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Abstract

This thesis investigates the flow and heat transport phenomena in a pipe and Pressurized Water Reactor

(PWR) rod bundle geometries using high-fidelity Direct Numerical Simulation (DNS). These geometries

are essential for nuclear reactor systems, where efficient heat transfer and stable flow patterns are vital to

ensure operational safety, reliability, and performance. The study focuses on evaluating the limitations of

traditional thermal-hydraulic modeling approaches and advancing the understanding of flow physics in

complex geometries.

Since Computational Fluid Dynamics (CFD) simulations are computationally expensive, system codes

such as RELAP5, TRACER, and SPECTRA (developed by NRG) are widely used in reactor safety and

design analysis. These codes rely on conventional pipe flow correlations to approximate thermal-hydraulic

behavior, which are not representative of the intricate flow patterns observed in rod bundle arrangements.

Such geometries are characterized by secondary vortices, gap street vortices, and the coupling of these

vortices across multiple planes, forming a complex rod bundle vortex network. This study addresses

these challenges by comparing the flow and thermal characteristics of pipe and subchannel geometries to

evaluate the validity and limitations of pipe-based correlations.

To identify the subchannel geometry that best represents a rod bundle arrangement, square and 2×2

subchannel configurations were selected for detailed investigation. These geometries were modeled

with a pitch-to-diameter (P/D) ratio of 1.3263, typical of PWR fuel assemblies, and simulated at a Bulk

Reynolds number (Reb) of 5300. The square subchannel geometry represents a simplified cross-sectional
domain, while the 2×2 subchannel configuration captures inter-subchannel interactions and the enhanced

coupling effects seen in rod bundles. Using the Nek5000 spectral element solver, the simulations employed

advanced numerical techniques, including spatial-temporal averaging through flow-through time (FTTs)

metrics and further spatial averaging over unit cells, to achieve statistically converged results. Rigorous

validation of pipe configuration with reference data ensured the accuracy of the computational framework.

The results highlight significant differences in turbulence structures and heat transfer performance between

the pipe, square subchannel, and 2×2 subchannel configurations. While pipe correlations provide a

baseline for comparison, they fail to capture the complex flow interactions observed in rod bundles. The

2×2 subchannel geometry emerges as a more accurate representation of rod bundle dynamics due to its

ability to simulate enhanced inter-subchannel mixing and vortex coupling. These findings emphasize the

importance of geometry-specific modeling in accurately predicting thermal-hydraulic behavior in nuclear

reactors.

This work bridges the gap between simplified system codes and detailed physics-based modeling of rod

bundle flows. The insights gained from this study provide a foundation for improving thermal-hydraulic

predictions and advancing the design and safety of nuclear reactor systems. Future research will extend

these findings to explore higher Reynolds numbers, diverse Prandtl numbers, wall effects, and alternative

rod bundle configurations, further contributing to the development of advanced engineering tools for nuclear

applications.
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1
Introduction

This chapter examines the fundamental principles and significance of Pressurized Water Reactors (PWRs)

in nuclear energy generation. The discussion focuses on two key aspects:

1. PWR Functionality and Geometries

• An analysis of the operational mechanisms and thermodynamic cycles underpinning PWR

systems, highlighting their importance in contemporary nuclear power generation.

• A detailed exploration of fuel assembly configurations (rod bundle geometries), emphasizing

their influence on coolant flow patterns and heat transfer characteristics.

2. Turbulent Mixing Phenomena in Rod Bundles

• An in-depth investigation of complex flow behaviours within rod bundles, including cross-flow

mixing, secondary flows, and their implications for reactor safety and efficiency.

• Elucidation of key physical phenomena in subchannel flow, such as Prandtl’s second kind of

secondary flows and the gap vortex street, establishing a critical foundation for the subsequent

evaluation of Direct Numerical Simulation (DNS) in this context.

Additionally, this chapter delineates the specific research questions that will be addressed in subsequent

chapters, providing a framework for the thesis’s investigative trajectory in PWR thermal-hydraulics. Through

this exploration, we aim to provide a robust theoretical framework for interpreting DNS results in subchannel

configurations, enhancing our understanding of complex flow behaviors in nuclear reactor core geometries.

1.1. Nuclear Reactor
A nuclear reactor is a highly engineered system designed to maintain a controlled nuclear fission chain

reaction, converting nuclear energy into thermal energy for power generation. Reactors are central to

the production of electricity in nuclear power plants, where they serve as the heart of the system that

drives steam turbines to generate electricity. Various types of nuclear reactors have been developed, with

the most common being Pressurized Water Reactors (PWR), Boiling Water Reactors (BWR), and Fast

Breeder Reactors (FBR), each offering different approaches to controlling the nuclear reaction and handling

heat removal. The evolution of these technologies can be categorized into four main generations, each

reflecting advancements in safety, efficiency, and sustainability. From the early Generation I prototypes to

the more sophisticated Generation IV designs, continuous improvements have been made to increase

both reactor longevity and fuel utilization. PWRs, developed in the Generation II phase, have emerged as

the dominant reactor type worldwide due to their inherent safety features, stability under varying conditions,

and well-established commercial design. These reactors are crucial in the global nuclear energy mix,

contributing to reliable, low-carbon electricity production.

A Pressurized Water Reactor (PWR) operates on a well-established and reliable principle: water is kept

under high pressure to prevent it from boiling, even at the elevated temperatures produced by nuclear

fission within the reactor core, as illustrated in Figure 1.1. The reactor vessel houses enriched uranium

fuel, where nuclear fission occurs, releasing significant heat. This heat is absorbed by water circulating

through the core under high pressure, maintaining it in liquid form. The heated water then passes through

a heat exchanger, known as a steam generator, transferring its thermal energy to a secondary loop.

1
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This secondary loop, in turn, generates steam that drives turbines, producing electricity. Separating the

radioactive primary loop from the secondary loop enhances safety by containing radiation within the primary

circuit, a critical feature of PWRs. Globally, the reactor vessel typically operates at pressures of 15-16

MPa and temperatures exceeding 300°C, ensuring energy transfer efficiency.

Figure 1.1: PWR Nuclear Reactor [1]

PWRs dominate the nuclear landscape due to their proven safety mechanisms, reliability, and economic

efficiency. With approximately 300 out of 450 operational nuclear reactors worldwide ([2][3]) being PWRs,

they represent about 70% of the global nuclear reactor fleet. This widespread adoption stems from their

highly stable operation, as the pressurized water serves not only as a coolant but also as a moderator,

maintaining controlled reactivity. In terms of capacity, PWRs collectively contribute over 200 gigawatts

(GW) of electricity generation worldwide, significantly bolstering the energy mix.

As illustrated in Figure 1.2, the growth of nuclear generation capacity varies significantly across different

regions. The graph shows that West & Central Europe and North America have historically led in nuclear

power generation, with Asia showing rapid growth in recent decades. This trend underscores the global

expansion of nuclear energy, with PWRs playing a crucial role in this growth.

Additionally, the mature nature of PWR technology, combined with streamlined fuel management processes

and established regulatory frameworks, makes PWRs an attractive and cost-effective option for both

developed and developing countries, driving continued investment in this reactor type. Their flexibility and

robust safety systems, such as multiple redundant cooling mechanisms, ensure safe operations even

under extreme conditions, further solidifying their status as the most preferred reactor design globally.

Figure 1.2: Nuclear Reactor Growth Worldwide [4]
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1.2. Rod Bundle
Fuel rod bundles constitute a critical component of Pressurized Water Reactors (PWRs). These bundles

typically adopt one of three primary geometric configurations: triangular, square, or hexagonal arrays

(Figure 1.3).

Figure 1.3: Rod Bundle [5]

(a) Tubular rod bundle arrangement (b) Square rod bundle arrangement

(c) Hexagonal rod bundle

arrangement

Figure 1.4: Different rod bundle arrangements

Two key design parameters, defining the spacing between adjacent rods (pitch-to-diameter ratio, P/D)
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and the proximity of peripheral rods to the channel wall (wall-to-diameter ratio, W/D), characterize these

arrangements, as shown in Figure 1.5.

Figure 1.5: rod bundle Geometry [6]

The hydraulic diameter, Dh, is a crucial parameter used in the Reynolds number calculation for non-circular

channel shapes, which is an important design factor for subchannel configurations in nuclear reactor

systems. The hydraulic diameter is defined as:

Dh =
4× Cross-sectional Area

Wetted Perimeter
(1.1)

The hydraulic diameter provides a characteristic length scale that accounts for the non-circular geometry

of the flow channel.

Rod bundles in PWRs are generally tightly packed, with lower P/D ratios indicating higher rod densities.

This compact arrangement engenders a complex fluid domain, yielding flow characteristics distinct from

those observed in simpler pipe or channel flows, a known phenomenon called ”Secondary Flows”.

The unique flow physics within these subchannels has been a focal point of thermal-hydraulics research

for over two decades, yet a comprehensive understanding remains elusive. Recent studies have identified

large-scale swirling coherent structures and transverse flow pulsations in the rod-rod and rod-wall gap

regions, a phenomenon termed ”Gap Vortex Street”. These flow structures promote enhanced turbulent

mixing and localized temperature reduction, potentially improving heat transfer characteristics.

Understanding and controlling the flow physics in these subchannel geometries is crucial for optimizing

heat transfer and ensuring the safe and efficient operation of PWRs. This remains an active area of

research, with significant implications for nuclear reactor design and performance.

1.3. Non-dimensional parameters
The Reynolds number (Re) provides fundamental insights into the flow characteristics and fluid behaviour,

while the Prandtl number (Pr) and Nusselt number (Nu) are essential parameters that characterize heat

transfer capabilities and thermal boundary layer behaviour in fluids.
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1.3.1. Reynolds number
The Reynolds number (Re) is a dimensionless parameter that represents the ratio of inertial forces to

viscous forces in a fluid. It is defined as:

Re =
ρuDh

µ
(1.2)

Where:

• ρ is the fluid density,

• u is the fluid velocity,

• Dh is the hydraulic diameter,

• µ is the dynamic viscosity.

The Reynolds number is essential in our study as it characterizes the flow behaviour and provides insights

into the fluid dynamics within both the tube and PWR sub-channel geometries.

1.3.2. Prandtl number
The Prandtl number (Pr) is a dimensionless parameter that represents the ratio of momentum diffusivity to

thermal diffusivity in a fluid. It is defined as:

Pr =
µCp

k
(1.3)

Where:

• µ is the dynamic viscosity,

• Cp is the specific heat capacity,

• k is the thermal conductivity of the fluid.

The Prandtl number is essential in our study because it helps characterize the thermal behaviour of the

coolant in both the tube and PWR sub-channel geometries. It influences the relative thickness of the

momentum and thermal boundary layers, which in turn affects heat transfer rates.

1.3.3. Nusselt Number
The Nusselt number (Nu) is another crucial dimensionless parameter in heat transfer analysis. It represents

the ratio of convective to conductive heat transfer across a boundary and is defined as:

Nu =
hL

k
(1.4)

Where:

• h is the convective heat transfer coefficient,

• L is the characteristic length,

• k is the thermal conductivity of the fluid.

In our study, the Nusselt number will be a key focus as it directly quantifies the enhancement of heat

transfer through a fluid layer as a result of convection relative to conduction across the same fluid layer.

1.4. Heat transfer in a Pipe vs Subchannel
Flows within the complex geometry of nuclear reactor rod bundles exhibit unique characteristics that

significantly differ from simpler channel or pipe flows. The tightly packed arrangement of fuel rods

introduces narrow gaps, leading to strong, transverse, large-scale motions across the gaps between

adjacent rods and between a rod and the containment wall. This inter-subchannel mixing greatly enhances

the exchange of momentum and energy, ultimately impacting heat transfer performance. These flow

behaviours are rarely observed in conventional pipe flows, underscoring the distinct hydrodynamic and

thermal conditions present in reactor assemblies.
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The geometry of heat transfer surfaces in nuclear reactors thus plays a crucial role in determining thermal

behaviour. While idealized pipe geometries are often used for empirical correlations, they fail to capture

the intricate flow structures within actual rod bundle configurations, where large-scale transverse flows

and inter-subchannel mixing are prominent. Consequently, standard one-dimensional subchannel codes

based on simplified assumptions may not fully account for the complex flow dynamics in rod bundles. To

accurately model and optimize reactor heat transfer, it is essential to adopt computational and experimental

approaches that address these specific geometric effects.

1.4.1. Conventional Correlations vs. Complex Geometries
Conventional correlations, such as the Dittus-Boelter and Gnielinski correlations, were developed based

on experiments conducted with simple pipe geometries. These correlations have been widely used in

thermal-hydraulic system codes to predict heat transfer in various systems, including nuclear reactors.

However, their applicability to more complex geometries, such as those found in reactor subchannels, has

been a subject of ongoing research and debate.

Subchannels in a nuclear reactor fuel assembly typically have a more complex cross-sectional shape

compared to circular pipes. They are often characterized by a non-circular flow area bounded by multiple

fuel rods. This geometry creates unique flow patterns and turbulence structures that can significantly affect

heat transfer.

Dittus-Boelter Correlation

For turbulent flow in tubes and subchannels, the Dittus-Boelter correlation is a widely used empirical

correlation for calculating the Nusselt number. It is expressed as:

Nu = 0.023Re0.8Prn (1.5)

Where n = 0.4 for heating and n = 0.3 for cooling. This correlation provides a straightforward method for

determining the Nusselt number in both tube and PWR subchannel geometries, enabling the calculation of

convective heat transfer coefficients for simple flow configurations.

Gnielinski Correlation

The Gnielinski correlation offers improved accuracy over a wider range of Reynolds numbers for tube and

subchannel flows. It is given by:

Nu =
(fD/8)(Re− 1000)Pr

1 + 12.7(fD/8)0.5(Pr2/3 − 1)
(1.6)

Where fD is the Darcy friction factor, calculated as:

fD = [0.79 ln(Re)− 1.64]−2 (1.7)

This correlation provides more reliable predictions of Nusselt numbers in tube geometries, particularly in

the transitional regime and for cases with significant property variations.

Kazimi-Carelli Correlation

For liquid metal flows with Péclet numbers less than or equal to 150 and specifically developed for low

Prandtl number fluids (Pr = 0.025) such as liquid metals, the Kazimi-Carelli correlation provides an extension

to standard heat transfer correlations:

Nu = 4.496

[
−16.15 + 24.96

(
P

D

)
− 8.55

(
P

D

)2
]

(1.8)

Where P/D represents the pitch-to-diameter ratio of the flow geometry. This correlation accounts for the

unique heat transfer characteristics of liquid metals in nuclear applications.

1.4.2. Enhanced Heat Transfer in Subchannels
Recent studies have indicated that heat transfer characteristics in subchannel geometries can differ

substantially from those in pipe geometries. In particular, some research has suggested that subchannels

may exhibit up to 30% [7] higher heat transfer rates compared to pipes under similar flow conditions. This

enhanced heat transfer can be attributed to several factors:
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• Flow distribution: The non-uniform flow distribution in subchannels can lead to increased turbulence

and mixing, promoting heat transfer.

• Secondary flows: The complex geometry of subchannels can induce secondary flows, which

enhance fluid mixing and heat transfer.

• Surface area effects: The ratio of heated surface area to flow area in subchannels may differ from

that in pipes, affecting overall heat transfer efficiency.

• Turbulence enhancement: The presence of spacer grids and other structural elements in fuel

assemblies can increase turbulence mixing, further enhancing heat transfer.

1.4.3. Implications for Reactor Safety and Design
The discrepancy between pipe-based correlations and actual subchannel behaviour has important impli-

cations for reactor safety analysis and design. Using pipe-based correlations may lead to conservative

estimates of heat transfer in some cases, potentially resulting in overly restrictive operational limits. On the

other hand, it could also lead to underestimation of heat transfer in certain scenarios, which could be a

safety concern.
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1.5. Flow Physics in Rod Bundle Subchannel
This section explores two fundamental physical phenomena that significantly influence the thermal-hydraulic

behaviour in subchannel flows. First, we examine Prandtl’s second kind of secondary flows, turbulence-

driven vortical structures that emerge in non-circular channels and impact heat and momentum transfer.

