliers or not influenced the
ranking of feature importance. For the base model, the most important two features before re-
moving outliers are ”construction year” and ”compactness”. While after removing, the most
important one is ”slimness”, ”area” and ”length” are the next two. The ”construction year”
dropped to the fourth place and the ”compactness” dropped to the fifth important feature.
”neighbour” is also dropped from third place to second place from the bottom of the rank-
ings. In the filter model, the feature ”neighbour” also dropped from third place to the third
from the bottom of the rankings. Feature ”compactness” dropped from the first place to the
sixth place. Feature ”perimeter” moved up from the last place to the fifth place.
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5.4. Model performance

It can be observed that, before removing the outliers, the feature ”compactness” is the top
important one in all models. ”construction year” and ”neighbour” are the second impor-
tant features of the base model and filter model. ”area” and ”length” are the second most
important for embedded and wrapper models. After removing the outliers, the importance
of features ”area” and ”length” increases. Especially the feature ”length”, become the top
important feature of embedded and wrapper models.
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5. Results

(a) Base model (b) Base model after manual cleaning

(c) Filter model (d) Filter model after manual cleaning

(e) Embedded model (f) Embedded model after manual cleaning

(g) Wrapper model (h) Wrapper model after manual cleaning

Figure 5.23.: The bar plot of feature importance
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6. Discussion and conclusion

6.1. Research overview

In this section, the research question proposed in Section 1.1 are answered based on results in
previous chapter.

Main research question: Can the height of all buildings in the Netherlands be estimated from
ICESat-2 data and what accuracy can be achieved?

From the performance of RFR model that I got in Section 5.4, and the error analysis (Sec-
tion 5.3), it is impossible to predict all building’s height in the three selected datasets. Espe-
cially for building higher than 15m.

Thus, I would say it is impossible to get the height of all buildings in the Netherlands with
ICESat-2 data. But maybe it is a feasible option for buildings between 5 and 10 meters in
height.

I think the main reason is few ICESat-2 data is valid for estimating building height. A variety
of factors can contribute to this:

• Sparsity and non-uniformity of the ICESat-2 data. Because of the trajectory characteristics
of ICESat-2, there is always 3km between each beam. And the spatial distribution of these
beams is uneven (see Figure 4.4). This results in not all footprints can be intersected by
ICESat-2. Actually, only about 5% - 8% of footprints in each data set are intersected with
ICESat-2 data.

• Requirements from building height estimation further reducing the amount of valid
ICESat-2 data. From the three datasets used, it is known that in the original ICESat-2 data
obtained at the beginning, nearly half of the ICESat-2 points with confidence less than
or equal to 1 are classified as background (see Figure 5.1). These points are the first
to be removed in the process of data cleaning. This results in even fewer points to be
employed in building height estimation, reducing the number of intersected footprints
to around 4% in each data set.

As our goal is to estimate building height, it is necessary to require each footprint have
identified roof points and ground points. However, in reality, even if one footprint is
intersected with ICESat-2 data, the distribution pattern of ICESat-2 point is various (Sec-
tion 3.3.1). And not all of these patterns meet the requirement (Section 3.3.3). This leads
to a further decrease in the number of valid footprints. Eventually, this amount was
reduced to less than 3%.

• The problem of data precision of ICESat-2 data at the footprint level. After the above
data filtering steps, we got the ICESat-2 data, which is valid and can be used for building
height estimation. However, the accuracy of them is still not satisfactory when used in
footprint to estimate building height.
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6. Discussion and conclusion

One thing is outliers. In Section 5.3, there are significant outliers appear in Maastricht
for some unknown reason. This significantly affects the accuracy of the roof elevation
calculation in this area, and also the performance of the final RFR model.