These flows, first observed by Nikuradse [8] in rectangular ducts, are critical for understanding the complex

flow patterns in subchannel geometries. Second, we investigate the gap vortex street phenomenon, a flow

instability mechanism that develops due to sharp shear layers at interfaces in subchannel configurations.

Through detailed analysis of these phenomena, we establish a foundation for interpreting flow behaviour in

nuclear reactor subchannels and evaluating Direct Numerical Simulation (DNS) results in these geometries.

1.5.1. Secondary flow
Secondary flow is a crucial phenomenon in fluid dynamics, playing a pivotal role in understanding the

physical mechanisms occurring in non-circular channel flows, particularly in subchannel flows, as inves-

tigated in this thesis. During his experimental studies on flow physics in rectangular ducts, Nikuradse

observed that the mean axial flow formed bulges near the corners [8]. Prandtl later attributed these

corner bulges to the presence of what would become known as secondary flows of the second kind [9].

This theoretical explanation by Prandtl was subsequently validated through Nikuradse’s experimental

investigations, confirming the existence of secondary flows in rectangular duct flows. The quantitative

characterization of these secondary flows was achieved three decades later, revealing velocities not

exceeding 1-2% of the mean axial flow [10].

One of the earliest and most accessible manifestations of secondary flows is the phenomenon known as

the ”Tea Leaf Paradox,” first observed by Albert Einstein [11]. When a cup of tea containing tea leaves is

stirred, the leaves tend to concentrate at the centre of the cup’s bottom, contrary to the intuitive expectation

that centrifugal forces would push them towards the walls (Figure 1.6). This paradox was elucidated in

detail by Nikolay Nikitin [12].

Figure 1.6: Illustration of the Tea Leaf Paradox [12]

To understand the mechanism, consider an inner corner of Nikuradse’s rectangular duct, which can be

decomposed into two flat plate geometries. The velocity perturbations move transversely along the mean

flow near the wall. When these flat plates are combined to form an inner corner, the velocity perturbations

create a curvilinear shape pointing towards the corner (Figure 1.7). This configuration results in a centrifugal

force balanced by a pressure gradient. The increased pressure near the corner, coupled with zero velocity

perturbation at the wall, is counterbalanced by fluid movement along the walls, where energy is dissipated

due to wall friction. This quasi-stable structure is now known as Prandtl’s secondary flow of the second

kind.



1.5. Flow Physics in Rod Bundle Subchannel 9

Figure 1.7: Secondary flow in a rectangular duct corner [12]

1.5.2. Gap vortex street
Over the past two decades, substantial research has focused on the complex flow structures in subchannel

geometries, particularly within nuclear reactor rod bundles. These configurations exhibit distinct large-scale

motions driven by an inherent instability mechanism linked to the narrow gaps between subchannels. Such

geometries produce an inflectional cross-sectional velocity profile, which fosters hydrodynamic instability.

Hydrodynamic instability in these systems is characterized by the amplification of perturbations in the

flow, resulting in coherent large-scale motions. While this instability shares similarities with other flow

instabilities, such as those in boundary layers and wakes, it is distinct due to the unique geometry of the

subchannel. The inflectional velocity profile within rod bundles renders the flow prone to instabilities akin

to classic shear flows.

A prominent example of this is the Kelvin-Helmholtz instability, which arises at shear layers, such as

those at the interfaces between subchannels. Vortical structures are generated when there is a velocity

differential across these interfaces, evolving into organized vortex streets. These vortex streets significantly

enhance cross-channel mixing, thus influencing the overall flow dynamics. Understanding such instabilities

is crucial for accurately modelling large-scale motions and inter-subchannel interactions in subchannel

flow studies.

Figure 1.8: Shear layer instability and vortex sheet formation [13]
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A linear stability analysis of an inviscid fluid with the velocity profile shown in Figure 1.8 reveals an unstable

mode when U1 6= U2 (Kundu and Cohen [13]), leading to the formation of a vortex sheet, as depicted in

the figure.

In subchannel geometries, shear layer instabilities, particularly gap instability, drive the formation of

large vortical structures in the gap regions. While extensively studied, the mechanisms underlying these

instabilities remain unclear. One hypothesis suggests the involvement of Prandtl’s secondary flows of the

third kind, which are generated by turbulence anisotropy in non-circular ducts. This mechanism, though

relevant, is not discussed in detail here.

The von Kármán vortex street, a well-known phenomenon of periodic vortex shedding, provides an analogy

for understanding vortex dynamics in subchannels. Although a detailed exploration of von Kármán instability

is beyond the scope of this study, it is relevant in the case of moving fuel rods, a common condition in

nuclear reactors. This is mainly due to the production of large vortical coherent structures, which induce

vibrations because of Fluid-Structure Interaction (FSI). The presence of these vortices can contribute to

significant vibrations in the rods, which are crucial for understanding reactor performance and safety under

operational conditions.

Flow pulsations is a term used in accordance with the nomenclature set by Tavoularis [14], describing the

oscillatory nature of the flow velocity in gap regions. However, these pulsations are simply a symptom

of the flow’s state and do not offer insight into the structure of the velocity field. The figure 1.9 below

showcases the sinusoidal-like shape velocity magnitude contours in the gap region, representing the flow

pulsation observed.

Figure 1.9: Flow pulsations in the subchannel narrow gap visualized with a velocity contour [15]

The term gap vortex street more accurately captures the interactions between counter-rotating vortices

formed on either side of the gap. In rod bundles, the coupling of these vortex streets across multiple gaps
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forms the rod bundle vortex network, an area of ongoing research. The complexity of these interactions,

which depend on the size and shape of the gaps, presents challenges in understanding the flow physics.

The combination of hydrodynamic instabilities and secondary flows, particularly Prandtl’s secondary flows

of the second and third kinds, is central to these phenomena. However, the detailed mechanisms behind

these interactions remain uncertain and are not within the scope of the present study.

1.5.3. Literature study on rod bundle
Meyer [16] provides a comprehensive review of experimental and numerical research on large-scale

swirling structures in rod-bundle flows, commonly observed in nuclear reactor cores and heat exchangers.

While early studies in the 1970s and 1980s attributed high momentum transfer in gap regions to secondary

flows, recent research demonstrates these flows contribute minimally (1-2%) to overall flow dynamics.

The formation of quasi-periodic vortices in the gap region is primarily attributed to the Kelvin-Helmholtz

instability, driven by velocity differentials between high-speed core flow and slower gap flow.

Meyer’s analysis [16] emphasizes the significance of gap-spacing (P/D or W/D) in flow behavior, where

reduced spacing correlates with increased turbulence intensities. Advanced computational methodologies,

including Direct Numerical Simulations (DNS), Large Eddy Simulations (LES), or anisotropic Unsteady

Reynolds-Averaged Navier-Stokes (URANS) models, are essential for accurately capturing these flow

characteristics and analyzing the complex interaction between turbulence, shear layers, and coherent

structures.

Gosset and Tavoularis [17] first identified coherent structures in laminar flow within the narrow gap region,

observing that span-wise velocity profiles exhibited characteristics of low-speed boundary layer streaks

rather than inflectional profiles typical of Kelvin-Helmholtz instability. Their observations revealed similarities

to von Kármán vortex streets common in wake flows. Subsequent investigations by Merzari et al. [18] and

Piot and Tavoularis [19] revealed an additional instability mechanism in rod-bundle flows, characterized by

inflectional points on both sides of the gap, indicating Kelvin-Helmholtz-type instability.

Meyer [16] further elucidates the exceptional stability of vortical structures in rod-bundle flows, contrasting

with typical growth-decay patterns observed in other instability mechanisms. Derksen [20] presents a

comprehensive schematic of these vortical structures and associated cross-flow regions in Figure 3.4,

highlighting their critical role in overall flow dynamics and large-scale, quasi-periodic coherent structures.

Meyer and Rehme [21] investigated vortex shedding in compound rectangular channels, demonstrating

the formation of alternating, counter-rotating vortices. This shedding mechanism, analogous to the Kelvin-

Helmholtz instability, is driven by velocity shear between inter-cylinder gaps and subchannels, resulting in

substantial coherent structures.

In densely packed rod bundles, Baratto [22] and Chang and Tavoularis [23] demonstrated complex vortex

street interactions. Tavoularis [24] introduced the concept of a ”rod bundle vortex network,” describing

the intricate coupling of vortex sheets from adjacent gaps. This phenomenon remains an active area of

research due to its significant impact on flow dynamics.

De Ridder [25] advanced the field through computational fluid dynamics (CFD) simulations of gap vortex

streets and their interactions with rod bundles, providing crucial insights into fluid-structure coupling

mechanisms. However, a detailed understanding of flow instability mechanisms and vortex interactions

continues to present significant research challenges.
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1.6. Research Formulation
As described in the above section, the discrepancy raises important questions about the accuracy and

applicability of traditional heat transfer correlations developed based on pipe experiments in real-world

reactor conditions. The potential uncertainties arising from this modelling assumption warrant further

investigation, as does the possibility of improving these correlations for more accurate predictions.

The primary objective of this research project is to conduct a comparative study of heat transfer

characteristics between a pipe and a typical PWR rod bundle. This will provide insights into

current correlations’ limitations and may suggest improvements for more accurate modelling of

heat transfer in nuclear fuel assemblies.

Research Objective

How does the geometric configuration of nuclear fuel assembly flow channels (subchannel

and pipe) influence thermal-hydraulic heat transfer characteristics, and what are the underlying

mechanisms driving these geometrically-induced variations?

Research Question 1

To what extent do different geometrical representations (single subchannel and 2x2 subchannel)

diverge in capturing the fundamental heat transfer mechanisms?

Sub Research Question 1

How do boundary conditions and thermal-hydraulic properties interact with geometric variations

to modulate heat transfer performance?

Sub Research Question 2



2
Turbulence

This chapter delves into the complex realm of turbulence, a fundamental concept in fluid dynamics with

significant implications for nuclear reactor thermal-hydraulics. The discussion encompasses three primary

areas:

• Governing equations: An examination of the fundamental equations describing fluid flow and

heat transfer, including the continuity equation, Navier-Stokes equations, and scalar conservation

equation. The chapter presents both dimensional and normalized forms of these equations, laying

the groundwork for Direct Numerical Simulation (DNS) studies.

• Turbulent scales: An exploration of the energy cascade concept, from large-scale eddies to Kol-

mogorov microscales. This section elucidates the multi-scale nature of turbulence and its implications

for energy transfer and dissipation in fluid flows.

• Evolution of turbulence modeling: A historical perspective on the development of turbulence

modeling techniques in subchannel domains, progressing from early Reynolds-Averaged Navier-

Stokes (RANS) models to more advanced approaches like Unsteady RANS (URANS) and Large

Eddy Simulation (LES).

Additionally, this chapter sets the stage for understanding the challenges and advancements in modeling

turbulent flows within nuclear reactor geometries, particularly in subchannel domains with varying pitch-to-

diameter ratios and flow conditions. It provides a foundation for the subsequent chapters’ more detailed

investigations into specific aspects of turbulent flow behavior in nuclear thermal-hydraulic.

2.1. Turbulent scales
Turbulence is characterized by fluid motion that is chaotic, random, and unsteady in nature. Turbulent flows

are generally described in terms of eddies, ranging from large-scale eddies that are chaotic and anisotropic

to small eddies where viscous forces dominate and energy is dissipated as heat. A key characteristic of

turbulence is its ability to enhance mixing and transport of momentum compared to laminar flow. This

advantage is applied in numerous industrial applications, particularly in nuclear reactors, where enhanced

mixing and transport optimize heat transfer.

The concept of turbulent eddy scales is illustrated through the energy cascade, first proposed by Richardson

in 1922, illustrated in figure 2.1. As Richardson poetically described:

"Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(in the molecular sense)."

Kinetic energy enters turbulence through production at the largest scales. Energy is then transferred to

smaller scales (inviscid cascade) until it dissipates due to viscous forces, shown in Figure 2.2. These

smaller scales are defined by Kolmogorov’s scales. The largest eddy is characterized by size l0 with a
characteristic velocity scale of u0 and timescale of t0. The rate of dissipation (ε) is determined by the

transfer of energy from kinetic to internal heat. This process is called the energy cascade. The eddies

13
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have an energy order of u2
0, and dissipation (ε) scales as u

3
0/l0, which is equal to the production that occurs

at larger scales.

Figure 2.1: Turbulent scales [26] Figure 2.2: Energy Cascade E(k) [27]

Kolmogorov scales are defined as η, uη, and τη, representing length, velocity, and timescale for the smallest
eddy, respectively. If ν is kinematic viscosity, then Kolmogorov’s scales can be defined as:

η = (ν3/ε)1/4 (2.1)

uη = (νε)1/4 (2.2)

τη = (ν/ε)1/2 (2.3)

From Kolmogorov’s first similarity hypothesis, the Reynolds number at these scales is always unity:

Reη =
ηuη

ν
= 1 (2.4)

The ratios of the smallest Kolmogorov scales to the largest scales are given as:

η/l0 ∼ Re−3/4 (2.5)

uη/u0 ∼ Re−1/4 (2.6)

τη/τ0 ∼ Re−1/2 (2.7)

2.1.1. Kolmogorov Condition
The Kolmogorov length and time scales are essential criteria in mesh resolution studies to ensure that

all relevant scales in turbulent flow are adequately resolved in both space and time. This criterion, as

proposed by Pope [28], ensures that the mesh is sufficiently refined to capture the smallest eddies within

the turbulence spectrum. The condition is expressed as:

∆

η
≤ π (2.8)

where ∆ is (Cell Size) and η is Kolomrgov length scale. This condition ensures that the computational grid
is refined enough to resolve the smallest turbulent structures, thereby capturing the full range of scales

present in the flow.
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2.2. Governing Equations
The continuity equation for an incompressible fluid is given by

∇ · u = 0 (2.9)

The momentum conservation is described by the Navier-Stokes equations. The equation for an incom-

pressible Newtonian fluid is given by

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u (2.10)

The conservation equation for a passive scalar T is described by

ρCp
∂T

∂t
+ ρCpu · ∇T = k∇2T (2.11)

The governing equations for Direct Numerical Simulation (DNS) are normalized using characteristic scales

to obtain dimensionless forms. The normalization parameters are defined as follows:

u∗ =
u

Ub
t∗ =

tUb

D
x∗ =

x

D
p∗ =

p

ρU2
b

T ∗ =
T − T0

δT

where Ub is the bulk velocity, D is the characteristic length, ρ is the fluid density, T0 is a reference

temperature, and δT is a characteristic temperature difference.

After normalizing the known parameters as given above, the new governing equations for Direct Numerical

Simulation (DNS) are:

∇ · u∗ = 0 (2.12)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇p∗ +

1

Re
∇2u∗ (2.13)

∂T ∗

∂t∗
+ u∗ · ∇T ∗ =

1

RePr
∇2T ∗ (2.14)

Equation (2.12) represents the normalized continuity equation, (2.13) is the normalizedmomentum equation,

and (2.14) is the normalized energy equation. In these equations, Re is the Reynolds number and Pr is
the Prandtl number, which emerge as the governing dimensionless parameters of the system.

These normalized equations form the basis for the DNS simulations, allowing for a more generalized

analysis of the flow and heat transfer characteristics independent of specific physical dimensions.

2.3. Tubulent Kinetic Energy and it’s Budget terms
Turbulent kinetic energy is a quantitative measure of the intensity of turbulence. The kinetic energy in

classical mechanics is defined from Newton’s second law of motion, and the equation is as follows:

KE =
1

2
mv2 (2.15)

where ‘m’ represents the mass of the object and ‘v’ represents the velocity of the object.

In turbulence, kinetic energy follows the same formula and is defined as the sum of the root mean square

of each velocity fluctuation component. Since most quantities in turbulence are generally represented as

independent of mass, kinetic energy in turbulence is represented as follows:

k =
1

2
(u′2 + v′2 + w′2) (2.16)
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where u′ represents the velocity fluctuation, and the three components signify the direction of each velocity

vector.

The transport equations for the Reynolds stresses are derived from the Navier-Stokes equations by

ensemble averaging the equations, then deriving equations for the fluctuating stresses and ensemble

averaging these equations. For incompressible turbulent flow, the transport equation is given by:

∂k

∂t
+ uj

∂k

∂xj
= −u′

iu
′
j

∂ui

∂xj
− ν

∂u′
i∂u

′
i

∂xj∂xj
− ∂

∂xj

[
1

2
u′
jp

′ − ν
∂k

∂xj
+

1

2
u′
iu

′
iu

′
j

]
(2.17)

∂k

∂t
+ Ck = Pk − εk + πk +Dk + τk (2.18)

Where the terms on the left-hand side of the equation represent the time-rate of change and the advection

(Ck) of k; while the terms on the right-hand side represent production (Pk), dissipation (εk), pressure-
diffusion (πk), viscous diffusion (Dk) and turbulent diffusion (τk) of k.

The terms on the right-hand side of the above equation are defined as follows:

Pk = −u′
iu

′
j

∂ui

∂xj
Production rate

εk = ν
∂u′

i∂u
′
i

∂xj∂xj
Dissipation rate

Tk = −1

2
u′
iu

′
iu

′
j Turbulent transport rate

Dk = ν
∂k

∂xj
Viscous diffusion rate

Πk = −1

2
u′
jp

′ Velocity pressure-gradient term

We can obtain the equation in dimensionless form by multiplying the above equation by (ν/u4
τ )(the wall-

shear velocity, uτ =
√
νU,y|wall, and the kinematic viscosity, ν),

∂k+

∂t+
+ C+

k = P+
k − ε+k + π+

k +D+
k + τ+k (2.19)

Here, the (+) superscript denotes inner- or wall-scaling.

2.4. Temperature Heat Flux and its Budget Terms
The transport equation for the thermal fluctuations can be expressed as:

∂u′
iT

′

∂t
+ uj

∂u′
iT

′

∂xj
= −

(
u′
iT

′ ∂ui

∂xj
+ u′

ju
′
i

∂T

∂xj

)
− (ν + α)

∂u′
iT

′

∂xj
− 1

ρ
T ′ ∂p

′

∂xj
−

∂u′
iu

′
jT

′

∂xj
, (2.20)

+
∂

∂xj

[
ν
∂u′

i

∂xj
T ′ + α

∂T ′

∂xj
u′
i

]

∂u′
iT

′

∂t
+ Ciθ = Piθ − εiθ + πiθ + τiθ +Diθ. (2.21)

Where the terms on the left-hand side of the equation represent the time-rate of change and the advection

(Ciθ) of Temperature Heat Flux (THF); while the terms on the right-hand side represent production (Piθ),
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dissipation (εiθ), temperature-pressure-gradient-correlation (πiθ), turbulent diffusion (τiθ), and viscous

diffusion (Diθ) of THF.

The terms on the right-hand side of the above equation are defined as follows:

Piθ = −
(
u′
iT

′ ∂ui

∂xj
+ u′

ju
′i
∂T

∂xj

)
Production rate

εiθ = − (ν + α)
∂u′iT ′

∂xj
Dissipation rate

τiθ = −∂u′
iu

′jT ′

∂xj
Turbulent Diffusion rate

Diθ =
∂

∂xj

[
ν
∂u′

i

∂xj
T ′ + α

∂T ′

∂xj
u′i

]
Viscous diffusion rate

πiθ = −1

ρ
T ′ ∂p

′

∂xj
Temperature-pressure-gradient term

The dimensionless form may be obtained by multiplying the above equation by (ν/u3
τTτ ) gives:

∂u′
iT

′+

∂t+
+ C+

iθ = P+
iθ − ε+iθ + π+

iθ + τ+iθ +D+
iθ. (2.22)

2.5. Numerical simulation for Subchannel Domains
Modeling turbulent flows presents significant challenges in fluid dynamics research due to their inherently

chaotic and random nature. The study of turbulence in subchannel domains is particularly crucial in nuclear

thermal-hydraulics, where simulation fidelity directly impacts prediction accuracy. This section examines

the evolution of turbulence modeling approaches in subchannel geometries, focusing on their capabilities

across varying pitch-to-diameter ratios and Reynolds numbers under diverse boundary conditions.

2.5.1. Early Benchmarks and RANS Models
Smith and Johnson [29] established fundamental relationships between mesh refinement, turbulence

models, and numerical schemes in their benchmark study. Their analysis demonstrated that Reynolds-

Averaged Navier-Stokes (RANS) models could predict pulsation flow under specific conditions, though

with notable limitations.

In a subsequent investigation, Bieder and Anderson [30] explored these limitations through investigations

of isotropic and anisotropic turbulence. While RANS models achieved acceptable accuracy in isotropic

turbulence prediction, they exhibited significant deficiencies when modeling anisotropic turbulence beyond

ten hydraulic diameters downstream, highlighting the need for more sophisticated modeling approaches.

2.5.2. Advancements with URANS
Merzari and Ninokata [18] validated Unsteady RANS (URANS) simulations for staggered pin arrangements

through comparisons with large eddy simulation (LES) data and experimental measurements. Their work

demonstrated URANS’s potential to balance computational efficiency with accuracy in specific subchannel

configurations.

Building on these findings, Podila and Rao [31] utilized data from the OECD/NEA-organized CFD bench-

marking exercise to evaluate URANS performance in a 5x5 square bundle rod arrangement. Their results

revealed accurate predictions of flow velocity distributions while consistently underestimating turbulence

intensity, illustrating both the capabilities and limitations of URANS modelling.
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2.5.3. Large Eddy Simulation (LES) Approaches
Tiselj and Mikuz [32] advanced subchannel turbulence analysis through their investigation of a 5x5

rod bundle using the Wall-Adapting Local Eddy-viscosity (WALE) model in OpenFOAM. While their

study showed improvements over RANS and URANS in mean velocity flow prediction, the WALE model

demonstrated limitations in capturing second-order turbulence statistics when compared with MATiS-H

experimental measurements.

Lakehal [33] conducted high-resolution LES studies in single subchannel domains, achieving first-order

turbulence statistics comparable to pipe DNS results. Their investigation revealed distinct Reynolds number

characteristics between gap regions and domain cores. However, the absence of second-order statistical

validation indicates a crucial gap in current modeling capabilities.

2.5.4. The Path Forward: DNS and Beyond
Current research trends indicate that while RANS, URANS, and LES models have contributed significantly

to subchannel turbulence understanding, they remain insufficient for fully characterizing these complex,

multi-scale flows. This limitation has motivated increased interest in Direct Numerical Simulation (DNS)

methodologies.

Contemporary investigations have expanded to include surface roughness effects, fluid-structure interaction

(FSI), and spacer grid impacts. Despite these advances, fundamental questions regarding physical and heat

transfer characteristics within simplified subchannel domains persist, necessitating continued investigation

through refined analytical approaches.



3
Comptational Model

This chapter presents the comprehensive computational methodology for investigating thermal-hydraulic

phenomena in nuclear reactor geometries. The discussion focuses on five primary areas:

• Nek5000 Spectral Element Solver: Explores the high-fidelity computational fluid dynamics code

with its unique spectral element method combining geometric flexibility and high-order accuracy.

• Computational Domains: Analyzes three numerical domains: Pipe, Square Subchannel, and

2×2 Subchannel, highlighting strategic geometric modeling approaches aligned with PWR design

standards.

• Mesh Generation and Resolution: Examines computational mesh design, emphasizing near-wall

resolution and grid refinement techniques to capture boundary layer physics accurately.

• Temperature Field Modeling: Investigates scalar transport through variation of Prandtl numbers

and boundary condition types to comprehensively characterize heat transfer behavior.

• Boundary and Initial Conditions: Details computational boundary strategies and pseudo-random

perturbation techniques to trigger turbulent transition while maintaining flow continuity.

By synthesizing advanced numerical techniques, precise geometric modeling, and solver implementations,

this chapter establishes a robust computational framework for high-fidelity thermal-hydraulic investigations.

The methodology provides unprecedented insights into fluid dynamics within nuclear reactor subchannel

geometries, bridging fundamental research with practical thermal-hydraulic design considerations.

3.1. Nek5000 - SEM solver
Nek5000 is a spectral element code developed at Argonne National Laboratory [34], designed explicitly

for high-fidelity computational fluid dynamics simulations. The code employs a spectral element method

(SEM), which combines the geometric flexibility of finite elements with the high-order accuracy of spectral

methods.

The spatial discretization in Nek5000 is handled through the decomposition of the computational domain into

hexahedral elements, within which the solution is represented by high-order Lagrange polynomials based

on Gauss-Lobatto-Legendre (GLL) quadrature points. For temporal discretization, the code implements a

semi-implicit time-stepping scheme, treating the nonlinear convective terms explicitly through an nth-order

extrapolation and back difference formula (EXTn-BDFn) while handling the viscous and pressure terms

implicitly. Additionally, the code employs an Operator Integration Factor Splitting (OIFS) method that

provides an alternative approach to solving the Navier-Stokes equations by decoupling the linear and

nonlinear terms. This method significantly reduces the time-stepping constraints while maintaining solution

stability, allowing for timesteps approximately 5-10 times larger than those permitted by traditional CFL

criteria without compromising accuracy.

3.1.1. Present Simulation
This study encompasses a comprehensive investigation across three meticulously constructed numerical

domains: the canonical ”Pipe” configuration, the ”Square Subchannel” geometry, and the ”2×2 Subchannel”

architecture. The Pipe case serves a multifaceted purpose, it provides a comprehensive platform for

19
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comparative analysis of flow and heat transfer characteristics, leveraging the well-established Nusselt

number correlations that form the cornerstone of Pressurized Water Reactor (PWR) thermal-hydraulic

design and optimization. Concurrently, the pipe configuration enables rigorous validation of numerical

schemes, simulation parameters and convergence methodologies through direct comparison with available

Direct Numerical Simulation (DNS) reference data.

Following this validation, simulations will be performed using Nek5000 as a tool to solve incompressible

Navier-Stokes equations as mentioned in section 2.2 for the Square Subchannel and 2x2 Subchannel

configurations, and later investigated with Pipe geometry.

The pipe case simulation employs an O-grid mesh, utilizing a third-order Backwards differentiation formula

(BDF3) for temporal discretization. The case maintains numerical stability through a CFL constraint of

less than 0.5. The square subchannel case implements identical solver parameters as the pipe case,

employing the BDF3 time integration scheme while adhering to the same CFL criterion. The 2x2 subchannel

configuration utilizes a second-order BDF scheme with CFL < 1, primarily to speed up with minimal reduction

in data quality. Additionally, the 2x2 subchannel implements the Operator-Integration-Factor Splitting

(OIFS) method, which offers enhanced numerical efficiency by decoupling the linear and nonlinear terms.

This implementation permits larger timestep sizes, approximately 5-10 times that of traditional CFL criteria,

without compromising solution accuracy. The discretization schemes and solver parameters for the

subchannel and Pipe DNS are configured as follows:

Feature Specification

Temporal Discretization 2nd - 3rd-order Backwards Differentiation (BDF2/BDF3)

Variable timestep with target CFL = 0.5-1.0

Spatial Discretization Dealiasing: Enabled (3/2 rule)

Solver Parameters Pressure preconditioner: Semi-geometrical multigrid (HYPRE)

Solver Tolerances Pressure tolerance: (1 ×10−6)

Velocity tolerance: (1 ×10−7)

Table 3.1: Numerical schemes and parameters in Nek5000

The pressure solver uses a semi-geometrical multigrid preconditioner from the HYPRE library while

maintaining strict tolerances for both pressure and velocity solutions.

3.2. Computational Domain
The implementation of accurate Direct Numerical Simulation (DNS) requires meticulous attention to the

initial case setup and geometry definition. While the geometries considered in this study are relatively

straightforward, necessitating only a few key parameters, the computational intensity and time-consuming

nature of DNS simulations make it imperative to establish precise initial conditions. Any inadequacies or

oversights in the preliminary setup can propagate through the simulation, potentially compromising the

accuracy of results and proving challenging to rectify in subsequent stages.

3.2.1. Pipe
The diameter (D) was normalized to unity for the pipe configuration, with the axial length extending to
12.5D (approximately 4πD [35]). This length is reported to be sufficient to resolve the large-scale turbulent

scales at the presently investigated Reynolds number.

3.2.2. Subchannel
The geometric configuration under investigation is a rectangular bundle rod arrangement prevalent in

contemporary nuclear reactor cores. As elaborated in Section 1.2, these arrangements are characterized

by various geometric configurations and critical design parameters, including P/D and W/D ratios. This

investigation focuses specifically on the bundle rod core, excluding wall effects.
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The study adopts industrial-standard specifications [36] with a P/D ratio of 1.3263, incorporating a fuel

rod diameter (D) of 9.5mm and a fuel rod pitch (P) of 12.6mm typical of a PWR. This standardization

facilitates future experimental validation without necessitating geometric modifications. The geometry and

flow parameters were subsequently normalized to a hydraulic diameter (Dh) of unity, with the modified

specifications detailed in Table 3.2.

Parameters Original Case Modified Case

Fuel rod diameter, D 9.5 mm 0.8066 m

Fuel rod pitch, P 12.6 mm 1.0698 m

P/D ratio 1.3263 1.3263

Hydraulic diameter, Dh 11.78 mm 1.00 m

Table 3.2: Subchannel Geometry Parameters: Original and Modified Specifications

In a departure from conventional methodologies that typically focus on the interior subchannel domain

bounded by quadrants of four adjacent rods, this study adopts a distinctive approach for the single

subchannel case. The computational domain encompasses the region surrounding a single rod rather than

the traditional approach of modeling the interstitial space between four partial rods. While both approaches

should theoretically yield identical results under ideal conditions, our chosen geometry allows for a more

focused examination of the flow characteristics in the immediate vicinity of a single fuel rod.

The 2×2 subchannel configuration extends the single subchannel model to include four interconnected

traditional interior subchannels. This expanded domain captures the flow characteristics around a central

rod while accounting for the influence of eight neighbouring rods, enabling a more comprehensive analysis

of inter-subchannel mixing phenomena.

(a) 1x1 Single Subchannel (b) 1x1 Square Subchannel (c) 2x2 Subchannel

Figure 3.1: Comparison of different subchannel geometry

Both configurations were analyzed at Bulk Reynolds number (Reb) 5300 (friction Reynolds number (Reτ ) ∼
380) and extend axially to 48Dh to adequately capture the gap vortex street phenomena. The investigation

is deliberately constrained to a single P/D ratio and Reynolds number for both geometric cases, facilitating

direct comparisons and allowing for a deep dive into the specific flow regime of interest. This focused

approach establishes a robust baseline for future studies that may incorporate additional variables or

explore a broader range of operating conditions.

3.3. Mesh
In the present work, computational meshes have been designed using the pre-processing software GAMBIT

version 2.4.6. The resulting meshes are converted to Nek5000 format using an in-house utility.
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3.3.1. Pipe
The fundamental mesh architecture comprises four equi-angularly distributed blocks along the pipe circum-

ference, complemented by a central core block. The structured mesh generation methodology employed

a boundary-first approach, initiating from the pipe’s peripheral geometry and progressing inward. This

approach ensures superior control over near-wall mesh characteristics, which is crucial for the accurate

resolution of boundary layer phenomena.

Figure 3.2: Base Mesh of Pipe case (N=1)

To ensure accurate resolution of the near-wall flow physics, careful consideration was given to the

dimensionless wall distance (y+) during the mesh design. The parameters used to define the mesh for the
pipe configuration for polynomial order of 7 are provided in the table below:

Parameters Pipe

Elements (cross-section) 477

Number of layers 107

Total number of elements 51,039

Number of GLL points (N = 7) 26.13 × 106

Table 3.3: Mesh Specifications and Element Distribution for Pipe Geometry

The grid resolution was validated through a comparative analysis of cell dimension ratios, specifically

between the smallest and largest cells in the domain, following the methodology established by El Khoury

and Philipp Schlatter [37]. Table 3.4 compares the grid resolution parameters in wall units between the

present study and the reference data. These parameters, particularly for a Reτ ∼ 180 pipe flow, were
carefully selected to capture the required resolution in both the near-wall and bulk regions.