Another thing is the elevation of a ICESat-2 point falling in a footprint is influenced by
other surrounding objects (reason 3 in Section 5.3.2). That is, even if a point falls in a
footprint, is not a noise point, satisfies the estimated height requirement, and is not an
outlier, it still could not provide the accurate elevation information of that footprint.
This is because it could represent the elevation of other objects, not the object repre-
sented by the footprint it falls on. In fact, this is actually caused by the properties of the
ICESat-2 photon itself. Each photon point from ICESat-2 has a footprint of approximately
17m in diameter. In theory, the elevation obtained by ICESat-2 point could be any object
inside this diameter. Therefore, affecting the accuracy of building height estimation.

Once the available ICESat-2 data was obtained after screening, another challenge was faced in
generating the prediction model:

• Lack of data for buildings over ten meters. Buildings under ten meters accounted for
90% of the total data used in model generation. This results in not enough training
data for buildings over ten meters. It makes the final generated model perform poorly
overall. However, it still obtained an acceptable performance in (5,10]m height group.
The MAE is 1.1267m.

Next are the answers to the sub-questions:

1. What’s the percentage of building in NL are covered by ICESat-2 dataset? Is it enough to estimate
all buildings with the ML method in NL?

Initially, around 5% - 8% of the footprints in all three datasets utilized in this study
are intersected with ICESat-2 data. After filtering, around 3% of intersected footprints
remain. The performance of the prediction model demonstrates that this is insufficient
to build an accurate model.

2. Which ML method should be used to do the prediction? And what attributes should be consid-
ered?

From literature review, the RFR method is used to do the prediction, and geometric fea-
tures show in Table 2.2 are used. This selection is based on previous research. However,
since the model did not perform well in general, it may be appropriate to test other
models and feature combinations in future work. For example, the non-geometric fea-
tures.

3. What’s the accuracy of estimated building height and model performance? Where are those errors
from?

The performance of the prediction model is not good in general. The maximum error
is between 53 - 55m, and the R2 score is between 0.03 - 0.05. Even if remove the signif-
icant outliers manually, the R2 score of all models are changed from 0.03 - 0.05 to 0.13 -
0.17. When analyze the error within different building height groups, it was found the
building with height between 5-10m has the best performance (MAE 1.1267m).

The sources of errors are analyzed in detail in Section 5.3. It can be summarized into four
reasons: not enough valid ICESat-2 data, influence from irregular roof shape, influence
from surrounding objects and effect of significant outliers.
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6.2. Contribution

6.2. Contribution

This thesis used BAG and ICESat-2 data build prediction ML model to estimate building height.
This project’s contributions are summarized as follows:

• Investigated the idea of using ICESat-2 data and footprints to calculate building height.
Got the conclusion that for buildings with heights in the range of 5-10m there is an
opportunity to use ICESat-2 in a country scale to obtain its height. Some properties of the
icesat2 data (sparsity, non-uniformity, possession of a 17 m footprint) were verified, and
their influence on predicting building heights was investigated and studied.

• In the computation of ground elevation, many combinations of interpolation algorithms
and grid sizes were investigated. Different percentiles are also evaluated in the estima-
tion of roof elevation. These experimental results can aid in understanding of the ICESat-2
data and give information for future investigations.

• Built the RFR model with only geometric features to predict building height. The model
was found to be suitable for buildings ranging in height from 5 to 10 meters.

6.3. Future Work

Although the method proposed in this project can partially provide a estimate of the building
height, there are a number of limitations outlined as follows:

• Data cleaning. The existing method cannot remove some outliers, such as the outliers
in the Maastricht data set.

• Unexplained phenomena. There are also some unexplained phenomena: Why do sig-
nificant outliers only appear in the Maastricht? Why does using the same interpolation
method perform much less well in the Maastricht dataset than in the other two?

• Feature selection. Only use geometric features to build prediction model. And the
amount of features is only 11.

• Model training. The dataset used to generate the model is not representative. Only
10% of the data for heights greater than 10 meters.

Based on the limitations, several recommendations are expected as extensions for the future
work.