The non-dimensional grid spacing parameters (∆z+, ∆r+, ∆θ+w , ∆θ+b ) were evaluated using local wall
units, defined as:

∆z+ =
∆zuτ

ν
(3.1)

where uτ represents the friction velocity and ν denotes the kinematic viscosity.
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Parameter
Present DNS Reference DNS

Min Max Min Max

Streamwise spacing (∆z+) 2.7 8.9 3.03 9.91

Radial spacing (∆r+) 0.14 3.6 0.14 4.44

Azimuthal spacing at wall (∆θ+w ) 2.0 6.6
1.5 4.9

Azimuthal spacing in bulk (∆θ+b ) 1.1 3.6

Table 3.4: Grid resolution parameters comparing present DNS with reference data from El Khoury et

al.2013. Values are presented as minimum and maximum in wall units.

3.3.2. Subchannel
The mesh for the subchannel cases was generated using a similar approach to the pipe case but with

modifications to account for the different geometrical configurations. The fundamental mesh architecture

comprises structured blocks that conform to the subchannel geometry, ensuring accurate resolution of the

flow physics.

(a) Square Subchannel (b) 2x2 Subchannel

Figure 3.3: Base Mesh of Subchannel Cases (N=1)

For the subchannel cases, the dimensionless wall distance (y+) was also carefully considered in the mesh
design to accurately resolve the near-wall flow physics. The parameters used to define the mesh for the

subchannel cases for polynomial order of 5 are provided in the table below:

Parameters Square subchannel 2x2 subchannel

Elements (cross-section) 616 2384

Number of layers 439 439

Total number of elements 270,424 1,046,576

Number of GLL points (N = 5) 58.41 × 106 226.06 × 106

Table 3.5: Mesh Specifications and Element Distribution for Subchannel Cases

The spatial discretization characteristics are quantified through dimensionless cell-size ratios, encom-
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passing the entire computational domain from minimum to maximum cell dimensions, as presented in

Table 3.6. This methodological approach strictly adheres to the framework established by El Khoury and

Philipp Schlatter [37] study for pipe flow configurations. The grid resolution parameters were meticulously

optimized Reynolds number, ensuring adequate spatial resolution in both the viscous sublayer and bulk

flow regions of the subchannel geometry.

The wall-unit calculations were performed for a 2×2 subchannel configuration, which exhibits analogous

near-wall characteristics to the square subchannel case due to geometric similarities in the wall-adjacent

regions. This equivalence in local flow physics justifies the extension of the resolution criteria from the

reference pipe flow to the present subchannel analysis.

Parameter
Subchannel (N = 5)

Min Max

Streamwise spacing (∆z+) 4.9 12.0

Radial spacing (∆r+) 0.17 5.56

Azimuthal spacing at wall (∆θ+w ) 2.0 4.9

Azimuthal spacing in bulk (∆θ+b ) 3.0 7.2

Table 3.6: Grid resolution parameters for the 2x2 subchannel (N = 5) case. Values are presented as

minimum and maximum in wall units.

These structured mesh configurations, along with the careful consideration of the near-wall mesh charac-

teristics, ensure the accurate resolution of the complex flow phenomena within the subchannel geometries.

3.4. Temperature fields
Temperature fields were introduced in the model to capture heat transfer characteristics. Two Prandtl

numbers (Pr) were chosen to represent different fluid properties: Pr = 1, typical for water, and Pr = 0.025
at PWR conditions, representative of liquid metals. The thermal diffusivity (α) for each Prandtl number
was computed based on the following relationship:

α =
ν

Pr
(3.2)

where ν is the kinematic viscosity. The resulting thermal diffusivity values are presented in Table 3.7.

To evaluate different scalar qualities and their influence on heat transfer, two types of lateral surface

boundary conditions were applied for each Prandtl number: Dirichlet (iso-temperature) and Neumann

(iso-heat flux). This configuration created four distinct scalar fields (T1 to T4), each defined by a unique

combination of Prandtl number and boundary condition. These four scalars allow a comprehensive analysis

of heat transfer under varied conditions, enabling insights into both temperature-driven (Dirichlet) and

flux-driven (Neumann) behaviour across different Prandtl numbers. The details of each scalar quantity are

summarized in Table 3.7.

Scalar Prandtl Number (Pr) Boundary Condition Thermal Diffusivity (α = 1/RePr)

T1 0.025 Dirichlet 7.55× 10−3

T2 1 Dirichlet 1.89× 10−4

T3 0.025 Neumann 7.55× 10−3

T4 1 Neumann 1.89× 10−4

Table 3.7: Scalar Quantities Defined by Prandtl Number and Boundary Conditions

This approach enables an examination of passive scalar transport under both fluid types, highlighting the

effects of different thermal diffusivities and boundary conditions on the flow and heat transfer behaviour

within the simulation.
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3.5. Boundary Conditions
The specification of boundary conditions for pipe flow configurations presents a more straightforward case

compared to subchannel geometries. In cylindrical pipe domains, the lateral surface area is characterized

by temperature-controlled boundary conditions, implementing either Dirichlet or Neumann conditions. The

Dirichlet condition prescribes a constant temperature distribution (T = Twall) along the wall surface, while
the Neumann condition specifies a constant heat flux (q′′ = constant) normal to the wall. To simulate infinite-

length conditions, periodic boundary conditions are imposed at the inlet and outlet surfaces, establishing:

φ(x, y, 0) = φ(x, y, L) (3.3)

where φ represents any flow variable (velocity, temperature, or pressure), and L, denotes the axial length
of the computational domain.

For subchannel configurations, the boundary conditions maintain similar fundamental principles while

incorporating additional complexity. The surfaces adjacent to the fuel pin/rod implement temperature-

controlled conditions, either through Dirichlet (T = Tpin) or Neumann (q
′′
pin = constant) specifications. The

axial periodicity remains consistent with the pipe case, employing Equation 3.3 to simulate infinite-length

behaviour.

A distinguishing feature of subchannel analyses lies in the treatment of lateral boundaries. For square

subchannel geometries, periodic conditions are imposed on all four lateral walls, establishing:

φ(0, y, z) = φ(W,y, z) (3.4)

φ(x, 0, z) = φ(x,H, z) (3.5)

where W and H represent the width and height of the subchannel cross-section, respectively. This

formulation ensures the continuity of flow variables across computational boundaries, effectively modelling

the repeating nature of subchannel arrangements in nuclear fuel assemblies (Figure 3.4a).

The boundary condition implementation for 2×2 subchannel configurations, which represents a interior

subchannel domain, the periodic conditions are established exclusively at the interior subchannel gaps, as

illustrated in Figure 3.4b. This modification more accurately represents the local flow coupling between

adjacent subchannels while maintaining the physical integrity of the rod bundle arrangement.

(a) Square subchannel periodic boundary

implementation (b) 2×2 subchannel connectivity through gap periodicity

Figure 3.4: Schematic representation of periodic boundary conditions for subchannel configurations
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The implementation of these boundary conditions facilitates accurate numerical simulation of both isolated

and coupled subchannel flows, providing a framework for detailed thermal-hydraulic analysis of nuclear

fuel assemblies.

3.6. Initial Conditions
For both pipe and subchannel configurations, random perturbations are introduced through a set of

trigonometric functions in the Nek5000 user script. These functions, while deterministic in form, create

pseudo-random disturbances in the flow field due to their interacting periodic components.

The streamwise velocity component (uz) combines a near-wall turbulent profile approximation (1− y8) with
periodic perturbations:

uz =
9

8
(1− y8)− 10.0π cos(z) sin(πy) sin(x) (3.6)

The cross-stream velocities (ux, uy) are defined as:

ux = 5.0π cos(z) sin(z) sin(πy) (3.7)

uy = 5.0 · 0.1(1 + cos(πy)) sin(x) (3.8)

3.7. Post-Processing Approaches
This section details the post-processing methodologies implemented to extract and analyze the results.

Three-dimensional field data was first averaged spatially and temporally to produce a two-dimensional

field for ease of data extraction and visualization. Temporal averaging was conducted using flow-through

time (FTT) metrics, as defined in Section 4.2, ensuring statistical convergence of the data.

For the pipe configuration, azimuthal averaging was applied to the two-dimensional averaged field data to

further reduce it to a one-dimensional profile, effectively capturing radial variations along the pipe length.

Similarly, for the square subchannel and 2×2 subchannel configurations, data was averaged across a

single unit cell, as explained in Section 5.1, to obtain representative one-dimensional profiles of flow and

heat transfer characteristics.

These post-processing methodologies facilitated a direct comparison between the square subchannel and

2×2 subchannel geometries, as well as a comprehensive comparison between the pipe and subchannel

configurations.



4
Pipe

This chapter presents a comprehensive analysis of turbulent pipe flow through high-fidelity Direct Numerical

Simulation (DNS), exploring critical aspects of flow resolution, statistical convergence, and thermal transport

characteristics. The investigation focuses on unraveling the complex dynamics of pipe flow with particular

emphasis on:

• Polynomial order resolution and its impact on turbulent flow representation

• Temporal convergence of statistical calculations for velocity and temperature fields

• Validation against established DNS databases for pipe flow

• Detailed examination of turbulent kinetic energy and heat transfer mechanisms

• Exploration of thermal boundary conditions and their influence on flow characteristics

• Comprehensive analysis of Nusselt number behavior across different Prandtl numbers

By systematically addressing these elements, the study aims to provide nuanced insights into turbulent

pipe flow dynamics, with fundamental contributions to understanding scalar transport and fluid mechanics

in complex thermal systems. The methodology leverages high-resolution spectral element methods to

rigorously investigate the fundamental physics of turbulent flow, offering a detailed characterization of

flow and scalar transport mechanisms that extends the current understanding of turbulent heat transfer

phenomena.

4.1. Resoluion
This investigation analyzes the influence of polynomial order on solution fidelity within the context of Direct

Numerical Simulation (DNS), following the methodological framework established by Ninokata [38].

Three polynomial orders were investigated: N = 3, 5, and 7, representing low, medium, and high-order
approximations, respectively. The upper bound of N = 7 was established based on computational

cost considerations, as higher-order approximations proved prohibitively expensive for the available

computational resources.

Figure 4.1 presents instantaneous velocity field distributions across the pipe cross-section for varying

polynomial orders:

27
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(a) N = 3 (b) N = 5 (c) N = 7

Figure 4.1: Comparative visualization of instantaneous velocity field distributions at varying polynomial

orders (t∗ = 1203).

To quantitatively assess the capacity of different polynomial orders to resolve small-scale turbulent struc-

tures, both first and second-order velocity statistics were analyzed. The normalized axial velocity profiles

(u+ = u/uτ ) demonstrated remarkable consistency across all polynomial orders, with relative L2 norm

errors below 0.25% when compared to the reference data provided by [37], as illustrated in Figure 4.2.

The second-order statistics, specifically the normalized turbulent kinetic energy (k+ = k/u2
τ ) profiles versus

wall-normal distance (y+), revealed subtle but important differences between polynomial orders. While

N = 5 and N = 7 demonstrated virtually identical results, N = 3 exhibited minor deviations, though these
differences were so small as to be indiscernible in the plot, remaining below 1% in terms of L2 norm relative

error, as shown in Figure 4.3.

Figure 4.2: Wall-normal distribution of normalized

mean axial velocity (u+) for varying polynomial

orders

Figure 4.3: Wall-normal distribution of normalized

turbulent kinetic energy (k+) for varying polynomial
orders

While all polynomial orders demonstrated satisfactory resolution characteristics, N = 7 exhibited superior
performance in resolving the Kolmogorov microscales. Figure 4.4 presents the Kolmogorov length-scales

from the resolved turbulent kinetic energy dissipation rate for N = 7. The resolution satisfies Pope’s

criterion [28], which stipulates that the grid spacing must be of order O(η), where η represents the local
Kolmogorov length scale:
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Figure 4.4: Distribution of cell size normalized by kolmogorov length scale (∆η ) for N = 7

A quantitative summary of the resolution study is presented in Table 4.1, which demonstrates the relative

L2 norm errors for different polynomial orders with respect to the highest-order case (N = 7).

First Order (u+) Second Order (k+)

< 0.25% < 1.0%

Table 4.1: Relative L2 norm errors for velocity statistics compared to the reference data [37]

4.2. Convergence of statistical calculation
Based on the resolution analysis, a polynomial order of N = 7 has been established as optimal, providing
the requisite balance between accuracy and computational efficiency for the pipe flow configuration. The

temporal convergence analysis employs multiple characteristic time metrics, including the flow-through

time (FTT), which represents the time required for fluid particles to traverse the computational domain,

along with associated normalized time, eddy turnover time scales and wall-scaled as presented in Table

4.2.

FTT tUb

D
tuτ

R
tu2

τ

ν

12 150 20.6 3710.5

24 300 41 7448

36 450 61.6 11,144

48 600 82 14,865

60 750 102.6 18,587

Table 4.2: Flow-through times (FTTs) and corresponding normalized time scales

4.2.1. Velocity Statistics
The convergence assessment was conducted by analysing first- and second-order statistics, utilizing spatial

and temporal averaging over multiple averaging periods, as shown in Table 4.2. This systematic approach

enables comprehensive characterization of the flow field evolution and ensures statistical reliability of the

results.
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Figure 4.5: Axial velocity (uz) plotted against y
+

for different averaging periods.

Figure 4.6: Kinectic Energy plotted against y+ for

different averaging periods.

Figure 4.5 presents the first-order statistics, precisely the mean axial flow velocity (Uz) normalized by

the mean shear velocity (uτ ). The profiles are plotted against wall distance (y
+) for various averaging

periods, demonstrating excellent agreement with established near-wall, log-law, and outer region velocity

distributions. The L2 norm error remained below 0.1% across all averaging periods, indicating robust

convergence of first-order statistics.

Figure 4.6 illustrates the second-order statistics, characterized by the kinetic energy (k) normalized by the
square of the shear velocity (u2

τ ), plotted against wall distance (y
+). As anticipated, second-order statistics

exhibit longer convergence times compared to first-order quantities. Nevertheless, the L2 norm error

remained below 1% across all flow-through times, demonstrating satisfactory convergence. Additional

convergence analyses, including temperature statistics, are presented in Appendix A (Figures 1, 2, and 3).

4.3. Validation
The preceding analyses have established optimal parameters for the numerical simulation: a polynomial

order of N = 7 for adequate resolution of Kolmogorov microscales and averaging period of 60 FTTs

for statistical convergence of quasi-steady state. The present section focuses on validation against the

established DNS database by El Khoury [37] for pipe flow at Reb = 5300.

4.3.1. Velocity Statistics
Figures 4.7 and 4.8 present the first-order and second-order statistics at an averaging period of 60 FTT

compared with reference data. The results demonstrate exceptional agreement, exhibiting L2 norm errors

of less than 0.15% and 0.5% for first-order and second-order statistics, respectively.

Figure 4.9 presents the Turbulent kinetic energy (TKE) budget terms, encompassing production, dissipation,

convection, and turbulent diffusion, evaluated at an averaging period of 60 FTTs across the wall-normal

direction (y+). Reference data is represented by dotted lines using consistent colour coding. The excellent
agreement between computed and reference profiles provides comprehensive validation of statistical

convergence and the numerical methodology employed.
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Figure 4.7: Axial velocity (uz) plotted against y
+

for last averaging periods compared to reference

[37].

Figure 4.8: Kinectic Energy plotted against y+ for

last averaging periods compared to reference [37].

Figure 4.9: Turbulent Kinetic Energy (TKE) Budget terms at an averaging period of 60 FTTs plotted

against wall distance (y+) compared to the reference [37].

4.3.2. Temperature Statistics
Herein, a comprehensive methodology was employed to analyze the heat transfer characteristics through

examination of first and second-order scalar temperature statistics. This analysis encompasses mean

temperature, root-mean-square (RMS) temperature, and streamwise turbulent heat flux (THF).

The friction temperature, Tτ , is a characteristic temperature scale frequently employed in the study of

wall-bounded turbulent flows, particularly in thermal and fluid dynamics analyses. It is defined in terms of
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the wall heat flux (qw), the fluid density (ρ = 1), the specific heat at constant pressure (cp), and the friction
velocity (uτ ), as follows:

Tτ =
qw

ρcpuτ

Where:

• qw: Wall heat flux

• ρ: Fluid density

• cp: Specific heat at constant pressure

• uτ =
√

τw
ρ : Friction velocity, where τw is the wall shear stress

In turbulent flow studies, Tτ provides a normalization scale for temperature differences, analogous to the role

of uτ in velocity normalization. Its usage simplifies the analysis of temperature fields in turbulent systems

by scaling temperature variations relative to the flow’s inherent thermal and dynamic characteristics.

In wall-bounded flows, such as pipe flows or channel flows, the mean temperature is normalized using the

”excess temperature” and analyzed as a function of the wall-normal distance in wall units (y+ = yuτ

ν ).

The excess temperature is defined as:

θ =
T − Tw

Tτ

Where:

• T : Local fluid temperature

• Tw: Wall temperature

• Tτ : Friction temperature

Excess temperature provides a universal framework to compare thermal behavior across different flow con-

ditions (e.g., Reynolds number, Prandtl number). Normalizing temperature by Tτ removes dependencies

on specific heat flux or material properties, enabling direct comparisons of thermal profiles.

Figures 4.10 and 4.11 depict the excess temperature (θ), normalized with friction temperature (Tτ ), plotted

against wall distance (y+) for the final averaging period. Figure 4.10 illustrates the temperature distribution
at Prandtl number (Pr) = 0.025, characterized by two boundary conditions: a Dirichlet condition (θ1)
prescribing constant wall temperature and a Neumann condition (θ3) enforcing constant wall heat flux.

For Pr = 0.025, representative of liquid metals, thermal diffusivity significantly exceeds momentum diffusivity.

This enhanced thermal transport manifests as reduced temperature gradients, with a distinctive minimum

observed at the pipe’s centerline. The superimposition of both boundary conditions reveals no discernible

effect on first-order temperature statistics.
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Figure 4.10: Excess temperature (mean

temperature) distribution for Pr = 0.025 at 60 FTT,

plotted against wall distance (y+).

Figure 4.11: Excess temperature (mean

temperature) distribution for Pr = 1 at 60 FTT,

plotted against wall distance (y+).

Figure 4.11 presents the excess temperature distribution for Pr = 1, demonstrating a temperature profile

that closely tracks the axial velocity trend. This observation underscores the intrinsic coupling between

thermal transport and fluid dynamics. Again, the superimposition of boundary conditions indicates no

significant variation in first-order temperature statistics across different thermal boundary conditions for

both Prandlt numbers.

The temperature fluctuations (Trms), normalized with frictional temperature, are illustrated in Figures 4.12

and 4.13. These plots provide insights into thermal turbulence characteristics, with larger rms indicating

regions of heightened thermal fluctuations.

Figure 4.12: Temperature fluctuations for Pr =

0.025 at 60 FTT, plotted against wall distance (y+).
Figure 4.13: Temperature fluctuations for Pr = 1 at

60 FTT, plotted against wall distance (y+).

For Pr = 0.025, the Dirichlet condition enforces zero temperature fluctuations at the wall. The maximum

Trms occurs near regions with the highest gradients of mean temperature – at y
+ ∼ 60 for Pr = 0.025 and

y+ ∼ 15 for Pr = 1. A gradual decrease towards the pipe centerline indicates minimal turbulence at the

bulk.

An analogous observation is made for Pr = 1, where thermal diffusivity closely matches turbulence diffusivity,

resulting in a trend similar to second-order velocity statistics.
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Figures 4.14 and 4.15 present the streamwise turbulent heat Flux (w′T ′), normalized by bulk velocity (ub)

and temperature (Tb). For Pr = 0.025, near the walls with the no-slip boundary condition (w
′ = 0), 〈w′T ′〉

naturally begins at zero, which is also observed for Pr = 1. As the distance from the wall increases, w′ and

T ′ interact more strongly, generating negative peak values.

Figure 4.14: Streamwise turbulent heat flux (w’T’)

at 60 FTT plotted against wall distance (y+).
Figure 4.15: Streamwise turbulent heat flux (w’T’)

at 60 FTT plotted against wall distance (y+).

In the Neumann condition, the strong interaction of flow turbulence and thermal diffusion is evident. After the

peak, the gradual decrease follows two distinct gradients, implying separate interactions of flow turbulence

and thermal turbulence. The shifted peak and greater negative magnitude for the Neumann condition

indicate suppressed heat flux where turbulent mixing is relatively low compared to the Dirichlet condition.

For Pr = 1, the trend closely follows velocity statistics due to equivalent thermal and momentum diffusivities.

The Dirichlet condition demonstrates marginally enhanced thermal mixing.

Detailed temperature heat flux (THF) budget plots, including production, dissipation, convection, and

turbulent diffusion terms, are provided in the Appendix (Figures A.1 -A.4) for comprehensive reference.

These figures represent the final averaging period across the wall distance (y+). While direct external

validation is limited, the presented analysis draws confidence from the convergence of flow characteristics

and the well-established interdependence between flow and heat transfer phenomena, suggesting statistical

convergence of the scalar quantities.

4.3.3. Nusselt Number Analysis
The Nusselt number (Nu) quantifies heat transfer enhancement through convection, serving as a critical
dimensionless parameter in thermal-hydraulic analysis. This section investigates Nusselt number char-

acteristics for pipe flow, exploring interactions between fluid properties, boundary conditions, and heat

transfer mechanisms. By examining Nusselt numbers across different Prandtl numbers, we aim to unravel

fundamental heat transfer principles in pipe geometries, with emphasis on nuclear reactor thermal systems.

The key observations from the presented in Figure 4.16 are:

1. For the low Prandtl number (Pr = 0.025) fluid, representative of liquid metal coolants, the Nusselt

numbers for both isothermal and isoflux boundary conditions lie significantly below the Dittus-Boelter

and Gnielinski (generally used for higher Prandtl number) correlation, suggesting this widely used

correlation may overestimate the heat transfer performance in such scenarios.

2. The thermal boundary condition (isothermal vs. isoflux) has a negligible impact on the Nusselt

number for both Pr = 0.025 and Pr = 1 fluids, indicating that the heat transfer characteristics are

primarily governed by the fluid properties and flow conditions.

3. The Nusselt numbers for the Pr = 1 fluid, corresponding to water at PWR conditions, closely follow

the Dittus-Boelter Correlation, validating its applicability for near-unity Prandtl number coolants.
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These observations highlight the importance of developing more accurate heat transfer models, particularly

for low Prandtl number fluids, to ensure the reliable thermal-hydraulic design of PWR fuel assemblies. The

insights gained from the pipe configuration presented here will be compared to the behaviour in a typical

PWR subchannel geometry, providing a comprehensive understanding of the heat transfer characteristics

in nuclear reactor systems.

Figure 4.16: Nusselt number as a function of Reynolds number. Dotted markers represent Pr = 0.025,
while hollow markers represent Pr = 1. Red indicates the isothermal condition, and green indicates the

isoflux condition.



5
Subchannel

This chapter presents a rigorous analysis of subchannel flow simulations, focusing on convergence studies

for square and 2x2 subchannel geometries. A comparative examination of these configurations will

elucidate their distinct flow characteristics. The investigation encompasses:

• Computational setup for subchannel flow simulations

• Convergence analysis for square and 2x2 subchannel geometries

• Comparative assessment of flow dynamics between configurations

• Exploration of novel physical phenomena in subchannel flows

• Evaluation of computational challenges and their mitigation strategies

Through this analysis, we aim to advance the understanding of subchannel flow dynamics and refine

computational methods for nuclear thermal-hydraulics simulations.

5.1. Flow and Heat Transfer Statistics Approach
In pipe flows, flow statistics are typically analyzed along the radius from the wall to the centre. However,

the subchannel domain presents a more complex, non-axi-symmetric geometry. New approaches for

analyzing flow and heat transfer statistics must be adopted to address this. A key concept in this study is

the use of the ”unit cell” (see Fig. 5.1a), which represents the smallest repetitive element that captures

the essential flow and thermal characteristics of the subchannel. One can recreate the entire subchannel

domain by mirroring or repeating these unit cells. Conceptually, the square subchannel can be folded twice

across the x and y axes and further divided to isolate a single unit cell. Ideally, this unit cell accurately

represents the entire flow field in a converged solution.

Despite two decades of research, there is no universally established methodology for evaluating flow and

heat transfer statistics in subchannels. Researchers often adopt or modify existing techniques. This study

employs two methods: the commonly used ”Angle Method” and a novel ”Circumferential Method.” The

”Angle Method” averages statistics of the domain to a unit cell and extracts values along lines from the

centre of the rod to the domain wall at various angles, from 0° (representing flow at the gap) to 45° (closer

to the bulk flow).

36
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(a) Unit Cell (b) Angel Method (c) Cicrumferential Method

Figure 5.1: Unit cell and Statistical approaches for a Subchannel domain

The ”Circumferential Method” examines flow along key lines at the unit cell boundary. Line 1 runs along

the gap (analogous to the 0° line in the Angle Method), Line 2 traces the centerline from the gap to the

subchannel centre, and Line 3 runs from the subchannel centre to the rod wall (comparable to the 45°

line). These methods, named solely for reference in this thesis, provide the foundation for subsequent

result plots and are used to systematically assess flow and heat transfer characteristics in the subchannel

domain. It is also important to note that the direction of values along the line is crucial, especially for the

”Circumferential method”.

Figure 5.2: Distribution of cell size normalized by Kolmogorov length-scale (∆η ) for N = 5
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5.2. Resolution
In Figure 5.2, the Kolmogorov length-scales, extracted from the resolved turbulent kinetic energy dissipation

rate for a polynomial order 5 (N = 5), are depicted. The computational domain’s resolution conforms to

Pope’s fundamental criterion [28], which mandates that the grid spacing must be commensurate with the

local Kolmogorov length-scale (η) :

5.3. Square subchannel
As established in our geometric framework, the square subchannel configuration forms a fundamental unit

of analysis in nuclear reactor thermal hydraulics. This subsection focuses on the detailed examination of

flow characteristics within a single square subchannel, serving as a crucial baseline for understanding

more complex subchannel arrangements.

Our investigation begins with a rigorous convergence study of the single square subchannel model. This

study is essential for ensuring the numerical robustness and accuracy of the simulations, thereby validating

the reliability of our results. By systematically refining our computational parameters, we aim to establish a

solid foundation for characterizing the flow physics within this geometry.

The single square subchannel study encompasses several key aspects:

• First order and second order flow statistics

• Turbulent kinetic energy profiles

5.3.1. Convergence of statistical calculation
In alignment with the methodological approach employed in the pipe flow investigation, a comprehensive

convergence study has been undertaken to elucidate flow physics in this thermal-hydraulic study. This

section thoroughly examines first-order statistics, second-order moments and kinetic energy budget terms

across various averaging periods. Statistical convergence is established when the L2 norm error between

successive averaging intervals remains below a threshold of 2% across all measured statistics. The

present investigation utilizes fully resolved Direct Numerical Simulation (DNS) with polynomial order N = 5,

conducted at a bulk Reynolds number (Reb) of 5300. The temporal convergence study spans averaging
periods from 20 to 35 FTTs, as detailed in Table 5.1.

The temporal scales crucial for this analysis are defined through three fundamental normalizations:

t∗ =
tUb

Dh
(Normalized time scale) (5.1)

tτ =
tuτ

R
= t∗ · Reτ

Reb
(Eddy turnover time) (5.2)

t+ =
tu2

τ

ν
= t∗ · Re2τ

Reb
(Wall-scaled time) (5.3)

FTT t∗ tτ t+

20 960 72.2 26086

25 1200 90.3 32607

30 1440 108.3 39128

35 1680 126.4 45649

Table 5.1: Flow-through times (FTTs) and corresponding normalized time scales

Velocity Statistics

Figure 5.6 illustrates the first-order statistics, precisely the mean axial flow velocity (Uz) normalized by

friction velocity (uτ ). The axial velocity assessment employed the circumferential method, extracting values
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from the subchannel gap through the centerline to the flow centre and back to the rod at a 45-degree angle.

In this square subchannel configuration, the analysis traverses the shortest gap, along the boundary, and

diagonally towards the rod centre; these trajectories are designated as sections 1-2-3 to avoid nomenclature

ambiguity in the subsequent plots. This path is characterized by a novel distance term ξ, normalized with
respect to the Hydraulic diameter (Dh).

Figure 5.3 demonstrates that the velocity magnitude reaches its minimum proximate to the wall due to

surface friction, as evidenced in sections one and three. Section two exhibits quasi-uniform behaviour,

which is characteristic of bulk flow. The first-order statistics demonstrate robust convergence prior to the

averaging period of 35FTTs, as evidenced by the superposition of temporal data, yielding a relative L2

norm error below 0.03%.

Figure 5.4 delineates the second-order flow statistics, specifically three velocity fluctuation components—urms,

vrms, and wrms—normalized by friction velocity (uτ ). These statistics were analyzed utilizing the afore-

mentioned circumferential methodology. Distinct averaging periods are differentiated through varying line

styles, in contrast to the colour-based representation employed in Figure 5.6. As anticipated, second-order

statistics exhibit extended convergence periods, particularly evident in the W+
rms term. All three velocity

components converged at 35 FTTs, maintaining an L2 norm below 0.6% relative error. The dual peaks

observed in w+
rms within sections 1 and 3 are attributed to near-wall turbulence production. The disparity

between u+
rms and v+rms in section 1 primarily stems from the gap distance constraining v+rms fluctuations,

while u+
rms experiences comparatively greater spatial freedom. Supplementary verification of second-order

statistics is provided in Appendix A (Figures 1, 2, and 3).

Figure 5.3: Axial velocity (uz) plotted using the

circumferential method for different averaging

periods

Figure 5.4: Velocity fluctuations along 3 axes

plotted using the circumferential method for

different averaging periods

Figure 5.5 presents the TKE budget terms, analyzed via the circumferential method. The analysis focuses

exclusively on production and dissipation terms to examine convergence characteristics. Both parameters

converged at an averaging period of 35FTT, exhibiting an L2 norm below 0.4% relative error. The

aforementioned dual production term peaks manifest in sections 1 and 3, accompanied by corresponding

dissipation patterns representing the decay of turbulent energy into viscous heat energy near the wall.

Despite the generally satisfactory results, section 2 of the dissipation terms exhibits minor anomalous

troughs. These artifacts are attributed to mesh imprints, which are anomalies present in Nek5000-SEM

discretisation. Given that these perturbations are minimal and the resolution satisfies Kolmogorov length

scale criteria, they do not significantly impact subsequent analyses, presenting merely as a minor data

quality consideration.
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Figure 5.5: Turbulent Kinetic Energy (TKE) Budget terms plotted using the circumferential method for

different averaging periods

Table 5.4 summarises the quantitative convergence metrics.

First Order Second Order TKE budget terms

<0.03% <0.6% <0.4%

Table 5.2: Relative L2 norm error analysis at 35FTT

5.4. 2x2 subchannel
Building upon the convergence study of the single square subchannel, this section focuses on the detailed

investigation of flow characteristics within the 2x2 subchannel configuration. The key aspects examined

include:

• First and second-order flow statistics

• Turbulent kinetic energy profiles

The study begins with a rigorous convergence analysis to ensure the numerical robustness and accuracy

of the simulations, establishing a reliable foundation for the flow physics characterization.

5.4.1. Convergence of Statistical Calculations
The study presented here employs identical quantities and approaches in alignment with the methodology

applied in the square subchannel case. The 2x2 subchannel configuration effectively represents a

composite of four single subchannels, thereby maintaining geometric equivalence to the single square

subchannel case but on an extended mesh and spatial scale. Given this scalability, characteristic times are

expected to scale proportionally with the cross-sectional area or volume ratios, leading us to anticipate a

converged solution around 9FTT—given the established convergence at 35FTT for the square subchannel.

It is crucial to acknowledge that this estimate serves as an initial guideline for convergence in flow and heat

transfer statistics. The scalability assumption inherently introduces approximation, with convergence rates
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potentially impacted by subtle differences in boundary and initial conditions. The study spans averaging

periods of 5, 7, 9, and 10 FTTs, represented in normalised time, eddy turnover time and wall-scaled units

as documented in Table 5.3. Simulations were executed using fully resolved direct Numerical Simulation

(DNS) at a polynomial order of 5 (N = 5). The Bulk Reynolds (Rb) was 5300.