For the outliers, we hope them can be detected and removed by the method in the future.
The model performance needs to be improved, increase the amount of available training data
can alleviate this problem. In the future, a mixture of ICESat-2 and GEDI data can be tried to
reduce the impact of the sparsity of the data itself. In this project, three data sets were used
to analyzed the feasibility of ICESat-2 in building height estimation area. The result shows
that building higher than 10m do not have enough training data. Thus, could try to increase
the number of data sets used in the future. It is also possible to try other machine learning
methods, and feature combinations, such as cadastral and statistical (census) data, to see if
these methods can get better results.

71





A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

Table A.1.: Evaluation of the five criteria

Criteria Score Comments
Input data 3 ICESat-2 and BAG data are avaliable, open and permanent.
Preprocessing 2 Source code is available on GitHub.
Method, analysis, processing 2 Source code is available on GitHub.
Computational environment 3 Source code is available on GitHub.
Results 2 Models, ”output data”, scripted plots/data are available.
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A. Reproducibility self-assessment

A.2. Self-reflection

The data used in this research are all open. All source codes are available in GitHub, including
preprocess, methods, and analysis. The computational environment used in this research is
also open-sourced.
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B. Additional Results

B.1. Filter Results

These plots display the changes in the three data sets during the data cleaning step using
latitude as the x-axis and elevation as the z-axis. The original data of three regions, after the
confidence filter, and the final result after the boxplot filter are shown respectively.

(a) Original data

(b) After confidence filter

(c) After boxplot filter

Figure B.1.: Filter results in Maastricht
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B. Additional Results

(a) Original data

(b) After confidence filter

(c) After boxplot filter

Figure B.2.: Filter results in Rijswijk
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B.2. Interpolation results

(a) Original data

(b) After confidence filter

(c) After boxplot filter

Figure B.3.: Filter results in Zuidbroek

B.2. Interpolation results

Method 1 is left one in Figure 3.6. Method 2 is right one in Figure 3.6.
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B. Additional Results

(a) Grid size 150m (method1) (b) Grid size 150m (method2)

(c) Grid size 100m (method1) (d) Grid size 100m (method2)
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B.2. Interpolation results

(e) Grid size 50m (method1) (f) Grid size 50m (method2)

(g) Grid size 25m (method1) (h) Grid size 25m (method2)

Figure B.4.: Distribution of ground elevation errors in Maastricht
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B. Additional Results

(a) Grid size 150m (method1) (b) Grid size 150m (method2)

(c) Grid size 100m (method1) (d) Grid size 100m (method2)
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B.2. Interpolation results

(e) Grid size 50m (method1) (f) Grid size 50m (method2)

(g) Grid size 25m (method1) (h) Grid size 25m (method2)

Figure B.5.: Distribution of ground elevation errors in Rijswijk
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B. Additional Results

(a) Grid size 200m (method1) (b) Grid size 200m (method2)

(c) Grid size 150m (method1) (d) Grid size 150m (method2)
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B.2. Interpolation results

(e) Grid size 100m (method1) (f) Grid size 100m (method2)

(g) Grid size 50m (method1) (h) Grid size 50m (method2)
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B. Additional Results

(i) Grid size 25m (method1) (j) Grid size 25m (method2)

(k) Grid size 10m (method1) (l) Grid size 10m (method2)

Figure B.6.: Distribution of ground elevation errors in Zuidbroek

B.3. Roof elevation errors with different percentiles
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B.3. Roof elevation errors with different percentiles

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.7.: Errors in Maastricht with valid roof points filter

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.8.: Errors in Maastricht without valid roof points filter
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B. Additional Results

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.9.: Errors in Rijswijk with valid roof points filter

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.10.: Errors in Rijswijk without valid roof points filter
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B.3. Roof elevation errors with different percentiles

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.11.: Errors in Zuidbroek with valid roof points filter

(a) Compared with h dak 50p (b) Compared with h dak 70p

Figure B.12.: Errors in Zuidbroek without valid roof points filter
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