FTT t∗ tτ t+

5 240 18.0 6522

7 336 25.3 9131

9 432 32.5 11739

10 480 36.1 13044

Table 5.3: Flow-through times (FTTs) and corresponding normalized time scales

Velocity Statistics

Consistent with the observations in the square subchannel, Figure 5.6 illustrates the mean axial velocity (Uz)

normalized by the friction velocity (uτ ) and plotted using circumferential method across various averaging

periods of (5, 7, 9, and 10 FTTs). The results reveal a convergence as early as 5FTT, where all plotted

lines exhibit superposition, indicating a solution convergence with an L2 norm relative error under 0.02%.

This demonstrates that the fundamental flow physics observed in the square subchannel is transferable to

the 2x2 subchannel for first-order statistics.

Figure 5.7 presents the normalised circumferential plots of the three velocity fluctuations components. The

superposition of these curves—including the wrms component—illustrates consistency with the square

subchannel data, likely due to the scaling effects on averaging. In the 2x2 subchannel, statistics are

effectively averaged fourfold over the square subchannel, enhancing the stability of convergence metrics.

This is corroborated by the L2 norm error for second-order statistics, converging at 10FTT with a relative

error below 0.06%—ten times lower than in the square subchannel scenario. Again, the dominant flow

characteristics and symmetry observed in the square subchannel hold true in this expanded configuration.

Figure 5.6: Axial velocity (uz) plotted using the

circumferential method for different FTT values.

Figure 5.7: Velocity fluctuations along three axes

using the circumferential method for different FTT

values.

Figure 5.8 illustrates the Turbulent kinetic energy (TKE) budget terms (production and dissipation) as

plotted via the circumferential method. Both terms achieve convergence at 10 FTTs, aligning with the

findings of the second-order statistics, and display an L2 norm relative error below 0.12%. The dominant

flow characteristics and the residual mesh effects observed in the square subchannel remain applicable.
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Figure 5.8: Turbulent Kinetic Energy (TKE) budget terms at 10 FTT using the circumferential method

A summary of the convergence metrics is provided in Table 5.4.

First Order Second Order TKE budget terms

<0.02% <0.06% <0.12%

Table 5.4: Relative L2 norm error analysis at 10 FTT
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5.5. Comparison between Square and 2x2 Subchannel
This section presents a comparative study between the square subchannel and 2x2 subchannel cases

to validate the underlying assumption that a single subchannel can faithfully represent the flow field in a

bundle rod arrangement. This analysis will employ advanced statistical techniques, such as autocorrelation,

to identify and understand flow trends and statistics covered in the preceding convergence study.

5.5.1. Higher order statistics
This section presents a comprehensive analysis of higher-order statistics to elucidate the distinctions in flow

physics and thermal characteristics between square subchannel and 2×2 subchannel configurations. The

statistical analysis predominantly employs the circumferential method to facilitate systematic comparison

between both cases. Based on the convergence analysis, it has been established that averaging periods

of 35FTT and 10FTT achieved converged solutions for square and 2×2 subchannels, respectively, as

evidenced by the TKE budget terms and higher-order velocity statistics. Subsequently, these respective

averaging periods serve as the basis for comparative analysis.

Velocity Statistics

Figure 6.3 illustrates the first-order statistics, precisely the axial flow velocity (uz) normalized by shear

velocity (uτ ) for the last averaging periods of each configuration. The superimposed plots demonstrate

remarkable consistency in mean flow velocity profiles across the unit cell boundary. A marginal deviation

is observed in the central gap region, where the 2×2 subchannel exhibits a slightly diminished magnitude

compared to the square subchannel configuration. However, this discrepancy may be attributed to the

averaging methodology employed in the 2×2 subchannel analysis.

Figure 5.10 presents the angular distribution of wall shear stress (τw) from 0°− 45°. The study reveals
peak τw at 20° and minimum at 45°, contrasting with conventional pipe flow theory, which predicts maxima

at 45° (bulk flow proximity) and minima at 0° (gap region). This deviation can be attributed to the complex
interplay between secondary flow phenomena (detailed in Section 1.5.1) and gap vortex street.

Ninokanta’s [38] DNS investigation of staggered pin arrangements (P/D = 1.2) at Re = 9,120 and 24,300,

validated against experimental data, provides crucial insights. The higher Reynolds number case exhibits

a more uniform distribution, characterized by enhanced wall-to-bulk pressure gradients along the 45°
line. This intensified pressure gradient induces more substantial secondary flows (∼ 1− 2% of bulk flow),

which is counterbalanced by wall friction dissipation. At elevated Reynolds numbers, the mechanism

manifests through increased wall adherence and stretched secondary flow vortices, evidenced by enhanced

wall shear stress at lower angles and reduced values at higher angles where pressure gradients induce

bulk-ward flow migration.

The observed flattening effect correlates with intensified secondary flows, promoting enhanced eddy

transport between open and narrow gap regions with increasing Rebulk [38]. The subchannel geometry

significantly modulates this behaviour; increased P/D ratios favour vortex relaxation over stretching

at equivalent Reynolds numbers. While theoretical considerations suggest identical wall shear stress

distributions for 2×2 and square subchannel configurations, observed disparities may stem from variations

in gap street vortex capture capabilities, particularly regarding the rod bundle vortex network. However,

definitive conclusions are constrained by the absence of comparable geometric studies and experimental

validation data.
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Figure 5.9: Axial velocity (uz) comparison

between configurations, plotted using the

circumferential method at converged FTT.

Figure 5.10: Wall shear stress (τw) distribution
comparison, plotted using the angle method at

converged FTT.

Figures 5.11 and 5.12 present a comparison of second-order statistics, explicitly examining the Normal

stresses and Reynolds stresses for both square and 2×2 subchannel configurations. The study is conducted

along each case’s unit cell boundary at the last averaging periods, with dashed and solid lines representing

the square and 2×2 subchannel configurations, respectively.

The normal stress distributions (Figure 5.11) reveals notable characteristics. The components of the

〈u′u′〉 and 〈v′v′〉 demonstrate remarkable congruence between configurations, exhibiting virtually identical
profiles. However, the 〈w′w′〉 component displays subtle variations across the unit cell boundary. While

these variations appear systematic, their magnitude is likely attributable to the averaging methodology

employed in the 2×2 subchannel analysis rather than representing physically significant differences. A

particularly noteworthy observation is the diminished rms peaks in the 〈w′w′〉 component for the 2×2

subchannel configuration relative to its square subchannel counterpart.

The Reynolds stress distributions (Figure 5.12) exhibit more pronounced disparities, particularly evident

in section 3 (along the 45° line) of the plot, for the 〈u′w′〉 and 〈u′v′〉 components. The 2×2 subchannel
configuration demonstrates significantly attenuated peak magnitudes compared to the square subchannel.

This disparity may be attributed to limitations in capturing the rod bundle vortex network within the square

subchannel configuration, potentially resulting in an overestimation of Reynolds stress components.

Figure 5.11: Normal stress distributions as a

function of wall distance (y+) at converged FTT for

both configurations.

Figure 5.12: Reynolds stress distributions as a

function of wall distance (y+) at converged FTT for

both configurations.
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The Turbulent kinetic energy (TKE) budget analysis, presented in Figure 5.13, demonstrates remarkable

consistency between the square and 2×2 subchannel configurations. The profiles exhibit near-perfect

superposition, with only minor deviations that fall within the uncertainty bounds attributable to the aforemen-

tioned averaging methodology. This convergence in TKE distributions suggests fundamental similarities in

the energetic characteristics of turbulent structures between the two configurations despite the geometric

differences in their respective domains.

Figure 5.13: Turbulent Kinetic Energy (TKE) budget distributions as a function of wall distance (y+) at
converged FTT for both configurations.

Temperature Statistics

Figures 5.14 and 5.15 present the first-order temperature statistics, where scalar excess temperatures

(θ) are normalized by friction temperature (Tτ ) for the final averaging period of each configuration. The

analysis considers two distinct boundary conditions at different Prandtl numbers.

Figure 5.14 illustrates the temperature distribution at Pr = 0.025 under two boundary conditions: a Dirichlet

condition (θ1) prescribing constant wall temperature, and a Neumann condition (θ3) enforcing constant
heat flux. For the Dirichlet condition, the heated rod maintains a constant temperature (T = Tw), resulting

in zero excess temperature (θ = 0) at the boundaries. The Neumann condition, conversely, constrains the
temperature gradient (∂θ/∂y) rather than the absolute temperature values. For Pr = 0.025, the characteristic

of liquid metals is that thermal diffusivity significantly exceeds momentum diffusivity. This enhanced

thermal transport leads to efficient heat distribution across the domain, manifesting as reduced temperature

gradients and a distinct minimum at the subchannel centre.

Figure 5.15 presents the excess temperature distribution along the unit cell boundary at Pr = 1, comparing

Dirichlet (θ2) and Neumann (θ4) conditions. The temperature profile under the Dirichlet condition closely
follows the axial velocity trend, demonstrating a strong coupling between thermal transport and fluid

motion. The temperature variation exhibits pronounced peaks and troughs, correlating with velocity-

induced convective cooling effects. Near the isothermal boundaries, where θ = 0, the profile shows

characteristic conduction-dominated behaviour transitioning to convection-dominated transport in the bulk

flow.
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The first-order temperature statistics exhibit nearly identical profiles when comparing the 2×2 and square

subchannel configurations. The overlapping temperature distributions suggest that the basic thermal

transport mechanisms remain unaffected.

Figure 5.14: Mean temperature distribution for Pr

= 0.025.

Figure 5.15: Mean temperature distribution for Pr

= 1.

In Figure 5.16 and 5.17, Temperature fluctuations (Trms), normalised with frictional temperature (Tτ ), were

plotted across the boundary of the unit cell. Trms is the root mean square of temperature fluctuations in the

domain. It quantifies the magnitude of deviations of local temperature from its mean value. Trms gives a

measure of the thermal turbulence or intensity of temperature fluctuations caused by fluid flow (convection)

and heat transfer interactions. Larger Trms indicates regions with high thermal turbulence, while smaller

Trms corresponds to smoother, more uniform temperature distributions.

In figure 5.16 both lines,T1,rms representing Isothermal and T3,rms representing isoflux exhibit oscillatory

behaviour with hills (peaks) and valleys (troughs) in the subchannel domain. The hills (peaks) represent

regions of enhanced thermal turbulence, while the valleys (troughs) indicate dampened fluctuations. For

Pr=0.025, thermal diffusivity is much higher than momentum diffusivity (α � ν); this allows heat to

diffuse faster across the domain, reducing the sharpness of temperature gradients and smoothing out

the fluctuations. However, in regions of strong convective flow (from subchannel gap to bulk), turbulence

increases, amplifying the temperature fluctuations and forming the hills. Turbulence (wrms) is the lowest

at the centre of the subchannel, which is reflected in Trms as the lowest (minima) point. For T1,rms, a

fixed temperature at the wall suppresses fluctuations at the boundaries, resulting in Trms = 0 there. For
T3,rms, fixed heat flux at the boundary, Trms does not vanish at the walls. The constant flux allows some

fluctuations to persist even near the walls, especially if the local velocity gradients drive turbulent behaviour.

High thermal diffusivity results in smoother Trms variations but retains oscillatory trends due to underlying

turbulence interaction.

From previous figures 5.15 for θ2 and θ4, it was evident that the temperature profile followed the velocity
distribution. Since Trms represents deviations from the mean temperature, the rms trend follows the spatial

variation in velocity fluctuations (wrms), which is evident in figure 5.17. The implication of different boundary

conditions applies here as well.

Statistical analysis of the second-order temperature reveals negligible variations between the 2×2 and

square subchannel configurations. The observed deviations fall within the bounds of statistical uncertainty.

Therefore, the second-order temperature statistics can be considered effectively equivalent for both

configurations within the present parameter space.
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Figure 5.16: Temperature fluctuations for

Pr = 0.025. Figure 5.17: Temperature fluctuations for Pr = 1.

Figures 5.18 and 5.19 present the streamwise turbulent heat flux (w′T ′), normalized by bulk velocity (ub)

and temperature (Tb). Streamwise THF (〈w′T ′〉) represents the turbulent heat flux in the axial direction. The
quantity captures the contribution of turbulent eddies to the convective transport of heat in the flow, where

positive or negative peaks of 〈w′T ′〉 indicate regions of enhanced or suppressed heat flux, respectively,
highlighting areas where turbulent mixing is most effective.

In Figure 5.18, Near the walls, where the no-slip boundary condition ensures w′ = 0, 〈w′T ′〉 naturally starts
at zero. However, as the distance from the wall increases, w′ and T ′ begin to interact strongly, leading to

negative peak values. These negative peaks correspond to regions of maximum production of turbulent

energy and heat transfer. Negative peaks in 〈w′T ′〉 often coincide with regions where wrms and Trms are

significant. At the subchannel centre, where turbulent thermal mixing is most effective, 〈w′T ′〉 tends to be
more relatively positive.

In Figure 5.19 for Pr = 1, the heat flux profile closely follows the wrms distribution, reflecting the equipartition

of momentum and thermal diffusivities. The nearly identical responses of T ′
2 and T

′
4 demonstrate comparable

behaviour between isothermal and isoflux conditions under matched diffusivity conditions. For Pr = 0.025,

thermal diffusion dominates momentum transport, resulting in attenuated coupling between velocity and

temperature fluctuations. This manifests as reduced w′T ′ magnitudes compared to the Pr = 1 case, evident

in the differing ranges between Figures 5.18 and 5.19.

Negligible variations between the 2×2 and square subchannel configurations. The observed deviations fall

within the bounds of statistical uncertainty.
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Figure 5.18: Turbulent heat flux for Pr = 0.025. Figure 5.19: Turbulent heat flux for Pr = 1.

Detailed temperature heat flux (THF) budget plots for the subchannel 2x2 and square subchannel configu-

rations, encompassing production, dissipation, convection, and turbulent diffusion terms, are presented in

the Appendix (Figures A.5-A.8). These comprehensive figures capture the final averaging period across

the boundary of the unit cell.

5.5.2. Autocorrelation
Autocorrelation quantifies the correlation between observations of a variable with either its spatially or

temporally shifted variant. In the temporal domain, it measures the similarity between time-series data

points separated by a specific time lag, while spatial autocorrelation evaluates the correlation between

observations at different spatial locations. More formally, it represents the statistical correlation between

the original signal and its delayed or displaced copy as a function of the lag (temporal) or displacement

(spatial) parameter.

For analyzing velocity fluctuations in a subchannel DNS simulation, the normalized two-point space-time

autocorrelation function can be expressed as:

R(r, τ) =
u′(x, t)u′(x+ r, t+ τ)

u′2
(5.4)

where:

• R represents the autocorrelation coefficient

• x is the reference position vector

• r is the spatial separation vector

• t is the reference time

• τ is the time lag

• u′ represents velocity fluctuation (either spanwise u′, wall-normal v′, or axial w′)

This formulation can be applied independently to the three velocity components to understand their distinct

correlation behaviours along the subchannel walls. For spatial analysis along the wall boundaries, the

correlation can be evaluated at different spatial separations while maintaining τ = 0:

R(r) =
u′(x, t)u′(x+ r, t)

u′2
(5.5)

Since a direct comparison is employed to assess the 2x2 subchannel and square subchannel, we will

focus our analysis on the spatial autocorrelation.
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Square Subchannel

For the square subchannel case, the boundary walls will be used for this assessment, where the vertical

boundary walls will be termed X-normal (Xn), and horizontal boundary walls will be called Y-normal (Yn).

Spatial autocorrelation is applied at the boundary of a two-dimensional slice in the x-y plane, either along

the y-axis for Xn or the x-axis for Yn. This process is carried out for multiple slices in the z-direction

with a slice interval of ∆rz, and the results are averaged in the z-direction to attain a spatially averaged
autocorrelation. This is then further averaged in time by reiterating the process for the last 10 timesteps

to produce a spatio-temporal averaged autocorrelation of the velocity fluctuations. Figure 5.20 & 5.21

presents the time-averaged autocorrelation of the x-velocity fluctuations (u′) plotted across the width/height

of the domain. The 10 semi-transparent grey lines represent the individual autocorrelation lines at different

timesteps, while the coloured line depicts the temporally averaged autocorrelation. Ideally, the first and

last points should be unity since the corner points in the domain are highly correlated due to the periodic

boundary conditions. Although slightly less than one, this slight deviation is likely due to the influence of

the near-wall turbulence structures.

Figure 5.20: Time-averaged autocorrelation of

x-velocity (u′) fluctuations in the X normal plane of

the square subchannel.

Figure 5.21: Time-averaged autocorrelation of

x-velocity (u′) fluctuations in the Y normal plane of

the square subchannel.

The same trend is observed for the y-velocity (v’) fluctuations in Figure 5.22 & 5.23, where the plots appear

interchanged. This is because the Xn u’ fluctuations represent the fluctuations normal to the boundary,

which is observed in the Yn v’ fluctuations, and vice versa.



5.5. Comparison between Square and 2x2 Subchannel 50

Figure 5.22: Time-averaged autocorrelation of

y-velocity (v′) fluctuations in the X normal plane of

the square subchannel.

Figure 5.23: Time-averaged autocorrelation of

y-velocity (v′) fluctuations in the Y normal plane of

the square subchannel.

Figure 5.24: Time-averaged autocorrelation of

z-velocity (w′) fluctuations in the X normal plane of

the square subchannel.

Figure 5.25: Time-averaged autocorrelation of

z-velocity (w′) fluctuations in the Y normal plane of

the square subchannel.

Figure 5.24 & 5.25, representing the w’ (axial) fluctuations in the Xn and Yn directions, exhibits a markedly

different trend compared to the spanwise and wall-normal components. The high correlation at the corner

points validates the accuracy of the boundary conditions, and the perfect overlap of the temporally averaged

autocorrelation for w’ fluctuations across both axes further confirms the consistency of the flow field.

Parameter Value

Number of divisions in X norm 200

Number of divisions in Y norm 200

Number of slices in Z direction 480

Timestep for square subchannel 0.4 FTT

Timestep for 2x2 subchannel 0.5 FTT

Table 5.5: Auto correlation parameters
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2x2 Subchannel

The same autocorrelation analysis approach is applied to the 2x2 subchannel case, but for a direct

comparison, only the centre section of the 2x2 subchannel is considered, which represents the square

subchannel case. The Xn is defined from the centre of one subchannel to the centre of the adjacent

subchannel in the vertical direction, and Yn is defined from the centre of one subchannel to the centre of

the adjacent subchannel along the y-axis.

Figure 5.26: Time-averaged autocorrelation of

x-velocity (u′) fluctuations in the X normal plane of

the 2x2 subchannel.

Figure 5.27: Time-averaged autocorrelation of

x-velocity (u′) fluctuations in the Y normal plane of

the 2x2 subchannel.

Figures 5.26 - 5.27 and 5.28 - 5.29 show the autocorrelation plots for u′ and v′ fluctuations, respectively,
along the Xn and Yn directions. The semi-transparent grey lines represent the individual timesteps, and

the coloured line depicts the time-averaged autocorrelation. In contrast to the square subchannel, where

the first and last points were close to unity, this is not the case for the 2x2 subchannel, signifying that the

interactions between subchannels play a significant role in the flow dynamics.

Figure 5.28: Time-averaged autocorrelation of

y-velocity (v′) fluctuations in the X normal plane of

the 2x2 subchannel.

Figure 5.29: Time-averaged autocorrelation of

y-velocity (v′) fluctuations in the Y normal plane of

the 2x2 subchannel.
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Figure 5.30: Time-averaged autocorrelation of

z-velocity (w′) fluctuations in the X normal plane of

the 2x2 subchannel.

Figure 5.31: Time-averaged autocorrelation of

z-velocity (w′) fluctuations in the Y normal plane of

the 2x2 subchannel.

The same observation holds true for the w’ (axial) fluctuations, as shown in Figure 5.30 - 5.31, where the

high correlation at the boundaries is no longer present.

When analyzing the 2X2 subchannel from the centre of one subchannel to the centre of the adjacent

subchannel, it did not exhibit the same high degree of correlation as the square subchannel case. This

observation suggests that although a single square subchannel is capable of capturing the gap street

vortex, it fails to account for the effects of the coupling between multiple gap street vortices originating

from the neighboring rods, a phenomenon referred to as the rod bundle vortex network. These large-scale

vortical structure interactions spanning multiple planes play a crucial role in shaping the flow field within a

rod bundle arrangement and enhancing the thermal-hydraulic properties, as evidenced by the temperature

statistics. This finding implies that the interplay between subchannels is of significant importance and

that a single subchannel domain may not adequately represent the true flow field characteristics of a rod

bundle configuration.



5.6. Conclusion 53

5.6. Conclusion
This section aims to summarize the key inferences and complete the investigation of the sub-research

question regarding which geometric representation most accurately captures the thermal-hydraulic proper-

ties of a rod bundle arrangement. The analysis indicates that the 2X2 subchannel configuration appears

to better represent the rod bundle arrangement when compared to the square subchannel approach.

This conclusion is drawn from the examination of the autocorrelation plots of velocity fluctuations, which

reveal that in the 2X2 subchannel case, the centres of two adjacent subchannel domains exhibit negligible

correlation, suggesting the presence of inter-subchannel interactions that are not captured within a single

subchannel domain. The rod bundle vortex network plays a crucial role in the eddy-driven transport of

thermal momentum, effectively enhancing the overall thermal mixing within the system.

These statements are corroborated by the previously presented comparisons of velocity and temperature

statistics between the 2X2 subchannel and square subchannel configurations. The observed differences

in the Reynolds stress tensor between the two geometries serve as evidence of the contrasting flow

physics. However, these distinctions are not reflected in the Turbulent kinetic energy (TKE) budget terms,

as they can be considered the cumulative effect of the normal stress components. The key differences are

manifested in the covariance of the u and v velocity components. Notably, no significant disparities were
detected in the first-order mean statistics for both velocity and temperature.

Having answered the sub-research question by establishing the 2X2 subchannel as the more representative

geometry for capturing the thermal-hydraulic characteristics of a rod bundle arrangement, this configuration

will be employed in the next phase of the study. The aim is to understand the differences in heat transfer

and flow characteristics between the 2X2 subchannel and the conventional pipe configuration. This

investigation will shed light on the adequacy of the existing design methodologies adopted for Pressurized

Water Reactors (PWRs) and will potentially necessitate the development of novel Nusselt number (Nu)

correlations specific to rod bundle geometries, as opposed to relying solely on the pipe-based correlations.



6
Comparative Study

This chapter presents a comprehensive comparative analysis of flow and thermal characteristics between

conventional pipe and 2×2 subchannel configurations, critical for understanding thermal-hydraulic perfor-

mance in nuclear reactor systems. The investigation encompasses a multifaceted examination of these

geometries to elucidate their distinctive flow physics and heat transfer mechanisms.

The study focuses on a rigorous comparative framework that includes:

• Detailed velocity statistics and turbulent kinetic energy analysis

• Comprehensive temperature statistics and thermal transport characteristics

• Qualitative visualization of velocity vectors and temperature interactions

• Nusselt number correlation studies for varying Prandtl number regimes

• Exploration of geometric influences on heat transfer efficiency and flow dynamics

By conducting an in-depth comparative study across multiple analytical dimensions, this research aims

to advance the understanding of thermal-hydraulic performance in different geometrical domains, with

particular relevance to Pressurized Water Reactor (PWR) thermal systems design and optimization.

6.1. Comparison Approach
Since the geometry of the pipe and 2×2 subchannel configurations are evidently different, direct comparison

of the statistics poses significant challenges. To address this, a novel approach is introduced, as no prior

research has tackled this specific comparison methodology.

For the pipe, statistics are extracted from temporally and spatially averaged values along the radial direction

(R), as shown in Figure 6.1. For the 2×2 subchannel configuration, the statistics are extracted along the
largest wall-normal distance, denoted as L3, which passes through the bulk center. This distance also

corresponds to the 45◦ line or one of the unit cell boundaries, as explained in previous sections. The

comparative framework ensures a consistent basis for evaluating geometric influences on flow and heat

transfer characteristics.

6.2. Higher Order Statistics
This section presents a comprehensive analysis of higher-order statistics to elucidate the distinctions in

flow physics and thermal characteristics between the pipe and 2×2 subchannel configurations. The Nusselt

number (Nu) correlation critically motivates the investigation, which plays a pivotal role in designing and
optimizing PressurizedWater Reactor (PWR) thermal systems. Understanding the nuanced differences and

similarities in velocity and temperature statistics becomes essential for comprehensive thermal-hydraulic

modelling.

Both configurations were scaled to their respective characteristic lengths: the pipe case was normalized

by radial distance (r/R), while the 2×2 subchannel configuration was scaled along the shortest distance
from rod to bulk (along the 45◦ line) by the total length (d/L3). This normalization ensures a comparative

framework that accounts for geometric variations.

54
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Figure 6.1: Radial distance (R) in the pipe
configuration

Figure 6.2: Wall-Normal Distance (L3) in the

single subchannel configuration

6.2.1. Velocity Statistics
Figure 6.3 presents a comparative analysis of normalized axial velocity (U+

z ) between pipe and 2×2

subchannel configurations. The velocity profile reveals subtle yet significant geometric influences. Notably,

the subchannel 2×2 configuration demonstrates slightly reduced velocities compared to the pipe case.

This variation can be attributed to complex flow characteristics inherent in subchannel domains, including

secondary flows and intricate rod bundle network vortices discussed in previous investigations.

Figure 6.3: Normalized Axial Velocity Distribution

Comparing Pipe and 2×2 Subchannel Flow

Configurations

Figure 6.4: Turbulent Kinetic Energy Profiles

Revealing Geometric Flow Variations

The turbulent kinetic energy (k+), normalized by friction velocity (uτ ), reveals profound insights into the flow

dynamics. In the subchannel 2×2 configuration, the kinetic energy peak exhibits distinctive characteristics:

it shifts slightly away from the wall and demonstrates a marginally reduced intensity. This spatial shift

indicates a modified turbulent energy production mechanism compared to the pipe configuration.

The pipe geometry, characterized by a more uniform boundary condition along its circular cross-section,

promotes a consistent shear layer near the wall. Consequently, this results in higher turbulence production

in the near-wall region, explaining the peak’s proximity to the wall. The subchannel geometry, by contrast,

experiences complex interactions such as gap street vortices and secondary flows that redistribute turbulent

energy.

An intriguing observation is the slope of the k+ curve post-peak. The subchannel configuration demonstrates
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a steeper kinetic energy decay than the pipe. Despite these local variations, both configurations converge

towards similar k+ values in the central (bulk) region, indicating that core flow dynamics are predominantly

governed by lower-intensity, quasi-isotropic turbulence.

Figure 6.5: Comprehensive Turbulent Kinetic Energy Budget Analysis

Figure 6.5 provides a detailed examination of the Turbulent kinetic energy (TKE) budget terms, including

production (P+
k ), dissipation (ε

+
k ), convective term (C+

k ), and diffusion terms (T
+
k )—comprising pressure,

viscous, and turbulent contributions.

For the subchannel 2×2 configuration, the production trend mirrors observations from previous kinetic

energy analysis. The dissipation characteristics are particularly noteworthy: relatively lower in magnitude

and positioned further from the wall compared to the pipe case. While the diffusion terms demonstrate

similar peak values, their spatial distribution reveals subtle geometric influences.

6.2.2. Temperature Statistics
The first-order temperature statistics, represented in Figures 6.6 and 6.7, provide insights into mean

thermal transport for Prandtl numbers (Pr) of 0.025 and 1.0, examining both isothermal (θ1) and isoflux
(θ3) boundary conditions.

For Pr = 0.025, the temperature gradient exhibits a more relaxed profile, suggesting enhanced thermal
mixing. This enhanced thermal transport could be attributed to the improved flow characteristics observed in

velocity statistics. The isothermal condition (θ1) demonstrates a particularly smooth temperature distribution,
indicating efficient heat transfer mechanisms.
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Figure 6.6: Mean Temperature Distribution for

Low Prandtl Number Isothermal Condition

Figure 6.7: Mean Temperature Distribution for

Unity Prandtl Number

For Pr = 1.0, the temperature statistics closely mirror the velocity profile characteristics. Notably, the
subchannel 2×2 configuration exhibits lower excess temperature values compared to the pipe configuration

for both rod wall boundary conditions. This observation implies enhanced thermal transport efficiency,

even under conditions of matched momentum and thermal diffusivities.

The temperature fluctuation analysis, illustrated in Figures 6.8 and 6.9, reveals nuanced thermal mixing

behaviors. For Pr = 0.025, the subchannel 2×2 configuration’s T1,rms (representing the Dirichlet condition)

demonstrates a smaller peak compared to the pipe case, corresponding to smoother and more uniform

temperature distributions.

Figure 6.8: Temperature Fluctuation Intensity for

Low Prandtl Number

Figure 6.9: Temperature Fluctuation Intensity for

Unity Prandtl Number

For Pr = 1.0, the temperature fluctuation trends closely follow the second-order velocity statistics. Although

the peaks are slightly elevated compared to the pipe configuration, this indicates heightened thermal

turbulence characteristic of the subchannel geometry.

The streamwise turbulent heat flux ([w′T ′]) comparison between pipe and subchannel 2×2 configurations,

presented in Figures 6.10 and 6.11, further illuminates thermal transport mechanisms.
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Figure 6.10: Streamwise Turbulent Heat Flux for

Low Prandtl Number

Figure 6.11: Streamwise Turbulent Heat Flux for

Unity Prandtl Number

For Pr = 0.025, the Dirichlet condition (w′T ′
1) reveals negligible differences between pipe and subchannel

configurations. Conversely, the isoflux condition (w′T ′
3) demonstrates enhanced turbulent energy production

and heat transfer relative to the pipe configuration.

For Pr = 1.0, the trends closely align with velocity statistics. The subchannel 2×2 configuration exhibits
a more pronounced negative peak, signifying increased turbulent thermal mixing compared to the pipe

configuration.

Detailed termperature heat flux (THF) budget plots comparing pipe and 2x2 subchannel configurations,

encompassing production, dissipation, convection, and turbulent diffusion terms, are presented in the

Appendix (Figures A.9-A.12). These comprehensive figures enable a comparative analysis of thermal

transport mechanisms between the two geometrical configurations.

6.3. Velocity vectors coloured by temperature
This section delves into the velocity vector representation of the pipe and 2x2 subchannel configuration.

Understanding the qualitative behaviour of such turbulent structures and their role in heat transport is

critical for designing and optimizing thermal systems; the statistics explored in earlier sections combined

with the velocity vector aid in visualising the effects of thermal transport of momentum and heat from the

boundary wall to the bulk flow.
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Figure 6.12: Instantaneous velocity vectors in pipe flow colored by temperature, illustrating turbulent heat

transport.

Figure 6.12 showcases the represent the instantaneous velocity vectors, indicating both the direction

and magnitude of the fluid’s motion. The distribution of velocity vectors shows complex flow structures,

including localized swirls and vortices, which are characteristic of turbulent flows in pipes. The colour of

the vectors corresponds to the fluid temperature, transitioning from warmer tones (red/yellow) near the

pipe walls to cooler tones (blue/green) towards the core of the pipe. The isothermal boundary condition

ensures that the temperature at the wall is held constant, leading to the development of a steep thermal

gradient in the near-wall region.

The swirling structures (vortices) visible in the plot illustrate how turbulent eddies act as a transport

mechanism for heat. These vortices carry higher-temperature fluid near the walls into the bulk region,

facilitating convective heat transfer across the cross-section. The plot highlights the instantaneous mixing

effect of turbulent flows, where chaotic velocity fields enhance heat and momentum transport.
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Figure 6.13: Averaged velocity vectors in pipe flow colored by temperature, illustrating turbulent heat

transport.

Figure 6.13 showcases the time-averaged (space and time) velocity vector for pipe configuration. The

arrows in the plot now represent time-averaged velocity vectors, providing insight into the dominant, large-

scale flow patterns rather than instantaneous turbulence. The magnitude of the vectors diminishes closer

to the pipe centre, suggesting reduced secondary motion in the bulk region when turbulent fluctuations are

averaged out. The color coding of the vectors still represents the temperature distribution, transitioning

from higher temperatures (red/yellow) near the walls to lower temperatures (blue/green) toward the pipe

core. The averaged plot highlights a more uniform temperature field in the bulk region due to sustained

turbulent mixing.

The average velocity vectors show how the bulk fluid motion works in conjunction with residual secondary

flows to transport heat from the wall toward the pipe core, though less efficiently compared to the instanta-

neous case. The averaged flow reveals the dominant secondary flow structures, with residual vortices

visible near the walls. These structures are weaker than in subchannel geometries, where geometric

constraints amplify secondary flows and improve heat transport. The plot also emphasizes the slower rate

of heat transport in the pipe core, where the absence of strong secondary vortices results in more uniform

but less efficient mixing compared to the near-wall regions.
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Figure 6.14: Instantaneous velocity vectors in 2x2 subchannel flow colored by temperature, illustrating

turbulent heat transport.

Figure 6.14 showcases an instantaneous velocity vector flow field for a 2x2 subchannel for isothermal

boundary condition (Pr =1). Instantaneous velocity vectors reveal a turbulent flow characterized by localized

vortices and swirling patterns distributed across the cross-section. These structures are essential for

convective heat transport, actively carrying high-temperature fluid away from the walls and distributing

it toward the bulk flow. The colour-coded temperature variation indicates the efficiency of this transport,

as regions near the walls exhibit steep thermal gradients, while the core region shows relatively uniform

mixing.

The rod wall and bulk interaction enhance secondary flows in the subchannel domain. These flows are

particularly prominent in the intersections of adjacent subchannels, where they interact to form organized

vortex structures. The swirling eddies seen in the figure exemplify how turbulent flow enhances mixing

by breaking down large-scale structures into smaller scales, thereby increasing heat transfer efficiency.

These structures are especially effective in redistributing thermal energy from high-temperature regions

near the walls into the cooler bulk. The secondary flows in subchannels are stronger and more efficient

compared to pipe geometries, where the lack of geometric constraints results in weaker secondary vortices

and slower mixing.
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Figure 6.15: Averaged velocity vectors in 2x2 subchannel flow colored by temperature, illustrating

turbulent heat transport.

Figure 6.15 showcases the time-averaged (space and time) velocity vector for the 2x2 subchannel configu-

ration. Compared to the instantaneous velocity field, the averaged field reveals the dominant, large-scale

flow patterns while suppressing smaller turbulent fluctuations. The vectors show a clear organization of

secondary flows in the subchannel domain, forming symmetrical vortices in each unit cell. The colour

gradient in the plot demonstrates the efficiency of mixing. The high-temperature fluid near the walls is

transported inward by the secondary vortices, while cooler bulk fluid is directed toward the walls.

The time- and space-averaged velocity field in pipe geometries shows weaker and less uniform secondary

flows, resulting in lower heat transfer efficiency. Conversely, subchannels leverage their geometry to sustain

strong, organized secondary flows that facilitate better mixing and heat transport. With the combination

of gap street vortex, the coupling of these gap street vortices and secondary flows significantly reduces

thermal gradients across the domain, resulting in a more uniform temperature distribution than the pipe

configuration.

While both configurations exhibit the turbulent mechanisms necessary for heat transport, the subchannel

geometry is qualitatively and quantitatively better for thermal-hydraulic applications. The combination of

instantaneous turbulent structures and sustained secondary vortices in subchannels results in faster and

more uniform thermal mixing, making it a preferred choice over pipes for systems requiring enhanced heat

transfer and hydraulic performance.
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6.4. Nusselts number
This investigation scrutinizes the Nusselt number (Nu) characteristics of two distinct geometrical configu-
rations: a conventional circular pipe and a representative 2x2 subchannel arrangement, characteristic of

Pressurized Water Reactor (PWR) fuel assemblies. Building upon the comprehensive flow physics and

heat transfer analysis presented in preceding sections, this research evaluates the thermal-hydraulic per-

formance across two distinct Prandtl number regimes: Pr = 1 and Pr = 0.025. By conducting a comparative

analysis, the study aims to elucidate the inherent limitations of existing heat transfer correlations derived

from idealized geometrical representations and underscore the critical necessity for geometry-specific

Nusselt number correlations in nuclear thermal-hydraulic design.

Key observations for Pr = 1 (Water at PWR Conditions) presented in Figure 6.16 are:

1. Subchannel 2x2 vs Pipe Configuration: The subchannel 2x2 configuration shows higher Nusselt

numbers ∼ 25.8 than the pipe configuration ∼ 23.2 for the same Reynolds number (Reb = 5300).
The relative increase in Nusselt number is approximately 11.5%, not a large difference given the low

Reynolds number.

A higher Nusselt number indicates enhanced convective heat transfer efficiency. The subchannel

2x2 configuration facilitates greater mixing or turbulence in the flow, reducing thermal resistance

and enhancing heat transfer compared to the pipe configuration. This is likely due to differences in

geometry influencing flow patterns, turbulence levels, and thermal boundary layer development, as

observed in earlier sections.

2. Boundary Conditions - Isothermal vs Isoflux: Both isothermal and isoflux conditions produce

nearly identical Nusselt numbers for each configuration, with a slight difference in the subchannel

2x2. This indicates that the overall heat transfer is not highly sensitive to these boundary condition

variations under the given conditions, demonstrating robust thermal performance, which is also

observed in the previous chapter for pipe configuration.

This similarity arises because both boundary conditions achieve similar average heat transfer char-

acteristics, which dominate at these Re and Pr values.

3. Comparison with Correlations: The Nusselt number for subchannel 2x2 configurations lies slightly

above the Dittus-Boelter correlation, which is also observed in the pipe configuration. This suggests

the subchannel’s heat transfer performance exceeds these classical correlations’ expectations.

Figure 6.16: Nusselt number (Nu) for Prandtl
number Pr = 1 compared with Reynolds number
(Re) between pipe and 2x2 subchannel cases.

Figure 6.17: Nusselt number (Nu) for Prandtl
number Pr = 0.025 compared with Reynolds

number (Re) between pipe and 2x2 subchannel
cases.

Key Observations for Pr = 0.025 (Liquid metal at PWR Conditions) presented in Figure 6.17 are:
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1. Subchannel 2x2 vs Pipe Configuration: The subchannel 2x2 yields a mean Nusselt number

(∼ 11.7). In contrast, the pipe configuration results in lower Nusselt numbers (∼ 7.43).The relative
increase in the Nusselt number is approximately 59.7%, a more pronounced difference compared to

Pr=1 ( 11.5%).

Subchannel 2x2 provides significantly enhanced heat transfer compared to the pipe configuration, with

the difference amplified at lower Pr. This phenomenon is particularly relevant for liquid metals, where

high thermal conductivity and low Pr rely more on convection over conduction, heavily influenced by

flow geometry.

The slight differences between isothermal and isoflux conditions are more pronounced than those

observed for Pr=1.

At Pr=0.025, thermal diffusivity dominates over momentum diffusivity, rendering heat transfer more

dependent on the thermal boundary layer’s interaction with the flow. Boundary condition changes

(isothermal vs. isoflux) significantly affect the temperature gradient, leading to increased sensitivity.

2. Comparison with Correlations:

For the 2x2 subchannel configuration, Nusselt values lie slightly above the Kazimi-Carelli correlation

(specific to Pr=0.025) but below Dittus-Boelter and Gnielinski, which are traditionally calibrated for

higher Pr. This suggests the subchannel performs slightly better than expected based on Kazimi-

Carelli but aligns with the physics of lower Pr.

For the pipe configuration, Nusselt numbers are significantly below all three correlations, indicating

that standard models underpredict thermal trasnport for pipe flow at Pr=0.025.

The discrepancies observed between subchannel and pipe configurations at varying Prandtl numbers

underscore a critical limitation in existing Nusselt number correlations. The study reveal that:

• Geometric Dependency: Conventional correlations derived from simplified pipe geometries fail to

capture the nuanced heat transfer mechanisms in complex subchannel configurations, particularly at

low Prandtl numbers.

• Correlation Inadequacy: Existing empirical models systematically underpredict thermal transport,

highlighting the urgent need for geometry-specific correlation development.

• Prandtl Number Sensitivity: The pronounced differences in Nusselt numbers across Pr ranges

demand a more sophisticated approach to thermal-hydraulic modelling, especially for applications

involving liquid metals or low-Pr fluids.



7
Conclusion and Future Scope

This chapter synthesizes the key findings from our comprehensive investigation of thermal-hydraulic

characteristics in pipe and subchannel configurations. By examining flow dynamics, heat transfer mech-

anisms, and Nusselt number correlations across different geometries and Prandtl numbers, the study

provides critical insights into the complex thermal transport phenomena in nuclear reactor systems. The

conclusion reflects on the research outcomes, highlighting the limitations of existing correlations and

proposing pathways for future research in thermal-hydraulic modeling.

7.1. Conclusion
A numerical study of subchannel with comparison to the conventional pipe configuration, using DNS, was

conducted to evaluate the boundary conditions as well as the thermal-hydraulic properties. The pipe

configuration was conducted for a Reynolds number of 5300 and was validated using reference data (El

Khoury). Flow characteristics and heat transfer characteristics were evaluated and validated. The Nusselt

number for the 4 temperature scalars was plotted against the Reynolds number, and it was observed that

the Nusselt number is more sensitive to lower Prandtl numbers, even though the difference is negligible.

Newer empirical correlations are required to model for lower Prandtl numbers.

Subchannel configurations consisted of 2 geometric configurations: a square subchannel and a 2x2

subchannel. The subchannel configurations was conducted for a Reynolds number of 5300. The square

subchannel domain represented the heat transfer characteristics around a single rod, while the 2x2

subchannel domain extended the single interior subchannel to a composite of four single subchannels,

representing the flow around the rod as well as the partial effects of the neighbouring rods. Both geometries

were considered to understand which one accurately represented the rod bundle. The study revealed that

the heat transfer characteristics in a 2x2 subchannel is a better representation of the rod bundle domain.

This was elucidated through the autocorrelation plots, which were taken from the subchannel centre to the

subchannel centre to compare with the autocorrelation of a square subchannel along the boundary. It was

inferred that the square subchannel was not able to capture the coupling of the gap street vortex, also

referred to as the rod bundle vortex network, as showcased in the difference in Reynolds stress between

both geometric configurations.

The subchannel 2x2 was selected and evaluated side by side with the pipe configuration to understand the

difference in heat transfer characteristics. Due to the complex geometry of the subchannel domain, the

anticipated flow physics in the domain was better than the pipe configuration in terms of thermal-hydraulic

mixing. The Nusselt number was evaluated for the subchannel domain with a comparison to the pipe

configuration, and it was observed that for a unity Prandtl number, there was a minimal difference between

both geometries, while the difference was more significant for a low Prandtl number (Pr = 0.025).

This study answers the initially proposed research question and sub-research questions. The effects of

the rod bundle vortex network proved to be of greater importance, and the larger computational domain

proved to capture the neighbouring rods’ combined flow and heat transfer characteristics observed in a rod

bundle arrangement. The study also addresses the main research question and research objective of the

necessity for empirical Nusselt number correlations specific to subchannel geometry, and the conventional

approach of using pipe geometry is deemed to be outdated and over-predicting. Although the difference is

65
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negligible at low Reynolds numbers (104), this is not the case for a PWR, where Reynolds numbers range

between 105 and 106.

7.2. Recommendations
• Improved Averaging Techniques: This study has focused solely on averaging along the unit cell

boundary (one-dimensional). While this approach has provided valuable insights into the Reynolds

stress and other statistics, extending the averaging to include the interior of the unit cell (a second

dimension) would offer a more comprehensive understanding of flow physics and heat transport.

Such an approach can help capture the spatial variations and intricate flow behaviors within the

subchannels. Additionally, exploring alternative averaging techniques, comparing them with those

used in this study, and validating their outcomes can further refine the accuracy of statistical analyses

and improve our interpretation of the results.

• Expanded Domain Sizes: Investigating larger domains such as 3×3 and 4×4 subchannel configu-

rations can help better represent the rod bundle geometry and capture the coupling effects of gap

street vortices ( rod bundle vortex networks). These extended configurations allow for a more realistic

depiction of the interaction between adjacent subchannels, potentially leading to more accurate

conclusions regarding flow dynamics and thermal performance in rod bundles.

• Analysis of 2×1 and 1×1 Subchannel Configurations: The 2×1 subchannel configuration serves as

a valuable intermediate step, isolating (to some extent) the coupling of gap street vortices and focusing

on flow dynamics across a single gap. This can provide key insights into the behavior of gap vortex

streets between adjacent subchannels. Additionally, analyzing the interior 1×1 subchannel can help

establish a baseline comparison with the square subchannel configuration. While these configurations

should ideally show similar results, subtle variations in certain statistics, such as autocorrelation, could

highlight unique aspects of flow dynamics, provided these statistics are implemented appropriately.

7.3. Future Scope
• Variation in Prandtl Numbers: This study has been limited to low Prandtl numbers and unity Prandtl

number (representing water). Extending the investigation to higher Prandtl numbers (Pr > 1) is

critical, as the effects on flow physics and heat transfer can vary drastically. Fluids with higher Prandtl

numbers exhibit different thermal diffusivities, which influence boundary layer behavior and heat

transfer characteristics significantly.

• Higher Reynolds Numbers: The bulk Reynolds number in Pressurized Water Reactors (PWRs)

typically ranges in the millions. Due to computational constraints, this study was limited to a Reynolds

number of 5300. Future studies should explore higher Reynolds numbers, such as 11,000 and

50,000, to understand their impact on flow instabilities, turbulence, and heat transfer efficiency.

Higher Reynolds numbers are expected to play a significant role in improving thermal performance

and enhancing design optimization.

• Alternative Rod Bundle Configurations: The commonly used rod bundle arrangement in PWRs is

square; however, liquid metal reactors often utilize hexagonal configurations. Exploring alternative

geometries, such as hexagonal and circular arrangements, is essential to understand the completely

different flow physics in these configurations compared to square bundles. This exploration can

provide insights into their unique turbulence structures and heat transfer behaviors, helping design

fuel assemblies tailored to specific reactor applications.

• Wall Effects and Corner Subchannels: This study did not consider the effects of walls or corners

in the rod bundle geometry. Investigating these aspects in future studies would complete the

understanding of flow physics in square configurations. Wall effects, in particular, can significantly

influence flow distribution, secondary flows, and heat transfer, especially near the peripheral rods.

• Integration of Advanced Effects: To achieve a more realistic simulation of reactor conditions,

future studies should implement fluid-structure interaction (FSI) and surface roughness in subchannel

domains. These factors are critical for assessing flow-induced vibrations, structural stresses, and

their influence on turbulence and heat transfer. The inclusion of these effects would enable the

design of optimized PWR fuel assemblies with enhanced safety and efficiency.
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A
Appendix A

A.1. Pipe THF Budget terms

Figure A.1: THF Budget terms for scalar

Temperature T1 at 60 FTT plotted against wall

distance (y+).

Figure A.2: THF Budget terms for scalar

Temperature T2 at 60 FTT plotted against wall

distance (y+).

Figure A.3: THF Budget terms for scalar

Temperature T3 at 60 FTT plotted against wall

distance (y+).

Figure A.4: THF Budget terms for scalar

Temperature T4 at 60 FTT plotted against wall

distance (y+).
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A.2. Subchannel: Comparison of its THF budget

Figure A.5: Thermal Heat Flux (THF) budget for

scalar temperature T1, comparing square and 2x2

subchannel cases, plotted against distance.

Figure A.6: Thermal Heat Flux (THF) budget for

scalar temperature T2, comparing square and 2x2

subchannel cases, plotted against distance.

Figure A.7: Thermal Heat Flux (THF) budget for

scalar temperature T3, comparing square and 2x2

subchannel cases, plotted against distance.

Figure A.8: Thermal Heat Flux (THF) budget for

scalar temperature T4, comparing square and 2x2

subchannel cases, plotted against distance.

A.3. Comparative study: Pipe and 2x2 Subchannel

Figure A.9: Thermal Heat Flux (THF) budget for

scalar temperature T1, comparing pipe and 2x2

subchannel cases, plotted against distance.

Figure A.10: THF budget for scalar temperature

T2, comparing pipe and 2x2 subchannel cases,

plotted against distance.
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Figure A.11: Thermal Heat Flux (THF) budget for

scalar temperature T3, comparing pipe and 2x2

subchannel cases, plotted against distance.

Figure A.12: THF budget for scalar temperature

T4, comparing pipe and 2x2 subchannel cases,

plotted against distance.
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